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ONE

Fundamental Concepts

This chapter serves as a detailed introduction to many of the concepts and
characteristics of partial differential equations (hereafter abbreviated PDEs).
Commonly encountered notation and the classification of PDE are discussed
together with some features of analytical and numerical solutions.

1.0 NOTATION

Consider a partial differential equation (PDE) in which the independent
variables are denoted by x, y, z,... and the dependent variables by w, v, w.....
Direct lunctionality is often written in the form

{1.0.1) u=u(x, y,1),

which, in this particular case, designates u as a function of the independent
variables x, y, and z. Partial derivatives are often denoted as follows:

_du_du, 3lu 9u

{1.0.2) uy =gl ”y“ﬁ;» nuzw; u”:W;

Employing the definitions of (1.0.1} and (1.0.2), we can thus represent a PDE
in the general form

(1.0.3) Flx, youott iy, ity ity ... ) =0,

where F is a function of the indicated quantities and at least one partial
derivative exists.
As examples, consider the following PDEs:

Uy tu,, =0
ux:u-{-xzﬁ-y2

— 2
Upyy Sly, T U

()" +(w, ) =exp(u).
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The order of a PDE is defined by the highest-order derivative in the
equation. Therefore,

U, — bu, =
is of first order,
Uyt u, =0
is of second order, and
u +u 0

XXxx Y¥ry =

is of fourth order. When several interdependent PDEs are encountered, the
order is established by combining all the equations into a single equation, For
example, the following system of equations is of second order although each
contains only first-order derivatives; that is,

{1.0.4a) U, o, =u,
(1.0.4b) w=w,
(1.0.4c) p=w

can alternatively be written

(1.0.5) W, T W, T W,
When written in the form of (1.0.5), it is readily apparent that (1.0.4) is of
" second order.

In the solution of PDEs, the property of linearity plays a particularly
important role. Consider, for example, the first-order equation

(1.0.6) a( - Yu,+b(-Ju,=c(-).

The linearity of this equation is established by the functionality of the
coefficients a( + ), b(-), and ¢(+ ). In the case of (1.0.6}, if the coefficients are
constant or functions of the independent variables only, [(-)=(x, y)] the
PDE is linear; if the coefficients are also functions of the dependent variable
[(-)=(x, y, u)], the PDE is quasilinear; if the coefficients are functions of the
first derivatives, [( - )= (x, y, 4, u,, 4,)], the PDE is nonlinear. Thus the follow-
ing PDEs are classified as indicated:

u, +bu, =0 (linear)
u,+uw, =x* (quasilinear)
u, +(u y)z =0. {nonlinear)

Motation . 3

In general, when the coefficients of an nth-order PDE depend upon nth-order
derivatives, the equation is nonlinear; when they depend upon mth-order
derivatives, m < n, the equation is quasilinear. These features are important
because whereas many analytical properties of linear and even quasilinear
PDEs are known, as a general rule, each nonlinear PDE must be considered
individually.

The analytical solution of a PDE, which may be written

a=ulx,y),

denotes a function that, when substituted back into the PDE, generates an
identity. Of course, when one¢ discusses the solution of a PDE, it is necessary to
consider appropriate auxiliary initial and boundary conditions. For example,
the transient temperature distribution in a homogeneous rod of finite length
with insulated sides is described by the system

Uy = Uy x>0, 0<y=l (PDE)
u(0, Y)= f(»}, x=0, 0<y<l {initial condition}
u(x,0)= ¢{x), y=90, x=0
u(x,1)=0(x), y=1, x=0 {boundary condition)

Such a specification usually leads to a well-posed problem. Almost all reason-
able problems are well posed and yield a solution that is unique and depends
continvously on the auxiliary conditions (Hadamard, 1923). Alternatively, a
well-posed problem can be considered as one for which small perturbations in
the auxiliary conditions lead to small changes in the solution.

It is instructive at this point to compare briefly the solution properties of
ordinary differential equations, herein denoted as ODEs. The general form of a
first-order ODE is

du _
a'—f(x‘u)!

where f is a function of the indicated quantities. In the case of an ODE, a
specification of (x, ) yields a unique value of du /dx; by contrast, a specifica-
tion of {x, y, ¥) in a first-order PDE only gives a connection between «, and u

but does not uniquely determine each. In the case of a second-order ODE, the
solution specifies a point and a tangent line on the solution trajectory in a
plane: by contrast, these concepts of a point, plane, or tangent line for the ODE
are extended 10 a curve, three-dimensional space, and tangent plane for the
PDE. In other words, for an ODE, there are solution curves in a two-
dimensional space that are required to pass through a point, while for a PDE
there are solution surfaces in three-dimensional space that are required to pass
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through a curve or line. These differences are, of course, a direct result of the
increase in number of independent variables in the PDE as compared to the
ODE.

1.1 FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS

In this section we consider some of the fundamental features of first-order
PDEs. The principal objective is to present an overview of the basic concepts

in this area; for a definitive analysis we recommend the books by Courant
(1962) and Aris and Amundson (1973).

1.1.1 First-Order Quasilinear Partial Differential Equations
Consider the guasilinear PDE
(1.1.1) a(x,y,u)ux+b(x,y.u]u_.,=c{x,y,u)

in the two independent variables x and y. The extension to more independent
variables is rather obvious and thus is not discussed here. Also, the linear PDE
is considered as a special case of (1.1.1) and is mentioned specifically when
appropriate.

Suppose that we are located at a point P(x, y,u) on the solution surface
u=u(x, y) (Figure 1.1) and we move in a direction given by the vector
{a, b, c}. But at any point on the surface, the direction of the normal is given
by the vector {u,, #,, = 1}. It is obvious from (1.1.1) that a scalar product of
these two vectors vanishes (i.e., the two vectors are orthogonal). Thus {a, &, ¢}
is perpendicular to the normal and must lie in the tangent plane of the surface
w=u(x, y). Thus the PDE is a mathematical statement of the geometrical
requirement that any solution surface through the point P(x, y, u) must be
tangent to a vector with components {a, b,c}. Further, since {a, b, c} is always
tangent to the surface, we never leave the surface, Note also that since

u=uix,yl

P{x,y,ul

{o.b,c}

Figure 11. Solution surface u =

w(x, y) with vector {a,b,c} tangent 10

u and vector {u,,u,,—1} normal to «
gt point Pix, ¥, U

First-Order Partial Differential Equations 5

u=u(x, y)
{1.1.2) du=u dx+u,dy

and thus {a, b, ¢} ={dx, dy, du}.
The solution to (1.1.1) is readily obtained using the following theorem.

Theorem 1
The general solution of the quasilinear PDE
au,+bu,=c
is given by
G(v,w)=0,

where G is an arbitrary function and where o(x, y,#}=¢, and wix, y,4)=1¢;
form a solution of the equations

(1.13) de_dy du

a 2 ¢
Not; that (1.1.3) comprises a set of two independent ODEs (a two-parameter
family of curves in space). Further, one set of these can be written as

(1.1.4) dy _ b(x, p.u)

dc  a(x,y,u)

and is termed a characteristic curve. When a =a{x, y) and b= b(x, y) only,
(1.1.4) is a function in (x, y) space. In this case we refer to the curve as a
characteristic ground or base curve.

When g and b are constant, (1.1.4) defines a set of parallel lines in {x, y}
space. In either of these last two cases {1.1.4) may be evaluated without
knowing u(x, y); in the quasilinear case {1.1.4) cannot be evaluated until
w(x, y) is also known. However, in any three-dimensional (x, y, u) plot, such
as that in Figure 1.1, one can project down onto the x-y plane to obtain

dy _ b(x,y,u)

dx  a(x,yu)’

Th_e cbaracteristic equation (1.1.4) may be obtained directly through an
examination of the PDE and (1.1.2). Restating these equations; we have two
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equations in the values u, and u,:
(1.1.5a} au +bu,=c
(1.1,5b) (dx)u, +(dy)u,=du.

Obviocusly, both equations must hold on the solution surface and yet one
can interpret each equation as a plane element; these plane elements intersect
on a line along which different values of «, and u, may exist. In other words,
u, and v, are themselves indeterminate along this ling, but at the same time
they are related or determinate to each other since the equations must hold.

To exploit this feature, we use a well-known principle of linear algebra. If a
square coefficient matrix for a set of n linear simultaneous equations has a
vanishing determinant, a necessary condition for finite solutions to exist is that
when the right-hand side is substituted for any column of the coefficient
matrix, the resulting determinants must also vanish. Thus, if we treat (1.1.5) as
linear algebraic equations in u, and v, we may write

a b (lu, < g
(1.1.6) dx dy”u,lz du |
From the property above, it then follows that
a bj_.. c bl_ ..
(1.1.7) det[dx dy]'o' del[d“ d)’l_o-‘
a c|_
det[dx dul =0,

implying linear dependence of u, and . Evaluating the determinants leads
directly to the statement of (1.1.3},

b _dy_du
a & ¢

1.1.2 Initial Yalue or Cauchy Problem

Now we raise the question of how initial data (initial or boundary conditions)
specified on a prescribed curve or line T interact with the equations given by
(1.1.3). Suppose that this space curve I" prescribes the values of x, y, and w as a
function of some parameter r. This means that

(1.1.8) x=x(r), y=y(r), u=ulr)

The characteristic curves passing through [ can be described using an indepen-
dent variable. sav s. along the characteristic. Thus (1.1.3) can be restated as the

First-Order Partial Differential Equations .

et

(1.1.92) -‘gca
dy

1.1.9b & _

( ) = =b

and along this curve the PDE merely becomes

du
(l C) s c.

Combination of (1.1.8) and (1.1.9) provides a solution to this problem which
can be expressed in parametric terms as

(1.1.10) x=x{r,5);  y=yp(r,s); u=ulr,s).

We have now invelved the initial curve I' and the characteristics to yield
i = u(r, 5). The only problem that can occur is in the inversion of r, 5, and u to
functions of the independent variables x and y, This can be done (see Aris and
Amundson, 1973, p. 9) provided that the Jacobian J, defined as

(1.1.11) J=x.y,— yx, =ay,— bx,,

is nonzero. When J =0, the initial curve T is itself a characteristic curve and
there are infinitely many solutions of the initial value or Cauchy problem.

L.1.3 Application of Characteristic Curves
Example 1

To illustrate some of the features of the abbreviated discussion above, we

consider two examples. The first involves the solution to the following form of
the transport equation:

(1.1.12) up ol u, = F(+),

where ©(-) is the velocity of propagation of an initial profile. When v( - )=
u(x“ ¥, u) the equation is quasilinear and the characteristics are curved and
defined by substituting for g and & in (1.1,4);

(1.1,13) %:o(x’y.u)

and, from (1.1.3),

(1.1.14) %zF(-).
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When v( - ) is constant, the problem of solving (1.1.13) is simplified, because
now the characteristic equation is

dy
— = p =constant
dx

and a given profile (see below) or initial condition at x =0 is propagated
without change of shape in the direction of the x axis with velocity v.
When of - y=constant and F{ )=0, we have

(1.1.15) u, +ou, =0
and the equations of interest are

i _dy _du

{1.1.16) T ==

The characteristics are now straight lines inclined to the x axis at an angle
# =tan™'v or with slope v. Along these characteristics du =0 or 1 = constant.
This leads to a plot such as Figure 1.2, where the parallel straight lines are
shown. Each straight line has the equation y = vx +constant with the constant
determined by the particular conditions at x =0 (initial conditions) or y =0
{(boundary conditions). These are the conditions specified along the I' data line.
The solution u(x, y) slides up a characteristic unchanged in its value.

Note that there is no approximation in this solution. The answer obtained is
“correct” in the sense that only if dx /ds = a needs to be integrated numerically
along the characteristics will any error be involved.

Example 2

As a second example, consider an isothermal plug flow reactor with a first-order
reaction. The relevant PDE and boundary conditions are

(1.1.172) u +ou, = —ki
{1.1.17b) u=0, x=0, y=0
{1.1.17¢c) u=uy, x>0, y=0,

where u represents the concentration of material, » is the velocity of flow of
material through the tube, and a first-order reaction (sink) is involved. The
reactor contains no reactant initially and is then fed with a reactant with a
fixed concentration u,. Defining the dimensionless groups

First-Order Partial Differential Equations 9

¥ Characterislics

Y

LY

LAY

Initial Condilions

%= vx+constonl
%

T FITITE

Boundary Conditions

Figure 1.2. Characteristic curves y = vx with boundary and initial conditions indi-
cated.

we may rewrite {1.1.17) as

(1.1.18a) ety =
(1.1.18b) 5=0, 8=0, r=0
(1.1.18¢) 3=1, 8>0, r=0.

The characteristic equations arc

o _dr_ —dy

1 1 m
or
(1.1.192) j—; I 20, 730
and
dy =0, =0, r=0
1.1.195 -y
( ) T " g=1, 830, r=0.

Because (1.1.19) are linear they are easily integrated to yield
{1.1.20a) n=0, r=¢
{1.1.20b) n=e T, 1<8.

Equatiens 1.1.20 represent the complete solution for the problem. Using the
arbitrary numerical values of & and + of 2.5, Figures 1.3 and 1.4 ¢an be
developed. These are twe- and three-dimensional representations of 7 as a
function of ¥ and 8.
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Figure 13. Two-dimensional representation of concentration {7} vs. distance {7)
with selected values of the second space variable ¢ also indicated (see Figure 1.4).

Figure 1.4, Three-dimensional representation of concentration {5} vs. the two space
coordinates 1 and 0.
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Although this is only a small sampling of applications of characteristic line
to the solution of first-order PDE, it serves as an introduction to the scheme we
use later in developing a classification for second-order PDEs. Before turning
our attention to second-order PDEs, let us briefly extend the concept of
characteristic lines to nonlinear first-order PDEs.

1.14 Nonlinear First-Order Partial Differential Equations
When the first-order PDE is nonlinear, it can be written (see Section 1.0)
(1.1.21) F(x,y,u,u,,4,)=0,

where

2 2
SE (20 4o,
du, du,
A well-known problem described by an equation of the form of (1.1.21) arises
in geometric optics. The appropriate expression is

2 7_
ux+u_},-1.

Much of what we introduced in the discussion of linear first-order PDE is
still retained in the nonlinear case but in a more complex form. Now character-
istic lines become characteristic strips; the so-calied Monge cone in which the
tangent to the solution surface must lic is a surface generated by a one-
parameter family of straight lines through a fixed point of its vertex. In the
quasilinear case, the cone becomes linear or a Monge axis.

Without atlempting to present the details of the derivation of the character-
istic equations, we indicate here that analogous 1o {1.1.9) (the initial value or
Cauchy problem) there are now five ODEs:

(1.1.22a) %,J-;—f F,
(1.1.22b) %¥
{1.1.22¢) %E =uF, tu,F,
(1.1.22d) %=—Fx—uIFn
(1.1.22¢) %=“ﬂ u,F,
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When Hx, y,u,u,, u_‘.)= al u, +5(- )ul,, —¢=0, the quasilinear case,
(1.1.22), becomes (1.1.9).

1.2 SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS

Now let us consider some features of second-order PDE that will be useful in
the ensuing chapters on numerical solutions. By comparison, the first-order
PDE was relatively uncomplicated in the sense that the characteristic curves
could be focated and w{x, ¥) determined along those curves, In the second-order
case, the characteristics may or may not play a role.

Consider the following second-order PDE written in two independent
variables:

(1.2.1)  a(- Juy, 260 Ju,, + (- Ju,, +d( - Ju, + el Ju,
+ /(- Jutg{-)=0.

As in earlier sections, we denote {1.2.1) as linear if a( ), b(-), and ¢( -) are
constant or functions only of x and y; quasilinear if a(-), b(-), and ¢of - } are
functions of x, y, u, u,, and u,; and nonlinear in all other cases. Typical
examples of second-order PDEs are the following well-known equations:

My, +u,, =0 Laplace’s equation
Uy tu,, = flx, ) Poisson’s equation
U =Wy, heat flow or diffusion equation
u,=u,, *u, heat flow or diffusion equation
u, b, = ku,, Burger’s equation
Uy = My wave equation

1.2.1 Linear Second-Order Partial Dilferential Equations

There exists an extensive body of knowledge regarding linear PDEs. This
information is generally cataloged according (o the form of the PDE, Every
linear second-order PDE in two independent variables can be converted into
one of three standard or canonical forms which we identify as hyperbolic,
parabolic, or elliptic. In this canonical form at least one of the second-order
terms in {1.2.1) is not present.

There is a practical reason for identifying the type of PDE in which one is
interested. When coupled with initial and boundary cenditions, the methed
and form of solution will be dependent en the type of PDE.

Second-Order Partial Difierential Equations 13

The classification can take many forms. We assume (for now) that if

(1.2.2a) b*—ac>0  the PDE is hyperbolic
{1.2.2b} b —ac=0  the PDE is parabolic
{1.2.2¢) b?—ac<0  the PDE s elliptic.

Let us now examine the canonical forms and their associated transforma-
tions. The three canonical forms are written in terms of the new variables £ and
1 as;

{1.2.3a) Ugg = Uy, + oo =0

or hyperbolic
g+ - =0

(1.2.3b) ug + oo =0 parabolic

(1.2.30) wee tug, + oo =0, elliptic

We shall see that the hyperbolic PDE has two real characteristic curves, the
parabolic PDE has one real characteristic curve, and the elliptie PDE has no
real characteristic curves.

From (1.2.2) or (1.2.3) we can see that the heat flow equation u, = u,, is
parabolic and already in canonical form, and the Laplace equation u_, + u,, =0
is elliptic and already in canonical form. There are other cases, however, in
which (1.2.2) must be used and the equations and their classifications may
change because of coefficients. Thus

Vg, t ey, =0 Tricomi's equation, elliptic
for y >0, hyperbolic for y <0

(U 32, H (1 yDu,, ~u =0 elliptic

Uy tuu,, =0 elliptic for u >0
hyperboelic for u <0

ey T =57~ N, =0 elliptic inside unit circle
hyperbolic outside

yu txu o+ ypu, =0 hyperbolie, x >2 y
parabolic, x =2y
elliptic, x <2y
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With these preliminaries in hand, let us now consider the canonical transfor-
mations. We ignore all terms in (1.2.1) except the second derivatives because
the lower-crder terms do not influence the results. We introduce the change of
variables {implicit here) of
{1.2.4)

t=o(x,y), n=¢(xp)

and develop, using the chain rule,

(1.2.5a} Uy = U T Uy

(1.2.5b) u, = ugh, + Uy,

(1.2.6) Uy = g2 +2uUgd b, b2+ 0

(1.2.7) Uy, = Ugebd, F g (9 + 0 ) T gty T
(1.2.8) Hyy = gy + 2uedy ¥, + gy + 00

Substitution into (1.2.1) yields

(12.9) @l + 20U, Ty, = Aug +2Bup, + Cupy t o
where

(1.2.10) A=a¢l +2bo0, o}

(1.2.1) B=ag, + b(d, + 4,0, ) + ey,
(1.2.12) C=ay? +2bil, + oy}

From (1.2.1(), (1.2.11), and (1.2.12) one can cbtain the following relation-
ship between a, b, ¢ and 4, B,C:

(1.2.13) B~ AC=(b—ac){od, ~ 9,5 ).

It is apparent that, under this change of variables, the sign of b? — oc remains
invariant with respect to B 1 — AC: moreover, ¥, &4 which ts the Jacobian
of the transformation, must always be kept nonzero. If an explicit change of
variables had been used,

f=ax+ Byt
n=a2x+ﬁzy+.r2v

the Jacobian requirement would mean that a; 8, — «; 8, #0.

T eI T o B

o

e A
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Now let us consider the case where the discriminant b% — ac is everywhere
greater than zero, equal to zero, of less than zero. For illustration, take
52 — ac >0, which is the hyperbolic PDE case. We wish to show that (1.2.9) can
be converted into either of the two canonical forms in (1.2.3a), To simplify the
problem, let us consider the case wherein u,, + -+ - =0. To do this we need to
make A and C of (1.2.10) and (1.2.12) vanish. These equations are of the form
(with A=0, B=0)

(1.2.14a} a¢l +2b49, + e =0
and
(1.2.14b) g2+ 2bg, + e¥2 =0,

If we choose

(1.2.15) . =M, and =AY,
where A, and A, are the roots of (1.2.14), then A=0 and B =0.
But these equations are both first-order linear PDEs in ¢ and ¢ and thus,

from Theorem 1 in Section 1.1, it follows that

dx _ —dy_d¢
(1.2.16a) R W
and

dx _—dy _db
(1.2.16b) D=, =3

From {1.2.16) we obtain directly

4
(1.2.17a) iﬂ]:o

dy -
{1.2.17b) i +h,=0
(1.2.18a) ¢=¢(x, y)= c,=constant
(1.2.18b) n=v¥{x, y)=¢;, =constant.

Thus we now get 1wo characteristic curves in {x, y) space [i.e., (1.2.17)] arising
out of the linear second-order PDE. In (£, n) space these curves are no longer

curved but rather correspond to horizontal and vertical lines since (1.2.18)
holds.
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In summary, we see that we can convert the original hyperbolic PDE into its
canonical form by defining two sets of one-parameter families of curves, the
characteristic curves in {x, y) space.

In addition, if we substitute (1.2.17} into (1.2.15), we obtain

&y~ & _ ¥
dc” ¢, and - p = ¥,

and combination of this expression with (1.2.14) yields
(1.2.19) aldy)? —2bdxdy + c(dx)’ =0.

Because this is a quadratic in dy/dx, we obtain

(1.2.20) dy _ b )= )—al-)e(-)
o X a(] .

Since 2 — ac >0, the right-hand side has two real values, which are A, and A,
Because they are real, they are both positive if 4, b, and ¢ are all of the same
sign, both negative if b has a sign opposite to a and ¢, and contrary signs if the
signs of a and ¢ are different. Note that

21,:':‘)2 —ac

Ay = e %0

and thus the two characteristic curves cannot be tangent at any point.

Finally, it is worth pointing out that we could have performed this transfor-
mation by an explicit approach rather than the implicit one used. in the
explicit formulation, we would define

_ —b+\|'b2-—ac

£=c]——T——x+y
and
—b—ybt—ac
'r]——*c2=——-—-£—l—~—x+y

to convert to the characteristic coordinate system directly.

An analysis, analogous to the one conducted above for the hyperbolic case,
can be performed on parabolic and elliptic PDEs. In the parubelic case
b — ac =0 and when ¢ is eliminated, there is one root and one family of
characterisiic curves. These correspond to A, = A, = — b/a and L0 $(x, y)= 3
=constant. Thus we can define £ as before and 5 as any {unction of x and ¥
that is independent of £. In the elliptic case, b ~ ac <0 and no real roots exist.

ot i g 2 W R B L
e sl -

P Sl

o
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1.2.2 Classification and Canonical Form of Selected Partial
Ditferential Equations

To illustrate certain features of the discussion above let us now consider
several examples, The first case is presented in detail and others are sum-
marized with it in Table 1.1. Consider the hyperbolic equation

u,. =oau, a=1, b=0, ¢=—al

a2>0, bP—ac=a’>0.
The two roots of the quadratic equation become

& &
AR S

which yields

y— ax =constant; y+ax=constant.

Thus

¢=o(x,y)=y—ax and w=¢(x, y)=ytax

Substitution of £ and 7 into the PDE reduces it to the canonical form

ug, + - =0.

n

1.23 Quasilinear Partial Differential Equations and Other Ideas

It is apparent that the hyperbolic, linear, second-order PDE is much like the
linear first-order PDE. Instead of one characteristic curve, there are now two
but, because these are only functions of x and y, they are ground or base
curves. When we go to a quasilinear second-order PDE, these curves are no
longer simply given because the coefficients are functions of x, y, v, u,, and u,.
One can show that such a quasilinear hyperbolic second-order PDE is reduci-
ble to a canonical form of five first-order PDEs in the five unknowns x, p, ,
u,, and u,. As before, the initial curve cannot be a characteristic, and ~;
discontinuities in the initial data are propagated, in the hyperbelic case, into
the solution domain along the characteristics. Thus, if u, and u, are known
along the initial data curve, the discontinuities in the second derivative may
occur along the characteristic lines. To show this and a few other items, we
invoke the concepts of linear algebraic equations mentioned in Section L.I. /
Thus we write

au, +2bu,, +cu,, = H



Summary of Information Required to Obtain Canonical Form

and Characteristic Curves for Selected PDEs.*

TABLE 1.1,

Coefficient

W(x, y}

P(x,¥)

Root {dy/dx)

b —ac

Type
Hyperbolic

PDE

y+toax

—_ i —
Hep— & Hpy =0
al >0

y—ix?
y+ x (arbitrary)

No real roots
xthf-yp

y+ix?

Hyperbolic

Parabolic

=0

J—1
Upr ™ X u,l'_\'

yr—x

1

=0

o, t2u,, Uy,

18

Elliptic

xy T3UL = ]

2~y

x—

-y

+

-y

1

Hyperbolic

Requires additional infor-
mationon L, i, L' . H'

— Lt
H’

H'L—HL (HFL—HLY L
- LL’ —
2 2 H and

HH

HHu, +(H'L— HL) Hyperbolc

., — I..I_'u_‘,_r + ...

+ HH'LL'
=0

X=]
H

“The first example is presented in detail in the text.

Second-Order Partial Differential Equations 1€

together with
(dx Yu,, + (dy)u,, = du,

(dx)u,, +{dy)u,, = du,.
In matrix form, these three equations become

a 2b ¢ [|¥ H
dx dy O ||y |=|du
0 dx dy||uy, du,

mentioned, the right-hand side of

For linear dependence of the type already
umn of the coefficient matrix, and

the matrix equation is substituted for a col
the determinant of the resulting matrix set (o Zero.

a 2b ¢ a H ¢
det| dx dy 0 =0, det| dx  du, 0 i=0; ete.
Q0  dx dy 0 du, dy

The first determinant merely gives us our characteristic curves

dy _ b*x br—ac
(1220 dr p s

as before. However, the second determinant yields some new information that
we have not previously obtained, namely that

du cdx ¢ dug

X

When the characteristic equation is substituted for dy/dx we arrive at

{1.2.22) T T e Y

which shows how u_and u, vary along a characteristic. Actually, (1.2.22) is
exactly the type of information we picked up in the first-order PDE case to
confirm our stated theorem on the behavior of du [see (1.1.6) and (1.1.7}].

We may concisely summarize these results using the terminology that the

two characteristic slopes are A, and A, and noting that

(1.2.23) du=w dx+u,dy.
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Thus {1.2.21)~(1.2.23} yield

d _
(1.2.24a) I =X,

dk' ) _ 1 h I . h
r_—a E ﬁ along characteristics wit
(1:2.24p) du,” ¢ At ¢ dux} slope A,

du
(1.2.24¢) T Tt A,

Finally, we wish to briefly mention what happens when n independent
variables x|, x,,...,x, are involved rather than only the two, x and y. There are
still canonical reductions that can be carried out, the forms being

n=1

Upow, e o v =0 hyperbolic

2 U Tau, + - =0 parabolic, a, #0
=2

- =0 elliptic

In this context, the (ollowing PDEs can be classified as

R hyperbolic
Upo, Tl U~ My, =0 hyperbolic
Wayxr T Wy T, — 0, =0 parabolic
On the other hand, the eguation
e = “.rlxj

does not fit into any category. In addition, an equation of the form
By +2u2x2_v + ud_r +=0

is called elliptic because it has no real characteristics.
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L3 SYSTEMS OF FIRST-ORDER PDEs

In this secticn we consider sets of coupled first-order PDEs. For ease in
presentation, we usually use only two equations and later generalize the
development. Let us consider the two dependent variables u(x, y} and v(x, y)
coupled via the equations

(1.3.1a) ay(Ju+b,( }“y +e(-)o + d,(- )Uy =h{-}
(13.00) ey Ju, +by( - Juy + (Yo +dy{ Yo, = hy( ),
where, as before, the functionality in a,( - },...,b,( - ) defines the terminology of

linear, quasilinear, and nonlinear PDEs. Equation (1.3.1) may also be written
in matrix form as

(1.3.2) [Al{u )+ [B]{x,) = {R),
where
ORI O O S g EO P A

(1.3.3) [B}={i; i]; {h}:“j.

Equations of the form defined by {1.3.1} and (1.3.2) may result from a
change of variables in a second-order {or higher) PDE or, and this is usually
the case, as a direct result of the description of a physical system. Because of
the connection to second-order PDEs one might anticipate that (1.3.1} would
be classified in the usual three forms of hyperbolic, parabolic, and elliptic and
that the number of real characteristic curves would determine the particular
form.

1.3.1 First-Order and Second-Order PDEs
One can usually obtain a set of first-order equations such as (1.3.1) from a
second-order PDE; conversely, (1.3.1) can be converted te a second-order

equation. To demonstrate this, we show that the wave eguation, heat flow
equation, and Poisson's equation are all convertible to a form such as (1.3.2).

Wave equation: [, — f, = H{x, y}

definew=f, o=/,
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The PI3. o the requitement that o 6 val be wiitten nomatos fornas the

set of two [irst-order PDEs:
ul

ol

X

A= ol 7o)

Note that for # =0, this is equivalent to the set

Heat flow equation: f,— f,, = H(x, y)
defineu=/, v=/[.

Once again the PDE and the requirement that u, = v results in a set of two
first-order PDEs:

1 0w, 0 —177u, 0 07 u H
o all [ ol o]
Poisson’s equation: f, + £, = H{x, ¥)

defineu=f, v=/; w=/.

In this case, we obtain three first-order PDEs, which can be written

0 1 03w, 0 0 1]ju, G 0 0Q[u H
1 0 Offo,l+]|0 0 O}jo i=0 1 Oltoi4|C
G 0 0w 1 0 0w, 00 1y|w 0

Now let us go in the opposite direction and generate a second-order PDE
from two first-order PDEs. Consider

u, +go, =0

v, +ku,=0.
Differentiation of the first with respect to y and the second with respect to x,
multiplication of the second by g, and subtraction yields (g and k are

independent of x and y}

u,, — gku,, =0.

4
§
i
3
3
e
.. : .
"
b
v
H
i
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Nual cemnndden e eguations desenlung, s cobnterosent heat eschianpe ;
e, e temperature balances can be wrilten as

Heu, =— Leu, —k{u—v)
He'v,=L'c'v, + k{u—1v),

where  u, 0= temperatures of the two phases

H =holdup

c=heat capacity

L="{low rate

k =heat transfer coefficient

x=time variable

y=npaosition variable

the prime designates parameters identified with the second phase.

[ the second equation is solved for v and then differentiated with respect (o x
and y, the resulting expression can be substituted into the first to give

H H
HHw e, (H'L- HL')un. - LL’“,!',!' =k g * o u,
- k[‘{- L k.
4 [ ’

Finally, let us transform the general form of the second-order PDE
af,, 20, o, = H.

Substitution of the variables
u=f and ©=[

yields the following set of first-order PDEs:

au, +2bu +tco, = H

This example possibly shows most clearly the connection between the standard
second-order PDE and {1.3.1).
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1.3.2  Characteristic Curves

To develop the characteristic curves for the first-order equations described by
(1.3.1), we rewritc them together with two auxiliary conditions:

(1.3.12) af u +b,( Ju e (Yo +dy( Jo.=u(+)

(1.3.1b) ay( - b+ by }”_v eyl Yo, +dy( }U_p =uyl-)
u.dx+u,dy =du

v dx + v.dy = dv.

These equations may be expressed in matrix form as

a b o d||u, b

(l 3 4) a, b2 Ca dl ulr - iy
- de dy 0 O o, du
0 0 dx dy 0 dv

Setting the determinant of the cocfficient matrix in (1.3.4) 10 zero, we obtain

{(1.3.5) aldy ¥ —2b(dx ) dv)+ c(dx )} =0,
where

(1.3.6a) a=a,c; ~ a,¢,

{1.3.6b) 2b=ad,—~a,d +b,c,— by,
(1.3.6c) c=bd,—b,d,.

As before, this is a quadratic equation for dy/dx, Depending upon whether
b? — gc has two real values, one real value or zero real values, we call (1.3.1)
hyperbolic, parabolic, or elliptic.

I, in addition, we replace the fourth column in the coefficient matrix with

the right-hand side of (1.3.4) and set the determinant equal to zero, there
results

(1.3.71) e(du}i—[a%—fjdu:(g—h%)dx‘

ST A

s
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where
{1.3.8a) e=ajb,—ayb
(1.3.8b) F=bies— byt
(1.3.8¢) g=ub,—ub|
(1.3.8d) h=ua,—ua,.

Equation (1.3.7) tells us how du and do change along a characteristic curve
dy/dx. 1f the PDE is hyperbolic, then there are two roots A, i=1,2, both real,
and we may now write

e

dy _ :il
{1.3.9a} F A, |

{(1.3.9b) e(du)-l—[aa\‘-‘-f]du=(g—h)\‘.'}_{x_“ I]

Thus, just as we have done previously, we now have the necessary equations to
solve for the hyperbolic case.

Two words of caution are required in the use of (1.3.5) and (}.3.9). These
equations relate 10 specific cases which occur frequently in Phymcal systems.
We often find, however, that the two first-order PDEs are written as

(1.3.10a) ayi b, = k()

{1.3.10b) v, tde, = hy{ ),

wherein the only coupling terms are i,{-) and 4,(-). In such a case, ¢ in
{1.3.9h) will be equal to zero (e =0), and only dv/dx can be calcu]alfed; no
information is obtainable on how both u and v vary along a characteristic. The
charactleristic curves themselves are still available, however. In other cases,
even one or more of the a,, b,,¢;, d; in (1.3.10) may be zero anc.i now a in
{1.3.6) may also be zero {(¢=0). In this situation the characteristic curves
themselves cannot be calculated. Fortunately, all is not losl since (1.3.10}
behave as quasilinear first-order PDEs and therefore we can invoke Theorem |
in Section 1.1. Thus

dx _ &y au
(1.3.11a) el whd s
dx _dy _dv
(1.3.11b) o
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leading 1

dy _ b dy 4,
(1.3.12) ~ o and i s
as the two characteristic curves and

du — h| dU — hz
{1.3.13) 2 and it

as equations for the dependent variables along the characteristic curves.
Alternatively, we could begin by writing the matrix equation (1.3.2}),

(1.3.2) [A]{u,} +[Bl{u,}={n}.
It is possible to show that when det[B]#0 and the equation
{(1.3.14) det({4]=A[B])=0

has real distinct roots or eigenvalues, (1.3.2) is hyperbolic. In the same fashion
if det[B]#0, we may write (1.3.2) as

(13.15) {u ) =[], } + (A}

and now the requirement for hyperbolic form is that the equation det[A}=0
has all real roots or eigenvalues. Finally, we also point oul that if the PDE is
written as

(1.3.16) {u)=[Au, ) +{B ) u.).

the hyperbolic character is retained if [A) and [ B) are symmetric.

1.3.3 Applications of Characteristic Curves

To demonstrate the use of the foregoing theory we now outhine a series of
examples.

Example 1
Consider the wave equation written in the form

(1.3.17a) _ u,, —u, =0

xx y¥
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This second-order PDE may be transformed to the pair of first-order PD.
(1.3.17b) u,~ v, =0
(1.3.17¢) w,— o, =0,

where u =, and v=u, are the new dependent variables. In the notation of
(1.3.1), we have

a(-)=b,(-)=1
o )=dy(-)=~1
by=¢=h =a;=d,=h; =0

and thus, from {1.3.5),

a=—1
5=0
c=1,
which vields the following roots:
dy bipm o
{1.3.18) ol p ==1.

To determine how du and do change along the characteristic lines, we utilize
{1.3.8) and (1.3.9%

a=—1
e=1
f:g:h..—_[)
and
dy
du dxdu-O.

The last equation shows that along the characteristics of (1.3.18),
du = de =10

or
u# + v =constant

u — v =cgnstant.
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Example 2

Consider the following set of equations, which describe a model of single-
component chromatography wherein the solution contains concentrated solute:

(1.3.19a) o*u, +u, = — Ry(u,v,0*)
(1.3.1%b) vr=— Ry(u, v, v*)
{1.3.19¢) v, = R(u,v,0*),

where R{u, v*)=rate of transfer between liquid and solid
w=liquid solute concentration
v=solid solute concentration
v* =velocity of flow [v*= v*(x, ¥}]

Equayion (1.3.19) leads to the following sets of characteristic equations and
associated ODEs:

_1 d_ R

x  p*’ dx bt

dy _ do*

o =0, y=constant; ax =R,
dx const dv R

— =0, x=co i — =R,
e nstant &

1.4 INITIAL AND BOUNDARY CONDITIONS

To this point we have only briefly mentioned the initial and boundary
conditions associated with a PDE. The term “initial” refers to the fact that in
many physical problems one of the independent variables x, y, z,... may be
time x. Thus a specification of u({x, y) at x =0 is referred to as an initial
condition.

In general terms, initial and boundary conditions have the form

(1.4.1) of x, yJulx, p)+A{x, vIu,(x, v)=+y(x, ¥

where 1, = du /dn =35 derivative normal 10 a boundary. Freguently, 8 /i —
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w, or u,. Wecan categorize (1.4.1) as being homogeneous (y =0) or nonhomo-
geneous {y #0). Moreover, specific forms of (1.4.1) are denoted as follows:

Name Form Comment
Dirichiet {first kind}) p=0 Value specified
Neumann (second kind) a=0 Slope specified
Cauchy Two equations: Both slope and value
a={in one and specified
A =0in other
Robbins (third kind}) aand 870 At least homogeneous

form of (1.4.1) is
specified

The combination of PDE and initial and boundary conditions must lead to a
well-posed problem. Depending on the form of the x, y region of interest, this
usually means that

1. Hyperbolic equations are associated with Cauchy conditions in an open
region.

2. Parabolic equations are associated with Dirichlet or Neumann condi-
tions in an open region,

3. Elliptic equations are associated with Dirichlet or Neumann conditions
in a closed region.

The meaning of the terms “open™ or “closed” region will be apparent shortly.

Figure 1.5 illustrates an (x, y) diagram for the hyperbolic, parabolic, and
elliptic problems. The dashed lines are characteristic curves. The case x=0
corresponds 1o an initial condition, and the cases y =0 and y=1 might
correspond to boundary conditions, assuming that y is always finite. The
extension to more dependent variables {x, y, z) is difficult to present diagram-
matically but is usually conceptually apparent when discussed.

Let us first consider the hyperbolic equation u,, = u,, as a convenient PDE.
We see that we require two initial conditions and two boundary conditions (x
is chosen to represent time), These conditions are shown in Figure 1.5 as

(1.4.72a) u(0, y)=given, x=0

and

{1.4.2b) u (0, yy=given,  x=0

and

{1.4.2¢) el x.0)=given w(x,1)=given



30 Fundamental Concepts

Hyperbolic : Uyxy = Uyy
Two initig! conditions
Two boundary conditions

Parabelic - ux = Uyy
uor
Uy

Cne initial condition
Two beundary condilions

Eiliplic : Usy +uyy =0

One boundary condition
uor up {tour 1f reclangulor}
Bverywhare

X
el

Figure 1.5. Diagrammatic representation of conditions imposed on hyperbelic,
parabolic, and elliptic cquations. Dashed lines arc characteristic curves,

or
(1.4.2d) u,(x,0)=given u,(x,1)=given.

The term “given” in (1.4.2) refers to a specified numerical value for the
function or the appropriate derivative. Alternatively, we might write

u(0, y)=f(y), x=0
{0, p)=g(y),  x=0

u(x,0)=h(x), y=0

indicating that the function or its slope is given but not as a constant.

Obviously, these are all special forms of (1.4.1) with a proper selection of a, 5,
and .

Initial and Boundary Conditions

"‘! A

2N
:/ N Figute 1.6. Simplified representation of characteristics

y=0 y=1 arsing in the hyperbolic equation u,, = u,,.

The characteristics shown in Figure 1.5 for this case correspond to

dx _

—==1

dy '

which are crossing lines propagating up from X =0. Figure 1.6 shows a
simplified version of the lower portion of Figure 1.5. The value of u(xo, Yo)
depends only on the initial data between the characteristics shown; in other
words, the solution at xg, yg is affected only by the data on the baseline. If a
discontinuity in the initial data occurs on the baseline, this discontinuity is
propagated along the characteristic through that point. Moreover, this char-
acteristic is continued, as shown, due 1o the reflection condition along the
boundary y =0. Of course, now the data at y =0 influence the reflected values
of u(x, y). The region below the point xg, J, and the appropriate characteris-
tics is referred to as the domain of dependence of the point x4, ¥;. When one
considers a physical system, such as a countercurrent heat exchanger, then a
discontinuity of one phase temperature is propagated along with its derivative,
When this information reaches the end of the exchanger, a new discontinuity
in the other phase temperature derivative propagates back along with its
second derivative. In effect, a reflection in temperature derivatives (a reflection
of waves) occurs along the characteristics.

Next consider the case of a parabolic PDE, using w, = u,, as an illustration,
in the finite domain of 0= y = 1. Here one initial condition and two boundary
conditions are required. For boundary conditions we have chosen

u(x,0)=given  u(x,1}=given
or

u,{x,0)=given u (x,1)=given,
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with the “given” value having the same meaning as before. It should be
apparent from (1.4.1) that these boundary conditions could be written

au+Biu, =y at  y=0
and
ayu+pfu, =y, and y=1,

with a,,a,=0, 8,,8,<0 and & —B,>0, a;—B,>0 in any combination
desired. The initial condition could be given as

u(0, y)=f(y) at x=0

Further, the domain y need not be restricted to y = | but could be semi-infinite,
y — + o0, and even infinite in both directions, — 00 < y < +00. Now we must
specify continuity at infinity rather than the specific conditions stated below.

There is only one set of characteristics in the parabolic case; these are
shown as horizontal lines in Figure 1.5, The function u(x, y) is now de-
termined by all the initial data plus the data on the sides which are on or below
a horizontal characteristic. The domain of determination is now the complete
rectangle.

Finally, we consider the elliptic case, u,, +u,, =0. Now there are four
boundary conditions (for a rectangular-shaped domain). These could be any
combination of the following:

u{ x, y)=given
u,(x, y)=given

or
au+fu,=vy.

It is important to point out that when only the normal derivative is given
completely around the domain, the solution can only be obtained to an
arbitrary constant. Since the eliiptic PDE has no real characteristics, nene are
shown in Figure 1.5.

This is only a small sampling of possible PDEs and asseciated initial and
boundary conditions; others are specified later when we consider specific
physical problems.

Finally, we wish 10 mention a discontinuity that can occur at a corner of a
finite domain. Consider, for example, the temperature distribution defining the
boundary conditions for a parabolic PDE as illustrated in Figure 1.7. The
temperature is 500° on the x =0 line and 100° on the y =0 line, Thus there is a
discontinuity in temperature at the corner, x =0 and y =0, because the
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R- Point of discontinuity (0.0}
- Figure 1.7. Diagrammatic representation of dis-
continuity at {0,0) arising from different Dirichlet
conditons specified along each space coordinate.

%> 0,100°

temperature will be different as we approach this point from above of from the
right. A common practice for handling this discontinuity is to use an average
of the two limiling values.
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