1968

MONTHLY WEATHER REVIEW

VOLUME 110

The Multi-Dimensional Crowley Advection Scheme

PIOTR K. SMOLARKIEWICZ
National Center for Atmospheric Research,' Boulder, CO 80307
(Manuscript received 24 April 1982, in final form 11 August 1982)

ABSTRACT

The conservation form of the second-order Crowley advection scheme, as some authors have pointed out,
may lead to numerical instability for multi-dimensional flows. Replacing the original second-order-accurate
approximation of the first spatial partial derivative, with one that includes information about the dimen-
sionality of the field, and also considering the cross-space difference, eliminates this instability without
destroying the level of conservation or the accuracy of the original Crowley scheme. The paper also presents
some flux correction solutions, the use of which avoids the development of negative values in the solution
for positive definite scalars. The paper also discusses the solution of the advection equation in the case of

strong deformational flow.

1. Introduction

In the modeling of atmospheric and other geo-
physical phenomena, it is necessary to calculate the
convective transport of some scalar quantities. The
Crowley conservative advection scheme is popular,
with 74 citations from 1968 to 1979 (Institute for
Scientific Information, 1969-80), because of its sec-
ond-order accuracy in both space and time, and its
storage requirement of only one time level.

The original multi-dimensional Crowley scheme
was developed in a “time-splitting” form, where one
full time step was divided into successive time steps
'in orthogonal directions. Leith (1965) demonstrated
that the second-order numerical approximation of
two-dimensional advection is unstable, if the opera-
tors for advection in orthogonal directions are com-
bined, and also that the “time-splitting” method pro-
duces stable results at least for uniform flow. How-
ever, as Petschek and Libersky (1975) have shown,
even the time-splitting, two-dimensional Crowley
scheme may be weakly unstable in the case of defor-
mational flow. In addition, because of the data trans-
fer, this method is more time-consuming and expen-
sive than a non-time-splitting scheme, especially in
the case of three-dimensional modeling.

This paper suggests a method that suppresses in-
stabilities in multi-dimensional advection in cases
when simple one-dimensional advection operators
are simultaneously used from orthogonal directions.
As will be shown later, a new form of the two- or
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three-dimensional Crowley advection scheme that is
stable, at least for uniform flow, can be generated by
replacing the original second-order approximation of
the first spatial partial derivative (which only consid-
ers points on one line), with another approximation
that considers points from a plane or a cube. This
new form also includes an approximation of cross-
space derivative terms. ,

The generation of negative values in solutions for
positive definite functions is another disadvantage of
the Crowley scheme which has been reported, e.g.,
by Soong and Ogura (1973). This difficulty, which is
typical for higher-order-approximation advection
schemes, led to the use of upstream differencing or
other low-order schemes, which produce no disper-
sive “ripples”, but suffer from excessive numerical
diffusion. In the last ten years another possible res-
olution of this problem was developed specifically for
application to numerical modeling of plasma fluid
problems. The flux-corrected-transport (FCT) method,
developed by Boris and Book (1973, 1976) and Book
et al. (1975), and generalized for the multidimen-
sional case by Zalesak (1979), embodies the best of
high- and low-order advection schemes. FCT con-
structs the net transportive flux point by point (non-
linearly), as the weighted average of a flux computed
by a low-order and a flux computed by a high-order
scheme. The weighting is done in a manner which
insures that the high-order flux is used to the greatest
extent possible without introducing ripples. Section
7 of the paper will apply the FCT method to both the
Crowley combined scheme and to the scheme pro-
posed here. In Section 8, the proposed scheme will
be applied to the case of deformational flow.
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2. Development of a two-dimensional stable Crowley
scheme

The equation to be solved is the “color” equation
describing the advection of a nondiffusive quantity
in a flow field. This equation may be written in any
of the following forms (see Crowley, 1968, for no-
tation):

The advective form

%‘f +V-Vy =0 (1)
the conservation (flux) form
Lrv- -V -0, @
or, in the case of nondivergent flow,
% + V- (Vy¥) = 0. 3)

To describe compactly the numerical equations which
will be used later, it is convenient to use Shuman-
type operators (Shuman, 1962). For an arbitrary de-
pendent variable (¢) and an independent variable
(), we have

é" = [$(n + An/2) + d(n — An/2)]/2
8,0 = [o(n + An/2) — ¢(n — An/2))/An ¢, (4)
6 = [6(n+ An) + ¢(n — An)]/2

where 7 could be any of x, y, z, t. In all advection
forms of the schemes discussed in this paper, it is
assumed that the velocity components are defined at
the same points as the transported field. In the flux
forms of the schemes, the velocity components are
defined in an appropriately staggered sense.

The basis of the one-dimensional Crowley scheme
for uniform flow (V' = const) is the Taylor series ex-
pansion of the function ¢(x;, f), about a point (x;, y),
where the temporal partial derivatives in (1) are re-
placed by the spatial derivatives

a¢|”+ wAR |"

iN+l= iN— At___
O G B e

+ O(At?) + O(aAx?), (5)

where the Courant number a = #Af/Ax and the term
O(Ar?) occur in cases when u = u(x, f). The second-
order finite-difference approximation of the first and
second spatial partial derivatives leads to the follow-
ing scheme:

i

_x | ulAr?
A ARV XA AN )
which for nondivergent flow can be written in the
conservation form
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u’At?

YV = g N — 5x(uAtzﬁx -

A natural development of the above scheme for the
two-dimensional case should have the form

P = YN — ax(umw"‘ _waAr axw)

«w) NG

2

2472
~ay(vAnV—”§’ w). 8)

But, as Leith (1965) pointed out, this kind of ap-
proximation of (3) is unstable, because the cross term
*y/dxdy is missing from the two-dimensional sec-
ond-order Taylor series expansion of Y(x;, y;, f) about
the point (x;, ¥;, tw), i.€.,

U . R - A
N+l — N _ it — DAL — wa vy
I B S I 1
v:AL2 | Py |Y
—5| + wvAr? + O(Ar?
2 ol T A gyl OB

+ O(aAx?; BAY?), (9)

where 8 = vAt/Ay.
Eq. (8) may be written in symbolic operator form

Yt = (- A — BWA, (10)

where I is the unit matrix, and 4 and B are matrices
such that 4 and B are proportional to the net fluxes
in two orthogonal directions. In the case of uniform
flow, phase and amplitude errors, as well as a nec-
essary condition for stability, are given by the eigen-
values of the right-hand side of (10). Following Leith,
the eigenvalues of a two-dimensional advection op-
erator are

A =1-—aX1l — costy) — BX(1 — cosd,)

— i(a sinb, + B sind)), (11)

where 8, = kAx, 8, = k,Ay, k. and k, are the com-
ponents of the wavenumber in the x and y directions.
Including the second-order approximation of the
cross term 9%*y/dxdy in the form

2 N
Py " _ b0
axayl

(12)

in the scheme (8) changes the eigenvalues of the ad-
vection operator as follows:

A= 1— a1 — cosf,) — B%1 — cosb))
— af sind, sinfd, — i(a sinf, + B sind)). (13)

The absolute values of eigenvalues for cases (11) and
(13) were found numerically for «, 8 varying from
0.0 to 1.0 in 0.02 increments and for 6, 0, varying
from O to « (which is equivalent to the wavelength
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on a grid space varying from infinity to 2Ax or 2Ay)
in increments of 7/48.

In both cases of (11) and (13), max|\A| for all é,,
8, € [0, =] was found, respectively: greater than unity
for each permutation of «, 8 (except « or 8 = 0) and
less than unity if (o + 8%)'? < 0.5, for each per-
mutation of a, 8. The latter is in agreement with the
result obtained by Dukowicz and Ramshaw (1979,
formula 15). It was also found that diagonal flow
(a'= p) is the case of maximum instability, as Pet-
schek and Libersky (1975) suggested, and that the
most unstable waves are those for which 6, = 6,.
Thus, including the cross term is still not enough to
obtain a stable scheme for (a? + §2)'? ~ 1. The tensor
viscosity method (Dukowicz and Ramshaw, 1979),
which includes the approximation of the cross term
in the scheme (8), insures the stability of the scheme,
but under a strong restriction on the Courant num-
ber. This significantly increases computational cost,
" especially in the three-dimensional case.

From (6), we can see that the second-order-accu-
rate approximation of the first partial derivative,
which is the most active term in the scheme, in a two-
dimensional case does not contain any information
indicating that the flow is really two-dimensional. To
include this information, it is enough to use an ap-
proximation of the first spatial partlal derivative in
the form

Y
—| =84
axly

(14)

Replacing the first spatial partial derivatives in the
two-dimensional Taylor series expansion in (9), with
an expression similar to (14), and including a second-
order approximation of d%J/dxdy in the form (12)
(omitting the cross term leads to an unstable scheme),
and using an approximation of the second spatial
partial derivative as in the Crowley scheme

Cal

2l = /5
ax=ly

(15)

leads to a second-order finite-difference algorithm for
(1) in the form

2742

2

~y ~X

W = N — et + B2 b — As

v?Ar?
2

+ b, + uvAL28,, 0. (16)

This scheme may also be written in the flux form

~ 2,.,2
L 6X(Azu¢7£— At*u At uv"y ytp_xy)
w"y). (17)

~X 202- A2
~6Y(Atv¢y—At o0 tvu

x‘l/ -
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The eigenvalues of the scheme presented, for both the
advection and the flux form, are

A =1-a*(1 ~ cosby,) — (1 — cosf,) — af sinf,
(18)

.As before, the absolute value of A was calculated,
and the stability condition was obtained in the form

if (& + 672 <095 forall

X sind, — i(B sind, cosd, + « sinf, cosf,).

Al <1

0y, 6, € [0, 7). (19)

3. The three-dimensional case

Using the same assumption as before, that the first
spatial partial derivative should include information
about the dimensionality of the flow, the second-or-
der approximation of 8y/dx in three dimensions may
be written as
N ~yz

=84 . (20)

A second-order Taylor series expansion of ¥(x;, ¥,
Z, 1) about the point (x;, y;, zx, fv) has the form

E EVAR |V
= At—| —var—=| - war—
‘&Nk Wk " ox i1k v A " 0zl
WA 3|V A | 2Az2 az.p
2 ax? 2 2 T2 8z
2 2 N
Ay 2. O
+ + At
At*uv —— axdy uw axdzl
2¢
+ AtPwp —— 373y + O(Az?)
+ O(aAx3; BAY? vAZ?), (21)

where l
"y = wAz/AL.

Replacing the respective derivatives in (21) with
expressions of the type in (20), (12) and (15), leads
to a second-order approximation of the three-dimen-

sional form of (1):

~yz

YV = N — Atus o)
+ BAPUS Y + APV, + V2 AW,

~XZ

- Awd

~Xy

— Atwd

+ wA25, 0" + uwAr?, 0 + vwAt?,g . (22)

This scheme may also be written in the flux form:
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v ‘5"(“”5? AL 50— 2 g7 A_; w)
- 5z(wAnl§§y 2; Lo - A—t wit s — Azt i wﬁyzay&”) . (23)

The eigenvalues of the advection operators, for both
(23) and (22), in the case of uniform flow have the
form -

A=1-aX1 — cosfy) — B¥(1 — cosh,)
— ¥*(1 — cosf,) — af sind, sinf, — ay sind, sind,

— B sind,, sind, — i« sinb, cosb, cosd,

+ @ sinfy cosb, cosf, + v sinb, cosb, cosf,), (24)
where ‘
0, =kAz

In the same way as before, the stability condition for
wavelengths varying between double the space incre-
ment and infinity was found:

AN <1 if (2+82+4%)77<0.92 forall
65, 6,, 0, € [0, 7]. @5)

By comparison, replacmg expresswns of the type (20)
in (22) by the expressions like 6,¢ leads to the three-
dimensional form of the tensor viscosity method
scheme (Dukowicz and Ramshaw, 1979). It was
found that this scheme is stable under the strong re-
striction (o + 8% + v»)"? < 0.34.

4. Properties of the proposed scheme

Two important properties of any numerical scheme
are consistency and stability. It is easy to see that
when At, Ax, Ay, Az — 0, (23) approaches the form
of (3), and (22) approaches the form of (1), which
ensures consistency. The results obtained from linear
stability analysis for the uniform-flow case in (19) and
(25) indicate that the proposed scheme is stable, at
least for this kind of flow. Another interesting feature
of this scheme is that the lower-dimension scheme
is a special case of the higher-dimension one. For
example, if Y(x, y, z, ) = Yx, y, 1), (23) is the equiv-
alent two-dimensional version of scheme (17), and
if Y(x, y, z, 1) = Y(x, t), (23) is the equivalent one-
dimensional conservative Crowley’s scheme (7).
Conservation of the transported value is ensured by
the flux form of the scheme. Multiplying (23) by

Mi' 4+ Y2 after omitting the terms proportional to
At, for nondivergent flow, we can obtain an equation
for 2

o2 + 6.Ju2d” — U] + 8,20 — ¢ 3]

+ o, w28" — D] + Ax2[b,(05.5")
+ 0 whl )] + AYPY[8 b, ) + 0wy )]
+ AZY[BAub ) + 8, (v8.4)]

A 2A72 ZA
P b byl %) 4 BX A2

szAy

Yo, 08z

Voo ) + O(AD) = (26)
It follows from this that the proposed scheme for
nondivergent flow has no sources of “energy” except
those proportional to Ax?2, Ay? Az? and At. For the
simple one-dimensional case, (26) can be written in
the form

o7+ 5 u — YD+ 0N =0,  (27)

which means that the one-dimensional Crowley
scheme for the case when 6,4 = 0 has a source of
“energy” of leading order proportional to At.

To discuss other properties of the scheme, such as
implicit diffusion and dispersion, it is convenient to
analyze the dependence of amplitude and phase error
on 0, and 0, for the two-dimensional case. In Figs.
la, b, the isolines of constant absolute value of ei-
genvalue as a function of 8, and 8, are presented, for
Courant number (a? + 62)"2 =025 and a = B
~ 0.18. For all values of 6,, 6, € [0, ]{A| < 1 for the
present scheme, while for the Crowley scheme (Fig.
1b) the area of instability covers the region

0,0, < % (wavelengths A, 2 4Ax, \, = 4Ay).

The amplitude error AN = 1 — |A] is slightly bigger
for the proposed scheme than for Crowley’s scheme,
and increases for short waves. Fig. 1a shows that some
boundary 0, + 6, =~ = exists, which divides all the
domain of 8,, 8, into two parts in which the behavior
of |A] is different. For 6, + 8, < = the amplitude error
is constant on the lines 8, + 0, ~~ const, which, taking
into account that @ — 8 = const, means that ampii-
tude error is isotropic, that is, constant on the front
of a transported wave. The latter does not occur with
the Crowley scheme except for short waves A, < 3AXx,
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FIG. la. Isolines of constant amplitude |A| as a function of
phase angles 8, 6, for the proposed scheme. Courant number
(a® + %2 = 0.25, @ = 8 ~ 0.18, and the contour interval chosen
is 0.0075.

A, € 3Ay. The same conclusion can be found for
phase error A¢ = 1 — tan™'[Im(\)/Re(N\)]/(6xx + 6,5)
(Fig. 2a, b). For Crowley’s scheme (Fig. 2b), the phase
error increases for short waves and reaches the value
1, when A, = 2Ax or A, = 2Ay, which means that
the waves, which have a length of 2A at least in one
direction, are stationary. For the proposed scheme
(Fig. 2a), stationary waves are .just those for which
0, + 0, ~ =, while the shorter ones (§, + 6, > =)

T

FIG. 1b. As in (a), but for the Crowley combined scheme.
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FIG. Ic. As in (a), but for (¢? + 89)'/? = 0.75 and « = B ~ 0.53,
and the contour interval 0.05. -

move in a direction opposite to the direction of ad-
vection.

Results are shown in Fig. Ic and d for a larger
value of the Courant number (o? + §%)'/2 = 0.75 and
a = B = 0.53. In the case of the Crowley scheme,
the area of instability grows in the direction of the
short waves and the amplitude error increases signif-
icantly, especially for short waves (Fig. 1d).

For the proposed scheme (Fig. 1¢), as for the Crow-
ley scheme, damping increases and reaches a maxi-.
mum value in the area of stationary waves. Excep-

T

FIG. 1d. As in (c), but for the Crowley combined scheme.
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6x

FIG. 2a. Isolines of constant phase error A¢ as a function of
phase angles 6., 8, for proposed scheme. Courant number
(a? + 872 = 0.25, a = B = 0.18, and the contour interval chosen
is 0.05.

tionally strong damping can be observed for waves
Ae = N\, =~ 4A(A = Ax = Ay). Generally, the short
waves are more strongly damped than the long ones.
Comparing Figs. 2c and d with 2a and b, one can
conclude that, for bigger values of the Courant num-
ber, the phase error in the Crowley scheme decreases
in the direction of short symmetrical waves, while
for the proposed scheme it decreases in the area
(0x + 8, < 7) and increases in the remaining part of

m
%807 l ~080 \
060
/—‘0.40 )
ey

:

L Q

L
0 b / |
(0] T

6y

FIG. 2b. As in (a), but for Crowley combined scheme.
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m

FIG. 2¢. As in (a), but for (& + %' = 0.75 and a = 8 =~ 0.53,
and the contour interval chosen is 0.1.

0y, 0, domain. In the case of nondiagonal flow («
# f3), it is difficult to formulate any general conclusion
because of the complicated character of the depen-
dence of the amplitude and phase error on 6y, 6,. One
can conclude that even in the case of strongly asym-
metrical flow, the area of instability for the Crowley
scheme decreases only slightly. For both schemes it
can be observed that the amplitude and phase error
have similar values as in the case of diagonal flow

FIG. 2d. As in (c), but for the Crowley combined scheme,
the contour interval is 0.05.
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(the maximum value is determined by the Courant

number rather than the geometry of the flow), but
another distribution in the domain of 4,, 6,. For the
proposed scheme, the area of stationary waves is al-
ways associated with strong damping, and waves are
never stationary, or move in the direction opposite
to convection, if A, and A, are greater than 4Ax, and
4Ay, respectively. So, the proposed scheme should
predict well the transport of waves longer than four
grid increments, while the Crowley scheme should
better predict the shorter ones. :

5. Two-dimensional tests

To show the behavior of the two-dimensional
scheme, a solid body rotation test (Crowley, 1968;
and Zalesak, 1979) was chosen. The grid space was
(100Ax by 100Ay), Ax = Ay = 1, the angular velocity
w = 0.1, the maximum Courant number was 0.7, and
one full rotation around the point (S0Ax, S0Ay) was
equivalent to 628 iterations (i.e., time steps). The ini-
tial condition is given in Fig. 3. The maximum and
minimum values were FMAX = 3.87 and FMIN
= (), respectively, and the position of the maximum
was Xm = 75Ax, Ym = 504y.

After six full rotations for the proposed scheme
(3768 iterations, see Fig. 4), FMAX = 2.59, FMIN
= ~0.77, Xm = 72Ax, Ym = 40Ay, ER1 ~ 1072,
and ER2 = 0.06, where ER1 and ER2 are defined as:

ER1 =1— [L W(x, y, Ddxdy

g fo ' (outﬂOW)dl] / fz W 3, D)y, . (28)

ER2=1— «{ f YA(x, y, dxdy
z

+ J; t [Outﬂow(xl/z)]dt} / L Vi(x, ¥, 0)dxdy |

where 2 is the whole domain x, .

Obviously, after fewer time steps the results are
better. For comparison, the results for the two-di-
mensional Crowley scheme with orthogonal advec-
tion operators combined are shown in Fig. 5a for four
full rotations. The growing instability can be seen.
FMAX = 18.79, FMIN = —18.39, ER1 =~ 107'?2 and
ER2 ~ —10%. To be sure that the instability arising
in this case is not forced by the boundary conditions,
some tests with dissipative damping of waves close
to the boundary were performed. In Figs. 5b-f, ex-
amples of the results are presented. The developed
instability is shown between the second and the fourth
rotation. The time increment between plots is half of
one full rotation.

Fig. 6 presents the results for the ‘“upstream”
scheme after one rotation: FMAX = 1.30, FMIN
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F1G. 3. Initial condition for all two-dimensional tests. Scalg val-
ues in left-front and right-back corners are —2 and 4, respectively.
Maximum value of the initial condition is 3.87.

=0, ER1 ~ 107" and ER2 = 0.68. And Fig. 7 shows
the results for the “time-splitting” Crowley scheme
after six rotations: FMAX = 3.09, FMIN = —(.59,
ERI1 ~ 107'%, and ER2 = 0.03. In each case the same

“kind of boundary conditions were used. The second

spatial partial derivative in the normal direction was
assumed to vanish at the outflow boundary. Vanish-
ing of the first derivative gave practically the same
results. The undisturbed initial value of the field was
assumed at the inflow boundary.

From a comparison of these results, it can be seen
that the best result was obtained in the last case (the
time-splitting Crowley scheme gives the same results

FIG. 4. Solution for the proposed two-dimensional scheme
after six full rotations (3768 iterations).
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1976

lF]G. 6. Solution for “upstream” difference scheme
after one rotation (628 iterations).

after six rotations as the proposed version after three
rotations) but computing time per iteration is ~33%
greater than for the proposed scheme.

6. Three-dimensional tests

As in the previous section, a solid body rotation
problem was chosen to present the behavior of the
three-dimensional version of the proposed scheme.
A sphere with linearly variable density (from 0 on the
edge, to a maximum in the center of the sphere) was
placed in the center of the grid space (40Ax by 40Ay

e

i o
LA

FI1G. 7. Solution for Crowley “time-splitting” advection scheme,
after six full rotations.
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INITIAL COMDITIGH

F1G. 8. Initial condition for all three-dimensional tests. All points
in which the value of a function is greater than or equal to 0 are
plotted. Minimum value 0, maximum value 4.

by 40Az), (Fig. 8). The sphere is rotating around the
diagonal axis of the grid space with angular velocity
w=0.1 Ax=Ay = Az =25, At = 0.25, and the
maximum value of the Courant number is 0.83. Two
and a half rotations are equivalent to 628 time steps.
Initial conditions are FMAX = 4, FMIN = 0, Xm
= 20Ax, Ym = 20Ay and Zm = 20Az. After 15 ro-
tations for the proposed scheme (3768 iterations),
FMAX = 3.42 and FMIN = —0.06; Xm, Ym and Zm
are exactly the same as at the beginning, and ER1
~ 10713, ER2 = 0.06. In Fig. 9, solution values = 0.5
are presented. As in the previous section, these results
were compared with the three-dimensional combined
Crowley scheme. Fig. 10 presents the solution after
2.5 rotations (628 iterations): FMAX = 88.11, FMIN
= —91.97, ER1 ~ 1073, and ER2 = —16 by 10°. Fig.
11 shows the solution for an “upstrea?n” scheme after
2.5 rotations: FMAX = 0.67, FMIN = 0., ERI1
~ 10713, and ER2 = 0.94. Both Figs. 10 and 11 pre-
sent solutions after a significantly shorter time than
Fig. 9, but after five rotations instability fills all the
space (Crowley) or the transported initial values van-
ish (upstream).

For all tests the same boundary conditions were
used. In the inflow portions of the domain, the
boundary condition was formulated as in the previous
section. In the outflow portions of the domain, the
first spatial partial derivative in a direction normal
to a boundary vanishes on the boundary (requiring
the second derivative to vanish leads to instability).
A three-dimensional version of the “time-splitting”
Crowley scheme was not tested because of the exces-
sive computer time required.
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czs= 0.5

FIG. 9. Solution for three-dimensional version of the proposed
scheme after 15 rotations (3768 iterations). The points at which
the value of a function is greater than or equal to 0.5 are plotted.

7. The flux-correction method

As Soong and Ogura (1973) pointed out, using a
Crowley scheme may introduce some difficulties be-
cause negative values arise in the solution. This effect
can be particularly important in a case when the so-
lution from an advection equation is then used as an
input to some nonlinear equations describing micro-

AN P

gy PR T TR
Gl

Sy ey A AR
W/ DN Cvrarily \q'
R IR
sl
e
S
FI1G. 10. As in Fig. 9, but for the Crowley combined scheme after

2.5 rotations (628 iterations). Growing instability can be seen
around the main solution.

PIOTR K. SMOLARKIEWICZ

1977

DEG= 0.5

FIG. 11. As in Fig. 9, but for the “upstream” differencing
scheme after 2.5 rotations.

physical phenomena (e.g., the stochastic coalescence
equation), which can eventually lead to the instability
of the whole system. The rise of negative values of
initially positively defined scalar functions during the
solution process is typical for all higher-order meth-
ods. Care about the positiveness of the solution leads
to the use of upstream differencing or other low-order
schemes (Soong and Ogura, 1973). To avoid these
difficulties without introducing strong implicit dif-
fusion, the use of the flux-corrected-transport (FCT)
method, developed by Boris and Book (1973, 1976);
Boris et al. (1975), and formulated for multidimen-
sional problems by Zalesak (1979), is suggested.

The general form of the FCT algorithm can be
written as;

g&fﬁ' = 'M‘}lk — {[CF-FH + (1 — CF)-FL)¢+ 12«
= [CF-FH ~ (1 — CF) - FL)i— 12k
+ [CG-GH + (1 — CG)* GLij+120
~[CG-GH + (1 ~ CG)+ GL/-1/a
+ [CH-HH + (1 — CH)- HL];;(41/2)

— [CH-HH + (1 — CH)-HL);4-1/2}, (29)
where FH, GH and HH are high-order-accuracy
fluxes (second order and above), that is, three fluxes
in orthogonal directions from any known higher-or-
der-accuracy conservative advection scheme, e.g.,
Crowley, Lax-Wendroff, or leapfrog.

FL, GL and HL are low-order-accuracy fluxes, e.g.,
from an “upstream” differencing scheme, a Lax-
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Friedrichs, or a high-order scheme with zeroth-order
diffusion added. Three matrices of corrective factors
[CEr1yik)s [CGigj+2n) and [CHij41/2], where the
value of each factor is less than or equal to 1 and
greater than or equal to 0-(0 < ¢ < 1), are determined
following Zalesak (1979, formulas 6'-13', and 17,
18). [In my experience, the optional use of formulas
14’ (or 14 in the one-dimensional case) gives surpris-
ingly accurate solution for an initial condition which
is some kind of step function, but in the case of a
smooth initial condition still tends to convert the so-
lution to a step function.] To determine the value of
the corrective factor at a certain point, it is necessary
to compare the value of the low-order solution with
the value of the solution at the previous time in the
closest neighborhood of the point being considered.
This fact, as well as the construction of corrective
factors, ensures that the entire algorithm is stable as
long as at least one of the low- or high-order approx-
imation schemes used is stable.

The results of the two-dimensional tests of the FCT
‘method are presented below. In the first case, Crow-
ley’s approximation (8) was used as the high-order-
approximation fluxes FH and GH; in the second case,
the approximation proposed in this paper (17) was
used. In both cases, an “upstream” difference ap-
proximation was used as the low-order fluxes FL and
GL:

FLGr1/2 = [ + |t srsis ~
At
+ (U = [ul)gr1/2)¥i15] Ax
] . . (30
GLij+172) = [( + [0Dig12¥ - GO
' At

+ (- IUI)i(j+1/2)¢ij+1] EA—y )

For the same initial conditions as in Section 5, the
following results were obtained.

Crowley’s high-order flux approximation, after
six rotations (Figs. 12a, b): FMAX = 3.09, FMIN
= —107%, Xm = 73Ax, Ym = 45Ay, ER1 = 107!},
ER2 = (.28. ‘

The proposed scheme, after six rotations (Figs. 13a,
b): FMAX = 2.31, FMIN = 0.0, Xm = 73Ax, Ym
= 46Ay, ER1 = 107!!, ER2 = 0.35.

As shown above, the unstable combined Crowley
scheme becomes stable after use of the FCT method.
A comparison between Figs. 12a and b, with 13a and
b indicates that the Crowley scheme has slightly
smaller damping than the proposed one, but the pro-
posed scheme has better conservation of shape and
keeps the symmetry of the initial conditions better.
Probably, fourth-order implicit diffusion existing in
both schemes is more strongly dependent on smaller
velocity in the Crowley scheme than in the proposed
scheme (in Fig. 12b it is easy to see that damping is
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FiG. 12. (a) FCT method for the Crowley combined scheme after
six rotations (3768 iterations), (b) seen from another angle.

significantly stronger in the direction where velocity
vanishes). The FCT method gives the possibility of
even better shape conservation (Zalesak, 1979, sec-
tion V, formulas 19, 20), but significantly increases
computing time. Without FCT, the computing times
of both schemes are similar. Including the FCT
method in its simplest form approximately doubles
time consumption. .

8. The solution of the advection equation in the case’
of deformational flow

In the previous sections the simplest possible form
of the stable two- and three-dimensional Crowley
advection scheme was presented and discussed.

The proposed scheme is not the only one which
is possible. Instead of the approximation of the first
spatial partial derivative of (14), the following ap-
proximation may be used:
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FIG. 13. (a) As in Fig. 12a but for the two-dimensional version
of the proposed scheme, (b) seen from another angle,

(31)
and instead of the approximation of the second spa-
tial partial derivative (15),
A2
ax?

aEI/I Xy
s 4 =5
axl,, 2

vy
=0,
ij

(32)

may be used.

Replacing the approximations in (17) of the first
and second spatial partial derivatives or only of the
first, by expressions of the type in (31) and (32), leads
to two new versions of the proposed scheme:

Pyt

_ At2 2 _ At2 ~Xp _
- ax(AruV” - S e - S w"y)
e APV o Atoa® |
- 6y(Atv¢y - oW — 2u O y) , (33)
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and
=
_ A 2,,2 2,55 _
—5X(Alu\bxyy— t°u 5x¢—At uv 5y‘0xy)
2 2
_ A 2,2 A 2, XY _x
_ ay(mw”"‘ - tzv s~ = '2’” 50 y) , (34)

[replacing .4 in (17) by (32) without replacing
~y

8" leads to an unstable scheme]. The eigenvalues
of the advection operator for (33) and (34) are, re-
spectively,

A =1—a?(1 — cosb,)(1 + cosb,)/2 — B*(1 — cosf,)
X (1 + cos8,)/2 — af sinb, sind, — i[B sinf,

X (1 + cost,)/2 + a sind,(1 + cosdy)/2], (35)
and
A=1- %1 — cosb,) — B*(1 — cosb,)
— af sind, sinf, — i[B sinf(1 + cosf,)/2
+ a sinf(1 + cosf,)/2]. (36)

Using the method in Section 2, it was found that in
both cases the absolute values of the eigenvalues are
less than or an equal to unity if the Courant number
(® + BHV?is < 1.

These versions of the proposed scheme have prop-
erties similar to the first one, except that the behavior
of the phase error is rather like that of the original
Crowley combined scheme, where all waves move in
the direction of advection and the shortest waves
(Ax = 2Ax, \, = 2Ay) are stationary. In other words,
the above versions have similar properties to the orig-
inal Crowley combined scheme, except that they are
stable even for waves for which the Crowley scheme
is unstable. The difference between (33) and (34) is
that (34) has significantly stronger damping for short
waves (for which 6, + 6, = ).

As long as the scheme is applied to the case of
smooth, nondeformational flow, all three presented
versions give practically the same results. In Figs. 14a
and b, the solution for a solid body rotation test (Sec-
tion 5) was shown for (33) and (34), respectively.
Comparing these results with those presented in Fig.
4, it can be seen that (34) has a slightly smaller damp-
ing for long waves than the other versions of the pro-
posed scheme.

Significant differences between different versions
of the scheme can be found in the case of deforma-
tional flow. In the case of nonuniform flow, it is dif-
ficult to prove stability of a scheme which may be
dependent on the structure of a velocity field. There-
fore, we will discuss some chosen example of strong
deformational flow.
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On a grid space as in section 5, a stream function
was defined as follows:

27

Yx,y)=8 sin[ @2 x] cos[(%/wz—) y] , (3D

where L = 100Ax = 100Ay(Ax = Ay = 1). Isolines
of the streamfunction are shown in Fig. 15a. The
velocity field is built up from sets of symmetrical vor-
tices such that their closest neighbors rotate in op-
posite directions. The maximum value of the Courant
number is 0.7, At = 0.7. Deformation of the velocity
field is defined as

Def=_———. (38)

Because of the inequality,

FIG. 15a. Isolines of the stream function for
deformational flow tests.

Max(Def)- At = 1.4 > 1,

deformation can be considered to be strong.

As an initial condition (Fig. 15b), the same cone
asin Section 5 was placed in the center of the domain.
The radius of the base of the cone is slightly greater
than the radius of the vortices, so at the initial time,
the cone belongs to the area of six vortices, but its
main part belongs to the area of the two central ones.
It may be expected that after a long enough time, the
solution will be divided into two symmetrical pieces

.
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FIG. 14. As in Fig. 4 but for (a) the Eq. (33) version )
of the scheme, (b) the Eq. (34) version of scheme. FIG. 15b. As in Fig. 3, but for deformational flow tests.
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FIG. 16. Solution after 3768 iterations for the Crowley combined
scheme in the case of deformational flow.

which will move inside an area of the two central
vortices.

In Figs. 16 and 17, the solution after 3768 iterations
is shown for the Crowley combined and Crowley
“time-splitting” schemes, respectively. In the first
case, instability can be observed, as well as the fact
that the solution is not divided for the two symmet-
rical pieces. In the second case, this main feature of
the solution can be seen; however, a slowly growing
instability (maximum values are twice as big as the
initial condition) arises. Fig. 18 also shows the solu-
tion after the same number of iterations for the
scheme in (34). The solution is stable, but it contains
stable stationary short waves with wavelengths 2Ax
and 2Ay. For the version of the proposed scheme in
(17), these short waves are strongly unstable, and for
(33) they are only weakly unstable. To eliminate the
2Ax, 2Ay waves, a 17-point spatial filter of Shapiro
(1970) was used every ten time steps in the whole
domain. This filter results in total elimination of the
two-space increment waves with very weak damping
of the longer ones. The formula adopted for this filter
is given as

FIG. 17. As in Fig. 16, but for the Crowley “time-splitting”
scheme.
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FI1G. 18. As in Fig. 16, but for Eq. (34) of the proposed scheme.

(—1y! 22": (—=1y(2n)!
4n S j'2n— j)

Y=y, + Virn—gs (39
with n = 8 chosen.

In Fig. 19a, a solution after 3768 iterations using
version (34) of the proposed scheme is shown with
the Shapiro filter applied. The small maximums
which can be seen inside both pieces are rotating
around the centers of the vortices (because for this
case an analytical solution is unknown, the conver-
gence of the solution was shown by doubling the space
and time increments). Applying the filter [Eq. (39)]
to the versions of (17) and (33) gives similar results
(Figs. 19b and c, respectively). In the first case, some
small-amplitude 2A x, 2Ay waves can be seen. These
waves arise so quickly that even a once every ten-
time-step filter is not able to eliminate them totally.
If the filter is used every third time step, the short
waves vanish. In the second case [Eq. (33), Fig. 19c¢],
some residue of the initial condition can be observed
in the area of these four vortices that contained some
small part of an initial condition at the initial time.
This effect is due to the fact that (33) has smaller
damping for asymmetrical waves than (17) or (34).

The same filter applied to the original Crowley
combined and Crowley “time-splitting” schemes does
not change the results shown in Figs. 16 and 17, which
is not surprising because the instability arising in both
cases is due to the long waves rather than to the short
ones. In Figs. 20a and b the results for FCT Crowley
and FCT version of (17) of the proposed scheme are
presented, respectively. The results are stable in both
cases; however, the main features of the solution are
lost.

Summarizing the results it can be concluded that
(33) and (34) give better results than (17). Three-di-
mensional equivalents of two-dimensional schemes
[Egs. (33) and (34)] may be obtained in the same way
as was presented in Section 3, and they have the re-
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Fig. 3¢, Solutjon after 37,
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68 iterations wit applied 1,
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P b fuange _war W)
24,2 -
- 6y(vAtx5ymz" 9“2951 WL )

2442
. W Ar -
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and

WH = wm 6x(uA[nyyzz~ .. .) - 6},

X (oang™= _ X
Fig Solution after 3768 iteratio, he S PIro filter

applied 1o ® schemeg of (a)

. .), (41)

- (¢) Eq. (33), [the terms Which ape A0t written €xplicitly are the
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same as in Eq. (23)]. It was found that the above
schemes are stable if (o + 82 + ¥?)"? < 1 and (o?
+ 6% + ¥%)2 < 0.94, respectively. In the three-di-
mensional case, the version of the scheme which has
no equivalent in the two-dimensional problem can
be found:

pret =g
- 5'( cee — _2t_2 u-xyay‘l;xyzz ot uwxzaz\p-xzyy)
- ay(- .. - —23 v — —A; v ‘”52;5”’"‘)
52(. B ézt_z o ATt 5%, \pyzx.x) ,
(42)

[the terms which are not written explicitly are the
same as in Eq. (40)]. The above scheme is stable if
(a? + 82 + v%)'? < 1. In the three-dimensional case,
as well as in the two-dimensional one, there exist
other possibilities for generating new versions of the
scheme, particularly in applications to the atmo-
spheric problems in which the vertical direction is
distinctive. This introduces the possibility of con-
structing asymmetrical schemes with different meth-
ods of averaging of the derivative operators in the
vertical direction than in the horizontal.

9. Conclusions

1) Replacing the original second-order-accurate
approximation of the first spatial partial derivative
(which considers points lying on the same line) with
one that includes information on field dimensionality
(which considers points from a plane or cube, and
the cross-space derivatives) leads to a new form of the
combined Crowley advection scheme which is stable
at least for uniform flow,

2) Use of the FCT method stabilizes the original
Crowley combined scheme and gives non-negative
solutions. A comparison between the flux-corrected
combined Crowley scheme and the flux-corrected
scheme proposed in this paper shows that our pro-
posed scheme has slightly stronger implicit diffusion
that is less dependent on velocity, and finally leads
to a better prediction of the shape of the solution.

3) The proposed scheme may have some different
versions, depending on the applied method of aver-
aging of the first and second spatial partial derivative
operators. All presented versions gave similar solu-
tions in the case of smooth non-deformational flow,

PIOTR K. SMOLARKIEWICZ

1983

because they have similar properties for long trans-
ported waves. In the case of deformational flow, the
different versions of the proposed scheme may give
different solutions (from strong instability through
weak instability to neutral stability for two-space-in-
crement long waves). Filtering the shortest 2Ax, 2Ay
waves again leads to stable similar solutions for dif-
ferent versions of the scheme.
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