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ABSTRACT

Atmospheric models based on the Euler equations exist and are used occasionally to carry out numerical
experiments. Such a model is used here to simulate the motion of warm bubbles in a dry isentropic atmosphere.
For the time integration, this model uses a scheme that is semi-Lagrangian and semi-implicit. It is the stability
and the efficiency of this integration scheme that is examined in the context of an isentropic vertical stratification.
Some results are presented and are compared with the results generated by similar experiments reported in the

scientific literature.

1. Introduction

Atmospheric models rarely use the full meteorolog-
ical equations. The reason for this is that these equa-
tions contain high-frequency sound waves. These waves
impose a severe restriction on the size of the time step
that can be used in order to produce stable integrations.
The most common practice consists in using approx-
imations that eliminate sound waves from the equa-
tions. Large-scale models use the hydrostatic approx-
imation. Convection models generally use the anelastic
approximation.

There are a few models that use the complete me-
teorological equations. These are called compressible
fluid models, and they use the Euler equations. The
main characteristic of these models is that they include
sound waves. Both the hydrostatic approximation and
the anelastic approximation are avoided. The problem
with these models is that they can be very time con-
suming, even on present supercomputers. In order to
partially avoid this problem, these models use special-
ized integration schemes designed to produce stable
integrations with fewer calculations than the amount
required with classical integration algorithms.

One technique consists of using the split-explicit
scheme proposed by Gadd (1978). This technique
separates the terms in the equations in such a way that
sound waves are integrated with a short time step while
other waves are integrated with a larger time step. The
split-explicit method is also used by Klemp and Wil-
helmson (1978) and by Cotton and Tripoli (1978) in
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models of the Euler equations that are used to perform
experiments at convective scales.

Another method consists of using the semi-implicit
scheme proposed by Robert (1969). Such a scheme is
used by Tapp and White (1976) and also by Tanguay
et al. (1990) in models of the Euler equations. This
latter article will be called TRL in subsequent refer-
ences.

In the model of Tapp and White, the semi-implicit
formulation is applied to sound waves, and the model
is used to produce short-range mesoscale weather fore-
casts. In TRL, the Euler equations are used on a nearly
hemispheric scale, and the semi-implicit scheme is ap-
plied to both sound waves and gravity waves.

In principle, it seems that this model could be used
at any other meteorological scale. In order to test this
hypothesis, the model is applied to bubble convection
in an isentropic environment. It is unclear whether the
semi-implicit scheme will function properly under
these conditions. In order to remain stable, this tech-
nigue must satisfy a number of constraints. The most
important constraint is related to the reference state
used in the model for the application of the semi-im-
plicit scheme. This question has been investigated by
Simmons et al. (1978). In their investigations, they
found that the semi-implicit scheme develops numer-
ical instability in the polar regions if the static stability
of the model reference state is too low. In their paper,
they recommend an isothermal reference state.

In another study, Co6té et al. (1983) arrive at the
same conclusion, but their analysis implies that it is
the computational mode associated with the leapfrog
scheme that is the most unstable. Both papers maintain
that a positive definite model static stability is insuffi-
cient to guarantee stability. Both papers give the same
necessary condition for stability.
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Similarly, it seems also that the semi-implicit scheme
might run into difficulties if the static stability vanishes
at some point in the atmosphere or if it becomes neg-
ative. Large-scale models use a parameterized convec-
tive adjustment scheme that constrains the static sta-
bility to positive values. This constraint is applied in
all large-scale models including those that use classical
integration algorithms. It is used to prevent a form of
instability that would otherwise be well managed if the
resolution of the model could be extended all the way
to a scale of a few meters. If we wish to test the per-
formarnce of the semi-implicit scheme in an isentropic
atmosphere, we should displace ourselves to the con-
vective scale where the adjustment constraint on static
stability is not needed. This is done in the following
sections.

2. Description of the model

The Euler equations are used in the following vec-
torial form:

dc

— =B 1
7B (1)
where the vector C has the following components,
C=(u,v,w,q, T, (2)

and the five components of the vector appearing on
the right-hand side of (1) are given as

aq’

B, = —-RT — (3)
ox
a !
B,= -RTZL (4)
ay
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In these equations 7* is a constant, and
.o _ & |
q RT* (11)
q= 1n[£] (12)
Do
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Po = 1000 mb (13)
R 2
“=E T3 (14)

The gas constant R is for dry air; u, v, and w are the
three components of the wind; p is pressure; and T is
the temperature. A complete derivation of this form
of the Euler equations is given in TRL. Adiabatic mo-
tion is considered, and the terms arising from the ro-
tation and sphericity of the earth are omitted.

These equations are nearly in the form used by the
semi-implicit scheme. In order to complete the trans-
formation, we define another vector B* as follows:

aq’
B = —RT* — 15
i i (15)
dq’
BY = —RT* = 16
2 3 (16)
aq’
BY = —RT* — 17
3 3 (17)
B = -2 (18)
1 —«
T*
BY = ——n, (19)
1 —«
and finally,
B’ =B — B*, (20)

so that our original differential equation may now be
written as follows:
dC
— =B*+ B
dt
Up to this point, all manipulations were made with-
out any approximations. The first approximation will
consist in applying the discretization that generates the
semi-Lagrangian and semi-implicit technique:

(21)

fldg =B* +B. (22)
Here, the various symbols are defined as follows:

dF Flrt,t+ At] — F[r,t — At
e : ]2At [ b
e Flrt,t+ At] + F[r~, t — At] (24)

2
F=F(@%1), (25)
where

rt=(x,p,z) (26)
rP=x-ay—8z-17) - (27)
r-=(x—2a,y~ 28,z 2v) (28)
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and
a = Atu(r t) (29)
B = Aw(r° 1) (30)
v = Aw(rY 1). (31)

In the preceding equations, r* is a grid point, while
r®and r~ are upstream points along a trajectory defined
by the wind at the midpoint of the three-point trajec-
tory. All quantities that need to be determined at up-
stream points are computed with a multiply upstream
tricubic interpolator in three dimensions. This algo-
rithm naturally reduces to bicubic interpolation in two
dimensions. The multiply upstream characteristic is
quite important for stability when the points are far
upstream. The interpolation is always carried out from
the grid points that are nearest to the upstream point.

The stability constraint in the TRL model due to
an Eulernian treatment of vertical advection is removed
by adopting semi-Lagrangian advection in all space di-
mensions.

The manipulations required for the integration of
(22) are described in TRL as well as in many other
papers that describe the semi-implicit method. These
descriptions will not be repeated here.

The spatial discretization uses the Arakawa-C type
of staggering. For instance, along the x axis, a first set
of grid points is defined in the interval

O0sx<L (32)
as follows:
x;=(i—1)Ax, (33)
where i is an integer such that
1 <i< NI (34)
and
L
Ax = -1 (35)

The wind component « along the x axis is defined
at these grid points. All other variables are defined on
the following set of points:

;1
xi—(z 2)Ax

Il<i<NI-1,

(36)
with
(37)

and Ax is as previously defined.

The same principle is applied also in the other two
dimensions so that we end up with a total of eight
regular grids, all staggered with respect to each other.
Only four of these grids are effectively used to represent
the dependent variables. The main advantage of this
discretization 1s that all derivatives are evaluated over
a distance of one grid length. The disadvantage is that
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some variables must be averaged over a distance of one
grid length. At present, two-point second-order ap-
proximations are used everywhere. In practice, it is the
semi-implicit scheme that benefits most from this type
of staggering.

For the semi-Lagrangian part of the model, the stag-
gered velocity components are averaged to the grid
centers, and the displacements applicable to these
points are computed. These displacements are used to
compute the upstream values of the terms related to
pressure and temperature (components 4 and 5 of the
corresponding vectors). For the other three variables
(u, v, and w), the displacements computed above are
averaged to the three corresponding grids for the com-
putation of upstream values. In other words, upstream
values of a quantity expressed on a given grid are always
computed with the help of displacements averaged to
this grid. ,

3. The bubble convection experiments

The experiments reported in this section are carried
out in two dimensions, even though the model can run
in three dimensions. A mesh length of 10 m and a time
step of 5 sec will be used. The basic-state atmosphere
will be 1sentropic with a potential temperature of 30°C.
Initially it will be at rest and in hydrostatic equilibrium.
The semi-implicit scheme uses a reference temperature
T* of 30°C.

In the first experiment, a domain of 1 km by 1 km
is used and is enclosed within solid walls. A circular
bubble with a diameter of 500 meters will be consid-
ered. The bottom of the bubble will be positioned 10
meters above the underlying surface. The bubble will
be assigned a uniform potential temperature of 30.5°C,
which is 0.5°C in excess of the environmental potential
temperature. The environmental pressure will not be
altered so that initially all the air parcels within the
bubble will be subjected to a small buoyancy force.

The results of the corresponding integration are pre-
sented at £ = 7 min in Fig. | and at ¢ = 10 min in Fig.
2. These charts show the distribution of potential tem-
perature. These results will be compared with those of
a similar experiment carried out by Smolarkiewicz and
Grabowski (1990) using the anelastic model of Clark
(1977). Their Fig. 7 plots the potential temperature at
t = 10 min. It should be noted that their domain is
only 800 m wide. Other differences are in the models
that were used. There is some large-scale resemblance
between the patterns, but there are significant differ-
ences in the smaller scales. The results of Smolarkiewicz
and Grabowski are noisy. This is not the case with the
proposed model in spite of the fact that it did not use
any explicit time filter or diffusion.

Another similar experiment was performed by
Smolarkiewicz and Pudykiewicz (1992). In this case,
the Boussinesq equations were used with a semi-La-
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FIG. 3. Potential temperature distribution at ¢ = 0 for a circular FIG. 5. Same as Fig. 3 but at / = 12 min.
bubble with a Gaussian profile in an isentropic environment.

FIG. 4. Same as Fig. 3 but at 1 = 6 min. FIG. 6. Same as Fig. 3 but at ¢ = 18 min.
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FiG. 7. As in Fig. 1. (a2) Regular run with a mesh length of 10 m and a time step of 5 sec over a
1-km by 1-km domain; (b) same window over a domain enlarged to 2 km by 2 km, (¢) mesh length
and time step reduced to 5 m and 2.5 sec over the 1-km by 1-km domain; (d) regular run with weak
random noise added to the initial potential temperature.

grangian discretization. They also enlarged their do-
main to 2 km X 2 km.

They plot the potential temperature after 7.2 min
in their Fig. 3b and after 10 min in Fig. 3c. In this case
there is a much greater resemblance, especially at 1 = 7
min. Comparable vortices show up clearly, as in Fig.
1 of this paper. A fraction of the bubble of Smolar-
kiewicz and Pudykiewicz shows up above the 750-m
level. A slightly smaller fraction of the bubble of Fig.
1 also shows up above the 750-m level. The presence
of a lid at a height of 1 km seems to have a small
impact on the results at 7 min.

Another experiment is carried out with a different
type of bubble. In this case, the distribution of potential
temperature within the bubble is given by

r<a

4,
0= st o0 (38)

with

r2=(.x_‘X0)2+(Z—Z())2. (39)

This produces a bubble with a Gaussian profile. A
small flat region is added at the center; 4 = 0.5°C, a
=50m, s = 100 m, xp = 500 m, and zy = 260 m. The
results of the corresponding integration are presented
in Figs. 3, 4, 5, and 6. The plots correspond to z = 0,
6, 12, and 18 min. It should be noted that the upper
boundary has been moved to a height of 1500 m.

A similar experiment was carried out by Carpenter
et al. (1988) using a model of the Euler equations with
very short time steps. They present potential temper-
ature at ¢ = 10 min in their Fig. 9b and at 14 min in
‘Fig. 9¢. Their patterns are comparable to those of Fig. -
S except that they are slightly more noisy. Carpenter
et al. also examined the influence of spatial resolution
on their results. They find that fairly intense Kelvin—
Helmholtz waves appear along the sharp edge of the
bubble when the resolution is increased. In this latter
study, they indicate that a time step of 0.4 sec with a
mesh length of 20 m was used. A comparable run with
the proposed semi-implicit formulation would require
a time step Six times longer.

Another similar integration is reported by Nickerson
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FIG. 8. Potential temperature distribution at ¢ = 0, 4, 7, and 10 min for a run with a large warm
bubble and a small cold bubble as initial conditions as depicted in panel (a) for mesh length 10 m

and time step 5 sec.

(1965). He presents results at ¢ = 2, 6, and 10 min in
his Figs. 3, 4, and 5. His results are very smooth. He
uses only a half bubble since the lower half has been
deleted. This makes comparisons more difficult, but
on the other hand, the overall behavior of his bubble
does not differ significantly from the results of Car-
penter et al. or those reported in this paper.

At this point, some of the results presented earlier
will be reexamined. The charts presented by Smolar-
kiewicz and Grabowski (1990) are noisy, but smooth
results are presented by Smolarkiewicz and Pudykie-
wicz (1992) when a monotonicity constraint is used.
Without this constraint, they obtain noisy results, as
shown in their Fig. 4a. Since the semi-Lagrangian
scheme used in this paper does not apply any mono-
tonicity constraint, it could be argued that it must nec-
essarily produce noise that is hidden by a color pre-
sentation that would show only slight differences in
shades of the same color in the presence of noise.

In order to test this hypothesis, a contour display of
Fig. 1 is presented in Fig. 7a. This display will be used
also to compare the results of a few sensitivity exper-
iments that will be presented here. It can easily be seen

that the results of Fig. 7a are smooth, indicating that
the proposed semi-Lagrangian scheme does not need
a monotonicity constraint for smoothness. The main
reason for this is that the proposed semi-Lagrangian
scheme contains some inherent diffusion arising from
the bicubic interpolation procedure. On the other hand,
it must be recognized that a monotonicity constraint
can effectively remove overshoots and undershoots that
will inevitably occur in any unconstrained cubic in-
terpolation scheme. The largest unphysical anomaly
observed in the potential temperature of Fig. 7a is an
undershoot of 0.016°C that occurs slightly below the
bottom of the bubble.

The bubble of Fig. 1 is slightly lower than that of
Smolarkiewicz and Pudykiewicz, and this is probably
due to the presence of a lid at a height of 1 km. This
can easily be verified by enlarging the domain to 2 km
by 2 km without changing the resolution of the model.
The corresponding result is presented over the original
window in Fig. 7b, and it can easily be seen that the
top of the bubble is about 80 m higher. Over this en-
larged domain, the position of the bubble is closer to
that of Smolarkiewicz and Pudykiewicz.
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F1G. 9. Same as Fig. 8 but with the mesh length and time step reduced to 5 m and 2.5 sec.

The main question that always arises when the re-
sults of numerical experiments are presented is the
question of accuracy. In the absence of a known ana-
lytic solution, as is the case here, it is not easy to address
this question. The easiest thing that can be done is to
determine if the integration is sensitive to the resolution
used. For this purpose the resolution is doubled in both
space and time. The corresponding result is shown in
Fig. 7c. It is obvious here that the behavior is quite
different, indicating that the resolution used in the
model is inadequate.

Finally, the sensitivity of the model to the initial
conditions is tested. For this purpose, background noise
is added, randomly distributed in the interval
+0.025°C. This noise is added to the initial potential
temperature. The resulting integration, presented in
Fig. 7d, does not show any significant differences over
the bottom two-thirds of the bubble. It is essentially
near the top that the configurations are significantly
different, indicating that this is the most unstable region
of the bubble. '

It has not yet been demonstrated that the model is
able to produce accurate results. A uniform bubble with
a sharp edge cannot be used for this purpose because

the local truncation errors near the edge are large and
remain large whatever resolution is used. Furthermore,
the scale of the vortices generated along the edge be-
comes smaller when the resolution is increased, and it
seems that this process will continue until a very small
scale is reached where molecular diffusion becomes
important.

In order to estimate the accuracy of the model, it is
preferable to consider an initial state where the fields
have a well-defined scale that can be resolved by an
appropriate grid. In other words, it is preferable to con-
sider bubbles with a Gaussian profile or any other rea-
sonably smooth profile. An initial state that contains
two bubbles is considered. The first one is warm with
A, =0.5°C, a, = 150 m, S| = 50 m, x; = 500 m, and
z; = 300 m. The second bubble is cold with A,
= —‘O.ISOC, a = 0, Sz = 50 m, X, = 560 m, and V4
= 640 m. This pattern contains one reasonably large
scale element, as can be seen in Fig. 8a at the initial
time. It contains also some elements with a smaller
characteristic scale of the order of 50 m or 5Ax. Models
can handle smaller scales than this, but we must allow
for the fact that this smaller characteristic scale will be
reduced progressively as the integration proceeds. This
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1s evidenced in Figs. 8b,c,d, showing the results of the
integration after 4, 7, and 10 min. In some places, the
edge of the large bubble becomes sharper with time.
The vortices that show up at ¢ = 10 min (Fig. 8d) may
still depend on the resolution used by the model. In
order to check this point, the resolution is doubled in
both space and time and the model is run again from
the same initial conditions. The corresponding result
is presented in Fig. 9. It is evident from Fig. 8b and
Fig. 9b that dependence on the model resolution is
negligible at 1 = 4 min. It is also clear from Figs. 8c
and 9c that the differences are still relatively small at
t = 7 min. It is only at z = 10 min that the differences
become more evident. The edges of the patterns are
sharper, and the vortices contain more pronounced
details in the higher-resolution run. On the other hand,
if Figs. 8d and 9d were superposed, we would find that
the positions of the vortices coincide as well as the
general outlines of the other patterns. In other words,
the large-scale patterns are nearly identical, while small-
scale features are only slightly different. This is in sharp
contrast with the results presented earlier in Figs. 7a,c
at ¢ = 7 min.

4. Conclusions

It seems that a semi-implicit formulation of the Euler
equations works quite well at the convective scale in
an atmosphere where the static stability vanishes. There
are no obvious signs of numerical instability in the
integrations. The results are comparable with those of
an anelastic model, a model of the Boussinesq equa-
tions, and a model of the Euler equations with a clas-
sical integration scheme. The closest resemblance oc-
curs when Fig. 1 of this paper is compared with Fig.
3b of Smolarkiewicz and Pudykiewicz (1992).

With a semi-implicit scheme, the Euler equations
can be integrated with a much larger time step. The
resulting model even runs with a time step larger than
normally used in anelastic or Boussinesq models. It is
also as efficient as these models since most of the com-
puter time is used by the semi-Lagrangian advection
and the solution of an elliptic equation that is common
to all models. The only advantage of a model based on
the Euler equations is that it is universal in the sense
that it can be used at all meteorological scales. This is
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an important property since it means that it is no longer
necessary to design two different models for two dif-
ferent applications. It becomes possible to use a single
model for all applications, and this can be done without
any loss of efficiency.!
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