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ABSTRACT

The semi-Lagrangian methodology is described for a hierarchy of applications (passive advection, forced
advection, and coupled sets of equations) of increasing complexity, in one, two, and three dimensions. Attention
is focused on its accuracy, stability, and efficiency properties. Recent developments in applying semi-Lagrangian
methods to 2D and 3D atmospheric flows in both Cartesian and spherical geometries are then reviewed. Finally,
the current status of development is summarized, followed by a short discussion of future perspectives.

1. Introduction

Accurate and timely forecasts of weather elements
are of great importance to both the economy and to
public safety. Weather forecasters rely on guidance
provided by numerical weather prediction (NWP), a
computer-intensive chain of operations beginning with
the collection of data from around the world and cul-
minating in the production of weather charts and com-
puter-worded messages. At the heart of the system are
the numerical models used to assimilate the data and
to forecast future states of the atmosphere. The accu-
racy of the forecasts depends among other things on
model resolution. Increased resolution, given the real-
time constraints, can only be achieved by judiciously
combining the most efficient numerical methods on
the most powerful computers with the most appropriate
programing techniques.

A long-standing problem in the integration of NWP
models is that the maximum permissible time step has
been governed by considerations of stability rather than
accuracy. For the integration to be stable, the time step
has to be so small that the time truncation error is
much smaller than the spatial truncation error, and it
is therefore necessary to perform many more time steps
than would otherwise be the case. The choice of time
integration scheme is, therefore, of crucial importance
when designing an efficient weather forecast model,
and this is also true when designing environmental
emergency response models. Early NWP models used
an explicit leapfrog scheme, whose time step is limited
by the propagation speed of gravitational oscillations.
By treating the linear terms responsible for these os-
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cillations in an implicit manner, it is possible to
lengthen the time step by about a factor of 6, at little
additional cost and without degrading the accuracy of
the solution {e.g., Robert (1969); Robert et al. (1972)].
Such a scheme is termed semi-implicit. Nevertheless,
the maximum stable time step still remains much
smaller than seems necessary from considerations of
accuracy alone (Robert 1981).

Discretization schemes based on a semi-Lagrangian
treatment of advection have elicited considerable in-
terest in the past decade for the efficient integration of
weather forecast models, since they offer the promise
of allowing larger time steps (with no loss of accuracy)
than Eulerian-based advection schemes (whose time-
step length is overly limited by considerations of sta-
bility ). To achieve this end it is essential to associate
a semi-Lagrangian treatment of advection with a suf-
ficiently stable treatment of the terms responsible for
the propagation of gravitational oscillations. By asso-
ciating a semi-Lagrangian treatment of advection with
a semi-implicit treatment of gravitational oscillations,
Robert (1981, 1982) demonstrated a further increase
of a factor of 6 in the maximum stable time step, at
some additional cost. This idea was demonstrated in
the context of a three-time-level shallow-water finite-
difference model in Cartesian geometry, and resulted
in the time truncation errors that were finally of the
same order as the spatial ones.

Since Robert’s seminal papers, the semi-Lagrangian
methodology for advection-dominated fluid flow
problems has been extended in several important ways.
The purpose of this paper is to summarize the funda-
mentals of semi-Lagrangian advection (section 2), to
describe its application to coupled sets of equations
(section 3), to review recent extensions of the method
{section 4) not covered in the discussions of the pre-
vious sections, and to draw some conclusions (sec-
tion 5).
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2. Semi-Lagrangian advection

In an Eulerian advection scheme an observer
watches the world evolve around him at a fixed geo-
graphical point. Such schemes work well on regular
Cartesian meshes (facilitating vectorization and par-
allelization of the resulting code), but often lead to
overly restrictive time steps due to considerations of
computational stability. In a Lagrangian advection
scheme an observer watches the world evolve around
him as he travels with a fluid particle. Such schemes
can often use much larger time steps than Eulerian
ones, but have the disadvantage that an initially reg-
ularly spaced set of particles will generally evolve to a
highly irregularly spaced set at later times (Welander

1955), and important features of the flow may con- .

sequently not be well represented. The idea behind
semi-Lagrangian advection schemes is to try to get the
best of both worlds: the regular resolution of Eulerian
schemes and the enhanced stability of Lagrangian ones.
This is achieved by using a different set of particles at
each time step, the set of particles being chosen such
that they arrive exactly at the points of a regular Carte-
sian mesh at the end of the time step. This idea grad-
ually evolved from the pioneering work of Fjertoft
(1952, 1955), Wiin-Nielsen (1959), Krishnamurti
(1962), Sawyer (1963), Leith (1965) and Purnell
(1976). Of the formulations introduced prior to that
of Purnell (1976), those of Krishnamurti (1962) and
Leith (1965) are perhaps the most similar to those used
in present-day semi-Lagrangian advection schemes;
however, as formulated they are only valid for Courant
numbers (C = |U| At/ AXx) less than unity.

a. Passive advection in 1D

To present the basic idea behind the semi-Lagrangian
method in its simplest context, we apply it to the 1D
advection equation
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where
dx
E—U(x,t), (2)

and U(x, t) is a given function. Equation (1) states
that the scalar F is constant along a fluid path (or tra-
jectory or characteristic). In Fig. 1, the exact trajectory
in the (x-t) plane of the fluid particle that arrives at
mesh point x,, at time ¢, + At is denoted by the solid
curve AC, and an approximate straight-line trajectory
by the dashed line 4’C. Let us assume that we know
F(x, t) at all mesh points x,, at times 7, — At and ¢,,
and that we wish to obtain values at the same mesh
points at time ¢, + Az. The essence of semi-Lagrangian
advection is to approximately integrate (1) along the
approximated fluid trajectory 4'C. Thus,

F(Xp, ty + At) — F(X — 20, t, — Al)
2A¢

=0, (3)

where a,, is the distance BD the particle travels in x in
time A¢, when following the approximated space-time
trajectory A’C. Thus if we know a,,, then the value of
F at the arrival point Xx,, at time ¢, + At is just its value
at the upstream point x,, — 2a,,, at time ¢, — At. How-
ever, we have not as yet determined «,,; even if we
had, we only know F at mesh points, and generally it
still remains to evaluate F somewhere between mesh
points.

To determine «,,, note that U evaluated at the point
B of Fig. 1 is just the inverse of the slope of the straight
line 4'C, and this gives the following O( At?) approx-
imation to (2) (Robert 1981):

= AtU(Xp, — oty ). 4)

C
t p+At - X X X X X -
D
t n - X X Ix
< o —>
t At 1 Xe®~ X X X X X
AA
E<— 200y ——— >
X ml_zam ;( m X

F1G. 1. Schematic for three-time-level advection. Actual (solid curve) and approximated (dashed
line) trajectories that arrive at mesh point x,, at time ¢, + At. Here «,, is the distance the particle

is displaced in x in time At.
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Equation (4) may be iteratively solved for the dis-
placement a,,, for example by

am(k+l) = All][xm - am(k), Zn]a (5)

with some initial guess for a,,(?, provided U can be
evaluated between mesh points. To evaluate F and U
between mesh points, spatial interpolation is used. The
semi-Lagrangian algorithm for passive advection in 1D
in summary is thus:

(i) Solve (5) iteratively for the displacements «,,
for all mesh points x,,, using some initial guess (usually
its value at the previous time step), and an interpolation
formula.

(ii) Evaluate F at upstream points x,, — 2q,, at time
t, — At using an interpolation formula.

(ii1) Evaluate F at arrival points x,, at time ¢, + At
using (3).

We defer the discussion of interpolation details to
section 2d, and first generalize the above three-time-
level algorithm to forced advection in several space
dimensions (section 2b), and to two time levels (sec-
tion 2c).

b. Forced advection in multidimensions

Consider the forced-advection problem

dr
E+G(X, t) = R(x, 1), (6)
where
dFF 9oF
z—E'FV(X,t)'VF, (7)
ax_ V(x, 1), (8)

dt

Here, x is the position vector (in 1-, 2- or 3D), V is
the gradient operator, and G and R are forcing terms.
A semi-Lagrangian approximation to (6) and (8) is
then:

Fr—F 1
——+-[GT+G]=R°
2A7 > [ ] , (9)
a=AV(x —a,t), (10)
where the superscripts “+7, “0” and “—, respectively,

denote evaluation at the arrival point (x, ¢ + At), the
midpoint of the trajectory (X — «, ¢) and the departure
point (x — 2a, ¢t — At). Here, x is now an arbitrary
point of a regular (1-, 2- or 3D) mesh.

The above is a centered O(At?) approximation to
(6) and (8), where G is evaluated as the time average
of its values at the end points of the trajectory, and R
is evaluated at the midpoint of the trajectory. The tra-
jectories are calculated by iteratively solving (10) for
the vector displacements « in an analogous manner to
the 1D case for passive advection [Eq. (5)]. If G is
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known (we assume that R is known since it involves
evaluation at time ¢), then the algorithm proceeds in
an analogous manner to the 1D passive advection one
and is thus,

(i) Solve (10) iteratively for the vector displace-
ments « for all mesh points x, using some initial guess
(usually its value at the previous time step), and an
interpolation formula.

(ii) Evaluate F — AtG at upstream points x — 2«
at time 7 — Af using an interpolation formula. Evaluate
2A¢R at the midpoints x — « of the trajectories at time
t using an interpolation formula.

(iii) Evaluate F at arrival points x at time ¢ + At
using

F(x, t+ At) = (F - AtG)l(x—2ax,t—At)
+ 2A1R| (x—aypy — AIG| (xs4a0)

=(F— AtG)™ + 2AtR° — AtG*  (9')
If G is not known at time ¢ + A¢ (for instance if it
involves another dependent variable in a set of coupled
equations), then this leads to a coupling to other equa-
tions (more on this in section 3).

c. Two-time-level advection schemes (and a pollutant-
transport application)

Present semi-Lagrangian schemes are based on dis-
cretization over either two or three time levels, and
thus far we have restricted our attention to three-time-
level schemes. The principal advantage of two-time-
level schemes over three-time-level ones is that they
are potentially twice as fast. This is because three-time-
level schemes require time steps half the size of two-
time-level ones for the same level of time truncation
error (Temperton and Staniforth 1987). It is, however,
important to maintain second-order accuracy in time
in order to reap the full benefits of a two-time-level
scheme (since enhanced stability with large time steps
is of no benefit if it is achieved at the expense of di-
minished accuracy). Early two-time-level schemes for
NWP models unfortunately suffered from this defi-
ciency (e.g., Bates and McDonald 1982; Bates 1984;
McDonald 1986). The crucial issue is how to efficiently
determine the trajectories to at least second-order ac-
curacy in time (Staniforth and Pudykiewicz 1985;
McDonald 1987).

This problem arises in the context of self-advection
of momentum. To see this we reexamine the algorithm
of section 2a for 1D advection. Provided U is known
at time ¢,, independently of F at the same time, then
it is possible to evaluate the trajectory, and then leapfrog
the value of F from time ¢, — Af to ¢, + At, without
knowing any value of F at time ¢,. Proceeding in this
way, F(t, + 3At) is then obtained using values of F(¢,
+ At) and U(¢, + 2At). Thus we have two decoupled
independent integrations, one using values of F at even
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time steps and U at odd time steps, the other using
values of F at odd time steps and U at even time steps.
Either of these two independent solutions is sufficient,
thus halving the computational cost, and we obtain a
two-time-level scheme (for the advected quantity F)
by merely relabeling time levels 7, — Az, ¢, and ¢, + At,
respectively, as t,, ¢, + At/2, and ¢, + At (see Fig. 2).
Note that values of U (assumed known) only appear
at time level 7, + At/2, and they are solely used to
estimate the trajectories.

This is the essence of the 2D advection-diffusion
algorithm described and analyzed in Pudykiewicz and
Staniforth (1984). It led to the development of a three-
dimensional pollutant transport model (Pudykiewicz
et al. 1985), where a family of chemical species are
advected and diffused in the atmosphere using winds
and diffusivities: these are either provided by a NWP
model (for real-time prediction) or from analyzed data
(for postevent simulations ). This model is designed to
provide real-time guidance in the event of an environ-
mental accident and has been used to successfully sim-
ulate the dispersion of nuclear debris from the Cher-
nobyl reactor accident (Pudykiewicz 1989). It has
evolved into Canada’s Environmental Emergency Re-
sponse Model (Pudykiewicz 1990).

Returning to the problem of self-advection of mo-
mentum, the above argument breaks down in the spe-
cial case where F = Uin(1)or F= Vin(6);i.e., when
the transported quantity U or V is advected by itself,
as is the case for the momentum equations of fluid-
dynamic problems in general, and NWP models in
particular. This problem was addressed simultaneously
and independently by Temperton and Staniforth
(1987) and McDonald and Bates (1987), opening the
way toward stable and accurate two-time-level schemes.
The key idea here is to time extrapolate the winds [ with
an O( At?)-accurate extrapolator] to time level 7 + At/
2 using the known winds at time levels ¢ and ¢ — Ar:
these winds are then used to obtain sufficiently accurate
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[O(At?)] estimates of the trajectories, which in turn
are used to advance the dependent variables from time
level £ to t + At. Thus, the two-time-level algorithm to
solve (6)—(8), analogous to the three-time-level one
given by (9)-(10), is (see Fig. 2)

E%FO+%[G++G°]=R”2, (11)
where
a = AIV¥(x — a/2,t + At]2), (12)
VX(x, t + A1/2) = /L) V(x, t)
- ('h)V(x, t — At) + O(Ar?); (13)

the superscripts “+°, “¥»”, and “0” now, respectively,
denote evaluation at the arrival point (x, ¢ + At), the
midpoint of the trajectory (x — «/2, ¢t + At/2), and
the departure point (x — a, ¢), and « is still the distance
the fluid particle is displaced in time At.

In the above formulation the evaluation of R"'/?
involves extrapolated quantities and, therefore, could
potentially lead to instability. Temperton and Stani-
forth (1987) did not find this to be a problem when
some weak nonlinear metric effects were evaluated in
this way in a shallow-water model integrated on a polar-
stereographic projection, but it seems preferable to
evaluate all nonadvective terms (i.e., G in the above)
as time averages along the trajectory whenever possible.
[Subsequently C6té (1988 ) showed how to avoid eval-
uating the above-mentioned metric terms in terms of
extrapolated quantities.] However, Higgins and Bates
(1990) report that evaluating the product term (of the
geopotential perturbation and divergence) in the con-
tinuity equation of a global shallow-water model using
time-extrapolated quantities [ as in Bates et al. (1990)]
leads to the growth of computational noise. An alter-
native solution is to discretize the continuity equation
in logarithmic form as in C6té and Staniforth (1990),

t g +AL - X X S
D
t A2+ X X ¥
2>
tn -+ Xe¥~ X X X X
AA '
< O —_—
; . —>
X m_a’ m X m

FIG. 2. Schematic for two-time-level advection. Actual (solid curve ) and approximated (dashed
line) trajectories that arrive at mesh point x,, at time ¢, + At. Here a,, is the distance the particle

is displaced in x in time At.
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at the price of making the elliptic boundary-value
problem of the semi-implicitly treated terms mildly
nonlinear: this has the advantage that it retains O( At?)
accuracy because it is still a centered approximation.
A further possible alternative is discussed in section
4d. Note that when all nonadvective terms are evalu-
ated implicitly as time averages along trajectories, then
extrapolated quantities are used solely for the purpose
of obtaining a sufficiently accurate estimate of the tra-
jectories.

Temperton and Staniforth (1987) examined several
alternative ways of extrapolating quantities for the
purpose of estimating trajectories. They found that
those methods that keep a particle on its exact trajectory
for solid-body rotation seem to give better results for
the more general problem than those that do not. In
particular, they found it advantageous to use a three-
term extrapolator (using winds at times z, £ — Az, and
t — 2Az to obtain an extrapolated wind at ¢t + At/2)
instead of the two-term extrapolator (13). They also
found that time-extrapolating winds along the trajec-
tory (their method 4) is less accurate than time-ex-
trapolating winds at mesh points as in (13).

d. Interpolation

A priori, any interpolation could be used to evaluate
F and U (or V) between mesh points in the above al-
gorithm. In practice the choice of interpolation formula
has an important impact on the accuracy and efficiency
of the method. Various polynomial interpolations have
been tried including: linear ; quadratic Lagrange; cubic
Lagrange; cubic spline; and quintic Lagrange.

For step (ii) of the algorithm, it is found (see e.g.,
Purnell 1976; Bates and McDonald 1982; McDonald
1984; and Pudykiewicz and Staniforth 1984, for anal-
ysis) that cubic interpolation is a good compromise
between accuracy and computational cost. While qua-
dratic Lagrange interpolation is viable and was used
in most of the early studies (e.g., Krishnamurti 1962,
1969; Leith 1965; Mathur 1970, 1974; Bates and
McDonald 1982), cubic interpolation has been widely
adopted in recent studies (e.g., Robert et al. 1985;
McDonald 1986; Bates and McDonald 1987; Ritchie
1988; Coté and Staniforth 1988; Bates et al. 1990).
Cubic interpolation gives fourth-order spatial trunca-
tion errors with very little damping (it is very scale
selective, affecting primarily the smallest scales),
whereas linear interpolation (see McDonald 1984 for
discussion ) has unacceptably large damping (it is also
scale selective, but has a much less sharp response).
Cubic spline interpolation has the useful property that
it conserves mass for divergence-free flows ( Bermejo
1990). Purser and Leslie (1988) recommend using at
least fourth-order (i.e., cubic) interpolation, and have
used quintic interpolation in their recent work (Leslie
and Purser 1991). Improving the order of the inter-
polation formally increases the accuracy, but at addi-
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tional cost, and the law of diminishing returns ulti-
mately applies.

For step (i), the order of the interpolation is much
less important. Theoretically, McDonald (1987) has
shown that one should use an interpolation of order
one less than for step (ii); e.g., quadratic interpolation
of U when using cubic interpolation of F. In practice
however, in the context of both passive advection and
coupled systems of equations in several spatial dimen-
sions, it is found (Staniforth and Pudykiewicz 1985;
Temperton and Staniforth 1987; Bates et al. 1990) that
it is sufficient to use linear interpolation for the com-
putation of the displacements, when using cubic in-
terpolation for F, which is very economical. It is also
found that there is no advantage in using more than
two iterations for solving the displacement equation
[step (1)]. McDonald (1987) has shown theoretically
that it is not necessary to use the same order of inter-
polation for each iteration. For example, it is more
economical and no less accurate to perform the first
iteration using linear interpolation and the second using
quadratic, than to use quadratic interpolation for both.

Pudykiewicz et al. (1985) have shown that a sufhi-
cient condition for convergence of the iterative solution
of step (i) is that Ar be smaller than the reciprocal of
the maximum absolute value of the wind shear in any
coordinate direction. Thus At < [max(|u.|, |1, |vxl,
[v,1)]7! for 2D flow, where u and v are the two wind
components, and the time step of semi-Lagrangian
schemes is not only limited by accuracy considerations
(i.e., temporal discretization errors) but also by prop-
erties of the flow (i.e., wind shear). They estimated for
NWP and long-range transport of pollutants problems
that convergence is assured provided At is less than 3
h, which is an order of magnitude larger than the max-
imum time step permitted by Eulerian advection
schemes in analogous circumstances.

e. Stability and accuracy (and connection with other
advection methods)

Analyses of the stability properties of the semi-La-
grangian advection scheme (e.g., Bates and McDonald
1982; McDonald 1984; Pudykiewicz and Staniforth
1984; Ritchie 1986, 1987) show that the maximum
time step is not limited by the maximum wind speed,
as is the case for Eulerian advection schemes, and con-
sequently it is possible to stably integrate with Courant
numbers (C = |U|At/Ax) that far exceed unity. To
illustrate this point we reproduce (with permission)
the results of Bermejo (1990) for the slotted cylinder
test of Zalesak (1979). In Fig. 3a we show the slotted
cylinder at initial time, and in Fig. 3b the corresponding
result after six revolutions of solid-body rotation at
uniform angular velocity about the domain center. The
experiment was conducted using a cubic-spline inter-
polator at a Courant number of 4.2, which is consid-
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FIG. 3. The “slotted” cylinder, (a) at initial time and (b) after six revolutions.

erably larger than that of an Eulerian advection scheme.
This is recognized as being a challenging test, and the
result is remarkably good. In particular the results il-
lustrate the scheme’s ability to handle sharp disconti-
nuities without disastrous consequences (even though
it was not designed specifically to do so) and the ab-
sence of noticeable dispersion problems (which are
typically present for Eulerian advection schemes).
This behavior in the presence of discontinuities or
near discontinuities was also observed in the study of
Kuo and Williams ( 1990) for a scale collapse problem.
They concluded that semi-Lagrangian schemes are to
be preferred to Eulerian schemes for this kind of prob-
lem since they have much smaller dispersion errors
(which are localized around the shock) and can be
integrated with significantly longer time steps. This is

an important finding since, as pointed out by one of
the reviewers, there is a mistaken belief that semi-La-
grangian schemes are only good for smooth flows. Their
findings clearly show that this is not the case. In a sim-
ilar vein, Ritchie (1985) argued that the localization
of errors to the regions where the gradients are strongest
when semi-Lagrangian advection is used is a desirable
property that may be advantageously exploited for the
treatment of moisture transport in NWP models, since
large local gradients frequently occur in moisture fields
(e.g., at fronts). He reported that semi-Lagrangian ad-
vection led to better results than Eulerian advection in
the context of a 48-h forecast.

In general it is found that semi-Lagrangian advection
is competitive with Eulerian advection with respect to
accuracy, but it has the added advantage that this ac-
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curacy can be achieved at less computational cost, since
models can be integrated stably with time steps that
far exceed the maximum possible time steps of Eulerian
schemes. The aforementioned stability analyses show
that semi-Lagrangian advection schemes have very
good phase speeds with little numerical dispersion, but
contrary to some Eulerian schemes (e.g., leapfrog-based
schemes) there is some damping due to interpolation
as discussed in section 2d. This damping is fortunately
very scale selective (at least when using high-order in-
terpolators). McCalpin ( 1988) has theoretically com-
pared this damping with more traditional forms such
as Laplacian and biharmonic dissipation, and derived
some criteria to ensure that the damping due to semi-
Lagrangian advection is less than that due to the more
traditional forms. In practice Ritchie (1988) and Co6té
and Staniforth ( 1988 ) have found that semi-Lagrangian
integration schemes have three times less damping than
a typical Eulerian global medium-range forecast model
run at typical resolution with a typical biharmonic dis-
sipation.

Semi-Lagrangian advection is intimately connected
with several other advection methods that have ap-
peared in the literature over the years, including par-
ticle-in-cell (e.g., Raviart 1985) and characteristic Gal-
erkin (e.g., Morton 1985; Karpic and Peltier 1990)
methods. Indeed for uniform advection in 1D, the
simplest semi-Lagrangian advection scheme (using
linear interpolation, and not recommended ) is equiv-
alent to both classical upwinding and to the simplest
characteristic Galerkin method; and semi-Lagrangian
advection using cubic-spline interpolation is equivalent
to the higher-order characteristic Galerkin methods of
Morton (1985) and Karpic and Peltier (1990), and
also to a particle-in-cell method described in Eastwood
(1987). Further, under more general conditions (in-
cluding nonuniform advection in 2- and 3D), Bermejo
(1990) has shown that semi-Lagrangian advection us-
ing cubic-spline interpolation can be viewed as a par-
ticle-in-cell finite-element method.

Several well-known Eulerian methods can also be
interpreted as being special cases of semi-Lagrangian
ones. Thus the Lax—-Wendroff, Takacs (1985) third-
order, and Tremback et al. (1987) schemes are, re-
spectively, equivalent for 1D uniform advection to
semi-Lagrangian schemes with quadratic-Lagrange,
cubic-Lagrange and nth-order Lagrange interpolation.
Note, however, that these Eulerian methods are re-
stricted to Courant numbers less than unity and are
consequently less general than their semi-Lagrangian
counterparts.

Although the semi-Lagrangian method is equivalent
for uniform 1D advection to several other methods,
what distinguishes it from other methods is that it gen-
eralizes differently to nonuniform advection in mul-
tidimensions. The principal difference is the use of
(10), introduced in Robert (1981), for the trajectory
calculations. Of particular importance is that the ap-
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proximation of the trajectory equation (8) is O(At?)
accurate. It is possible to use a simpler, and cheaper,
O(At) accurate method to approximate the displace-
ment equation (8) (as in e.g., Mathur 1970; and Bates
and McDonald 1982) but this can dramatically dete-
riorate the accuracy of the scheme, as shown by Stan-
iforth and Pudykiewicz (1985) and Temperton and
Staniforth (1987), and analyzed by McDonald (1987).
Consequently most, if not all, recent semi-Lagrangian
schemes use an O(At?) method for discretizing the
trajectory equation.

3. Application to coupled sets of equations

To illustrate how semi-Lagrangian advection can be
advantageously used to solve coupled systems of equa-
tions, we describe its application to the discretization
of the shallow-water equations:

au .

== — = 14

7 + o —fV =0, (14)

dav

E+¢y+fU—0, (15)
dlng _

a + U+ V,=0, (16)

where U and V are the wind components, ¢ (=gz) is
the geopotential height (i.e., height multiplied by g) of
the free surface of the fluid above a flat bottom, and f
is the Coriolis parameter.

These equations are often used in NWP to test new
numerical methods, since they are a 2D prototype of
the 3D equations that govern atmospheric motions
[they can be derived from them under certain simpli-
fying assumptions ( Pedlosky 1987)]. They share sev-
eral important properties with their progenitor. A lin-
earization of the equations reveals that there are two
basic kinds of associated motion, slow-moving Rossby
modes (most of which affect the large-scale weather
motions, and which move to leading order at the local
wind speed) and small-amplitude fast-moving gravi-
tational oscillations (which are inadequately repre-
sented at initial time due to the paucity of the obser-
vational network). From a numerical standpoint this
has the important implication that the time step of an
explicit Eulerian scheme (e.g., leapfrog) is limited by
the speed of the fastest-moving gravity mode. Since for
atmospheric motions this speed is six times faster than
those associated with the Rossby modes that govern
the weather, this leads to time steps that are six times
shorter than those associated with an explicit treatment
of advection. A time-implicit treatment of the pressure-
gradient term of the vector momentum equation [sec-
ond terms of (14 ) and (15)] and horizontal divergence
of the continuity equation [second and third terms of
(16)], introduced in Robert (1969) and termed the
semi-implicit scheme, allows stable integrations with
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no loss of accuracy using time steps that are six times
longer than that of the leapfrog scheme. The price to
be paid for this increase in time-step length is the need
to solve an elliptic boundary-value problem once per
time step; nevertheless this improves efficiency by ap-
proximately a factor of 5. Analysis shows that the max-
imum possible time-step length is then limited by the
Eulerian treatment of advection.

Early applications of semi-Lagrangian advection to
coupled sets of equations (e.g., Krishnamurti 1962,
1969; Leith 1965; Mathur 1970, 1974; Mahrer and
Pielke 1978) didn’t take advantage of the enhanced
stability properties of the method, since the models
were formulated in such a way that they were not, in
the terminology of Bates and McDonald (1982),
“multiply upstream” and so the Courant number (as-
sociated with the treatment of advection) was always
less than unity. Nevertheless these studies did dem-
onstrate that semi-Lagrangian advection is an accept-
ably accurate method for advection. Robert (1981)
reasoned that since semi-Lagrangian advection is stable
for Courant numbers significantly larger than unity, it
should be possible to associate a semi-Lagrangian
treatment of vorticity advection with a semi-implicit
treatment of the terms responsible for gravitational os-
cillations, and thereby obtain stable integrations with
time steps four to six times longer than that of a cor-
responding semi-implicit model employing an Eulerian
treatment of advection. Using such a strategy he was
able to obtain a computationally stable solution with
a 2-h time step (approximately four times longer than
that of a corresponding semi-implicit Eulerian model ),
although there was some evidence of a small noise
problem at the western inflow boundary. It was also
noted that there was an inconsistency in the formu-
lation inasmuch as the advection terms in the diver-
gence and continuity equations were not evaluated us-
ing the semi-Lagrangian technique, and the question
of accuracy (as opposed to stability) was deferred to a
later study.

It turned out [ Robert (1982 )] that the Robert (1981)
integrations included a divergence diffusion term and
a time filter, and that when these were removed an
instability was observed. This was attributed to two
factors: the explicit treatment of the Coriolis terms,
and the application of the semi-Lagrangian technique
to only the vorticity equation. To remedy these two
deficiencies, Robert (1982) introduced a revised for-
mulation using the primitive (instead of the differen-
tiated vorticity /divergence ) form of the equations to-
gether with a semi-Lagrangian treatment of all advected
quantities and an implicit treatment of the Coriolis
terms. This was done in the context of a three-time-
level scheme where the metric terms of the momentum
equation were treated explicitly at the midpoint of the
trajectories [cf., R in (9)] and all other nonadvective
terms as time averages of values at the end points of
the trajectories [cf., G in (9)]. A stability analysis was
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given to demonstrate that this scheme should be stable
with time steps that exceed those of the gravitational,
advective, and inertial limits, and this was verified in
sample integrations.

To illustrate the application of the semi-Lagrangian
method we discretize the shallow-water equations
using a two-time-level semi-implicit semi-Lagrangian
scheme, which permits a further doubling of efficiency
with respect to the Robert (1982) algorithm at no extra
cost. For simplicity we describe the scheme in plane
geometry, and it is then formally equivalent to that of
Temperton and Staniforth (1987) with the map-scale
factor set to unity. In spherical geometry the discreti-
zation is a little more complicated due to the appear-
ance of metric terms in the momentum equations.
These can be trivially absorbed into the formulation
given below, using either the approach of Ritchie
(1988) or that of Coté (1988) and Bates et al. (1990)
[see section 4c for a further discussion of this point].
Thus,

U+ — UO N ¢x+ + ¢x0

1
—slumT+ M°1=0,

At 2
(17)
V+ _ VO ¢y+ + ¢y0 l . 0 _
YR +2[(fU) +(fU)°1=0,
(18)

+_ 0
Ing Ing +1

— + V.)01 =
A7 S WU+ V)" +(Us+ 13)7T =0,

(19)

where (14)-(16) have been discretized using (11) with
R set to zero. Here advection terms are treated as time
differences along the trajectories and all other terms
are treated as time averages along the trajectories, lead-
ing to an O( At?)-accurate scheme. Where traditional
(three-time-level) semi-implicit time discretizations
have an explicit time treatment of the Coriolis terms,
the above discretization employs a time-implicit treat-
ment {as in Robert (1982)] in order to achieve an
O( At?)-accurate scheme: note that explicitly evaluating
these terms at time ¢ would not only reduce the ac-
curacy to O(At) but would also lead to instability. The
trajectories are computed using the discretized Eqgs.
(12)-(13) introduced by Temperton and Staniforth
(1987) and McDonald and Bates (1987).

For the 1D shallow-water equations it can be shown
that there are three characteristic velocities in the cou-
pled set, one being the local wind speed that is asso-
ciated with the slow Rossby modes that govern weather
motions, the other two being associated with the prop-
agation of gravitational oscillations. Thus the coupling
of a semi-Lagrangian treatment of advection with a
semi-implicit treatment of gravitational oscillations
corresponds to integrating along the most important
characteristic direction of the problem (i.e., that as-
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sociated with the local wind speed); this is somewhat
similar in spirit to a suggestion given on page 860 of
Morton (1985).

Equations (17) and (18) can be manipulated to give

Ut=- A [ad," + bp,*] + known,  (20)
2 Y

Vt=-— % [a¢y+ — b¢x*] + known, (21)

where a = [1 + (fAt/2)?] ' and b = (fAt/2)a. Taking
the divergence of (20)-(21) and eliminating this in
(19) then leads to the elliptic boundary-value problem:

1
(a) + (ady)y + (b)Y — (bds)y — 4 —A’%]
(x,t+At)
= known. (22)

We now summarize the above as the following algo-
rithm:

(1) Extrapolate V using (13) and solve (12) itera-
tively for the displacements a,, for all mesh points x,,,
using values at the previous time step as initial guess,
and an interpolation formula. Note that it is only nec-
essary to perform this computation once per time step,
since the same trajectory is used for all three advected
quantities.

(ii) Compute upstream (superscript 0) quantities
in (17)-(19) by first computing derivative terms (e.g.,
U,) and then evaluating quantities upstream (these two
operations are not commutative). Here it is more ef-
ficient to collect together all terms to be evaluated up-
stream in a given equation before interpolating (the
distributive law applies).

(iii) Solve the elliptic boundary-value problem (22)
for ¢(x, t + At).

(iv) Back substitute ¢(x, ¢ + At)into (20)-(21) to
obtain U(x, t + At) and V(x, t + At).

The above elliptic boundary-value problem is weakly
nonlinear and is solved iteratively using ¢ at the pre-
vious time step as a first guess. It is only marginally
more expensive to solve than the Helmholtz problem
associated with traditional three-time-level semi-im-
plicit Eulerian discretizations. The multigrid method
is particularly attractive for solving such elliptic
boundary-value problems because of its relatively low
arithmetic operation count. Such a solver is described
in Barros et al. (1990) and was successfully employed
in the global model of Bates et al.'(1990) using a dis-
cretization scheme very similar to that described above.

Semi-Lagrangian advection has also been success-
fully coupled with the split-explicit method ( Bates and
McDonald 1982) and the alternating-direction-implicit
method (Bates 1984; Bates and McDonald 1987). Both
of these approaches have the virtue of being simpler
than the semi-implicit semi-Lagrangian one (there is
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no elliptic boundary-value problem), but unfortunately
they do not perform as well. The split-explicit-based
model is less efficient (Bates 1984 ) than the alternating-
direction-implicit-based one, which in turn performs
less well (Bates and McDonald 1987) than the semi-
implicit semi-Lagrangian model of McDonald (1986).
This latter scheme was adopted in the study of Mc-
Donald and Bates (1989), and it was subsequently
found (Bates et al. 1990) that its performance with
large time steps was not as good as had been hoped.
This was attributed (McDonald 1989; Bates et al. 1990)
to a time-splitting error introduced in the momentum
equation associated with the Coriolis terms. To date it
appears that the best schemes arise from associating
semi-Lagrangian advection with a semi-implicit
scheme, and that time splitting is best avoided since it
introduces unacceptably large truncation errors for
large time steps.

4. Further advances

When Robert (1981) proposed associating a semi-
Lagrangian treatment of advection with a semi-implicit
treatment of gravitational oscillations, it was thought
that this approach was restricted to three-time-level
schemes in Cartesian geometry using a finite-difference
discretization. This has happily proved not to be the
case, and in this section we discuss some important
extensions of the approach. Although important, the
extension to two-time-level schemes has already been
discussed in some detail, and will, therefore, only be
briefly discussed in this section in the context of other
extensions.

a. Finite-element discretizations and variable resolu-
tion

Pudykiewicz and Staniforth (1984) coupled semi-
Lagrangian advection with a uniform-resolution finite-
element discretization of the diffusion terms in the so-
lution of the 2D advection—diffusion equation, and this
was extended to the 3D case in Pudykiewicz et al.
(1985). Staniforth and Temperton (1986) extended
the methodology in the context of a coupled system of
equations (the shallow-water equations) in two ways.
First they showed that in this context the semi-La-
grangian method can be coupled to a spatial discreti-
zation scheme other than a finite-difference one—viz.,
a finite-element discretization—and second that it can
also be applied on a variable-resolution Cartesian mesh.
A set of comparative tests demonstrated that with a
time step six times longer it is as accurate as its anal-
ogous semi-implicit Eulerian version (Staniforth and
Mitchell 1978) when run with its maximum possible
time step (which in turn uses a time step six times
longer than an Eulerian leapfrog scheme).

A further doubling of efficiency was then demon-
strated in Temperton and Staniforth (1987) by re-
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placing the three-time-level scheme of the Staniforth
and Temperton (1986) model with a two-time-level
one. Both these models use a differentiated ( vorticity—
divergence) form of the governing equations. This has
the advantage of easily allowing variable resolution,
but has the disadvantage of incurring additional inter-
polations and the need to solve two Poisson problems,
resulting in an approximately 20% overhead when
compared to the ideal. This overhead can be eliminated
by the use of the pseudostaggered scheme proposed in
Coté et al. (1990) with no loss of accuracy.

b. Noninterpolating schemes

The interpolation in a semi-Lagrangian scheme, as
mentioned previously, leads to some damping of the
smallest scales. While this damping is very scale selec-
tive, it may be argued that it would unacceptably de-
grade accuracy for very long simulations (e.g., many
decades in the context of a climate model). To address
this problem Ritchie (1986) proposed a noninterpo-
lating version of semi-Lagrangian advection. The basic
idea here is to decompose the trajectory vector into
the sum of two vectors, one of which goes to the nearest
mesh point, the other being the residual. Advection
along the first trajectory is done via a semi-Lagrangian
technique that displaces a field from one mesh point
to another (and, therefore, requires no interpolation),
while the advection along the second vector is done
via an undamped three-time-level Eulerian approach
such that the residual Courant number is always less
than one. Thus the attractive stability properties of in-
terpolating semi-Lagrangian advection are maintained
but without the consequent damping. The noninter-
polating scheme is also more efficient than a three-
time level interpolating one, since there are only half
the number of interpolations per time step (i.e., there
are no longer any interpolations associated with the
middle time level). Ritchie (1986) demonstrated the
noninterpolating scheme for a gridpoint shallow-water
model on a polar-stereographic projection, and found
it to be more efficient and slightly more accurate than
an interpolating scheme run at the same resolution.

The noninterpolating methodology is not restricted
to gridpoint discretizations and has also been success-
fully applied to spectral discretizations (Ritchie 1988,
1990). This offers the possibility of retrofitting a non-
interpolating semi-Lagrangian scheme into existing
spectral models; there is, however, a minor technical
complication inasmuch as present spectral models
generally use the differentiated vorticity-divergence
form of the equations whereas noninterpolating (and
interpolating for that matter) semi-Lagrangian spectral
models employ the primitive form, and this necessitates
some changes to the spectral part of the formulation.

There are, however, a couple of disadvantages of the
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noninterpolating approach for problems where the
small damping of the interpolating scheme is accept-
able; this is generally the case for NWP applications,
but probably not so for climate models (since they are
generally run at much lower resolution and the damp-
ing is consequently more severe). First, the noninter-
polating method has the dispersive properties of its Eu-
lerian component, which are not generally as good as
those of interpolating semi-Lagrangian advection
schemes. Second, being based on a three-time-level
scheme it is potentially twice as expensive as a two-
time-level interpolating scheme.

The scheme proposed in Randi¢ and Sindji¢ (1989)
is advertised as being a noninterpolating one, but this
is not in fact the case (Dietachmayer 1990; Bates 1990).
Two schemes are derived for uniform advection in 1D
based on the Lax-Wendroff and Takacs (1985)
schemes. A close examination of these schemes reveals
that the Lax-Wendroff-based scheme is identical to a
semi-Lagrangian one with quadratic Lagrange inter-
polation, whereas the Takacs-based scheme is identical
to a semi-Lagrangian one using cubic Lagrange inter-
polation. A simple and interesting idea, somewhat
buried in the detail of the Ran¢i¢ and Sindjié (1989)
paper, is to show how to make a two-time-level Eulerian
advection scheme stable for Courant numbers greater
than one. The idea, however, unfortunately seems to
be limited to the 1D case, since it is predicated on the
assumption that a particle passes over a mesh point at
some time during the time interval of the time step,
which assumption does not hold for multiply-upstream
particles in 2D. It is of course possible to split the 2D
advection problem into two passes of the 1D algorithm,
but this then has the disadvantage that it usually in-
troduces significant splitting errors for large time steps
(see e.g., Williamson and Rasch 1989).

An alternative way of viewing the noninterpolating
formalism of Ritchie (1986) is presented in Smolar-
kiewicz and Rasch (1990). They showed that it is pos-
sible to convert any advection algorithm into a semi-
Lagrangian framework, thus permitting the use of
much larger time steps with the scheme for little ad-
ditional cost. This interesting realization is of potential
benefit for models whose maximum time step is limited
by an Eulerian treatment of advection. To demonstrate
this idea they successfully extended the stability limit
of the Tremback et al. (1987) family of algorithms. In
so doing they obtained a family of schemes that is
equivalent to using a time-split semi-Lagrangian
scheme with Lagrange interpolation. They also suc-
cessfully extended the stability limit of a family of pos-
itive-definite monotone advection algorithms. How-
ever, after comparing results with those of semi-La-
grangian algorithms, they concluded that for problems
where small undershoots and slight lack of conservation
are acceptable, this family of positive-definite mono-
tone algorithms cannot compete.
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¢. Spherical geometry

The convergence of the meridians at the poles of an
Eulerian finite-difference model in spherical geometry
leads to unacceptably small time steps being required
in order to maintain computational stability. The usual
approach to this problem is to somehow filter the de-
pendent variables in the vicinity of the poles. While
this procedure does relax the stability constraint, it un-
fortunately deteriorates accuracy (e.g., Purser 1988).
Ritchie (1987) demonstrated that it is possible to pas-
sively advect a scalar over the pole using semi-Lagran-
gian advection with time steps far exceeding the lim-
iting time step of Eulerian advection schemes. This
paved the way to applications in global spherical ge-

ometry. The first such application was to couple semi-

Lagrangian advection with a spectral representation
(i.e., expansion in terms of spherical harmonics) of the
dependent variables to solve the shallow-water equa-
tions over the sphere (Ritchie 1988). A new problem
arose here associated with the stable advection of a
vector quantity (momentum). The solution proposed
in Ritchie (1988) is to introduce a tangent plane to
avoid a weak instability due to a metric term. The di-
agnosis of this problem, which led to the tangent plane
algorithm, is described in Desharnais and Robert
(1990).

An alternative solution, proposed by C6té (1988),
is to use a Lagrange multiplier method. In this approach
the horizontal momentum equations of the shallow-
water equations on the sphere are written in 3D vector
form using the undetermined Lagrange multiplier
method. These equations are time discretized directly,
and the Lagrange multiplier is then determined from
the discretized equations to ensure that motion is con-
strained to follow the surface of the sphere. This is in
contrast with the usual approach where the Lagrange
multiplier is first determined from the continuous
equations, followed by a discretization of the resulting
equations. The procedure is applicable to any coordi-
nate system and can also be extended to multilevel
models.

Both methods give good results that are almost in-
distinguishable in practice. More recently Bates et al.
(1990) have described an approach based on the dis-
cretization of the vector form of the momentum equa-
tion. Although they state that their vector discretization
is somewhat different from the Lagrange multiplier
method of C6té (1988), it can be shown that the re-
sulting algorithms are identical. It also turns out that
the tangent-plane algorithm of Ritchie (1988) is iden-
tical to the Lagrange-multiplier one in the context of
a two-time-level scheme.

Ritchie (1988) successfully integrated his shallow-
water model with a time step six times longer than the
limiting time step of the corresponding Eulerian semi-
implicit spectral model (which in turn uses a time step
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six times longer than that of an Eulerian leapfrog
model). C6té and Staniforth (1988) then further dou-
bled the efficiency of the Ritchie (1988) model by re-
placing its three-time-level scheme by a two-time-level
one analogous to that of Temperton and Staniforth
(1987) for Cartesian geometry.

The spectral method (i.e., expansion of the depen-
dent variables in terms of spherical harmonics) has
been the method of choice during the past decade for
the horizontal discretization of global NWP models.
However, the spectral method ultimately becomes very
expensive at high enough resolution, due to the O(N?)
cost of computing the Legendre transforms, where N
is the number of degrees of freedom around a latitude
circle. Finite-difference and finite-element methods on
the other hand have a potential O(N?) cost. This, and
the success of the semi-Lagrangian method in address-
ing the pole problem, suggests that it would be highly
advantageous to use a semi-Lagrangian treatment of
advection in a finite-difference or finite-element global
model for medium-range forecasting.

A first tentative step in this direction was taken by
McDonald and Bates (1989), who introduced semi-
Lagrangian advection into a two-time-level global semi-
implicit shallow-water model using the time discreti-
zation of McDonald (1986). Although their scheme
was stable with time steps that exceeded the limiting
time step of an Eulerian treatment of advection, the
enhanced stability was unfortunately achieved at the
expense of accuracy. The degradation of accuracy is
attributable to a time-splitting error introduced in the
momentum equation associated with the Coriolis
terms. The solution to this problem is to avoid time
splitting altogether and then the algorithm (Bates et al.
1990) is very similar to that employed in Ritchie (1988)
and Coté and Staniforth (1988), and results in signif-
icant improvements in accuracy for large time steps.
Nevertheless, Bates et al. (1990) found it necessary to
use divergence damping (with what appears to be a
rather large coefficient) in order to integrate to five
days, suggesting that some accuracy and/or stability
problems still remain.

Co6té and Staniforth (1990) replaced the spectral
discretization in the C6té and Staniforth ( 1988) model
by a pseudostaggered finite-element one [analogous to
that described in C6té et al. (1990)], to obtain a two-
time-level semi-implicit semi-Lagrangian global model
of the shallow-water primitive equations. Its perfor-
mance at comparable resolution matched that of their
corresponding 1988 model based on a spectral discre-
tization, and this performance was achieved without
recourse to any divergence damping.

By evaluating the product term (of the geopotential
perturbation and divergence) in the continuity equa-
tion using quantities at time ¢ rather than at time ¢
+ At/2, but still evaluating it at the trajectory midpoint,
Higgins and Bates (1990) show that it is possible to
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integrate the Bates et al. (1990) model with no diver-
gence damping, although this formally reduces the ac-
curacy of the treatment of this term to O(At) (but it
is not a very important term in a shallow-water model).
This result strongly suggests that the source of weak
instability observed in the Bates et al. (1990) results
(without divergence damping) is somehow due to this
term, but it still remains to explain why. We believe
the explanation may be found in a stability analysis
given in CG6té and Staniforth (1988) for a somewhat
similar time discretization, which analysis is valid for
the Bates et al. (1990) formulation.

Co6té and Staniforth ( 1988 ) showed that such a time
discretization is only stable provided ¢* > ¢max, Where
¢* is the reference geopotential of the semi-implicit
scheme and ¢ .« 1s the maximum-possible value of the
geopotential. Thus where this condition is violated,
such a time discretization is likely to be unstable, and
this is most likely to occur in the tropics where the
geopotential is generally largest. We believe that the
¢* of the Bates et al. (1990) integrations (without di-
vergence damping) is probably an average value of the
geopotential (rather than its maximum value) and thus
violates this stability criterion. An examination of the
divergence-damping-free result (given in Higgins and
Bates 1990) of the Bates et al. (1990) formulation re-
veals that the forecast is unstable in the tropics, but
stable in the extratropics, consistent with the above
argument. We, therefore, speculate that the Bates et al.
(1990) formulation could be stabilized by merely in-
creasing the value of the reference geopotential, and
that this solution would be preferable to the one pro-
posed by Higgins and Bates (1990) since it is O( At?)
[rather than O(At)] accurate.

d. Conservation, shape preservation, and monotonicity

An important issue for the discretization of global
models, and to a lesser extent for regional ones, is the
extent to which various properties are conserved. Fol-
lowing the pioneering work of Arakawa (1966), many
finite-difference schemes have been derived to maintain
different integral and local properties of the underlying
continuous equations (e.g., conservation of energy and
enstrophy of the rotational part of the flow; conser-
vation of energy and transformation between kinetic
and available potential energy; and prevention of spu-
rious generation of vorticity by pressure-gradient
terms). For spectral and finite-element models, some
of these properties are immediate by virtue of a Gal-
erkin framework [e.g., Bourke (1988); Yakimiw and
Girard (1987)]. However, many of the properties that
are supposedly conserved by conservative schemes only
do so under the assumption that there is a continuous
time discretization (which is not in general the case),
and such schemes can and do go unstable, particularly
in the absence of any time filter (which damps the
solution). Nevertheless, such schemes have proven to
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be quite successful for integrating models, and it is nat-
ural to ask the question (as one of the referees did) of
how semi-Lagrangian schemes behave in this regard.
While there doesn’t appear to be a definitive answer
to this question at this time, we summarize what is
presently known.

From the theoretical standpoint, Bermejo (1990) has
shown that semi-Lagrangian schemes using cubic-
spline interpolation conserve mass for divergence-free
flows, and this is the only exact conservation property
of semi-Lagrangian schemes of which we are aware.
From the practical standpoint, several studies have
measured how well certain quantities are conserved.
Ritchie (1988), and to a lesser extent C6té and Stan-
iforth (1988), have examined the conservation of en-
ergy in the context of 20-day integrations of three- and
two-time-level shallow-water semi-Lagrangian global
models. As an indication of the energy conservation
that is considered acceptable in typical medium-range
forecast models, an Eulerian spectral control model
was run at T106 resolution with a V* diffusion having
the same coefficient as that used operationally at this
resolution by the European Centre for Medium Range
Weather Forecasts. It was found that this control model
lost 3% of its total energy after 20 days, whereas the
two semi-Lagrangian models at T126 resolution only
lost 1%. At lower (T63) resolution, the three-time-level
interpolating semi-Lagrangian model lost 5%, while the
noninterpolating version again only lost 1%.

These results suggest that (i) interpolating semi-La-
grangian schemes conserve energy acceptably well at
resolutions typical of state-of-the-art medium-range
forecast models, but don’t necessarily do so at reso-
lutions typical of general circulation models, and (ii)
noninterpolating semi-Lagrangian schemes conserve
energy acceptably well at both resolutions. Ritchie
(1988) also compared the enstrophy spectra of various
T126 integrations with that of a control T213 integra-
tion, and the results suggest that interpolating and
noninterpolating semi-Lagrangian models perform as
well or better than Eulerian models in this regard.
However, these results and conclusions remain to be
confirmed for baroclinic models.

Although most authors have adopted polynomial
schemes for the interpolatory steps of semi-Lagrangian
schemes, other interpolators are also possible. Wil-
liamson and Rasch (1989) and Rasch and Williamson
(1990a) have examined several different possible in-
terpolators, designed to better preserve the shape of
advected fields and to maintain monotonicity. They
performed experiments in both Cartesian and spherical
geometry, and concluded that the approach is viable.
The principal difficulty with the shape-preserving and
monotonic approaches appears to be to decide how to
precisely determine the required attributes of the in-
terpolator, and how to tailor it to respect them, since
there is no universal best choice.
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Williamson and Rasch (1989), Williamson (1990),
and Rasch and Williamson (1990a, 1990b, 1991 ) have
pursued this approach and thoroughly compared spec-
tral and semi-Lagrangian schemes for the transport of
water vapor in otherwise Eulerian, hydrostatic primi-
tive-equation models, in the context of both medium-
- range forecasting and general circulation modeling. The
transport of water vapor is a stringent test of an ad-
vection scheme, since the moisture spectrum has much
more variance at small scales than do wind and mass
spectra. Several important points have emerged from
their studies.

Although spectral advection conserves mass well, it
does so by producing serious undershoots (negative
water vapor) and overshoots (supersaturation), both
of which cause serious problems for the parameteriza-
tion of moist processes, necessitating remedial measures
that adversely affect conservation. Semi-Lagrangian
advection, particularly monotonic positive-definite
versions, conserves mass a little worse for passive ad-
vection, but has fewer undershoot/overshoot problems
and consequently interacts better with moist parame-
terizations in forced problems (having moisture sources
and sinks). In particular (Williamson 1990) semi-La-
grangian advection leads to much smaller regions of
spurious light precipitation for medium-range fore-
casting.

A particularly troubling result (Rasch and William-
son 1991) is that spectral and semi-Lagrangian advec-
tion schemes lead to different climatologies in general
circulation models, with semi-Lagrangian advection
leading to a generally colder troposphere and warmer
stratosphere. These differences are attributed primarily
to differences in the numerical treatment of vertical
advection, which subsequently lead to different cloud
climatologies. Rasch and Williamson (1991 ) argue that
semi-Lagrangian vertical advection is formally fourth-
order accurate, whereas Eulerian vertical advection is
only first-order accurate, and it should a priori be ex-
pected to be more accurate at fixed vertical resolution.
They caution the reader, however, that it is difficult to
separate cause and effect in such comparisons, and un-
derline the importance of continuing to improve nu-
merical methods for climate models since they still
represent an important source of error. These authors
have indicated a preference for semi-Lagrangian ad-
vection of moisture to spectral advection for climate
modeling, and plan to use it in the next version of the
NCAR Community Climate Model. This sensitivity of
the climatology to the choice of advection scheme is
also of importance in NWP applications, but the prob-
lems are probably less severe due to the generally higher
resolution of NWP models.

e. 3D NWP applications

Thus far we have mostly discussed the use of semi-
Lagrangian advection for extending the limiting time
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step of 2D applications for NWP. To be useful the
method must also be applicable in 3D. A first step in
this direction was taken in Bates and McDonald
(1982), where a semi-Lagrangian treatment of hori-
zontal advection in a 3D (baroclinic primitive equa-
tions) model was coupled with a split-explicit time
scheme in the Irish Meteorological Service’s operational
model of the time. This was the first scheme to dem-
onstrate the enhanced stability of semi-Lagrangian ad-
vection in a 3D model, and the first to be used oper-
ationally. However, it is only O(At) accurate and al-
though stable with long time steps, the increase in time
step is consequently very much limited by accuracy
considerations.

The 3D model formulated in McDonald (1986) and
improved in McDonald and Bates (1987) [by modi-
fying the trajectory calculations to make them O(Az?)
accurate, which improves accuracy and allows longer
time steps] is four times more efficient than the Bates
and McDonald (1982) model for the same accuracy
and replaced it operationally. Nevertheless, the result-
ing scheme still has some O(At) truncation errors and
the time step is, therefore, smaller than it would be for
an O(At?) scheme [see discussion in the preceding
subsection of the McDonald (1986) scheme in the
context of a global model]. Bates and McDonald
(1987) have also coupled a semi-Lagrangian treatment
of horizontal advection in a 3D model with the alter-
nating-direction method, but found in comparative
experiments that it does not perform as well as the
McDonald and Bates (1987) scheme.

Robert et al. (1985) introduced a three-time-level
O( At?)-accurate 3D limited-area gridpoint model with
a semi-Lagrangian treatment of horizontal advection,
and were able to successfully integrate with longer time
steps than had hitherto been possible; however, the
model had no mountains and a very simple parame-
terization of physical processes. This semi-Lagrangian
semi-implicit model does, however, demonstrate the
practical importance of achieving a truly O(At?)-ac-
curate scheme. Although it employs a three-time-level
scheme, it is only marginally more costly per time step
than the nominally two-time-level scheme of Mc-
Donald and Bates (1987) (which has several substeps)
but can be integrated with longer time steps. In prin-
ciple it should be possible to further double the effi-
ciency of the Robert et al. (1985) algorithm by using
a two-time-level scheme. While such an improvement
has been achieved in 2D (e.g., C6té and Staniforth
1988; Bates et al. 1990) the extension to 3D applica-
tions remains to be demonstrated.

A somewhat similar model to the Robert et al.
(1985) one, but with mountains included, is described
in Kaas (1987). It was reported that when strong winds
blow over steep mountains, instabilities may appear if
the linear part [V(¢ + RT, Inp,)] of the horizontal
pressure-gradient term in sigma coordinates [ see Mes-
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inger and Janji¢ (1985) for a related discussion of this
problem in the context of Eulerian models] is evaluated
as the average of values at the endpoints [(x, ¢ + Af),
(x — 2a, t — At)] of the trajectory, but the nonlinear
part [R(T — Ty)V Inp] is evaluated at the midpoint
(x — a, t). This behavior was attributed to a lack of
balance (in the discrete approximation) between two
large terms of opposite sign, due to their being evaluated
at different geographical points. The reported solution
to this problem is to evaluate the nonlinear part as the
average of its values at the geographical points asso-
ciated with arrival (x) and departure (x — 2a), both
values being taken at the intermediate time level ¢.
This stratagem has also recently been incorporated in
the models of Robert et al. (1985), Tanguay et al.
(1989), and Ritchie (1991).

While this approach appreciably mitigates the prob-
lem, it is not at all clear that it resolves it completely.
Coiffier et al. (1987) have studied it in the context of
a 2D linearized baroclinic model, and show that the
use of semi-Lagrangian advection with /arge time steps
leads to an incorrect steady-state solution when the
model is orographically forced. Their analysis to ex-
plain this behavior also applies to the formulation pro-
posed by Kaas (1987). It suggests that the seriousness
of the problem is a function of time step, wind speed,
and detail (the larger the time step and wind speed,
and the more detailed the orography, the worse is the
problem), and of whether the time scheme is a two-
or three-time-level one (two-time-level schemes are
better since the problem first occurs with time steps
twice as long as those of three-time-level schemes).
Although this problem has not prevented semi-La-
grangian models from being integrated with larger time
steps than Eulerian ones while obtaining results of
equivalent accuracy, it does warrant further investi-
gation.

The time steps of the 3D above-mentioned models
are limited by the stability of an explicit Eulerian treat-
ment of vertical advection: or put another way, vertical
resolution is limited when using a large time step (see
Ritchie 1991 for an example). This is an important
limitation. An ever-increasing emphasis in model de-
velopment is being put on the parameterization of
physical processes in general, and that of the moist
turbulent planetary boundary layer in particular, and
results in ever-increasing demands on vertical resolu-
tion. To remove this limitation, Tanguay et al. (1989)
proposed a three-time-level model that uses semi-La-
grangian advection in all three space dimensions: this
finite-element regional model uses a time step that is
three-times longer than that of the corresponding Eu-
lerian version (Staniforth and Daley 1979). It is cur-
rently used by the Canadian Meteorological Center to
operationally produce weather forecasts to 48 h twice
daily.

Ritchie (1991) has recently introduced semi-La-
grangian advection into a three-time-level 3D global
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spectral model in two different ways. The first uses an
interpolating semi-Lagrangian scheme in all three di-
mensions, as in Tanguay et al. (1989), whereas the
second uses an interpolating semi-Lagrangian scheme
for horizontal (2D) advection and a noninterpolating
scheme for vertical advection. These schemes are cur-
rently being introduced into the European Centre for
Medium Range Weather Forecasts’ spectral model. He
reports that the latter scheme is more accurate than
the former for the experiments he conducted, due to
the former unduly smoothing fields in the vertical
around the tropopause. The seriousness of this
smoothing is a function of the resolution employed
and of the order of the interpolator. The trend to higher
vertical resolution should diminish the importance of
this source of error in the future. In the meantime it
suggests that higher-order vertical (i.e., quintic instead
of cubic) interpolation is possibly warranted as pro-
posed in Leslie and Purser (1991).

[ Higher resolution and nonhydrostatic systems

As computers become ever more powerful, it be-
comes possible to run models at higher and higher res-
olution. A time is approaching (Daley 1988) when it
will be possible to run current hydrostatic baroclinic
primitive-equation weather forecast models at resolu-
tions for which the hydrostatic assumption can no
longer be assumed to hold. This motivates the need to
efficiently integrate nonhydrostatic systems of equa-
tions for real-time forecasting applications over large
domains. Such systems admit acoustic modes, which
travel much faster than either Rossby or gravity modes.
Consequently if care is not exercised, the limiting time
step will be even more restrictive than that associated
with an explicit primitive-equations model. This is be-
cause an explicit time treatment of the terms associated
with the propagation of acoustic energy leads to a lim-
iting time step that is much smaller than that associated
with an explicit treatment of gravity-wave terms, com-
pletely eliminating the efficiency advantage of a semi-
implicit semi-Lagrangian treatment of the gravity—
Rossby mode terms.

Since the acoustic modes carry very little energy, it
is permissible to slow them down by the use of a time-
implicit treatment of the terms responsible for their
existence, by analogy with the retarding of the gravity
modes by the semi-implicit scheme. This is the ap-
proach taken by Tanguay et al. (1990), who generalize
the semi-implicit semi-Lagrangian methodology for the
hydrostatic primitive equations to the nonhydrostatic
case. They show that it is possible to integrate the fully
compressible nonhydrostatic equations (that are pre-
sumably more correct) for little additional cost, open-
ing the way to highly efficient nonhydrostatic models.
Note that this is a proof-of-concept study, since the
model employed has several important deficiencies
with respect to operational hydrostatic forecast models;
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it has no mountains, an extremely simple parameter-
ization of physical processes, and very low vertical res-
olution (particularly in the planetary boundary layer)
such that the time step is not unduly limited by the
Eulerian treatment of vertical advection (it is only the
horizontal advection that is treated in a semi-Lagrang-
ian manner). Nevertheless, it represents a very im-
portant first step towards highly efficient nonhydrosta-
tic forecast models.

Increasing the resolution not only has important
implications for the appropriate choice of governing
equations, but also for the relative order of the temporal
and spatial truncation errors. To date it has been found
advantageous to couple semi-Lagrangian advection
with a semi-implicit time scheme. This allows integra-
tion with larger time steps than would otherwise be
possible, chosen such that the temporal and spatial
truncation errors are of the same magnitude. We are
thus presently in the position where the O(Af?) tem-
poral truncation errors are approximately equal in
magnitude to the O(Ax*) spatial ones (assuming cubic
interpolation in the semi-Lagrangian discretization of
advection). For sake of argument, assume that this Az
is four times larger than the limiting time step of a
corresponding semi-implicit model with an O(Ax*)-
accurate Eulerian advection scheme. We now ask the
important question, what will be the size of the time
step (chosen such that the temporal and spatial trun-
cation errors are of the same magnitude) of the semi-
implicit semi-Lagrangian model for successive dou-
blings of the spatial resolution, and how will this time
step compare to that of the corresponding semi-implicit
Eulerian model?

For the first doubling of resolution, the spatial trun-
cation errors will be decreased by a factor of 16 (=24).
To ensure that the temporal truncation errors will be
of the same magnitude as the spatial ones it is, therefore,
necessary to reduce them also by a factor of 16 (=42),
which implies reducing At by a factor of 4. Comparing
this time step now with that of the corresponding Eu-
lerian model for the same doubling of resolution ( where
the time step is halved to respect the CFL stability cri-
terion), we see that it is only twice as large (whereas
before the doubling of resolution it was four times
larger) and the relative advantage of the semi-Lagran-
gian time step is thus halved.

Repeating the argument for a second doubling we
see that the time step of the semi-Lagrangian model
now equals that of the Eulerian one, and there is no
longer any advantage of time-step length for the semi-
Lagrangian model. This is because the time step of the
semi-Lagrangian model is limited by accuracy consid-
erations (it cannot be any larger otherwise the temporal
truncation errors would dominate), and it so happens
that the time-step of the Eulerian model is now limited
by both stability and accuracy considerations. For any
further increase in resolution beyond this critical res-
olution, the time steps of the two models will be iden-
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tical since they will be determined solely by accuracy
considerations. So we conclude that for this example
there is no time step advantage for the semi-Lagrangian
model at a quadrupling or more of resolution.

Since the semi-Lagrangian model is somewhat more
expensive per time step it is, therefore, debatable as to
whether it would be advantageous in the above example
to use a semi-Lagrangian treatment of advection at
such resolutions rather than an Eulerian one [although
one might argue that semi-Lagrangian advection might
still be advantageous (particularly for moisture trans-
port) since there are fewer dispersion problems; see
e.g., Ritchie (1985) and Rasch and Williamson
(1990a)]. The important implication of the above ar-
gument is that when the resolution of the Eulerian
model is sufficiently high that the time step is governed
by its O(At?) temporal truncation error (rather than
by its CFL stability criterion), it will become important
to increase the order of the time diseretization of the
corresponding semi-Lagrangian model. How this might
be done is discussed in McDonald (1987).

With that said, there is perhaps a weakness in the
above argument. We have assumed that the dominant
source of spatial truncation error is O(Ax*), and for
a realistic NWP model this means that we are implicitly
assuming that the spatial truncation errors associated
with the physical parameterization also behave as
O(Ax*). In reality it is highly unlikely that a doubling
of resolution reduces these errors by a factor of 16, and
it is far more likely that they behave as O(Ax?), in
which case this would be the leading source of hori-
zontal truncation error and the efficiency advantage of
the semi-Lagrangian model would be maintained for
all resolutions.

A further important consideration is that the tem-
poral discretization associated with the incorporation
of physical processes in the models be of higher order
than the present O(At¢) ones in order to benefit from
the enhanced stability of semi-Lagrangian schemes.
This is intimately connected to the intrinsic time scales
of the physical processes being parameterized (e.g.,
cloud dynamics), and to what extent the chosen pa-
rameterizations are valid when using large time steps.
It is also an issue for Eulerian models, but is more
serious for semi-Lagrangian models because of their
generally longer time steps. Present physical parame-
terizations appear to be rather sensitive to time-step
length, and this problem requires further work.

5. Conclusions

During the past decade much progress has been
achieved in using semi-Lagrangian advection to im-
prove the efficiency of numerical models of the at-
mosphere. In this paper we have reviewed the semi-
Lagrangian literature for atmospheric models, and have
drawn the following conclusions:
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1) The semi-Lagrangian methodology has been ex-
tended from finite-difference applications in Cartesian
geometry to finite-difference, finite-element, and spec-
tral applications in both Cartesian and spherical ge-
ometry.

2) The extension to finite-difference and finite-ele-
ment discretizations for global applications is partic-
ularly noteworthy, since such discretizations are
asymptotically much cheaper at high resolution than
the present method of choice, the spectral method.

3) At the present state of development the efficiency
gains are more spectacular in 2D than in 3D.

4) Two-time-level schemes are inherently twice as
efficient as three-time-level schemes. This has been
clearly shown in 2D, but the full benefits of two-time-
level schemes in 3D remain to be demonstrated.

5) Best results are obtained when coupling semi-
Lagrangian advection to a semi-implicit treatment of
gravitational oscillations, rather than to splitting meth-
ods such as split-explicit and alternating-direction-im-
plicit. It is crucial to avoid introducing O(A¢) trun-
cation errors in either the trajectory computations or
the discretization of the governing equations, in order
to fully reap the benefit (i.e., long time steps) of en-
hanced stability. '

6) It is important to use the semi-Lagrangian
method for vertical as well as for horizontal advection,
in order to avoid unduly limiting vertical resolution.

7) Noninterpolating semi-Lagrangian schemes are
attractive for climate applications, due to their lack of
damping, a particularly important property for low-
resolution simulations.

8) The semi-Lagrangian framework facilitates the
incorporation of shape-preserving and monotonic
schemes for moisture advection, because of the rela-
tively small dispersion errors in the presence of dis-
continuities or near discontinuities. It also more easily
permits higher-order discretizations of vertical advec-
tion.

9) Semi-Lagrangian schemes do not in general for-
mally conserve quantities, but the somewhat limited
evidence to date suggests that they perform acceptably
well in this regard.

Although much progress has been achieved, there
remain several areas that warrant further investigation.
The most pressing of these, in our opinion, is the in-
corporation of orographic (and other) forcing into
semi-Lagrangian models in such a way as to obtain the
correct response to the stationary component. There
is evidence to suggest that present schemes are deficient
in this regard for Courant numbers greater than unity.
Further research on physical parameterization is also
needed, to ensure that they adequately parameterize
the essential features of the underlying physical pro-
cesses when using large time steps. Current parame-
terizations appear to be overly sensitive in this regard.

As the spatial resolution is increased in a typical
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semi-Lagrangian model having, respectively, fourth-
order spatial and second-order temporal truncation er-
rors, it will become important to increase the order of
the time discretization, otherwise there will ultimately
be no time-step advantage with respect to an analogous
Eulerian model. Research on higher-order time dis-
cretizations is, therefore, desirable. A further conse-
quence of increasing spatial resolution is that the hy-
drostatic approximation becomes increasingly less
valid, thus motivating the efficient integration of non-
hydrostatic systems of equations. An important first
step in this direction has already been achieved, but
further research is needed to address several important
deficiencies of such a nonhydrostatic model with re-
spect to operational hydrostatic forecast models. In
particular, it remains to demonstrate the viability of
the method in the presence of realistic parameteriza-
tions of physical processes and a semi-Lagrangian
treatment of advection.

In our review of the semi-Lagrangian literature we
have endeavored to present the strengths and weak-
nesses of the method, particularly with respect to ac-
curacy, stability, and efficiency. This is not to say that
we believe that the semi-Lagrangian approach outper-
forms traditional schemes in each and every respect;
e.g., conservation properties. We endorse the suggestion
of one of the referees that it would be valuable for the
numerical modeling community to compare the per-
formance of various semi-Lagrangian and Eulerian
schemes for the solution of a given set of problems.
Such an activity is presently being organized ( William-
son et al. 1991 ) within the framework of the CHAMMP
(computer hardware, applied mathematics, model
physics) initiative.
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