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                              Abstract 

   A semi-Lagrangian algorithm is associated with the semi-implicit method in the inte-

gration of the shallow water equations on a rotating sphere. The resulting model is uncon-
ditionally stable and can be integrated with rather large time steps. Truncation errors remain 

reasonably small with time steps 25 times as large as those used with explicit integration 

schemes. 

   An analysis of the proposed method is performed and it indicates that the scheme is 

stable. Also, the results of a few integrations are presented and from these we conclude 

that the model is not very sensitive to the size of the time step provided that it does not 

exceed a value of the order of two or three hours.

1. Introduction 

  The explicit leapfrog time integration scheme 
is very inefficient when it is used in large scale 
atmospheric models. For a grid length of 200 km, 
it is generally found that a time step of the order 
5 minutes has to be used. With a longer time 
step, there is a good chance that the gravity 
waves will become unstable and the predictions 
will be useless. Most explicit time integration 
schemes have to use rather small time steps. For 
a model that uses second order finite differences 
in both space and time, it was shown by Robert 

(1981) that the time truncation errors are 700 
times smaller than the space truncation errors. 
This means that a much larger time step could 
be used without any significant loss of accuracy 
if it was possible to avoid the computational 
instability. 
  With a semi-implicit time integration scheme, 
one can use a time step of the order of 30 
minutes on a 200 km grid. In an experiment 

performed by Robert, Henderson and Turnbull 
(1972) it was shown that the time truncation 
errors are of the order of 4 meters for the 500 
mb geopotential for a five day forecast. This is 
still a rather small value and it indicates that 
even larger time steps could be used if a com-

pletely stable time integration scheme was made 
available.

  It is possible to combine the semi-implicit 
scheme with a semi-Lagrangian scheme in order 
to obtain an algorithm that remains stable for 
very large time steps. It seems that this technique 
can be applied to the primitive meteorological 
equations. An experiment was carried out along 
these lines by Robert (1981) with a time step of 
two hours. A satisfactory 48 hr forecast was 

generated with a model of the shallow water 
equations. This model included a divergence 
diffusion term and a time filter. Later on, when 
these features were removed, some residual 
instability was observed. This instability was 
attributed to the fact that the Coriolis terms were 
not given a semi-implicit formulation, and also 
to the fact that the semi-Lagrangian technique 
was applied only to the vorticity equation . 

  A new formulation of the same model will be 
examined in the following sections of this report . 
An analysis of this formulation will be carried 
out in order to show that it is stable and an 
integration will be carried out without any dif-
fusion terms and without any filters in order to 
demonstrate that it works reasonably well . The 
sensitivity to the size of the time step will also 
be examined. 

2. Formulation of the model 

  In a conformal projection of a rotating sphere , 
the shallow water equations take the following
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form:
(18)

(1) 

(2) 

(3)

 This formulation includes the time discretiza-

tion which will be defined below but first, we 

will define the various quantities

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11)

  In these equations, * is the angular velocity 
of rotation of the earth, * is the latitude, *x is 
a distance on earth and *X is the corresponding 
distance in the projection, * and v are the real 
wind components, * is the geopotential of the 
free surface and *G is the geopotential of the 

ground at the bottom of the fluid so that *T is 
the thickness of the fluid layer and *o is a con-
stant roughly equal to the mean value of *T. 

  In order to carry out the calculations, three 

points P1, P2 and P3 are defined with the follow-
ing coordinates

(12) 

(13) 

(14)

 Here it is obvious that P2 is the mid point of 

the interval from P1 to P3 and a and b are de-

fined as follows

(15) 

(16)

 Also, the time derivatives and the time averages 

are evaluated as follows

(17)

and all other terms in the above equations are 
evaluated at point P2. 

  In plain language, we are taking a trajectory 
over a time interval of 2*t. This trajectory 
terminates at a grid point. The end points of the 
trajectory are used to compute the time deri-
vatives and the time averages. All other quanti-
ties are computed at the mid point of the trajec-
tory. This means that the model uses centered 
differences of second order accuracy. 

3. Stability analysis 

  An attempt will be made to find solutions of 
eqs. (1), (2) and (3) in terms of the exponential

For this function we have

and in a similar fashion we also have

(19)

(20) 

(21)

(22) 

(23)

(24) 

(25) 

(26)

and the solutions will be given the form of a 

weak perturbation superimposed on a steady basic 

state

where U* is a constant and

(27) 

(28) 

(29) 

(30)

(31)

 It should be noted that for this particular case, 

the underlying topography

(32)

has the same slope along the Y-axis as the free 

surface.
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 Substitution in the shallow water equations 

gives the following result after dividing by 
E(P2)

where

(33) 

(34) 

(35)

(36)

(37)

 Elimination of the unknown amplitudes U', 

V', and *' in eqs. (33), (34) and (35) gives the 
frequency equations.

(38)
and from this equation we obtain the following 

frequencies

(39)

(40)
It is quite clear from this result that the

solutions are always stable.

4. Integration of the model 

  The model described in section 2 will be 
integrated on a 61 by 61 grid in a polar stereo-

graphic projection. The grid covers North 
America and part of the adjacent oceans. The 

grid length is 190.5 km at 60*N. Fourth order 
differences are used to compute all space deriva-
tives and fourth order interpolation is used to 
compute values along the trajectories. 

  At the boundaries, the cross flow is main-
tained at its initial value, the gradient of the 

geopotential normal to the boundary is main-
tained in geostrophic equilibrium and the 
tangential wind component is maintained at the 
value computed at the nearest interior point. At 
the first set of interior points, a strong diffusion 
term is used in the three equations in order to 
eliminate the noise generated at the boundaries. 

 This is the only filtering used in the model. 
Over the interior part of the grid, there are no 
explicit diffusion terms and no filters. On the 
other hand, it must be noted that the repeated 
interpolations required by the semi-Lagrangian 
method have a filtering effect on the variables. 
On such a fine grid and with fourth order inter-

polation, the amount of filtering is negligible. 
 Initialization is performed by using non diver-

Fig. 1 Initialized 500 mb geopotential at 12:00 GMT 30 August 1981.



322 Journal of the Meteorological Society of Japan Vol. 60, No. 1

Fig. 2 48-hour forecast of the 500 mb geopotential valid at 12:00 GMT 

   1 September 1981. Semi-Lagrangian and semi-implicit model with 

   a two hour time step.

Fig. 3 48-hour forecast of the 500 mb geopotential valid at 12:00 GMT 

   1 September 1981. Semi-Lagrangian and semi-implicit model with 

   a one hour time step.
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Fig. 4 Same as Fig. 1 for 12:00 GMT 4 Septmeber 1981,

Fig. 5 Same as Fig. 2 for 12:00 GMT 6 September 1981.
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Fig. 6 Same as Fig. 3 for 12:00 GMT 6 September 1981.

gent winds to start the integration and by using 

a geopotential obtained from the balance equa-

tion. Topography has not been included in this 

model. 

  A first integration is performed from the 

500 mb analysed variables at 12:00 GMT 30 

August 1981. The initialized 500 mb geopotential 

is presented in Fig. 1. The 500 mb geopotential 

after 48 hours produced from an integration 

of the semi-Lagrangian and semi-implicit model 

is given in Fig. 2. A time step of two hours was 

used for this integration. The result obtained 

with a time step of one hour is also shown in 

Fig. 3. The rather small differences between these 

integrations indicate that the truncation errors 

associated with this integration scheme are small 

even with a time step as large as two hours. 

We can also conclude that the scheme is com-

putationally stable. 
  A second integration is also carried out from 

the 500 mb analysed variables at 12:00 GMT 4 

September 1981. The initialized 500 mb geo-

potential is given in Fig. 4 followed by the 48 
hour prediction with a time step of two hours 

presented in Fig. 5. Finally, the same prediction 
with a time step of one hour is shown in Fig. 6. 

Here again, we note that there are only small 

differences between the two predictions.

5. Conclusion 

  A semi-Lagrangian time integration scheme 

can easily be combined with the semi-implicit 

algorithm. This combination enables us to in-

crease the time step by another factor of four 

to six. The resulting predictions are essentially 

identical to those generated with much shorter 

time steps. Semi-Lagrangian advection involves 

more calculations than the regular Eulerian 

advection but the increase in the number of 

computations per time step is more than com-

pensated by the economy arising from the use 
of a very large time step. 

 The true test of the proposed integration 

scheme will consist in trying to use it in a com-

plete multi-level atmospheric model. Such a test 
is currently in preparation. The results will be 

published as soon as they become available. 
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プリミテ ィブ方程式のためのセ ミラグランジュ法と

セミインプ リシッ ト法を併用するスキーム

AndreRobert

Recherche en Prevision Numerique
Dorval,Quebec,Canada

回転系における浅水方程式の時間積分にセ ミインプリシット法 とセミラグラソジュ法を併用 したスキームを用

いる。 このスキームは数値計算上絶対安定であ り,か な り大きなタイムステップを用いて積分することが可能 と

なる。時間積分による打切 り誤差は,エ クスプリシヅト法の時の25倍 のタイムステップを用いても充分に小さ

かった。

線型安定解析によるとこのスキームは安定である。また,こ のスキームを用いた数例の時間積分の結果による

と,タ イムステップが2～3時 間の=オーダーを越さない限 り,結 果はタイムステップの大きさに依存 しない。


