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ABSTRACT

A numerical model is developed for simulating the flow of stably stratified nonrotating air over finite-
amplitude, two-dimensional mountain ranges. Special attention is paid to accurate treatment of internal
dissipation and to formulation of an upper boundary region and lateral boundary conditions which allow
upward and lateral propagation of wave energy out of the model. The model is hydrostatic and uses
potential temperature for the vertical coordinate. A local adjustment procedure is derived to parame-
terize low Richardson number instability. The model behavior is tested against analytic theory and then
applied to a variety of idealized and réal flow situations, leading to some new insights and new questions
on the nature of large-amplitude mountain waves. The model proves to be effective in simulating the
structure of two observed cases of strong mountain waves with very different characteristics.

1. Introduction

The hydrostatic mountain wave is one of the im-
portant wave forms generated in stable air passing
over mountainous terrain having a characteristic width
of 50 to 200 km. In this range of scale waves are
generally not trapped in lower levels of the atmo-
sphere; rather, they propagate energy into the upper
troposphere and lower stratosphere. When wave in-
stability and breakdown occur, a substantial drag
may be exerted on upper level circulation (Lilly, 1972)
and associated clear air turbulence may be hazardous
to passing aircraft (Lilly, 1978). At certain locations
in the lee of large mountain ranges, intense and
damaging surface winds arise when these waves at-
tain large amplitude (Brinkmann, 1974; Klemp and
Lilly, 1975; Lilly and Zipser, 1972). By contrast, the
classic lee-wave phenomenon, consisting of a train of
quasi-periodic waves of wavelength about 10 km
extending downstream from a mountain range but
largely restricted to the lower and middle troposphere,
is essentially nonhydrostatic and is most frequently
observed over smaller scale mountains.

In recent years, observational data collected by
instrumented aircraft flying over the eastern slope
of the Colorado Rocky Mountains (Lilly and Zipser,
1972; Lilly and Kennedy, 1973; Lilly, 1978) and
elsewhere (Nichols, 1974) have provided valuable
insight into the structure of stationary hydrostatic
mountain waves. In addition, statistical evaluation
of sounding data by Brinkmann (1974) revealed the
general features of the upstream environment during

! The National Center for Atmospheric Research is sponsored
by the National Science Foundation.

0022-4928/78/0078-0107$15.00
© 1978 American Meteorological Society

periods in which downslope windstorms were ex-
perienced along the Front Range of the Colorado
Rockies. This study documented the presence of a
layer of increased stability in the lower troposphere
while the upstream winds were found to be of order
20 m s7! or greater near and above mountaintop levels
but not excessively strong at upper levels. On the
basis of these observations, Klemp and Lilly (1975)
proposed a mechanism for the generation of large-
amplitude mountain waves and associated strong sur-
face winds, derived from a linear analysis of hydro-
static wave motion. This analysis indicated that
large-amplitude waves may result from constructive
reinforcement of vertically propagating modes which
are partially reflected owing to variations of the
stability and wind in the ambient atmosphere. Analy-
ses of the optimal structure for simple, multi-layered
atmospheres emphasized the importance of a low-level
stable layer and indicated that large-amplitude waves
are generated when the phase shift of the wave across
the troposphere is close to one-half wavelength.
Simulations of real data cases using a linear steady-
state hydrostatic model demonstrated a strong positive
correlation between model results and observations,
using the intensity of surface winds as the basis for
comparison.

In order to evaluate the importance of finite-
amplitude effects and to provide more accurate real
data simulations we have developed a nonlinear two-
dimensional numerical model for hydrostatic mountain
waves. This time-dependent model uses potential
temperature for the vertical coordinate and incor-
porates an upper level damping region to allow upward
propagation of wave energy without reflection from
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the upper boundary. An analysis of this damping
layer is presented to define the conditions for which
reflection is minimized. Simulations for small and
fairly large amplitude mountains are compared to
linear and nonlinear analytic solutions for a one-layer
atmosphere to test the validity of the numerical
representations. For very large amplitudes the flow
becomes dynamically unstable. To deal with this case
we have developed a procedure for turbulent adjust-
ment which locally increases the Richardson number
in unstable layers while conserving total mass and
momentum. Simulation of real data is presented for
wave motion observed over the lee slope of the Colo-
rado Rockies on two days with strong but very dif-
ferent response characteristics.

The pioneering work on numerical simulation of
nonlinear waves was carried out by Foldvik and
Waurtele (1967), and has been followed more recently
by experiments carried out using two-dimensional
versions of three-dimensional mesoscale models by
Anthes and Warner (1974), Mahrer and Pielke (1975)
and Deaven (1976). Designed to improve mesoscale
forecasting, these models have included surface terrain
and refined grid resolution with the result that hydro-
static mountain waves may have significant amplitude
in model simulations. Because of their dynamical
simplicity, mountain wave simulations have been
used to demonstrate that the influence of terrain is
properly represented. Our analysis indicates, however,
that successful mountain wave simulation requires
special care in modeling the important physical proc-
esses, and the lack of such care may produce mis-
leading results in the wave structures and the mo-
mentum and energy transports. The upper boundary
condition is a primary problem; in most previous
models it is completely reflective, implying that at
steady state there should be no vertical flux of energy
or momentum. The wave structure is visibly altered
by this boundary condition in that no upstream tilt
of lines of constant phase should be present in the
steady solution. The influence of the reflective upper
boundary is not fully realized, however, if simulations
are carried out for too short a time for steady state
to be approached or if large explicit or implicit com-
putational damping is applied in the domain of
interest. In the course of our work we have tried to
identify, quantify, and to some extent indicate the res-
olution of these problem areas.

2. Description of the numerical model
a. Basic equations

We begin with the equations of motion for flow
which is time-dependent, two-dimensional and adia-
batic. For the wavelength scales of interest we assume
that the motion is hydrostatic and that rotational
effects are negligible. Potential temperature is used
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for the vertical coordinate as it has several advantages
for the mountain wave problem. In the isentropic
framework, the mountain contour is typically a co-
ordinate surface (though it need not be so), vertical
advection terms vanish from the equations, and higher
resolution is provided in regions of increased stability
where the phase of the wave is changing more rapidly.
Isentropic coordinates have been used in numerical
mountain wave modeling by Krishnamurti (1964)
and by Eliassen and Rekustad (1971) for mesoscale
mountain waves.

Subject to the assumptions mentioned above, the
equations of motion and continuity in (x,8) coordi-
nates may be written in a form similar to that given
by Lilly and Kennedy (1973):
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The independent vertical variable is the logarithm of
potential temperature, i.e., © =In(0/6,), where 6, is the
surface level potential temperature and Po= 1000 mb.
The right-hand side of the motion equation (1) is an
artificial damping term which absorbs wave energy
near the upper boundary as described below.

b. Upper dissipative layer

Since our numerical simulations are carried out
within a box of finite dimensions, conditions must be
specified along boundaries which arbitrarily enclose
a portion of the atmosphere. At the lower boundary
we assume the mountain contour to be an isentropic
surface and thus we need only specify the mountain
height z=/4(x) at 6=0.

We believe that special care must be taken in con-
sidering the upper boundary condition since it will
fundamentally affect the entire solution. Both theory
and observations indicate that hydrostatic waves may
extend to high altitudes and produce considerable
vertical transport of horizontal momentum. For linear,
steady-state wave motion, a radiation boundary con-
dition derived by Eliassen and Palm (1960) can be
utilized which recognizes that the mountain is the
source of wave energy and consequently removes all
solutions at the upper boundary which transport wave
energy downward. A somewhat simplified and elegant
version appropriate to hydrostatic systems has been
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presented by Drazin and Su (1975).  Unfortunately,
it is not evident that this boundary condition can be
applied in general to nonlinear systems. Even the
concept of radiation becomes more complicated for
finite-amplitude waves since partial reflections may
occur at any level due to the nonlinear interaction
of upward propagating modes. Nevertheless, vertical
transport of momentum and energy is apparently
a necessary requirement in modeling the real
atmosphere.

The solutions presented by Eliassen and Palm
(1960) reveal that upward radiation of wave energy
is characterized by a particular phase relationship of
wave properties for each horizontal wavenumber
present in the system. Each Fourier mode, however,
is determined .by the flow structure across the entire
upper boundary. Drazin and Su (1975) show that
the Fourier components may be summed and the
radiation condition written in terms of a Hilbert
transform function. From the results of either analysis,
however, it seems impossible for any locally specified
boundary condition to -permit radiation of wave
.energy. We have analyzed, but do not present here,

the flux characteristics of linear solutions using several.

different upper boundary conditions which involve
a local specification of variables, including those used
by Mahrer and Pielke (1975) and Dedven (1976).
In all cases we have found them to be completely
reflective, i.e., the boundary is a nodal point for some
physical variable.

In the present investigation we attempt to provide
the essence of a radiation condition in the model by
including a -viscous region beneath the upper bound-
ary, designed to remove the upward propagating wave
energy - before it can be reflected from the upper
surface. In this manner, we avoid having to model
the complex mechanisms of wave breakdown and still
achieve the desired energy dissipation. To minimize
reflections caused by rapid increases in viscosity, the
coefficient » in (1) is increased gradually from zero
at the top of the inviscid region, 6=6,, to vr at the
top boundary, 6 =87, according to

T 6—0
v=vpr Sinz(— : ) (5)
2 876,

Because of the fundamental influence of this damping
layer on the wave structure, it is imperative to evalu-
ate its reflection characteristics. An analysis based on
linear wave theory is presented below.

After linearizing (1)-(4), the steady-state wave
equation can be derived (Klemp and Lilly, 1975)
for the perturbation Montgomery potential, &’ —c,,T’

+g2', yielding

a
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where & is a density-weighted Fourier mode defined by
PO 5
' (x,0)= (—) b(k,0)eik=,
B

The overbar refers to the mean state and po is a refer-
ence density. For an atmosphere with a constant mean
wind # and stability N=[g(d6/dz)]}, the coefficient
v? is accurately approximated by
ﬁ2
Y=, ()

o

where B=g/Nu. Beneath the viscous layer, the solu-
tion of (6) for a single Fourier mode is given by

&= (¢804 Crei8°, (8)

For a horizontal wavenumber £>0, the term con-

taining C; corresponds to the mode propagating wave
energy upward while the (. term represents the
downward propagating mode (Eliassen and Palm
1960). The ratio r=|C,/C:]| is then a measure of the
reflectivity produced by the upper viscous region.

By matching the pressure and displacement height

at the top of the inviscid region (6=0,;) with the
corresponding quantities at the bottom of the viscous
layer described by (6), the expression for » becomes

|G |Ev®)+ilRe) —i
ail Iy —ijée)+il

where ®(6,) is evaluated from the solution of (6) in
the domain ©,$6<O7r subject to boundary condi-
tions on the vertical displacement z'= ($—3%/90)/g,
given by

©

L
$——=1 at 0=6,

% (10)
. ad '
d——=0 at O6=0p

90

The boundary condition at 67 corresponds to a rigid
lid while the condition at ©, arises from matching.
The displacement height at © =6, has been normalized
to unity in deriving (9) and (10) since it cancels
identically out of the expression for r. Also, for this
analysis, we have ignored the (po/p)} factor in (6).
Egs. (6) and (10), with viscosity v substituted from
(5), are solved numerically by using second-order dif-
ferencing and inverting the resulting tridiagonal
matrix. Fortunately, the depth of the inviscid layer
does not influence » and as a result, for the viscosity
profile given by (5), r depends only on three dimen-
sionless parameters: B=g/Na, V=kvp/4 and D
=(B/2w)(07—0O,). Here, B/2x is the ratio of a poten-

i
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Fic. 1. Reflectivity as a function of V for several viscous layer depths (D=0.5,
1.0, 1.5, 2.0) in which the viscosity profile is given by Eq. (5).

tial temperature scale height g/N? to the vertical
wavelength 2mi#/N. The dimensionless viscosity V is
an inverse Reynolds number and D is the ratio of
the depth of the viscous layer to the vertical wave-
length. In addition, for £>>1 (the usual atmospheric
case), the solutions for » become independent of B,
e.g., for values of 8 tested between 10 and 100 the
reflectivity varied by only several percent.

The reflectivity for g>>1 is plotted in Fig. 1 as
a function of V for several thicknesses of the viscous
layer. Notice that for a given D and %, r first de-
creases rapidly with increasing »r and then begins to

increase. The large reflection at low viscosity results
from reflection off the upper boundary due to in-
sufficient damping, while as the viscosity becomes
large, its vertical gradient also causes reflection. As
the damping layer increases in depth there is a general
decrease in reflectivity. It is difficult, however, to
interpret the detailed behavior of the reflectivity
since the interactions are rather complex. Reflections
occur throughout the layer as well as from the upper
-boundary and the impact of these partial reflections
on the inviscid region below depends upon the phase
of the reflected mode when it reenters the inviscid

-
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F1c. 2. Average reflectivity in the range 1<V <10 as a function of the vis-
cosity profiles: solid line, sine profile (5); dashed-dotted line, linear profile (11);

dashed line, constant profile (12).
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domain. The net energy and momentum fluxes may
be either increased or decreased in the same quali-
tative manner as in partial reflections caused by
layers of differing stability. The complexity of the
situation is reflected in Fig. 1 by the variation in the
shape of the curves for the different values of D.

If only a single horizontal wavenumber were present
in our model, it would be possible to use a relatively
thin viscous layer with the viscosity chosen to achieve
the minimum possible reflection for that thickness.
Unfortunately, we must bé concerned with a range
of wavenumbers. As the viscous depth decreases, the
sensitivity to varying V increases. To summarize this
effect Fig. 2 depicts the average reflectivity as a func-
tion of D over the range 1< V< 10. This range was
chosen since Fig. 1 suggests that for a one order of
magnitude variation in V, this interval yields about
the minimum overall reflection. As shown by the
solid curve, reflectivity drops to about 109, when
the layer is 3 of a vertical wavelength in thickness
and drops to 29 at § vertical wavelengths. Momentum
flux is proportional to the difference of the squares
of the coefficients C; and C; and thus for small 7 the
impact on momentum flux is approximately 27.

For comparison, several other viscosity profiles were
evaluated. For two of these, :

0—0
y=yp——, (11)
O7r—064
vy
(12)

V=—2— for ©>0,,

the reflection coefficient is plotted in Fig. 2, again
averaged over the interval 1< V'<10. Reflection from
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the constant viscosity layer (12) is high for all D
owing to the discontinuity in viscosity at 6=0,,
while the linear profile (11) produces reflection which
is similar to the sine profile (5) but somewhat greater
in magnitude. Other viscosity profiles can be devised,
such as exponential ones, which yield reflection com-
parable to that of the sine profile.

To conclude our analysis of the damping layer,
we consider the impact of limited numerical resolution
on reflectivity to determine the number of vertical
grid points required for this region. Using second-
order finite differencing in the vertical the average
reflectivity in the range 1< V<10 is illustrated in
Fig. 3 for various #, where » is the number of vertical
grid intervals in the viscous domain. The curve for
n=o0o corresponds to the profile in Fig. 2. For each
value of », the reflectivity begins to rise when the
number of grid points per wave becomes insufficient
to resolve the wave structure. In overall terms, about
eight grid points per wave (denoted by X’s on the
curves) are apparently required to avoid significant
reflection due to inadequate resolution. In the present
model, most simulations were actually conducted using
n=20, D=1.5 and vy fixed such that for the dominant
wavenumbers in the mountain profile, V=>Fkvr/a is

- near the middle of the range between 1 and 10.

In the above analysis, we have dealt only with
damping produced by a horizontal diffusion term in
the momentum equation. One could also provide the
desired damping by utilizing a Rayleigh viscosity
(cf., Houghton and Jones, 1969, and Eliassen and
Rekustad, 1971), in which case the term on the right-
hand side of (1) would become — v'(u—), where »/
is an inverse decay time. For this approach the above
analysis remains valid if only we replace V=*Fkvr/a

04+

o3|

02

T

00 :
o 05

10 : 1.5 20

F16. 3. Average reflectivity in the range 1<V <10 as a function of the viscous
layer depth D and the number of grid intervals ». The X’s denote locations on
the curves corresponding to eight grid intervals per wavelength,
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with V’'=v,/ki. Thus, although the two methods of
damping wave energy have inverse behavior with
respect to the horizontal wavenumber %, either one
can be successfully implemented provided vr or v, is
appropriately chosen for the desired range of hori-
zontal wavenumbers.

If the viscous layer is effective in damping out
upward propagating wave energy, the boundary con-
dition actually specified at ©=6r will have little
influence upon the solution. Since a boundary condi-
tion is nevertheless required, we have chosen to
specify a fixed level for the height of the top © sur-
face, i.e., 2(x,0r)=2r. The procedures used to accom-
modate this boundary condition are discussed in the
next section.

¢. Lateral boundary conditions

In considering the lateral boundaries it must be
recognized that for the hydrostatic equations, any
conditions specified at these boundaries will, in general,
produce an ill-posed problem. As demonstrated by
Oliger and Sundstrém (1976), the characteristic modes
may propagate either upstream or downstream de-
pending upon the vertical wavenumber. Consequently,
if the vertical mode structure is unresolved a specified
set of boundary conditions may be correct for some
modes but will be incorrect for others. This result
can be readily illustrated for our system of equations
by linearizing (1)-(4) and Fourier transforming in
the vertical [using 4(x,0)=%,4(x,)e?®]. In this
manner the prognostic equations for the perturbation
variables # and dP/d89 can be written in terms of the
Fourier coefficients # and &, yielding

, (13)

where ¢=g/IN represents the intrinsic gravity wave
phase speed. By combining these equations, we then
obtain

af of 1,

—+(+c)—=0, (=a+-@

a¢ ox ¢
(14)

an I i,
—+(G—c)—=0, n=4—2>
ot ox ¢

Notice that the two prognostic equations are now
completely decoupled and thus ¢ and 5 are charac-
teristic variables of the system, corresponding to the
two gravity wave modes which propagate at speeds
#i+c and 4—c, respectively. The specification of con-
ditions at the lateral boundaries depends upon the
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direction of propagation of the characteristics, which
in turn depends upon the vertical wavenumber /.
Thus no boundary formulation will be well posed
for all L.

In spite of this theoretical dilemma, a formulation
for hydrostatic lateral boundaries was devised which
appears to work well for a variety of situations. In
deriving lateral boundary conditions, our objective is
to specify constraints which minimize the reflection
of wave modes propagating to the boundary from
the interior and which are well posed. However, since
the latter goal cannot always be satisfied, boundary
conditions are chosen to be appropriate for wave
modes for which ¢4 (i.e., modes which can propagate
both upstream and downstreeam). For this discussion
we assume without loss of generality that #>0.
In this section, discussions will be confined to a pre-
sentation of the actual lateral boundary conditions
used in the model. An analysis of the reflection caused
by these conditions plus comments on the behavior
of wave modes having ¢<4 (for which these boundary
conditions are not properly posed) are included in the
Appendix.

In specifying the lateral boundary conditions we
attempt to estimate a representative phase speed c*
which is then used to advect disturbances out through
the boundaries. Based on Egqs. (14) it is apparent
that for ¢># one boundary condition is required at
both the inflow and outflow boundaries. This condi-
tion is specified by replacing the motion equation (1)
with an expression which advects the horizontal ve-
locity out through the boundary at the estimated
phase speed u+c, for outlow and u—c; for inflow.
Thus at the outflow boundary,

ou du
(b cs)—=0 (15)
at ox
is solved in conjunction with Egs. (2)-(4). To main-
tain numerical stability, the horizontal derivatives in
(15) and (2) are computed using a one-sided dif-
ference with the boundary point being averaged in
time (Elvius and Sundstrém, 1973).

At the upstream, inflow boundary the corresponding
condition becomes

ou du
—+ (u—c))—=0. (16)
at dx

Since we require #—c;<0 the one-sided spatial de-
rivative in (16) is stably represented in the same
manner as in Eq. (15). However, the advection term
in (2) cannot be represented using a one-sided dif-
ference since for #>0 this would constitute a ‘‘down-
stream” difference which is numerically unstable.
Consequently, in the equation for ¢=94P/36 at the
inflow boundary the d¢/dx term is eliminated by
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assuming

do ¢ Ou
S U s
at dx 0x ox

(17)

and solving for d¢/0x in terms of du/dx. Eq. (2)

‘then becomes ,

d¢ u\ ou

oy
ot 3/ dx

(18)

where du/dx is written as a one-sided difference,
centered in time. For #—0 this equation is identical.
to (2) and as ¢;—u, $=09P/30 approaches a steady
state.

These boundary conditions are conceptually similar
to a formulation proposed by Orlanski (1976) in
which conditions of the form of (15) and (16) were
applied to all prognostic variables at both inflow and
outflow. His procedure, however, more frequently
overspecifies conditions at the boundaries which leads
to increased computational mode reflection.

In the above boundary specification ¢* (referring
either to ¢ or ¢;) is a specified phase speed, chosen
to be representative of the dominant modes in the
system. Of course, a variety of wave modes having
different phase speeds will generally be present simul-
taneously. Thus any chosen value of ¢* will be incorrect
for certain modes and produce reflection which in-
creases with increasing deviation of each particular ¢
from c¢* (see Appendix).

For many applications, it may be possible to reduce
boundary reflection to acceptable levels by specifying
a constant value of ¢* based on the dominant vertical
scales of motion (for hydrostatic flow, ¢ is inversely
proportional to the vertical wavenumber /). In the
application of similar lateral boundary conditions in
a nonhydrostatic cloud model by Klemp and Wilhelm-
son (1978), tests revealed that little boundary reflec-
tion arose using a fixed value of ¢¥*=30 m s™. In the
present simulations as steady state is approached
u+c;—0 in (15) and u—c;—0 in (16). These asymp-
totic values cannot be imposed during the transient
response, however, without causing large-amplitude
reflections since # would then be fixed at both bound-
aries for all time.

To provide estimates of the phase speeds which
have the correct behavior at steady state we have
implemented a variation of Orlanski’s (1976) procedure
for computing ¢* which requires

i
u+co=—— at outflow
Uz
(19)
* U . : .
u—cy=—— at inflow |

Uz
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In our grid system, the derivatives on the right-hand
side of (19) are centered one-half grid interval in
from the boundary at time level {— At Using this
approach ¢; and ¢, converge to the proper value
as u,—0. :

Although Orlanski computed separate values of ¢*
at each grid point along a lateral boundary for each
variable, we have chosen here to simply vertically
average the -calculated values of u+c; along the
respective boundaries and use these averaged values
at each point along the boundaries. In this manner
we smooth out large variations in c¢* which occur
from one grid point to the next along a boundary.
Since ¢* is at best a rough approximation to the
actual phase speeds, this procedure is intended to-
provide a ballpark estimate which approaches the -
correct value at steady state. At inflow we require
u—c;<0, and thus if a positive value of u—c; is
computed it is adjusted back to zero prior to the
vertical averaging. Similarly, we enforce #+cj>0 at
outflow.

The lateral boundary formulations described above
are admittedly somewhat arbitrary, but in the ab-
sence of practical theoretical guidance a pragmatic
attitude has been adopted. The analysis presented in
the Appendix suggests that little reflection occurs for
wave modes having phase speéds near ¢* and that
even if ¢* is poorly chosen, reflection coefficients are
likely to remain substantially less than unity. If modes
are also present having ¢<# an outflow boundary
condition overspecifies the problem for these modes;
by using the condition (13) these modes tend to
produce small-amplitude reflections into short-wave-
length computational modes which do not seriously
distort the physical solution. Although this analysis
does not investigate the numerical stability of the
boundary conditions, in practice they produce no

observable instability in the model. Computations

were carried out for up to 7000 time steps for small-
amplitude disturbances with no damping (either physi-"
cal or computational) in the system without producing
instabilities or a systematic drift of boundary values.

In dealing with the lateral boundaries, we found
no significant advantage in utilizing a stretched hori-
zontal grid near the boundaries, such as that applied
by Mahrer and Pielke (1975). For finite-amplitude
simulations, disturbances such as upstream propa-
gating blocks and downstream traveling jumps can
alter the mean state of the atmosphere. With a small
amount of stretching the boundary problem is not
reduced, while with large stretching disturbances
propagating into the continuously expanding mesh
reach a point where inadequate resolution produces
reflections which appear to alter flow in the central
portion of the domain. Consequently, for this model
we maintained a constant horizontal grid spacing.
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d. Finite-difference equations

The prognostic equations (1) and (2) are numeri-
cally integrated using centered differences accurate to
second-order in time and space. Because of the par-
ticular form of these equations, staggering the mesh
in time substantially enhances computational effi-
clency. At each time level all variables are defined
on the same spatial grid except for dP/86, which is
vertically staggered. At all even time levels the loca-
tions of the grid points are horizontally shifted by
one-half grid interval from their-positions at the odd
time levels. In this framework the finite-difference
formulation of (1)-(3) becomes

S+ 6.(ut+c,T+gz)

= vl:éé,,(tigzu) - (%) 8.(8.m) ], (20)

aP oP
52,-—+ax(u——)=o, 1)
30 30
oP
dgP=—, (22)
30
goos-+c (86T —T%)=0, (23)

where the finite-difference operators are defined as

1
dngd () =—[A(§+3nAE) —A(E—3nAd)]
nAE , (29)

A" < LAGE+H4nAD+A(E—3n08)]

with 4 being the appropriate dependent wvariable,
£ the independent variable and #Af the number of
grid intervals over which the operation takes place.
The finite-difference approximation of 8%4/8x? in (20)
corresponds to the DuFort-Frankl representation in
the time-staggered mesh.

For the initial conditions, we again are faced with
a somewhat arbitrary choice. For this model we have
chosen to begin the numerical simulation by inserting
the mountain terrain into an initially undisturbed
atmosphere having a specified state which is inde-
pendent of x. Since an abrupt change in the surface
contour excites large-amplitude transient gravity
waves, the mountain height is gradually increased
over a number of time steps (usually 560) to minimize
these disturbances. A similar procedure was used by
Deaven (1976). Although these initial conditions are
not physically realistic our primary interest here is
in the long time, nearly steady-state solution which
should not depend strongly wupon the initial
development.

Numerical integration of the above equations pro-
ceeds in the following manner. First the variables »
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and 0P/30 are stepped forward in time from ! to
I+ At using the leapfrog scheme described by (20)
and (21). Because of the time staggering the lateral
boundary conditions [(15) for outflow and (16) and
(18) for inflow] are applied only at the even time
steps since at the odd steps the variables are defined
one-half grid interval in from the boundary. Eqgs. (22)
and (23) must then be vertically integrated subject
to the boundary conditions z(x,0,f) =A(x) and z(x,87,t)
=3zp. This is accomplished by defining

Ptit= P*(5.0)+e(x) P

and 9
ZH—At = Z*(x’e) + E(x)zz(xye) H
) © gPtAL
P¥= P83 Op)+ 0. (26)
or 90

Thus P* and 2* denote the pressure and height fields
at #+ Al assuming the pressure at the top of the
domain did not change during the time step. We
then seek to solve for e which represents the dimen-
sionless pressure change at the top of the domain
during that time step. Linearizing (4) for small ¢
such that

R Py P*\ Ricp
TtHl= T*<1+e—— ———), T*= 9089<~—> 27
Cp P* Po

allows (23) to be separated into two equations:

4
dez* =—[ T —8oT*]

g
—e

w2 )]

These equations are solved by integrating (26) ver-
tically downward to obtain P* and then (28) upward
using P*, T* and the boundary conditions z*(x,0)
=h(x) and 2.(x,0)=0. To satisfy the upper boundary
condition, we require

(28)

zr—2*(x,07r)
2(x,97)

which finally allows us to obtain P**! and z*+! from (25).
At this point all variables have been stepped forward
to time 4 At and the procedure described above is
repeated for the next time step. To initiate this
scheme we begin at ¢t=0 with one forward time step
before switching to leapfrog steps. Time splitting was
not encountered in any of the simulations.

In the above finite-difference equations, incorpo-
rating a time-staggered mesh requires- no additional
spatial or temporal averaging. As a result, we generate
a solution at each grid point which is identical to

€=
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the corresponding unstaggered solution in half the
computer time and with half as much storage. The
only difference is that at any particular time the
solution exists at half as many grid points which
reduces the resolution for display purposes. As steady
state is approached, however, this deficiency can be
eliminated by combining the solutions at two con-
secutive time steps to double the spatial grid-point
density.

e. Turbulence adjustment procedure

As finite-amplitude mountain waves propagate up-
ward through the atmosphere, they may become
unstable at certain levels, dissipate a portion of their
energy, and in the process remove momentum from
the mean flow. Although the mechanisms for tur-
bulent wave breakdown are not completely under-
stood, observations of large-amplitude mountain waves
along the Front Range of the Colorado Rockies
(Lilly and Kennedy, 1973; Lilly, 1978) indicate that
this dissipation may be generated by Kelvin-Helmholtz
type instabilities. Within certain regions of the flow,
the local Richardson number Ri drops below the
critical value of 0.25 and instability ensues. In the
subsequent process of turbulent mixing, conditions
within an unstable layer aré altered such that the local
Richardson number increases above the critical value
and stability is reestablished. For our model, incor-
poration of turbulence adjustment processes will be
based on this mechanism.

We assume, therefore, that when Ri<Ri. (which
can be arbitrarily specified) turbulence develops which
produces mixing and increases the local Richardson
number to Ri,2>Ri.. In parameterizing this adjust-
ment we assume that the total mass and momentum
are conserved, that heat and momentum are similarly
redistributed (i.e., turbulent Prandtl number of unity),
and that only the unstable layer and immediately ad-
jacent levels are affected by the adjustment process.

Although total mass must obviously remain un-
changed, justification for requiring conservation of
total momentum may not be clear. In a breaking
gravity wave there may, in fact, be a removal of
momentum. However, this removal occurs through
a vertical flux away from the region of wave break-
down, not due to outright disintegration of momentum

within the unstable layer. To amplify this point, -

consider the momentum equation in © coordinates
which is derived by combining (1)-(3) for inviscid
flow:

d/ P\ 9 P 9/ 9z
—(u——->+—[(u2+RT)—]+—<gP—>=0.
a\ 00/ o 904 90\ ox

(29)

At steady-state, this equation can be horizontally
integrated (assuming conditions far upstream and
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downstream remain undisturbed) to yield
oM © 9
——=0, where M=-— P—dx (30)
d0 - 0%

has the form of surface wave drag but here represents
the vertical flux of horizontal momentum across each
isentropic surface. Thus, in the absence of dissipation
the momentum within a layer is unaltered since the
downward vertical flux through that level is constant.
However, when turbulent mixing occurs a vertical
gradient in M is established which produces a net
vertical flux of momentum away from the layer.
The purpose of the adjustment process is to allow
this gradient in M to form and thus transfer mo-
mentum away from the turbulent layer, either to
some other turbulent layer or to the ground. The
adjustment term itself should conserve momentum.

The assumption that heat and momentum mix
similarly is perhaps not ideal since the eddy Prandtl
number probably should be somewhat less than unity.
It is very convenient in the adjustment scheme,
however, and it is doubtful that the simplification
will cause any serious error. Finally, the assumption
that mixing remains localized is certainly a plausible
requirement for all variables, except possibly pressure,
owing to the small scales expected for the mixing
processes. Furthermore, in -order to conserve mass
and satisfy specified boundary conditions, it seems
essential for pressure also. In connection with the
concept of localized mixing, adjustment processes take
place only in the vertical. Since the horizontal mesh
spacing is large compared to that in the vertical for
a hydrostatic model it is assumed that the generation
and decay of turbulence all occurs within a horizontal
mesh distance.

The details of the parameterization will be de-
veloped in the context of the particular grid structure
and finite-difference methods used in our model. For
a different numerical framework, the same procedures
should apply, although certain details may be some-
what altered. We begin after all variables have been
computed at a new time level by calculating the
local Richardson number for layers between each
successive © level. The Richardson number is thus
defined between levels ©; and Oy (at the point
where dP/30,.4 is located) by the expression

206z gAO(z111—2x)

(31)

Rieyy= =

(802)®  (wry1—ms)?
If Rig3<Ri, we adjust the Richardson number back
to Ri, by changing 2ry1 and 2z, in the numerator
of (31). We do not alter the denominator, which is
consistent with the assumption of unit Prandtl number.
Defining 6 as the adjustment operator, the alteration
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of Rizyy back to Ri, occurs via the expression

Riz—Riy

0Zk41— 025 = (py1—ur)% (32)

A0

If the adjustments are made symmetrically, such that
8%,1=—0z; then the finite-difference hydrostatic
equation (23) could not be satisfied unless the pressure
was altered at all levels above or below 2z, thus
violating the requirement for conservation of mass.
We therefore seek to allocate the adjustment between
z; and 3z, such that (32) is satisfied and that grid
values are altered only at levels k& and k41, which is
consistent with our assumption of localized mixing.
To insure that the hydrostatic balance is maintained,
adjustments to the unstable layer must be such that

(1—3A6)8T 10— (14 340)6T 14y )

=—(g/¢p) (03k12—82141)
(1—340)8T k41— (14-346)8T

=—(g/cp) (B241—824)
(1—-340)0T— (1+346)8T;

=—(g/cp) (62— 021-1)

Egs. (33) are just the hydrostatic equation (23)
evaluated at three adjacent levels. Confining the ad-
justments to levels £ and k41 we require that 67,
=82442=0T1_1=02,_1=0. Egs. (32) and (33) then
form a set of four equations in four unknowns which
have the solution

(33)

Rio—Rixy 1

0% 41=" (’uk+1_uk)2(1+%A9)

2600

Ria_Rik+§

0zr=— (uk+l"uk)2(1_%Ae) (e (34)
2g00
Ri,—Ripys
8T pr= — 0T = — (U1 —hs)?
26,00

Using (4) and (22), the appropriate adjustments to
.Pk+1, Pk, 6P/69k_;, aP/&G;,H and 6P/6‘9k+g are
then made.

Finally, in order to assure conservation of mo-
mentum, we must arrange that the integral
S u(3P/36)d0 remains constant, which requires that

o[ (wrszt2rr1) (Prya— Pryr)
+ (Mk+1+uk) (Plo+1_ Pk)

+ (uk+ 'Ilk_l) (Pk— Pk_l)] =0. (35)

Since the adjustments are expected to be small com-
pared to the initial values, it is appropriate to linearize
this expression. In addition, we specify that du,s1=2du;
so the Richardson number will not be altered, and
set dttppo =00 =0.
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Solving (35) we then find

(k42— 201) 0 Pryrt (threy1 —242—1) 6 P
Prpst+Prp—Pr— P,

(36)

6uk+1 = 6%k =

which completes the adjustment solution.

The net effect of the adjustment procedure is to
increase the physical thickness and mass of a dy-
namically unstable layer between O} and Oy and
correspondingly to decrease both the static stability
and the wind shear across the layer. After the ad-
justments are made, P, will have been altered (usually
decreased) in the layers just above and below that
of the initial instability since the thickness and mass
of these layers have been slightly decreased. Thus,
to be rigorous, a second test on Ri—Ri, should be
made for the column and possibly a further adjust-
ment. In practice, however, we find that it is sufh-
cient to adjust only once and thus secondary effects
are adjusted on subsequent time steps. Numerical
simulations were conducted with Ri,=Ri,=0.25,
causing supercritical regions to be continuously ad-
justed to a Richardson number of 0.25. Since ad-
justment is required at most at only a small fraction
of the grid points, this procedure is not computationally
expensive.

To illustrate how this adjustment procedure might
operate, consider the following example:

fopi— 2 =400 m, 6,=297 K, A6=6K
P =800 mb.

For these conditions Ri=0.2 and Py— Py y=40 mb.
Assuming Ri,=Ri,=0.25, from (32) 82¢41— 62 =100 m.
The requirement of mass conservation in (34) produces
a 0.5 m lifting of the mean height of the layer such that
82111=50.5 m and 6z,=—49.5 m. However, the mean
pressure of the layer is~slightly increased since from
(34) and (4) we obtain 8P =—4.72 mb while
8P,=5.00 mb. Eq. (36) provides an adjustment in %
to account for the difference in momentum of the
air entrained into the layer from above and below.
If we assume that Pry;— Piyo=Pi_1— Pr=40 mb and
that the shearing layer extends downward but not
upward, so that #po— ;=20 m s and #kp1—~ur
=30 m s, then (36) yields éus=0u;1=—0.33 m s%.

—_ —1
Ukl U= 20ms s

3. Comparisons with analytic solutions

Before describing numerical simulations of real flow
situations, it is instructive to analyze several sim-
plified cases in order to determine how accurately
the model represents the basi¢ features of mountain
waves and to provide an indication of how nonlinear
effects influence the wave structure. For this purpose,
comparisons of model results against linear and non-
linear analytic solutions provide a rigorous test of the
accuracy of the numerical model formulation.
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Fic. 4. Steady-state potential temperature surfaces for
k=500 m. Sinusoidal mountain contour (with perturbations
amplified by a factor of 2) at #i/d=20.

For simplicity we shall consider an initially uniform -

atmospheric structure which is isothermal and has a
horizontal wind speed of 20 m s™'. As an illustration
of the nature of the solutions produced by the model,
Fig. 4 displays the steady-state displacement of the
constant potential temperature coordinate surfaces
throughout the integration domain for flow over a
500 m sinusoidal mountain contour with periodic
lateral boundaries. Here perturbations have been
amplified by a factor of 2 for better visualization
of the wave structure: At steady state, these material
surfaces coincide with streamlines of the fluid motion.
The flow is directed from left to right and the upper
absorbing layer, described in section 2(b), begins at
a height of 10 km. The simulation utilizes 40 grid
intervals- in the vertical and 10 in the horizontal
which is- sufficient to accurately resolve the wave
structure. The horizontal scale has been rendered
dimensionless with respect to the characteristic moun-
tain half-width d, since for steady, inviscid flow the
horizontal length scale can be factored out of the
governing equations (1)~(4) and thus influences the
solution only by providing a horizontal scaling factor.
The dimensionless integration. time is defined by wuet/d,
and the time step is fixed at 0.01.

These stationary waves display certain basic features
which are characteristic of the hydrostatic wave solu-
tions generated by this model. Lines of constant wave
phase tilt upstream with height, indicating a negative
correlation between horizontal and vertical velocity
and thus a downward flux of horizontal momentum.
Wave amplitude generally increases with height, which
is consistent with the result from linear theory that
it should grow in proportion to the inverse square
root of density. In the dissipative layer above 10 km
the waves are gradually damped with helght and
vanish near the upper boundary.
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To provide a quantitative evaluation of the model
performance, we shall begin by comparing the model
results against linear theory for this same uniform
inviscid atmosphere flowing over a continuously
sinusoidal mountain contour. The linear, second-order
wave equation in (x,0) coordinates for this case is
represented by (6) in the previous section with ~2
given to a good approximation by

g2 T

N2 _ a?
~—

=

(37

Here we have chosen the (x,8) framework for the
linear analysis since the lower boundary, being a con-
stant @ surface, is treated without approximation.
(A comparison of linear solutions using different
vertical coordinates is discussed later in this section.)

12 T
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F16. 5a. Comparison of linear analytic and numerical solu-
tions for displacement of potential temperature surfaces for
sinusoidal mountain contour with /4e=100 m: solid line, nu-
merical solution at ##/d=20; dashed line, linear analytic solu-
tion. Also, the numerical solution for k=500 m is shown in
dotted lines.

FiG. 5b. Numerical and analytic Boussinesq solutions for
ho=750 m: solid line, numerical solution at #%/d=20; dashed
line, analytic nonlinear solution. Perturbations have been am-
plified to normalize the mountain height to 1 km.
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For the one-layer atmosphere under consideration the
wave equation (6) has constant coefficients since 2
in (37) is constant. The solution is further simplified
in that the mountain profile corresponds to a single
Fourier mode. This solution, derived for the displace-
ment height, where gz=%—9%/90, with a radiative
upper boundary is given by

"

ho (CpT)'lj
z(x,6)=—2—{ 14-ecr0l2R cos[vrx+ 9]}, (38)

where A denotes the peak-to-trough amplitude of the
sinusoidal mountain.

The corresponding numerical simulation was ob-
tained using the same grid structure as described for
the solution in Fig. 4. In Fig. Sa the solid lines depict
the streamlines generated by the nonlinear numerical
model for a mountain height of 100 m, which is small
enough that we would expect the flow field to be
very nearly linear. The corresponding analytic solu-
tion given by (38) is plotted in dashed lines with the
perturbations in both cases amplified by a factor
of 10 in order to better visualize the comparison.
The analytic and numerical solutions are almost in-
distinguishable, indicating that numerical resolution
is sufficient and that the upper damping region (not
shown in the figure) accurately simulates the desired
radiation condition. For contrast the solution for
ho=500 m is also displayed in Fig. 5a with the dotted
lines and with the perturbations amplified by a factor
of 2. (This is the same solution as shown in Fig. 4.)
Here nonlinear effects are clearly significant, as evi-
denced by the pronounced steepening of the wave
with height.

Nonlinear steady-state analytic solutions can be
obtained for hydrostatic Boussinesq flow if the up-
stream stability and wind profiles are independent of
height based on Long’s (1953) equation

9% N2
—-+—5=0,

a2 7l )

where § is the displacement of a streamline about its
undisturbed level. Although (39) is linear, complica-
tions arise in satisfying the lower boundary condition
since the mountain contour does not correspond to
a coordinate surface. As a result numerical procedures
are usually implemented to obtain solutions for par-
ticular terrain profiles. Recently, however, Lilly and
Klemp (1978) found that through a simple trans-
formation of the wvertical coordinate, closed form
solutions to (39) can be derived for any desired moun-
tain contour. By defining {=z—k(x), s(x) being the
mountain profile, this solution is given by

8(x,¢ ) =h(x) cosli+ f(x) sinlg,

where I=N/4. To satisfy the radiation condition, f(x)
is computed using a generalization of the procedure

(40)
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proposed by Drazin and Su (1975) which for linear
solutions yields

© h(x")
—dx’,
o X —x

1
J(&) =fr(x)=-P (41)

where P refers to the principal value of the integral.
For nonlinear solutions the corresponding condition
(Lilly and Klemp, 1978) becomes

1 h(x')dx'
@)= 1@ == [ {1—cosilh(e)—h®) ]y —
TJ o ' —x
1 o0 ’ d '3
—— / sinl[h(x’)—h(x)]f(ic) ’ (42)
TJ o x—x

Eq. (42) represents an integral equation for f which
can be solved iteratively by choosing f=f; as a first
guess in the last term on the right-hand side of (42),
solving for the improved estimate for f, and then
repeating the procedure. Evaluating these integrals
numerically, an accurate profile for f can be obtained
with only several itcrations.

In order to compute a numerical solution for com-
parison with (40) from our model, we transform the
Boussinesq equations in (x,2) coordinates to the (z,®)
framework which yields

du 0 0%
— (B =r—
dl ox ox?
d /03 d 0z
—<—>+—<u——)=0 g (43)
ot\ 99 dx\ 00
0%
—— _gz
a0 J

where ®=c,(T—T)—g0z. Integrating equations (43)
to a steady state for a sinusoidal mountain with /g = 750
m yields the solution depicted in Fig. 5b by the solid
lines. (Here again the perturbations have been ampli-
fied for visual purposes to normalize the mountain
height to 1 km.) The dashed lines in Fig. 5b correspond
to the analytic solution from (40) and (42), and again
reveal a good agreement of the results. For Boussinesq
flow nonlinear contributions to the solution produce
maximum steepening of the wave at odd multiples of a
half-wavelength above the ground and disappear at the
even multiples (Smith, 1977). These results are clearly
evident in (42).

As mentioned in the previous section, the vertical
flux of horizontal momentum for steady, inviscid
mountain waves should be independent of height.
This behavior for the numerical solution is examined
in Fig. 6 for the 7, =100 m (peak to trough) sinusoidal
mountain whose streamlines are exhibited in Fig. 5a.



90 JOURNAL OF THE ATMOSPHERIC SCIENCES

In the inviscid region below 10 km the momentum
flux computed by integrating Pdz/dx over one period,
corresponds to the linear analytic solution

(44)

M= (w/4)pohe®—
Cp
*(-30)
2R
indicated by the dashed line in Fig. 6. In the dis-
sipative region above 10 km the momentum flux is
continuously diminished owing to viscous dissipation
of the wave energy. The good agreement in the in-
viscid domain below verifies that this wave absorption
is achieved with little reflection. The small wiggles
in the profile arise since M is not exactly conserved
in the finite-difference equations.

For the 500 m mountain (Fig. 5a) the momentum
flux is almost exactly a factor of 25 greater than
the 100 m case, indicating that nonlinearities have
not altered the momentum flux, even though the
wave structure has been noticeably affected. This
result is consistent with the analysis by Lilly and
Klemp (1978) which indicates that for a symmetric
mountain the momentum flux associated with the
nonlinear Boussinesq solution (40) and (42) does not
deviate significantly from that coraputed from linear
theory until the wave amplitudes are close to
overturning.

We conclude our discussion of flow over a single
Fourier component of a mountain terrain by de-
scribing the results when the barrier height was
increased to 1 km. For this case, steady solutions
could not be obtained: small-scale instabilities gradu-
ally developed (even though the minimum Richardson
number remained greater than 0.25) and grew con-
tinuously in amplitude until the numerical solution
was destroyed. By sufficiently reducing the mesh
* resolution we found that these were apparently high-
wavenumber physical instabilities of the governing
equations. Fourier decomposition of the flow field
revealed pairs of high-wavenumber modes growing in
amplitude probably through resonant interaction with

ot (m/4)poNvho®
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the fundamental mode. The growth of secondary
modes due to triad interactions is well documented.
In fact, Hasselmann (1967) proved that all undamped
modes are destabilized through the growth of in-
finitesimal disturbances due to resonant wave inter-
actions. Davis and Acrivos (1967) identified the
instability and derived expressions for the growth
rates of the unstable modes for periodic waves in a
channel. For flow over an isolated mountain, we would
expect this instability to be less significant than that

-encountered for the sinusoidal profile since a single

mountain will consist 0f a series of horizontal wave-
numbers, each having an amplitude less than the
mountain height. ’

As a final test of our model using linear theory,
we examine the numerical solution for flow of this
same initially isothermal atmosphere having a con-
stant (20 m s7') horizontal wind speed past a small-
amplitude bell-shaped mountain. This case allows us
to evaluate the simulation of a flow field containing
a rather broad range of horizontal wavenumbers and
for which the lateral boundaries are nonperiodic. To
obtain this solution, the same grid structure was
utilized as in the example presented in Fig. 4, with
the dimensionless domain width L=6 and 27=20 kra.
To insure linearity of the numerical solution the
mountain height was set at 4= 10 m.

The linear analytic solution is obtained from (%)
with the lower boundary condition for each Fourier
mode & derived from the Fourier transform of the
mountain profile

b%ho
2(x,0) = ——
i

(45)

and a radiating upper boundary to eliminate down-
ward propagating modes. In (6), ¥? is again given
by (37) and the resulting linear solution has the form

b cosy® —x sinyO
x2+b*

2(x,0) = bhoe 912 (46) -

and

{yx—b(1—c,/2R)} cosyO+{by+(1—c,/2R)x} sinyO

u(x,e) Nhobryecr®/2R—

{(v*+(1—cp/2R)?} (x*+0?)

which, for 4>>1, can be simplified to

b siny®+x cosyO

#(x,0) = Nbhoe 0/ 22— 47)
x24-b2

The steady-state streamlines generated by the time-
dependent numerical model (amplified by a factor
of 50 for visualization purposes) are plotted in Fig. 7
for the central portion of the flow field. (Here we
have set the mountain half width ¢ equal to 2b.)

For comparison the analytic solution given by (46)
is also represented in the plot by the dashed lines.
To analyze the momentum transport, M is computed
on the basis of (30), using (45) and (47) with
P=—p(itu+ gz). Somewhat surprisingly, the result is
identical to the value of M given by (44). In other
words the momentum flux produced by a bell-shaped
mountain between —  and 4 is the same as that
generated by one cycle of a sinusoidal contour having
the same peak-to-trough height. In addition the
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F16. 6. Momentum flux profiles for 2o=100 m: dashed line,
analytic solution (44) for both sinusoidal and bell-shaped
mountains; solid line, numerical solution for sinusoidal mountain;
dashed-dotted line, numerical solution for bell-shaped mountain.

momentum flux for the bell mountain is independent
of b since the hydrostatic solution is independent of
the horizontal length scale. The momentum flux profile
produced in the numerical simulation (amplified by 10?
so it represents M for a 100 m mountain) is plotted
with a dashed line in Fig. 6, and again M is close
to the analytic value in the inviscid region below
10 km. The good agreement between analytic and
computed solutions demonstrated in Figs. 6 and 7
confirms our expectations that the nonperiodic lateral
boundary formulations do not distort the results, that
the upper damping region can effectively absorb wave

HEIGHT (km)

x/d

Fr1c. 7. Comparison of linear analytic and numerical solutions
for displacement of potential temperature surfaces for bell-
shaped mountain. Perturbations have been amplified to nor-
malize the mountain height to 500 m (solid line, numerical
solution at ##/d=50; dashed line, linear analytic solution).
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Fic. 8. Comparison of linear solutions for horizontal velocity
in (x,8) and (x2) coordinates: solid line, (x,8) solution; dashed
line, (x,2) solution. Labels denote velocity (m s™) for both
solutions.

energy over a range of horizontal wavenumbers, and
that the finite-difference resolution is sufficient to
accurately model the flow.

It is of interest to note the difference between the
linear solution computed in (x,8) coordinates and the
more conventional solution derived in the (x,3) frame-
work (Alaka, 1960). For the displacement height,
both approaches yield the result given by (46) since
v0 is equivalent to (IV/@)z. Similarly the expression
for horizontal velocity from the (x,3) analysis has the
same form as (47). There is, however, an important
difference between the two horizontal velocity fields.
In the (x,2) system the u profile for a given value
of the vertical coordinate z is located at that mean
height 7. On the other hand, in the (x,0) framework,
for a given value of the vertical coordinate the % profile
is located along a constant 6 surface, which is itself
displaced in the vertical. As the displacement am-
plitude of the perturbation increases the difference
between the two approaches becomes more pro-
nounced. This effect is illustrated in Fig. 8 where
the linear horizontal velocity field associated with
the flow in Fig. 7 is plotted both from the (x,§) sys-
tem and from an (x,2) analysis. Notice that in the
(x,0) solution the perturbation surface velocity is
very nearly antisymmetric about =0 as it should be,
while in the (x,2) result the asymmetry is more sig-
nificant since the surface profile is actually located
at 2=0. Also, near the top of the domain, differences
are accentuated where the spacing between stream-
lines is markedly decreased.

The favorable comparisons of our model results
with analytic solutions do not, of course, insure
against numerical errors arising in more complex
situations, nor do they prove the superiority of isen-
tropic coordinates to other terrain following systems.



92 JOURNAL OF THE ATMOSPHERIC SCIENCES

However, quantitative documentation of the model
accuracy for these simplified cases provides a solid
base from which we can proceed to more complicated
simulations with some confidence that the funda-
mental processes are being properly represented.

4. Nonlinear solutions for multilayer atmospheric
structures

Having tested the model behavior against analytic
solutions, we now turn to large-amplitude cases where
nonlinear effects and vertically varying atmospheric
structures play significant roles in determining the
wave structure. Through numerical modeling, non-
linear mountain waves can be simulated for a variety
of atmospheric conditions, most of which cannot be
obtained currently from nonlinear analytic solutions.
At the same time, analyses based upon numerical
modeling are hindered because the solutions are gen-
erated for a specific set of conditions, and it is often
difficult to identify the important forcing mechanisms
and the extent to which results may be generalized
to other (even similar) situations. Recognizing this
dilemma, we shall concentrate on results which ap-
pear to be rather typical of certain classes of atmo-
spheric cases.

For finite-amplitude simulations, certain adjust-
ments in the computational procedure are required
which were not necessary for linear situations. For
example, the turbulence adjustment scheme described
in Section 2e is incorporated to prohibit the minimum
Richardson number from dropping below a critical
value of 0.25. In addition, a small amount of damping
is required for large-amplitude solutions to stabilize
nonlinear numerical and possibly physical instabilities
(recall the instabilities described in Section 3 for a
1 km sinusoidal mountain). This is accomplished by
fixing »=vo below 6=8,, in (1) at the smallest value
which is sufficient to maintain stability. For - the
simulations conducted vy was held within the range
0 vo/ (uod)<0.01 with values chosen in the lower
half of this range for all but the very strongest cases.
To estimate the magnitude of damping produced by
this term, consider its effect in the steady-state linear
wave equation given by (6). To avoid confusion due
to the time staggered grid, we define Ax’'=%Ax which
then represents the horizontal. grid interval in the
corresponding unstaggered system. Using second-order
horizontal finite-differencing as outlined in (20) and
(21) the coefficient ¥? becomes

32
7= Bvos 2 kA®\ 48
Vo X
1—¢'——<~—— tan———-)
o \kAx' 2

For kvo/usk1, the upward radiating solution to (6) is
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damped in the vertical by a factor of
kvos 2 kAx
expl: —{— tan———)ﬁ@]. (49)
2140 kAx' 2

As an example, assume there is a one-half wavelength
phase shift between the mountain and the tropopause
at ©=0,, (86;==). Then, for a disturbance of hori-
zontal wavelength 4Ax’ (i.e., k=n/2Ax") this coeffi-
cient at the tropopause becomes

TVe
exp( - )
Ax’uo

With Ax’/d=0.2 and vo/ued at its maximum value of
0.01, the wave amplitude is reduced by about 149}, Of
course, this effect is reduced for longer wavelength cora-
ponents of the flow and for smaller values of vo/ued.
Using the procedures described above numerical
damping can be adjusted to suppress instability with
minimal influence on the wave structure. In this
regard, numerical schemes which contain inherent
computational damping are undesirable since this
damping is difficult to regulate, and may have sub-
stantial impact on the results. For example, Mahrer
and Pielke (1975) use a first-order upstream dif-
ferencing scheme for advection terms in the prognostic
equations. Using their finite-difference representations
the coefficient 4? in the linear steady wave equation
(with no explicit damping terms present) becomes

(raiad)
y={—"7"7"").
1—i tandkAx’

By comparing (50) with (48) for kAx'<1 it is clear
that this coefficient produces the same damping
coefficient as (49) with »o/uod=Ax'/d. In Mahrer
and Pielke’s simulations Ax’/d=0.3 which is 30 times
greater than our maximum value of vo/ued. For a 4Ax
wave (corresponding to 40 km in their model) the
damping factor one-half vertical wavelength above
ground is ¢ /2, which causes an 809, reduction in
wave amplitude. This large damping reduces the
reflective effect of the upper boundary since most of
the wave energy is dissipated throughout the tropo-
sphere and doesn’t reach this boundary.

The effect of a highly damped numerical model is
somewhat similar to that of bringing our damping
layer down to the surface. A tilted wave with upward
energy and downward momentum transports is pro-
duced, although these transports diminish rapidly
with height. The predicted value of momentum flux
at the surface is then similar to that of an atmo-
sphere with constant stability equal to that near the
surface. In the presence of a tropopause and/or other
sharp changes in stability or wind, this prediction
will generally be incorrect, by as much as an order

(50)
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of magnitude in some cases, as shown by Blumen
(1965) and Klemp and Lilly (1975). For example,
consider a two-layer atmosphere in which the stability
in the upper stratospheric layer is twice that in the
lower tropospheric layer. Based on linear analysis the
momentum flux will increase by a factor of 16 as
the thickness of the lower layer changes from an odd
multiple of one-quarter vertical wavelength in thick-
ness to an even multiple (Klemp and Lilly, 1975).
With significant damping present in the lower layer
this sensitivity would not be realized. .

In computing the momentum flux, adjustments are
also required for finite-amplitude waves, since M is
uniquely defined only within the linear framework.
For nonlinear situations ambiguities arise in that M is
based on the correlation of perturbation variables,
yet the mean state itself is being altered, making
identification of the perturbation portion uncertain.
If the flow far upstream or downstream is altered,
then the momentum flux as defined by (30) is no
longer constant with height and different formulations
for M lead to different results [e.g., Eq. (30) is no
longer equivalent to the horizontal integral of pu'w’].
Since the pw'w’ correlation is commonly used for

10 —7 T
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F1c. 9. Linear numerical solution for two-layer atmosphere
at #/d=>50. (a) Displacement of potential temperature sur-
faces; (b) contours of horizontal velocity (m s™).
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F1c. 10. Numerical solution with /% =1000 m for two-layer
atmosphere at fuy/d=>50. (a) Displacement of potential tem-
perature surfaces; (b) contours of horizontal velocity (m s™).

momentum flux calculations, we make our formula-
tion for M consistent with this approach by noting
that from the linear steady-state equation, #'w’
=—&92’/0x. Thus, for the numerical model in the 8
framework,

L a9z
MO)=—p / (®—d)—dx. (51)
-L ox

In seeking the best estimate for M, we allow & to be
a linear function of x, using a least-squares fit at
each 6 level. This approach minimizes vertical oscil-
lations in the M profile which arise if & is defined
to be constant at each level and is also similar to the
approach used in observational analysis (Lilly, 1978).

In order to present a representative sample of non-
linear model results we have selected simulations
derived for a simple, but not unrealistic, two-layer
atmospheric structure. This atmosphere consists of a
troposphere extending up to 10 km in which the
temperature lapse rate is a constant 6°C km™, with
Ty=280 K and an isothermal stratosphere between
10 and 20 km which also serves as the damping layer
as described in Section 2b. The horizontal wind is
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Fic. 11. As in Fig. 10 except with 2,=2000 m and at tue/d=25.

initially set independent of height at 20 m s~! and
the bell-shaped mountain contour is described by (45)
with b=d/2.

For this set of initial atmospheric conditions, the
linear and nonlinear steady-state solutions are illus-
trated in Figs. 9 and 10 for %=1000 m. The linear
solution was obtained by setting A=1 m and am-
plifying the resulting perturbations by 1000. This
procedure insures that nonlinear interactions in the
equations are insignificant. These figures depict the
streamline ‘and horizontal velocity fields throughout
the troposphere, having omitted the upper damping
layer and the region 3<{x/d|<6 in which perturba-
tions only continue their smooth decay with increasing
distance from the mountain.

Comparing Figs. 9 and 10 we see that under these
conditions, the linear and nonlinear results are at
least qualitatively similar. The horizontal velocity
maximum is comparable in both simulations and
occurs in the vicinity of one-quarter of a vertical
wavelength above the mountain. The wave structure
in the upper troposphere is similar although some
steepening of the wave has occurred in the nonlinear
case. The most noticeable difference occurs in the
lower troposphere where in the linear solution stream-
lines are packed closely together in the region of
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strong shear owing to the change in phase of the
wave with height. Since by continuity the horizontal
velocity is inversely proportional to the distance
between streamlines this spacing is clearly inconsistent
with the velocity field. In the nonlinear case the
deficiency is removed through maintenance of an
increased interval between streamlines. In these solu-
tions, the flow field becomes almost independent of x
at large horizontal distances from the mountain, and
thus moving the location of the inflow boundary
further upstream has little effect on the results.

Increasing the mountain amplitude to 2 km produces
a wave structure, depicted in Fig. 11, in which non-
linear effects are clearly significant. The large-amplitude
wave induces strong acceleration of flow at low levels
in the lee of the mountain; and the horizontal velocity
maximum is displaced downward and into the lee of
the mountain while its perturbation amplitude is
increased by a factor of 3 over the value for a 1 km
mountain. - S

For the two-layer atmosphere under consideration
the linear phase shift of the wave between the moun-
tain and the tropopause is close to one vertical wave-
length. According to linear theory (Blumen, 1965;
Klemp and Lilly, 1975), the momentum flux achieved
when the lower layer is an integer multiple of a half-
wavelength in thickness is the same as that produced
by a single-layer atmosphere with the stability of the
upper layer. Consequently, the linear dimensionless
momentum flux for this case should be just slightly
less than the value of 17 computed for the isothermal
atmosphere in the previous section after scaling up

0 I i ! 1 1
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F1c. 12. Time-dependent behavior of momentum flux profiles
for two-layer atmosphere: 1—surface flux for linear solution;
2—flux at 10 km level for linear solution; 3—surface flux for
ho=1000 m; 4—surface flux for ky=2000 m divided by a factor
of 4. The shaded area indicates the duration over which the

mountain is introduced. .
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the mountain height from 100 m to 1 km (see Fig. 6).
In Fig. 12 the linear momentum flux is plotted as
a function of time for the surface level (curve 1)
and the tropopause level (curve 2) which is just
below the damping layer. The curves converge in
time to a dimensionless value of 16 which is con-
sistent with the one-layer result. As expected, the
upper level momentum flux develops more slowly
than near the surface and here a dimensionless time
of about 30 is required before the flux profile is nearly
constant with height. This corresponds to the time
it takes the air to pass across the mountain (of
width 2d) 15 times. When nonlinearities are present,
this development may take place even more slowly.
Curve 3 depicts the evolution of surface level mo-
mentum flux for the 1 km mountain. Although the
momentum flux increases more slowly than the linear
response, it eventually achieves about the same mag-
nitude. Increasing the mountain height to 2 km causes
substantial enhancement of the momentum flux.
Curve 4 in Fig. 12 represents the momentum flux
for hy=2 km after dividing the actual flux by a factor
of 4 in order to facilitate comparison with the profiles
for #o=1 km. As the wave structure develops a maxi-
mum flux occurs at fug/d=25 which is nearly double
the linear value for a mountain of the same height.
Fig. 11 corresponds to this dimensionless time of 25.
With further increase in time the vertical momentum
flux gradually drops off and the wave appears to
shift slightly upstream. To test the influence of re-
flection from the lateral boundaries, this simulation
was recomputed with the same grid resolution but
with the boundaries twice as far from the mountain
(L==12). For this case the flow field displayed little
change though the more sensitive momentum flux was
decreased by about 10%,.

The increased momentum flux for the 2 kim moun-
tain above the linear value is consistent with Lilly
and Klemp’s (1978) analytic solutions for a one-layer
atmosphere which indicate that the momentum flux
Is substantially increased at wave amplitudes which
are nearly overturning. However, it is also possible
that nonlinear contributions to the momentum flux
are more significant for the two-layer atmosphere or
perhaps that partial reflections due to the turbulence
adjustment processes amplify the response.

The time-dependence of momentum flux profiles
depicted in Fig. 12 provides an indication of the time
required to obtain steady solutions. For comparison,
Deaven (1976) introduces the mountain over the first
hour of integration and then analyzes results at 3 h,
corresponding to tuo/d=>5.4. This time should be
associated with an early stage of wave development.
For his case, #p=15 m s7! and d=2b=30 km. Simi-
larly Mahrer and Pielke (1975) raise the mountain
over 2 h and display their results at 4 h, for which
tuo/d=17.2. In both cases, however, further wave
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development would be restricted by their large com-
putational damping.

5. Comparison with observational data

In seeking to compare model simulations against
observational data for situations involving large moun-
tain wave amplitude, one finds the choice of cases
rather limited. Such observations have been collected
by flying one or more instrumented aircraft through
the standing wave system to determine the structure
and the associated vertical flux of horizontal momen-
tum. Unfortunately, it has proven difficult to schedule
and conduct aircraft flights during strong episodes
owing to the sporadic nature of the event and its
typically short duration. Furthermore, strong accom-
panying surface winds and severe air turbulence fre-
quently inhibit flight operations.

The most spectacular case to be observationally
well-documented along the eastern slope of the Colo-
rado Rockies occurred on 11 January 1972. On this
day Boulder, Colo., experienced one of its most severe
downslope windstorms with surface winds gusting as
high as 120 mph (55 m s7!). Two periods of several
hours each contained frequent gusts over 100 mph
(45 m s7!). Investigation of the associated mountain
waves by Lilly and Zipser (1972) and Lilly (1978)
revealed the presence of the powerful wave system
depicted in Fig. 13.

To numerically simulate this case we must specify
initial temperature and horizontal wind profiles which
characterize the undisturbed atmosphere. Recognizing
that any such initialization derived from real data is
somewhat ambiguous, we have chosen those profiles
based upon the National Weather Service 1700 MST
sounding (see Fig. 14) taken at Grand Junction,
Colo., some 300 km west of Boulder. This sounding
time is appropriate for the upper level portion of the
observations in Fig. 13.

For modeling purposes ground level on the upwind
side of the mountain is taken to be the same as that
in the lee. Consequently, the base of the upwind
profiles is set at 830 mb which is just slightly above
the elevation of Grand Junction. From 830 mb to the
tropopause at 190 mb the potential temperature and
the westerly wind component were entered into the
model at approximately 100 mb intervals. Above the
tropopause, the atmosphere was specified to be iso-
thermal with a constant wind of 30 m s~.. Absorption
of wave energy takes place within this upper layer,
which extends to 25 km. For establishing upstream
profiles, the pressure and wind are interpolated to the
potential temperature coordinate surfaces using cubic
splines.

Instead of attempting to specify the detailed moun-
tain terrain we have chosen a simpler, bell-shaped
contour with the same elevation change (2 km) as that
between the Continental Divide and the plains im-
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Fic. 13a. Cross section of the potential temperature field (K) along an east-west line through Boulder, as obtained from analysis
of the Queen Air and Sabreliner data on 11 January 1972. Data above the heavy dashed line are from the Sabreliner, taken between
1700 and 2000 MST, while those below this line are primarily from the Queen Air taken from 1330 to 1500. Flight tracks are indi-
cated by the dashed lines, except for crosses in turbulent portions. For further details, see Lilly and Zipser (1972).

“Fic. 13b. Contours of horizontal velocity (m s™) along the same cross section as in (a), as derived from the Sabreliner data only.

The analysis below 500 mb was partially obtained from vertical integration of the continuity equation, assuming two-dimensional
steady-state flow.” ’
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mediately to the east. Because of the upstream in-
fluence and partial blocking of low level flow, the
detailed shape of the upwind side of the mountain was
not found to have a strong influence upon the solution.

The numerical solution for the 11 January 1972
data integrated to a steady-state result is shown in
Fig. 15. Here the potential temperature and hori-
zontal velocity fields have been plotted throughout
the troposphere and out to the lateral boundaries at
x%/d==6 in order to depict the model results on
a scale which is similar to the observations in Fig. 13.
In Fig. 15a the streamlines reflected by the potential
temperature surfaces show the presence of a large-
amplitude wave standing over the lee slope of the
mountain which is rather similar to the observed
wave in Fig. 13a. In these two figures, the low-level
stable layer is identified by the decreased vertical
spacing between adjacent 8 surfaces. Upwind of the
mountain, the stable layer has been lifted through
upstream influence and maintains a fairly constant
elevation. Thus even though a bell-shaped mountain
contour was specified, low-level flow develops the
ramp-like structure consistent with the actual terrain.
Although complete blocking cannot occur in the
framework of this model since dP/30 must be finite
and #dP/30 is constant with x in the steady state,
the low-level flow upstream of the mountain can be
significantly retarded and thus produces a similar
effect. Immediately in the lee of the mountain, the
stable layer recovers rapidly as in the observed flow
and appears similar to a hydraulic jump. In addition
the computed phase shift of the wave across the
troposphere agrees with the observations, as evi-
denced by the similar shape of the upper level
streamlines.

Turning to the horizontal wind fields in Figs. 13b
and 15b, we find the basic flow structure is again
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Fic. 14. 1700 MST Grand Junction sounding (solid line,
temperature; dashed line, dew-point temperature). The oblique
axis indicates potential temperature levels. Wind barbs at the
right represent the wind speed (kt) and wind direction using
standard meteorological notation.
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Fic. 15. Numerical simulation of 11 January 1972 case.
(a) Displacement of potential temperature surfaces; (b) con-
tours of west wind component (m s7!). Maximum surface ve-
locity in the lee of the mountain is 55 m s72,

well-represented by the model. Strong winds are pre-
dicted just above the lee slope while a low velocity
trough extends through the upper portion of the
wave. Note that the mean west wind at mid-levels is
somewhat less than that recorded by the instrumented
aircraft. This difference probably arises because the
wind direction was west-northwest and thus the
Grand Junction station is about 150 km south of the
actual trajectory for air passing over the Continental
Divide west of Boulder.

Data from the 20 000 and 30 000 ft flight legs were
used to estimate the momentum flux associated with
this large-amplitude wave. Assuming 200 km for the
length of the traverses the average of the two com-
puted values corresponds to a momentum flux of
47 dyn cm™ (4.7 Pa). For comparison, the flux gen-
erated by the model simulation using the same aver-
aging distance is about 30 dyn cm™2

In a previous investigation (Klemp and Lilly, 1975)
we simulated this same case using a linear steady-
state wave model. Although the linear solution also
produced a large-amplitude response, certain differ-
ences between the two approaches are noteworthy.
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In the linear case, the base of the upwind sounding
was taken at 700 mb and the mountain contour was
specified using a ramp profile as suggested by the
upwind structure of the observed low-level 8 surfaces.
Since a linear model precludes any upstream influence
caused by a finite mountain height, this procedure
attempted to roughly account for this effect by
choosing the upwind surface level near the height of
the Continental Divide. Computing the linear solu-
tion based on the sounding taken down to 830 mb,
as used to obtain Fig. 15, produced a small-amplitude
wave; including the portion of the sounding below
mountain-top level caused the phase shift across the
troposphere to increase from an optimal value near
one-half of a vertical wavelength to 0.8 which is
usually associated with a weak response (see Klemp
and Lilly, 1975). On the other hand, using a sounding
base of 700 mb in the nonlinear model, the wave
no longer maintained its position immediately in the
lee of the mountain. Rather it moved downstream
in a manner somewhat similar to a propagating jump.
Thus, at least for this particular nonlinear simula-
tion, including the region of weak flow beneath the
stable layer apparently reduces the low-level Froude
number sufficiently to prevent significant downstream
propagation of disturbances. These results suggest
that regions upwind of and below the mountain crest
should perhaps be omitted in linear simulations if
upstream influence is thought to be significant, but
in any event should be included for nonlinear
modeling.

A second observational case chosen for comparison
occurred on 17 February 1970. The observations were
analyzed in detail by Lilly and Kennedy (1973) who
presented the wave structure shown in Fig. 16. This
situation is quite different from one just discussed in
that strong surface winds are not present (though
they did occur several hours earlier) and the hydro-
static wave appears to reach appreciable amplitude
only near the tropopause. The periodic waves visible
in Fig. 16a around 400 mb are probably nonhydro-
static resonant waves (see, e.g., Alaka, 1960) and
cannot be represented by the model.

Since the aircraft data were accumulated between
0600 and 1000 MST, the Grand Junction sounding
taken at 0500 MST on this day is well suited for
initialization of the model. In addition, this sounding
(shown in Fig. 17) is in approximately the correct
upwind direction, as indicated by the nearly westerly
flow. Sounding data were put into the model by the
same procedure described for the previous case. Here
potential temperature and wind profiles were specified
from 830 mb to the very high and cold tropopause
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Fic. 17. Grand Junction sounding at 0500 MST
17 February 1970 (as in Fig. 14).

at about the 80 mb level. Above 80 mb the sounding
was continued an additional 10 km using a constant
temperature and a 10 m s™! wind. Note that in the
sounding below 800 mb the air is very stable with
easterly flow. Since this surface inversion is probably
not representative of flow passing over the mountains
we chose to estimate the profiles between 830 and
800 mb from the data above 800 mb. Thus, at the
base of the sounding we specified 6,=299 K and
#y=8 msL

The numerical simulation produced from this
sounding data is shown in Fig. 18, and compares
favorably with the observations in Fig. 16. The wave
just below the tropopause is reversed in phase from
the low-level flow and has comparable amplitude to
the observed wave. Upstream of the upper wave, the
flow is apparently blocked, and this stagnant region
is also well-represented by the numerical solution.
Notice that the position of the wave and the asso-
ciated blocked layer in the model are about 1 km too
high. This may occur because the wind speeds in the
mid-troposphere are slightly too high. Consequently
the vertical wavelength is increased and the position
of phase reversal is somewhat elevated.

From the observations, Lilly and Kennedy (1973)
also computed the vertical flux of horizontal momen-
tum using several different techniques. The momentum .
flux profile derived by averaging the various ap-
proaches is depicted in Fig. 19 along with the mo-
mentum flux computed from the numerical simula-
tion. Flux values from the model were obtained by
calculating the total momentum flux (dyn cm™) across

F1G. 16a. Potential temperature cross section for 17 February 1970. Solid lines are isentropes (K), dashed lines
are aircraft or balloon flight trajectories. The cross section is along a 275°-095° true azimuth line, crossing the
Kremmling, Colo., and Denver VOR aircraft navigation stations. F16. 16b. Westerly wind component cross section

for 17 February 1970. Isotachs are in m s™.
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Fic. 18. Numerical simulation of 17 February 1970 case.
(a) Displacement of potential temperature surfaces; (b) con-
tours of west wind component (m s™).

‘each 6 surface and then dividing the results by the
same averaging distance (200 km) as. used in com-
puting the observational flux density. The magnitude
of the simulated momentum flux is similar to ob-
served values throughout the troposphere and then
drops off sharply just below the tropopause. This
decline occurs slightly above the observed turbulent
layer since, as mentioned above, the position of the
computed wave is slightly elevated.

This rapid decrease of momentum flux in the model
occurs in the essentially inviscid domain, below the
lower boundary of the damping layer located at
18 km. In this region, we would normally expect a
relatively constant momentum flux profile. However,
for this case the stagnant region in the upwind por-
tion of the wave between 17 and 18 km (see Fig. 18b)
forms a critical layer for stationary wave modes in
which one would expect momentum removal from the
mean flow. Although the critical layer does mnot ex-
tend across the entire domain its presence may
nonetheless serve to absorb a significant amount of
wave energy propagating up from below.

This situation is rather difficult to interpret since
the critical layer itself is generated by the wave
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dynamics. To test the model behavior for a con-
ceptually simpler case we return to a two-layer struc-
ture in which a 6°C km™ lapse rate exists up to 10 km
with isothermal conditions above. For the wind profile
we specify a linear shear from 20 m s™ at the surface
to —20 m s at 10 km, and a constant —20 m s
wind in the isothermal region. For simplicity the
lateral boundaries were set periodic at x/d=+6.

The flow structure and accompanying momentum '
flux profile produced by this simulation are shown in
Figs. 20 and 21. Approaching the critical layer from
below, the wave amplitude and momentum flux
diminish rapidly; above this layer little wave motion
remains and the small momentum flux has switched
sign because of the change in direction of the wind.
In this solution the wave breakdown which occurs in
the vicinity of the critical layer cannot be modeled
explicitly and thus the turbulent adjustment procedure
described in Section 2Ze is used to parameterize this
effect. In this manner small vertical scales are elimi-
nated as the local Richardson number drops below 0.25.

If the flow were linear, the critical layer absorption
would take place without reflection (Booker and
Bretherton, 1967). Consequently, the low-level mo-
mentum flux should be the same as that for a one-
layer radiating solution based on the atmospheric
properties near the ground. (If the mean state
Richardson number is much greater than unity the
influence of shear on the momentum flux can be
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F1c. 19. Momentum flux profiles for 17 February 1970 case
[solid line, observed flux profile, obtained by averaging results
from several different methods of computation (see Lilly and
Kennedy, 1973); dashed line, flux profile from numerical
simulation].
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F1c. 20. Displacement of potential temperature surfaces in critical layer simu-
lation. Initial height of critical layer is at 5 km. At right, corresponding mo-

mentum flux profile is displayed.

neglected.) For this case such a computation leads to
a dimensionless momentum flux of about 11. By
utilizing artificial viscosity near the critical layer,
linear solutions were obtained which reproduced this
theoretical value for the low level flux. Changing the
magnitude of damping near the critical layer altered
the flow structure in that region, but the low-level
solution was unaffected. These results therefore sup-
port the linear critical layer theory by indicating little
reflection. In the nonlinear solution shown in Fig. 20,
however, the surface momentum flux is nearly double
the linear value, implying that substantial partial
reflections of the wave may be occurring. (Partial
reflection of wave energy may either enhance or
diminish the net momentum flux depending on the
relative phase of upward and downward propagating
modes.) This result is consistent with those of Breeding
(1971) who found in nonlinear critical layer simula-
tions that considerable wave energy could be reflected.
If reflections occur in the vicinity of the critical level
the resulting low-level momentum flux may depend
on the particular approach used for parameterization
of the regions of wave breakdown. For this reason
we cannot justify our quantitative results for the
nonlinear critical layer solution. At least qualitatively,
however, the model appears to simulate the salient
features of mountain wave generation in the vicinity
of a critical level.

6. Summary and conclusions

In this paper we have investigated the essential
features of a model designed to simulate stratified
flow over finite-amplitude topographic features with

reasonable accuracy. We have not considered three-
dimensional flows, although we believe most of our
results will extend to three-dimensional models. We
have also neglected latent heat exchanges [treated
to some degree by Fraser ef al. (1973)] and lower
boundary layer effects (which will, however, be re-
ported on subsequently). In addition, we have con-
fined our investigation to scales not significantly
affected by either nonhydrostatic forces or earth’s
rotation, i.e., wavelengths between 2ri/N and 2wi/f,
or roughly between 10 and 1000 km.

In general we found that two of the most important
modeling requirements are control over internal dis-
sipation and an ability to simulate a radiative upper
boundary condition. Without these features the pre-
dicted wave response will tend to be unstable or
overdamped, and will incorrectly predict the vertical
momentum flux, ‘surface wind amplitude and the
vertical structure of all fields. We found that non-
linear solutions are best represented . using ‘‘open”
lateral boundary conditions, as described in Section 2,
though results which do not exhibit significant blocking
could be obtained with cyclic lateral conditions. We
do not believe that highly stretched lateral grids are
useful for avoiding the need for lateral boundaries,
because of their tendency to cause aliasing problems,
spurious reflection and possibly instability. Our use
of potential temperature coordinates and our tur-
bulent adjustment procedure seem efficient but not
essential. The latter could be replaced by some form
of viscosity with strong Richardson number dependence.

In transferring our model specifications to a three-
dimensional framework, the most serious problems
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Fic. 21. Contours of horizontal velocity (m s™1) for critical
layer simulation depicted also in Fig. 20.

would probably arise in the upper boundary condi-
tion. Our recommendations of at least one vertical
wavelength of damping, consisting of eight grid points
and a nominal Reynolds number of order 1, would
require a burdensome increase in the size of the
integration domain and could in fact be impossible
to accommodate if the wind speed and dominant
forcing scale are varying with space and time over
a substantial range of magnitudes. While it may be
possible to vary the viscosity profile locally, it is
hard to see how the dimensions of the damping layer
itself could be so readily adjusted. Of course the
optimal solution would be to apply a mathematical
radiation condition along the upper boundary in a
form which is stable and efficient for a time-dependent
nonlinear framework. Such a formulation clearly re-
quires a nonlocal specification of conditions.

The results of our numerical experiments with
idealized profiles and mountain shapes appear con-
sistent with accepted wave theory, but extend to
cases where analytic theory is cumbersome or un-
available. In conventional analyses, one of the first
effect of nonlinearity in forced gravity waves arises
in the boundary conditions. This effect is demon-
strated by comparison of linear solutions in height
and “potential temperature coordinates, since the
boundary conditions in the latter case remain correct
for finite amplitude topography. In this regard, linear
solutions in a terrain following coordinate are superior
to those in the (x,2) framework. For still larger am-
plitude forcing, nonlinear effects are exhibited in the
development of upstream influence (blocking), second-
ary flow instability (shearing and resonant interaction)
and jumplike phenomena, but the order of appearance
of these phenomena depends on details of the upstream
flow profiles and the topographic forcing. For reasons
that remain somewhat unclear, the existence of non-
linear effects can lead to slowly varying temporal
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fluctuations which inhibit complete convergence to
a steady-state solution. It seems possible that some
of the characteristic variability in the intensity of
wave-induced downslope windstorms may be asso-
ciated with these effects.

The application of our model to real data cases
produced two rather noteworthy results. For the
11 January 1972 windstorm the basic flow structure
is well-represented by the model, though the momen-
tum flux amplitude was some 309, lower than ob-
served. The results also help to justify certain pro-
cedures used in our attempts to predict downslope
windstorms using linear theory. In general, we have
found it -appropriate to specify the mean state in the
linear model using only the portion of the upstream
sounding above a level of 700 mb, about 50 mb below
the mountain ridge crest. Our assumption, based in
large part on a few well-documented aircraft flight
profiles, was that the flow below this level was blocked
and/or diverted around the mountain range, and thus
could not contribute to the windstorm dynamics. Our
nonlinear model, however, is initialized using the
entire upstream sounding profile. In this case the
upstream blocking develops naturally and apparently
correctly, without the need for three-dimensional
diversion of the low-level flow around the mountain
range. The flow simulation for the 11 January storm
is also successful in reproducing the strong winds
immediately in the lee of the mountain and the in-
tense shear layer in the mid-troposphere which led to
severe turbulence for aircraft crossing the Rockies
on that day. . :

The numerical results for the 17 February 1970
data show a striking resemblance to observed data.
The apparent existence of an elevated region of
blocking near the tropopause was simulated quite
accurately. by the model, as was one of the more
puzzling features of the analysis, the almost complete
absorption of the wave energy in this region. While
we still do not fully understand this result, the ab-
sorption appears to result from a combination of the
elevated upstream block providing at least a partial
critical layer and downstream flow instability due to
large shear. In addition, the model predicted a mo-
mentum flux profile essentially identical to that
observed.

Finally, our preliminary investigation of model
solutions with the presence of a more conventional
critical layer suggests that for nonlinear waves, critical
layers may produce considerable wave reflection which
may strongly influence low-level wave characteristics.
The magnitude and phase of this reflection, however,
may be strongly dependent on details of the parame-
terized mechanism for turbulent energy dissipation.
Consequently, further investigation of the dissipation
mechanism is warranted if one seeks quantitatively
accurate critical layer solutions. ‘
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APPENDIX
Analysis of Lateral Boundary Conditions

The lateral boundary conditions presented in Sec-
tion 2c appear to be numerically stable and to cause
little reflection for the mountain wave problem. To
provide some justification for these boundary condi-
tions, we present here an analysis of the boundary
reflection for the linearized equations. In evaluating
the reflection at the lateral boundaries we are aided
by the fact that for each vertical wavenumber /, the
linear equations (13) are identical in form to the
two-dimensional shallow water equations. Thus the
hydrostatic equations can be analyzed by considering
boundary conditions for the simpler shallow water
equations, assuming the speed of wave propagation
is not precisely known (being dependent upon 7).
Nonreflective boundary conditions can be specified
for the shallow water equations when the wave speed
is known by setting the amplitude of the incoming
characteristic equal to zero. Consequently, we shall
evaluate the reflection caused by improperly estimating
the wave speed.

For this analysis boundary reflection is evaluated
for incident disturbances which are periodic both in
space and time, and thus reflected modes are also
periodic. Although these perturbations are greatly
oversimplified, they can be considered to be individual
Fourier components of actual disturbances. Evidence
will subsequently be provided to verify that the
results from this approach agree well with observed
reflection in numerical simulations.

Assuming perfect temporal resolution and using
second-order finite differences for the spatial deriva-

tives, the vertically transformed equations (13)
become

an .

—+ 800+ 02,2=0

at

. , (A1)

ad ~

——+1%82,P+¢282,4+0

ot

which are identical to the shallow water equations
if we identify # with » and & with gh. Seeking periodic
solutions to (A1) we find two physical wave modes
of the form

I: (ﬂl,@l) = (ul,%)e‘(""*‘“”,

w1=[(#+c)/Ax] sink:Ax, (A2)
II: (’122,&2) = (uz,(p?)ei(kzr@zt)’
we=[(1—c)/Ax] sink:Ax. (A3)

The expressions for w; and ws are required for modes I
and II to be solutions of (A1l). Because (Al) are
finite-difference equations, two computational modes
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can also exist which are solutions to (Al). These are

II1: ('123,&)3) = (u3’Q)3)ei(k3rw1t)’ »
w1={ (a+c)/Ax] sink:Ax, (A4)
1v: (124;&)4) = (14,Dy) et Faz—0w2t)
wy=[(#—c)/Ax]sink.Ax, (AS)
and are related to the physical modes by
T .
ky=——ky, ki=-——Fk, (A6)
Ax Ax

In other words, there are two horizontal wavenumbers
corresponding to each value of the frequency, a physi-
cal mode and a computational mode. As w—0 the
physical mode approaches infinite wavelength, while
the computational mode approaches 2Ax. The group
velocities (dw/dk) of the disturbances are given by

cp1= —cg3= (i+c) cosk;Ax} a7

y
Cor=—Cg1=(i—c) cosk,Ax

and thus two modes propagate upstream and two
downstream regardless of the magnitude of ¢. For
the present analysis we shall not be concerned with
the effects of limited resolution and thus we assume
kiAx<<1 and ksAx<<1l. Under these conditions, the
computational mode wavelengths are approaching 2Ax.
For ¢>i, one physical and one computational mode
propagate upstream and one of each travel down-
stream; for ¢<#, both physical modes move down-
stream and only the computational modes propagate
upstream.

Turning to the outflow boundary we first consider
the case ¢>#>0 implying one physical mode can
propagate upstream and thus one boundary condition
should be specified. For this situation mode I is the
incident physical mode. If a boundary condition is
specified which is not compatible with this disturbance,
reflection can take place into physical mode II and/or
computational mode III since they have group veloci-
ties directed upstream. For the solution to remain
continuous, the frequencies of the incident and re-
flected modes must match at the boundary. By setting

w1 =wg, We obtain
A+c
ks
H—c

and consequently refiection into the physical mode
from the outflow boundary always occurs with higher
wavenumber than the incident mode. In (A8) it is
assumed sinkAx~kAx. If the resolution is limited
this approximation may not be valid. In fact, if
(4 c)/ (%i— c) sink1Ax exceeds unity, ks becomes com-
plex and causes the reflected modes to be exponentially
damped out as they propagate upstream.

k2=

(A8)
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To evaluate the reflection caused by a particular
boundary formulation, we define a reflection coefh-

cient, 7;;=|u;/u;|, which represents the ratio of the"

reflected wave amplitude to that of the incident mode.
For this situation, rs; is the coefficient for the re-
flected physical mode while 73 corresponds to the
computational mode.

As mentioned above, for ¢>#% one boundary condi-
tion should be specified at the outflow boundary.
Thus, at outflow we replace the momentum equation
with a specified boundary condition for # and solve
the & equation using first-order -one-sided differences
for the spatial derivatives. (Because of the symmetry
of the equations, the same results would be obtained
if the boundary condition was specified for & instead
of #.) For any particular boundary condition the
reflectivity is obtained by substituting # =4 %2+ s
and =&+ ®,+®; into the two boundary equations
and solving for 75, and r3. This procedure is essen-
tially the same as that used by Nitta (1964) and
Matsuno (1966) in analyzing outflow boundary con-
ditions. Deriving these solutions for several possible
boundary conditions yields the following results for
physical mode reflection:

Outflow boundary condition 721
dn=0 1 (A9)
“4—c
An="4nN-1 — (A10)
a-+c
#—c|?
An=20N1~AN— — (A11)
i+c
o u A—c
—+—(ln—hn_1)=0 — (A12)
at Ax i+c
9 ey (—c) (c—ch)|
—+ (dn—1n-1)=0 —|. (A13)
a¢ Ax (+c) (c+co)

Here #y_; is the value of 4 at ¢ grid points in from
the boundary. In all cases since the correct number
of conditions has been specified, reflection into the
computational mode is O (k;Ax)?].

Condition (A9) gives the expected result that if one
of the two variables is held fixed total reflection will
occur. Conditions (A10)-(A12) are ones which might
be considered for limited area modeling and produce
reflection amplitudes dependent upon the relative
magnitudes of # and ¢. For #—0 each of these condi-
tions becomes completely reflective.

The boundary condition chosen for use in the wave
model is given by (A13). This condition attempts
to advect the variable out.at an estimated phase
speed of the wave, s+¢,. For c=c;, Eq. (A13) is
consistent with setting the amplitude of the incoming
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characteristic, 7 in (14), equal to zero. In fact, (A13)
can be derived from (14) by setting 5=0, which
implies {=2u at the boundary. The second term in 7y
reduces the reflection amplitude with increasing ef-
fectiveness as the estimated intrinsic phase speed ¢
approaches the actual phase speed ¢. Even for phase
speeds which are not particularly close to ¢, 7y is
likely to be significantly less than unity.

As mentioned above the shallow water equations
describe the behavior for a single vertical mode in
the hydrostatic system. Although many such modes
may exist in a particular physical situation, only one
value of ¢y can be used in the formulation. Suppose
we choose ¢g>#% to handle the dominant modes in
the system, but other modes are also present having
shorter vertical wavelengths such that ¢<#. For waves
having ¢<#, both physical modes propagate down-
stream and hence no outflow boundary condition
should be specified. By imposing (A13) at this bound-
ary, reflection occurs into both computational modes
which then travel upstream as indicated by (A7).

The amplitude of these modes is determined from .

the same procedure used in deriving (A9)-(A13).
Here, the incident and reflected modes are substituted
into (A13) and the boundary equation for & and the
two equations are solved for the reflection coefficients
of the two computational modes. For mode I incident
upon the boundary this procedure yields

k1Ax (F—c)(c—co)
o= \—— T ———
4 ’12(12+60)
(A14)
kidx (4c)(c—co)
ra1= .
4 a(i+co)
while for mode II incident we have
koAx (i4-c)(c+co)
Y32= n
4 a(i+tc)
(A15)
koAx (@—c)(c4co)
T42= " .
4 (i +co)

In deriving these expressions, we have assumed
eF#*82=141kAx for the incident modes. Having in-
correctly specified a boundary condition for these
modes, reflection into the computational modes is now
O(kAx) instead of O[ (kAx)*). However, if the resolu-
tion of the incident modes is sufficiently high (i.e,,
kAx<K 1), reflected computational modes will remain
small amplitude. Furthermore, any small background
damping present in a numerical model will efficiently
remove these high wavenumber disturbances.

At the inflow boundary we again consider wave
modes for which ¢># since for ¢<# the modes will
not propagate upstream to reach this boundary. For
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this situation mode II given by (A3) is the incident
wave and mode I represented by (A2) is the reflected
physical mode. Since the frequencies of incident and
reflected modes must again match at the boundary
the wavenumber %; of the reflected physical mode
is determined from (A8). Thus, at the inflow boundary
the reflected physical mode will have a longer wave-
length than the corresponding incident mode.

For ¢># one physical mode propagates in each
direction and, consequently, one boundary condition
should be specified at the inflow boundary. However,
this specification is complicated by the fact that both
equations in (A1) must be altered or replaced since
the advection term in each equation cannot be repre-
sented using a one-sided finite difference at the bound-
ary. As a result we seek to specify one condition
which can be used to alter both equations. By again
estimating an intrinsic phase speed ¢, of the wave
the momentum equation is replaced by

o4 9

—+(s—c)—=0. (A16)

ot ox
By requiring #—¢ <0 the spatial derivative in (A16)
can be stably represented with a one-sided finite
difference. Note that (A16) can be derived from the
momentum equation if we set &,=—cid,. If we use
this relationship to eliminate the advection term in
the & equation, computational mode reflection is
7a2=0[ (k2Ax)*] but the physical mode reflection
becomes

(@4c) (c—cy)
(a=c) (c+c)

This result is unacceptable since the first term in
(A17) can be large. To reduce r,, we alter the &
equation at the boundary by assuming
od ad  on , 0%
—= —g—tcP—= (G—c;)—.
ot ox ox Ox

2=

. (A17)

(A18)

This expression is correct for ¢;=c, but slightly over-
specifies conditions at the boundary when ¢ is not
precisely known. Rather than solve the right hand
part of (A18) as a prognostic equation for &, we only
use (A18) to eliminate the advection term in the &
equation. Solving (A18) for &,,

allows the boundary equation for & to be written as

9% a\ oh
——+<1——>c2——=0.
ot c*/ ox

The reflectivity of these boundary equations can be
determined using the same techniques as described
for the outflow boundary and yields reflection coeffi-
cients for the physical mode r;; and the computa-

(A19)
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tional mode 74, given by
c—ci koAxii(c—c3)
712= o re= | (A20)
ctc; (a+c)(@—c;)

Contrary to (Al7), rz in (A20) is always less than
unity and vanishes as ¢* approaches ¢. Although the
computational mode 74 is now O(k:Ax), the coeffi-
cient multiplying k.Ax is likely to be much less than
unity and it vanishes as #—0 or ¢—c. Eq. (A20)
indicates, however, that if any modes can propagate
upstream ¢; must not be set equal to 7.

The above analyses consider the reflection of a
physical wave mode incident upon either an inflow
or outflow lateral boundary. However, amplification
of reflected modes can also occur through subsequent
reflections as disturbances propagate back and forth
across the domain. For example, if the physical mode I
is incident upon the outflow boundary and produces
some reflection into mode III, this computational
mode will propagate upstream and reflect off the
inflow boundary, regenerating modes I and IV which
then propagate back downstream. With the inflow
boundary conditions described above the reflection
coefficients for these two modes (derived using the
same procedure as used for reflection of the physical
modes) are both O(1) in magnitude. Thus computa-
tional modes generated at the outflow boundary will
not amplify upon reflection at the inflow boundary.
Secondary refiections at the outflow boundary are po-
tentially more troublesome. If computational mode IV
(produced originally at the inflow boundary) im-
pinges upon the downstream boundary, the boundary
condition (A13) causes O(1) reflection into the com-
putational mode III. However, reflection into the
physical mode IT becomes

1 (@+co) (c—co)
lByAx (+c) (c+co)

Thus the amplitude of this physical mode relative to
the original wave amplitude impinging upon the up-
stream boundary is given by the product of 734 from
(21) and 74 from (AZ20). Although this product is
O(1), its amplitude should be small since both coeffi-
cients vanish as ¢}, c¢;—¢. In addition, any small
background damping in the domain will preferentially
reduce computational mode amplitudes as they propa-
gate across the domain due to their high wavenumber.

In the above analyses we have assumed good resolu-
tion of the physical modes in the system. If distur-
bances are present which are not adequately resolved
by the finite-difference equations, reflectivity at the
boundary will increase. This enhancement of reflection
with diminished resolution appears to be a funda-
mental problem and not associated with just a par-
ticular set of boundary formulations. For example,
in the shallow-water equations where ¢ is precisely

To4= =0O[ (kAx)™1].

(A21)
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Fic. Al. Boundary reflection in shallow water equations.
(a) Incident wave modes with #=10 m s™, ¢=20 m s7; (b) re-
flected wave from inflow boundary for ¢*=30 m s; (c) reflected
wave from outflow boundary for ¢*=30 m s™; (d) reflected
computational mode for #=20ms™, ¢=10mstand c*=30ms™.

known, boundary conditions which are mathematically
nonreflective produce reflection into the computational
mode which approaches unity as the incident mode
wavelength tends to 4Ax. This reflection is caused by
the one-sided difference taken at the boundary.

The expressions for boundary reflectivity have been
derived by analyzing incident and reflected disturb-
ances which are continuously periodic in both time
and space. To demonstrate that these results apply
to finite nonperiodic disturbances, Egs. (Al) were
numerically integrated with the Ilateral boundary
conditions specified as described above. Using dimen-
sionless variables an initial perturbation for & is
specified by

20 0 2 cos? (r/2)(x+1)], —2<x<0
¥, )_{ 0, x< =2, x20.

The mean wind speed % is 10 m s, the phase speed ¢
is 20 m s! and the lateral boundaries are placed at
x==3. The horizontal grid interval is Ax=0.03.
Integrating forward in time using a leapfrog proce-
dure, this initial profile produces two perturbations
of unit amplitude; one propagates upstream at #—c¢

(A22)
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=10 m s while the other moves downstream at
#+¢=30 m s These disturbances are shown in
Fig. Ala at a dimensionless time of #t/d=1, where
L is the length scale used to render x dimensionless.
Recalling the application of this analysis to the hy-
drostatic problem (where a number of phase speeds
may exist simultaneously) we examine the effect of
incorrectly estimating ¢* by setting ¢*=30 m s™.

To isolate the reflection at each boundary two
separate simulations were computed. In the first we
specified ¢;=30 m s™' at the inflow boundary and
;=20 m s7! at outflow. For - this case virtually all
reflection is generated at the inflow boundary and
Fig. Alb depicts the solution at a time (dt/d==3)
when the reflected physical mode has propagated into
the middle of the domain. The corresponding dotted
line represents the theoretical result based on the
periodic analysis and is virtually coincident with the
numerical solution. The analytic solution is obtained
by specifying the following characteristics for the
reflected physical mode: a horizontal scale exactly
three times that of the incident wave from (AS8),
an amplitude equal to 209, of the incident wave
from (A20), and a propagation speed of 30 m s
from (A7). The small-scale oscillations near the inflow
boundary are small-amplitude computational modes
nearly 2Ax in wavelength produced according to (A20).

In the second simulation we evaluate reflection
from the downstream boundary by setting ;=20 m s!
at inflow and at ;=30 m s~ for the outflow boundary
condition (A13). In this situation all visible reflection
emanates from the outflow boundary and is shown
in Fig. Alc at a time (#/d=4.4) when the physical
mode has traveled back to the center of the domain.
Again the dotted line depicts the theoretical solution
for the reflected physical mode which has 1/3 the
wavelength [from (A8)] and 1/15 the amplitude
[from (A13)] of the incident mode and travels up-
stream at 10 m s~! [from (A7)].

These two simulations demonstrate an excellent
agreement between the theoretical reflection charac-
teristics and those actually computed. As a result
we have some confidence that the analysis based on
periodic modes can be applied to the finite distur-
bances which are of physical interest. _

A final computation with the shallow water equa-
tions was performed to observe the reflection caused
when (A13) is specified at the outflow boundary but
both wave modes are propagating downstream. In
this case the downstream boundary is overspecified
and reflection takes place into the computational
modes as indicated by (A14) and (Al15). Here we
specified #=20 m s, ¢=10 m s}, ¢;=30 m s~, and
initialize according to (A22). The two physical raodes
then propagate downstream at 30 and 10 m s, re-
spectively, and produce reflected computational modes
which are shown in Fig. Ald one-half dimensionless
time unit after the second physical mode has passed
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through the boundary. From (Al14) and (A15) the
largest reflection coefficient should be 733; by esti-
mating a representative wavenumber in the incident
disturbance as k;=m, we compute 732=0.028 which
is similar to the maximum observed amplitudes. Thus,
even though the outflow boundary conditions were
not properly specified, computational mode reflection
can remain small in amplitude.

Clearly, the actual reflection produced in a particu-
lar simulation will depend on the wave modes present
and the chosen value of ¢*. Whether ¢* is estimated
from the dominant scales of motion present or com-
puted from properties of the flow field near the bound-
ary, it can at best be considered a rough approxi-
mation to the physical modes in the system. The
advantage of this approach is that the boundary
formulations appear to be stable in the absence of
any damping mechanisms and yield reflection coeffi-
cients which are always less than (and in many cases
much less than) unity. The question as to whether
or not the reflection levels are sufficiently small must
of course be analyzed for the particular application
under consideration.

In the above analysis we have been concerned only
with the problem of letting disturbances within the
model domain pass out through the boundaries. One
may also wish to introduce disturbances into the
domain by varying conditions at the boundary. This
can be accomplished by adding a tendency term to
any or all of the boundary equations to represent
the time rate of change of the imposed conditions.
In the linear system of equations, the modes passing
out through the boundary are completely decoupled
from those introduced at the boundary through
tendency terms and thus the two processes have no
influence on each other. This result was verified in
the numerical model for the shallow water equations.
At the inflow boundary time tendencies were added
to both prognostic equations to produce a particular
wave in the interior. At the same time a wave was
propagated into the boundary from the interior.
By specifying ¢} according to the phase speed of the
incident wave, the forced wave entered the domain
as desired and the incident mode passed out without
reflection. ’
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