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V. Controlling nonlinear growth by conservation

A.

The conservation method aims at controlling growth by controlling
the total energy or other total quadratic properties in an inte-
gration domain; this being guided by differential properties.
Conservation of the system
A, = ~[qu + vAy] = -[(uA)x + (vA)y] (5.19a)
u +v. =0 (5.;9b)
1. Advective and flux form
a., The first bracketed term in (5.19a) is in advective form.
1'. Egn. {5.19a) could be written di/dt = O.
b. The second bracketed term in (5.19a) is in flux form.
1'. It follows from the first bracketed term using
(5.193.
2. Differéntial properties for periodic domain.

a. A is globally conserved,

L S Adxdy = =S [{(uA) + (vA}) ldxdy = O (5.20)
3t 5 x y

b. A2 is globally conserved (quadratic conservation)

i / (A2/2)dxdy = —f[(uA2/2) + (VA2/2) Jdxdy = ©

3t D X Y
(5.21)

3. Conservation in a periodic domain and the flux scheme,
- - 5 - e - )
S, A dx(uA ) Gy(vA ) (5.22a)
s u+év = 0O (5.22b)
X Yy

a. The grid is staggered and (5.22a,b) are both applied at A

locations.
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A is conserved

0 0

17, L 6. A = -I 55 (uh®) -1 s (va¥) = o (5.23a)
1,5 2¢ jirx IR
2¢. Therefore, © A™' £ A% (5.23b)
i, i,J

3'. From (5.23b) A is conserved for even and odd time
steps.

2 . . . \
A is semi-conserved (i.e., space derivation terms

associated with A2 behave like those in the differential

system).

1. AéztA

-AS (uix) - as_ (va?)
X Y

~A{lu, (A, *8) - u_(A+A__)]/ax

+ [v+(A+++A) - v (A+A ) ]/ay}

-(u,AA, -u_AA__)/Ax - (v AA  -v AR /Ay

2% (u,~u)ax + (v -v )/ay] (5.24a)

-+
where A = A =

i,541/2 " A, Ai+1,j , ete., and (5.19b) is

used.
21, f(u+AA++—u_AA__) = 0
+ otk = —=—

3'., (v AA -vAaA ) = O

J
4'. Therefore, I A§, A =0 or I L

1,3 1,3 i,]
(5.24b)

2 . . . 2 .,

5'. A 1is semi-conserved, i.e., A” is not conserved

{5.24b), but the space terms are {5.24a).
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Note that AnAn_1 in (5.24b) can be negative or positive
at any point so that a sclution can grow but still
maintain (5.24b}. This growth is usually accompanied in
this case by a high frequency oscillation in time that
results from time differencing.

1'. This can be controlled by a small amount of damping.

Aliasing still occurs in quatratically conservative and

semi-conservative finite difference systems, but

explosive growth due to spacial aliasing can be
contrelled.

If a scheme is only quadratically semi-conservative, the

local stability criterion should be satisfied.

1'. Consider the case when u and v are constant [or
u{y), v(x)], a possible occurrence in a region of a
nonlinear problem.

2'. Local stability requires

At = —1 5

Lol v
—— e ———
AX Ay

3'. A forward time scheme should not be used since local
growth under these circumstances cannot b2
prevented.

Eqn. (5.22a} can be changed so that it is quadratically

conservative, i.e.,
—2% —2t

= - 2%y - e
GZtA = Gx(uA ) Gy(VA ) (5.26)

1'. Local stability occurs for all At!
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C. Simple twe-dimensional incompressible (barotropic) flow in a
closed domain.

1. A simple barotroplec model

n, = Cum, < ovn o= wynx - wxny = J(n,y) (5.27a)
n = Vzw = Vet wyy S P (5.27b)
u = —wy , ¥ = wx (5'270)

a. n: vortiecity, ¢: stream funetion, J: Jacobian
2. Global properties in closed domain {(nc net transport through

boundaries) are

)

m JIndxdy = [fJ(n,¥) = O (5.28)
2
‘%E [ -)axdy = find(ne) = O (5.29)
K, - '%E S dxdy = -ffwd(n,g) = O (5.30)
2

2)f2.

a. Conservative properties aren , n and K* = (uz + v

b. In a closed domain u = 0 on x boundaries and v = 0 on ¥y
boundaries or the boundaries are periodic.

c. Egn. (5.30) follows from noting that

fon, = £9(7P),

= Sl )y e Tl dy - Ty - Tee

yt'y
= 0+ 0 - fvvt - f(-u)(-u)t
2 2
u +v *
S a I L

3. Series of orthogonal functions
a. The stream function, ¥, can usually be expressed as a

series of orthogonal functions:

n
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1'. The wn satisfy the Helmholtz egn.

2 2
¥ wn + lnwn = 0 (5.32)
where
2 2
-  + 3 -
ax 3y

2. An are the so-called generalized wave numbers.
3'. A simple example is wn = sinlnx.

4r,  Another example is

2mn
p = z [an N cos{ 3 x)
n.!,n2 172 X
21 m
* b, n sin( T xJ]SLn(L y) (5.33)
1°°7°2 X y
where Y 1s periodic in x, zero at y boundaries and
2mn, 2 m., 2
2 1 2
S R . (5.34)
X Yy

Ir wn satisfy (5.32) they are orthogonal, i.e.

ffwnwm = 0 ifn#n (5.35)
] 2 2 =
e wm[v Yy T knwn} = 0
2 2
v 9% vy ] = 0

, 2 2 2 .2 .
21, ff[wmv A [kn km]wnwm] 0

3t ofvely ve ) - vy Ve - 9e(u Ty ) ¢ Ty Ty

2 2 2 2
(ke v )= (k-k-Jiiy v o= 00 (5.36)
provided
p0{9- (o 9w, ) - vl ve )] = o,

i.e., no net transport of mass through domain
(boundaries periodic or normal velocities zero).

Br, (5.36) nolds if n 4 m if ffwnwm =0

o m— l—— e
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Il\v,
I a.
b.
!l
c.

. / - AR Ay S A .

4, Average kinetic energy

Define the average kinetic energy as
= 1 2. 2 1
K = 5 (W) = 37w (5.37)
where
— 1
a = J adA
A
Using (5.31) and again assuming no net mass transport
through boundaries
X = 195y -vip
2 n qpm
- 13wy 1w
t 2 n Mg 'm
= 1—: L Vy V¢
2 nm n m
= L It V-(w Ty } -y Vzw (no net transport}
2 nom m 'n m n
1 2
= > LIy (from (5.32))
nm
- 158 {orthogonality)
T2 n n Yn¥n ortanogonality
m
1 2 2 )
= T LA ¥
2 n nn
Thus
X = IK (5.38)
a D
1.2 2 . .
where Kn = E—An wn represents the kinetic energy of wave
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5. Average square vorticity

a. Define the average square vorticity as

—

n2 = (vzw

)2 (5.39)

b. Substituting (5.31) into (5.39), assuming no net mass

transport through boundaries and using (5.38)

2 2
v, < EEAnKn (5.40)

1', Enstrophy is n2/2
6. Average wave number, A.

a. Definition:

32 - 0% /K = nZ/éE (5.41)
nn n

n n

b. (5.4%1) is a ratio of the average enstrephy and kinetic
energy.
7. Energy flow is restricted.

a. The mean wave number, A, is constant.

1. From (5.29) and (5.30) ¥ and n2 are ccnserved in time.

2'. Thus, X is also from (5.41).

b. Consider an example with 3 wave numbers satisfying

2 2 2
AT > 12 > AB

1'. From (5.38) and (5.40)

K1 + K2 + K3 = K >0 (5.42a)
2 2 2 -2
Ak, AZKZ + A3K3 = n°/2 >0 (5.42b)

2'. Eliminating K, from (5.42a) and K, from (5.42b)

3
2 .2 2 .2 2- -2
[A1-A2]K2 + (A1-A3]K3 = Ak -1n%72>0 (5.43a)
2 .2 2 .2 -2 2
[A1 A3]K1 + [AE-A3]K2 - n/2 -2 >0 (5.43b)

w

B Y B B BE EFEBEMN

—



5.18

METHODS FOR NONLINEAR HYPERBOLIC PROBLEMS

3. AfC1 - C2 and C2— A§C1 are greater than zero since the

left sides of (5.43) are for K1, Kz, K3 varying.

4r. If (5.43) is to hold when K. increases, K., and K, must

2 1 3

decrease and when K2 decreases, K1 and K3 must in-

crease or energy transfers follow

Ky > K, « Ky (5.44a)
K, « K, » K3 (5.44b)

5'. Further, there is a maximum transfer to K2 in (5.44a)
(i.e., when K, = 0or K3 = 0) and to K, and K3 in
QS.HHDJ (i.e., when K, = 0).

2

Finite difference methods for (5.27) that semi-conserve kine-

tic energy and enstrophy

a. Semi-conservation of kinetic energy and enstrophy require
that the finite difference approximations to the Jaccbian in
(5.27a), Jg, satisfy respectively

0 (5.45a)

‘3.¢J£(n.w)
1,]

L nd,(n,¢)
i,j *

I
(6]

(5.45p)

b. Three forms of the Jacobian and their finite difference

counterparts

. Jlmy) = Meby T NNy (5.46a)
I = legmlsyw) = (65,n)(e, v] (5.46b)
J(n,p) = [wnx]y - (wny]x (5.47a)
J, = 62y[¢62xn) dzx[wdzyn} (5.47b)
Jn,w) = () - (nv, ), (5.48a)
iy o= sz(”ﬁzy“’] - ezy[naaxw] (5.48b)
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2'. In all cases

no= S8 ¥+ nyw ’ (5.49)
¢. Semi-conservative schemes and practical implications (Arakawa
and Lamb, 1977: The UCLA General Circulation Model, Methods
in Computational Physies).
1. T =n1n,d= Ax = Ay in the following.

2'. Note J7 helps preserve mean wave number.

L v Ly C'f'

it [j+ Pljet del [ ]

Ly Ly Llv
-1 [ i wl ||

Ly Ly Ly
f-1 -t i el ]-

F1G. 10. Grid showing indexing for {, ¥ points used in the finite-difference Jacobian schemes
of Eq. (58).

It was shown by Arakawa (1966) that the Jacobian J
given by

Jo=ady + Y, +BIg, a*Y¥Y+p=1, (59}
conserves mean square vorticity if a = B and conserves

energy If ¢« = v . Examples of Jacoblians which have the
form of (59) are

Jy = %(J1+J2).
J5 = %(J2+J3).
Jg %(J3+J1),
3, - %(JT E AR R (60)

A schematlic representation of the ¢ and ¢ poeints
used in constructing the seven finite-difference Jacob-
ians introduced above is given in Fig. 11.

J+ is the Jacobian proposed by Arakawa (1966) as con-
serving both enstrophy and energy. J2 and J6 conserve

enstrophy, but not energy. J3 and Ju conserve energy,

I-....,__ -
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but not enstrophy. All five schemes mentioned thus far
are stable. Jy does not conserve either quantity.
J5, also, does not conserve either quantity, but experi-
ence with numerical tests shows that the instability is
very weak, 1f it exists at all. This is not surprising,
since 2Jg = 3J,; - J,; because J, is a quadratic-conserv-
ing scheme the time rates of change of the mean quadrat-
ic quantities using J-, for given ¢ and ¢ , have
opposite sign to the gime rates of change of the mean
quadratic quantities using Jy .

AKIO ARAKAWA AND VIVIAN R, LAMD

QO +«[ -POINT USED
X = -POINT USED

X
Ji Ja
ENSTROPHY ENERGY
CONSERVING CONSERVING
X—?—X
X—CL)—X
Ja Ja Jg
ENERGY ENSTROAHY
CONSERVING. CONSERVING
Jr
ENERGY 8 ENSTROPHY
CONSEAVING
Fig. 11. Schematic representation of { and ¥ points used in constructing the finite-diflerence

Jacobians defined by Eqs. (58) and (60).

Js 1s the best seccnd-order scheme bhecause of its
formal guarantee for maintaining the integral con-
straints on the quadratic quantities, J, is also just
as accurate as any other second-order scheme., A further
increase in accuracy can be obtained by going to higher
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order schemes. The more accurate fourth-order scheme
that has the same integral constraints as JT was also
given by Arakawa (1966).

Numerical tests have been made with the above seven
Jacoblans. In these tests, the initial condition was
given by

¥ = ¥ sin(wi/8)[cos(nj/8) + 0.1 cos (nj/h)], (61)

and At was chosen such that At/d° = 0.7. The leapfrog
scheme was used instead of the implicit scheme. 1In or-
der to eliminate the gradual separation ¢f the solutions
at even and odd time steps that cccurs in the leapfrog
scheme, a two—level scheme was inserted every 240 time
steps. The simplest five-point Laplacian was used.
Figures 12 and 13 show the time change of enstrophy and
energy obtained with the seven Jacobians. The expected
conservation properties are observed, even though the
implicit scheme was not used. The energy conserving
schemes J, and Jy show considerable increase of enstro-
phy. On the other hand, the enstrophy conserving
schemes J, and J6 approximately conserve energy in spite
of the lack of a formal guarantee. This 1s reasonable

Syb7 T

)
0 300 1000 1300 2000
TIME STEP

Fig. 12. Comparison of the time variation of the mean square vorticity (units arbitrary)
during 2 numerical integration with the seven finite-dilference Jacobians under consideration.
(Arakawa, 1970). Reprinied with permission of the publisher American Mathematical Society
from SIAM-AMS Proceedings. Copyright (€) 1970, Vol. 2, Fig. 5, p. 35.
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because the enstrophy is more sensitive to shorter waves
for which the truncation errors are large. J: approxi-
mately conserves both quantities, again in spite of the
lack of formal guarantees. JT conserves both quantities

AKIO ARAKAWA AND VIVIAN R, LAMB

J)
/J,J.,J, J,/g,‘\f
- ST
<6
° 506 1000 500 zgoo
TIME STEP

FiG. 13. Comparison of the time variation of the kinetic energy during a numerical integra-
tion with the seven finite-difference Jacobians under considerauon {(Arakawa, 1970). Reprinted
with permission of the publisher American Mathematical Society rom SI4M-AMS Proceedings.
Copyrizht (€) 1970, Vol. 2, Fig. 6, p. 36.

with only negligible errcors arising from the leapfrog
gcheme. Je, like J1 and J5, maintains the property of
the Jacobian J{g,¢) = -J{¥,z).

Figure 14 shows the spectral distribution of kinetic
energy obtained .by the energy and enstrophy conserving
scheme J, and by the energy conserving scheme J, at the
end of the calculations. The small arrow shows the wave
number for sin (wi/8) cos (wj/8), which contained almost
all of the energy at the initial time. Although the to-
tal energy was approximately conserved with J, there was
a considerable spurious energy cascade inté the high
wave numbers, whereas with J, more energy went into a
lower wave number than into tge higher wave numbers, in
agreement with the conservation of the average wave num-—
ber as given by Eq. (52).
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3,

{wave number)?

Js
Bl s l[lJIizi.Jhll“JL 1. 1, J

{wave number)?

F1G. 14. A comparison of the spectral distribution of kinetic energy, obtained with J, and
J, after a numerical integration of 2400 time steps. Arrow shows the wave number that con-
tained most of the energy at the initia! time.,

Whether the increase of the enstrophy is important in
the simulation of large-scale atmospheric motion will
depend on the viscosity used with the complete equation.
A relatively small amount of viscosity may be sufficient
to keep the enstrophy quasi-ccnstant in time. However,
the viscesity will also remove energy, and as a result
the average wave number, defined by Eg. (52), will
falsely increase with time.

In Section II it was peointed out that when a scheme
that produces a strong computaticnal cascade is used, a
decrease in grid size does not mean an inc¢rease in over-
all accuracy as far as long-term numerical integrations
are concerned. Figure 15 shows such an example. With
an 1identical initial condition, experiments have been
made using J3 with three different grid sizes. The non-
dimensional parameter V¥At/d® is kept the same for the
three experiments. A two-level scheme was inserted ev—
ery 120 time steps to suppress separation of the solu-
tion due to the leapfrog scheme. The figure shows a
more rapid increase of enstrophy with the smaller grid
sizes. Since the kineti¢ energy is practically con-
gerved in all three experiments, a larger enstrophy
means a smaller average scale of the motion. These re-
sults show that the convergence of the scheme, in the
nonlinear sense, must be seriously questioned.
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‘PIN

where

.ﬂ....,...(-ﬂi-ngm

d.

Fa
‘,..I
o
lr.'
)
-“
; I
4
I d=6800km H
r
T d= 480km /
;
I d= 400km I 1
!
!
Ji
"“.-'

G 6 20 30 40 50 8 70 80 80 10
DAYS
F1G. 15. A comparison of the time variation of mean square vorticity obtained by numerical
intcgrations using J, for three different grid sizex.

The effect of time differencing on n2/2 conservation is

{ + > 1 ¥, n+l
(GNP - (MP] = {0 e s2-n F (A"
* * *
+ At T Ji(n U ) (5.50)
Ao o at Ji(n*.w*] (5.51)

1'. {5.50) follows from (5.51) after multiplication of

(5.50) by (n"1an)/2 .

*

¥* * )
2'. Ifn Ji(n » U ] = 0 the average c¢hange in n2 is govern-

ed by the first term on the right of (5.50).

. 3 * n+1/2
3'. Leapfrog with time step At/2 when ¢y =y ,

* n+l/2
n =n .

*
4, Crank-Nicholson when ¢ = [¢n+1+wnJ/2 and

n* = (nn+1+nn]/2 -

n+1 +nn)/2

*
5'. Note that when n = (n

(a")?

»* *
6'. Matsunc when y = wn. n = nn +-%£ J(nn.wn] .

[nn+1 J2
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