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Yvohen %% > 4, cosw, At = 0, so that the imagipafy component can be
writlen as '

where ¢ > 0, so that

Since either root is possible

V= —1-te—4 fde+e2 < —1,

f . .
(I > 1) so that whén o > 4, the leapfrog scheme is linearly unstable. Since
x? = 4C? sin” k A%, stability is retained only when

CisinkAx < 1,

or since the_.fﬁaximum value of sin® k Ax is unity for a 4 Ax wave (k = n/2),
then

|Cl <1

isa neéessary and sufficient conditien for the linear stability of tht_: schcme.'
The ratio of the predicted phase speed to the advecting velocity for this
echnique can be obtained by dividing the imaginary by the real cor‘np_onent
for 2% < 4 and solving for the phase speed. Since |4| = 1, however, it is ‘
possible to use either the imaginary or real components .scparatcly to pbtain
 the phase speed. Using the imaginary part, therefore, gives the rapd of the
c~teulated to analytic phase speeds as

Eqb — _l__ | E
U UkALT (“—Lz)‘
Because of the quadratic form of (10-18), two way solutions oceur. One
moves downstream (¢, > 0 when U > 0) and is relxfed to the real solution of
the advection equation, and the other travelsQOpstream and is called Fhe
computational mode. The computational modegbecurs because thg leapfrogisa
second-order difference equation. Such separation of solutions by the
centered-in-time, leap-frog scheme can b€ controlled by oc(fasiona!]y averag-
ing in time to assure that the even ang’odd time steps remain coqsns(cnl with
one another. As long as the time gleps are consistent the amplitude of the
computational mode is small. _
Values of 4 and ¢, for different values of C and wave]ength_are displayed
in Table 13-1. Although thé leap-frog scheme preserves amplitudes exactly
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as long as |C| < 1, the accuracy of the phase representation deteriorates
markedty for the shorter wavelengths. Because the numerical repres
of these waves travels more slowly than the true solution, the sche
be dispersive since when waves of different wavelengths are i
imposed, they will travel with different speeds relative to one’another even if
the advecting velocity is a constant. The retention of th dispersive shorter
waves in the solution can cause computational probletns through nonliner:
instability, as discussed in Section 10.6.6 The impoftant conclusion obtained
from the analysis of the leap-frog scheme is tha ¢ exact representation of the
amplitude does not by itself guarantee successfil simulations since the fictitious
dispersion of waves of different lengths ¢ generate errors. Baer and Simons
(1970), for example, have reported that approximating nonlinear advection
terms, individual energy compone may have large errors when (he total
energy has essentially none. Theyfurther conclude that neither conservation
of integral properties nor satisfdctory prediction of amplitude is sufficient to
Justify confidence in the regllts—one must also assure the accurate cal-
culation of phase speed.

In both the forwargdupstream and leap-frog schemes thal we have
examined, the time stgp must be less than or equal to the time it tales %
changes at one grid goint to be translated by advection to the next grid point
downstream. Whed we generalize this result to all types of wave propagation,
the need to filtegrapidly moving waves, which are not considered important
on the mesoscdle, is apparent. This is the reason that scale analysis s used to
derive simpMlicd conservation relations [e.g.. the anelastic conservation of
mass equgdion, (3-11)] so that sound waves can be eliminated as a possible
solution, as shown in Section 5.2.2.

\/ 10.1.2  Subgrid Scale Flux

Asshown by (7-7), the subgnid scale correlation terms can be represented as
the product of an exchange cocfficient and the gradient of the appropriate
dependent variable. This relation can be written, for example, as
6‘5 ¢ 5‘5 it — @} iv1 =~ D ¢ — i,

=Kt T e A SR CEN T
&tz Pz At T (A2 K-y (Az)? ' (10-19)
where Az = z(i + 1) — z(i) = z(i) — z(i — 1) and ¢ represents any one of the
dependent variables. This equation is often referred to as the diffusion equation.
To study the linear stability of this scheme, the exchange coeflicient is assumed
aconstant(K;,; = K, ; = K), and (10-19} is written as

A
BI* = BF o+ K (| — 260 + BT ) (10-20)

(Az)?
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The exact solution to the diffusion equation (the left-hand side of _(10-19)
with K equal to a constant, i.e., /3t = K 82¢/0z%) can be determined by
assuming

5 — ¢Oei[tz+m} — ¢08_wi‘8itkrz+w},

where no damping in the z direction is permitted (i.e., k; = 0}. SlubstiFuting this
expression into the linearized diffusion equation and simplifying, vields

iw, —w; = —Kk?

where the subscript r on k has been eliminated to simplify the notation,
Equating real and imaginary components shows that o, = 0 so that the exact
solution can be written as

5 — d’oe—Kk’reik:‘

Expressing the dependent variables as a function of frequency and
wavenumber, (10-20) can be rewritten as

Yrl=1+pd, —2+¢_)=1+2y{coskAz — 1),

where y = K At/(Az)* and ¢, + & _, = 2cos k Az. The nondimensional para-
meter y is called the Fourier number. Equating real and imaginary components
yields

Acosey At =1 + 2y(cosk Az — 1),

Asinw, At =0, _
Since sin e, At must be identically equal to zero, w, At and, therefore, the phase
speed are also equal to zero. Thus the solution to (10-20) does not propagate as

a wave but amplifies or decays in place. Since Cos @, Ar = l.zt}}c real part can
be divided by the analytic solution,” 1, = ¢ " ¥*" 4" = ¢~ 727" and rewritten
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application of (10-20), but the analytic solution is 2, = e~ %* = 0.00005, This
unrealistic response of 2Az wavelength features can cause computational
preblems in a nonlinear model as is discussed in Section 10-6. To eliminate
2 Az waves at each application of (10-20), 2 can be set to zero for a 2 Az wave
resulting in Z = . Thus the standard requirement specified in using this
scheme is that

y = KAt/(Ax) < 4,

with the expectation that y is close to 4 so that the presence of 2 Az waves is
minimized,

Up to this point, the approximation to the advective and subgrid scale fiux
terms have always been defined at the current time step (ie., ¢{). The predicted
dependent variable ¢ ** only enters through the time tendency term. Such
schemes are referred to as explicit and can be written in general as

$rt = g,

where the function f, can include spatial derivatives of ¢° as well as the
variable itself. The tilde under ¢ indicates that ¢*** at a specific point ¢can be
dependent on values of ¢* at other grid points.

In contrast, an implicit scheme uses information from the future time step, as
well as present values. For this case

¢'r+l — f(?r+1sé‘)-

In general the use of an implicit representation permits longer time steps than
the explicit form without causing linear instability. An implicit form of the left-

hand equation in (10-19) for variable Az can be written (e.g., Pacgle er al.,, 1976)
as

as S [ BB~ 8+ Benlditl — 65
A 1+ 2ycos kzalz -1 BV vERES Az, | Ko Y
/" - e-}‘{Zx] in * r t
“ P B KOSy i) BN
where n is the number of grid points per wavelength. For very long waves PR iz, {10-
{n— )i, =1and 2 =1since coskAz = cos{2nf2) Az = 1, and, therefore,

no damping or amplification occurs. For the shortest waves that can be
resolved (L = 2 Az, n = 2),

A= ] =4y

To assure that the magnitude of 4 is less than unity and, therefore,
computationally stable, 4y must be less than or equal to 2 or

!
e

where 8, + f.., =1, Azj=1z;y—2;_ 4, Azjy = Zjpy — 2z, and Az;_ | =

'2;— z; . The use of 8, and 8, , weights the current and future contributions

to the numerical approximation of the left-hand side of {10-19). Note that
when 8., =0and Az; = Az;,, = Az;_, = Az, the scheme reverts back to
the explicit scheme given by the right side of (10-19). Linearizing (10-21) by
setting K, , and K;_, equal to a constant, using a constant grid interval Az,
and representing the dependent variable in terms of wavenumber and
frequency results in

The condition y = 4, however, causes 4 to switch between + 1 and — 1 each )

; - ~ =1+ (Bl ~ 24 ¢ )+ B W — 20" + )]
\/\—"’_\/ﬂ\f\h/—“-n_--/_\__,.-—ﬂ_. SN e A
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Fig. 10-3. Vertical profiles of the potential temperature for Wangara Day 33 with (a) the

implicit scheme (fB,.q = 0.75} and (b} the explicit scheme (8,., = 0) (from Mahrer and
Pielke, 1978b), where &, 0900, -8, 1200; &, 1500; -, 170{.

10.1.3 Coriolis Terms

he implicit scheme cary also be shown to be a necessity for the Coriolis
terths. The terms deating with the rotation of the carth [see (4-20)] are already

5o &= —f {10-22)

presentation, they are
writlgn as

1) — fALf =0,
Byl —1)=0,

wherefia
written as

gl —1
Atf
As shown preceding (5-31), this homogcdpcous sct of algebraic
solution only ifithe determinant of the dpefficients is equal to 7

(= 12+ (A2 =g — Xt + 1+ (A =0,

—

uations has a
ro, thus






