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ABSTRACT

The streamfunction-velocity potential form of shallow-water equations, implemented on a spherical geodesic
grid, offers an attractive solution to many of the problems associated with fluid-flow simulations in a spherical
geometry. Here construction of a new type of spherical geodesic grid is outlined, and discretization of the
equations is explained. The model is subjected fo the NCAR suite of seven test cases for shallow-water models.

1. Intreduction

A number of problems are associated with trying to
numerically solve differential equations in spherical ge-
ometry. These difficulties, collectively known as the
pole problem, can arise from the use of a particular
coordinate system and from trying to discretize the sur-
face of the sphere.

Before any numerical considerations are addressed,
we run into difficulties in simply specifying a coordi-
nate system. In the following discussion it is useful to
distinguish between a true scalar-valued and vector-
valued functions. The value of a scalar function, such
as temperature, is independent of coordinate system.
On the other hand, the individual components of a vec-
tor-valued function, such as velocity, obviously differ
depending on the coordinate system used. In the spher-
ical coordinate system, the lines of constant longitude
converge at the poles, so longitude is multivalued at the
poles. This means that the components of the wind are
discontinuous at the poles, although the velocity itself
is continuous there. True scalars are not subject to such
discontinuities. The streamfunction—velocity potential
form of the shallow-water equations has the advantage
that momentum is expressed in terms of true scalars.

An early alternative to spherical coordinates was to
project the equations from the sphere to a plane. The
surface of a sphere and that of a plane are not topolog-
ically equivalent, however. In other words, there does
not exist a one-to-one mapping from every point on the
sphere to every point on a finite plane. We can, how-
ever, partition the sphere into pieces and project the
pieces separately. The equations for each projected
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piece then get their boundary conditions from the so-
lutions of the other pieces. One example of this ap-
proach is the study of Phillips (1957). In a more recent
study, Browning et al. (1989) partitions the sphere into
hemispheres and maps each to a plane with polar ste-
reographic projections.

One obvious way to discretize the fluid-flow equa-
tions expressed in the spherical coordinate system is to
use a regular latitude—longitude grid in which the grid
intervals (Af#, AMN) are constant. A discretization
scheme is then straightforward, except for the row of
grid points next to the pole, where special considera-
tions are necessary. While the latitudinal distance be-
tween grid points can be constant in spherical coordi-
nates, the longitudinal distance decreases rapidly to-
ward the poles. This is unfortunate because the scale
of meteorological phenomena does not vary dramati-
cally as a function of latitude. Ideally, then, the average
distance between neighboring grid points should not
depend on latitude, as it does in a latitude—longitude
grid, nor should the distance between grid points in the
zonal direction be substantially different from the dis-
tance in the meridional direction. Apart from these es-
thetic considerations, latitude—longitude grids suffer
from computation complications associated with the
convergence of the meridians near the poles. Typically,
selected variables are filtered near the poles to allow a
practical time step without numerical instability (e.g.,
Arakawa and Lamb 1977). In addition, Lindzen and
Fox-Rabinovitz (1989), among others, emphasize the
problems that can arise if the horizontal and vertical
resolution of a model are not properly matched. In
striving to achieve such a match in a global model, it
is clearly desirable to maintain uniform horizontal res-
olution over the sphere. This is achieved by triangularly
truncated spectral models (e.g., Baer 1972), but con-
ventional finite-difference models with latitude—~lon-
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gitude grids give horizontal resolution that varies sys-
tematically and anisotropically with latitude, even
when polar filtering is used. Geodesic grids are attrac-
tive in part because they hold the promise of quasi-
homogeneous and quasi-isotropic horizontal resolution
over the entire sphere.

Researchers have attempted to use grids with in-
creased grid spacing at higher latitudes. Kurihara
(1969) proposed a grid in which the number of grid
points along latitude circles decreases toward the poles,
thus covering the sphere more homogeneously. Kuri-
hara built a model based on the shallow-water equa-
tions and tested it with a simulation of a Rossby—Haur-
witz wave. Although the Kurihara grid was used at
Geophysical Fluid Dynamics Laboratory for a number
of years, it has been abandoned now because of nu-
merical problems. -

Williamson (1968) and Sadourny et al. (1968) si-
multaneously introduced a new approach to more iso-
tropically and homogeneously discretize the sphere.
Their grids are constructed from spherical triangles that
are nearly equal in area and that are equilateral. The
grid was inspired by Buckminster Fuller’s geodesic
dome and is called a spherical geodesic grid. While
Williamson and Sadourny worked with finite-differ-
ence models, Cullen (1974) developed finite-element
models based on spherical geodesic grids. An example
of a simple spherical geodesic grid is shown in section
3. Since the grid points are not regularly spaced and do
not lie in orthogonal rows and columns, specially de-
signed finite-difference schemes are needed (e.g., Ma-
suda 1969). Williamson (1968) and Sadourny (1968)
chose the nondivergent shallow-water equations to test
the new grids, while Sadourny and Morel (1969) de-
veloped a model for the shallow-water equations on a
plane using a triangular mesh. Masuda and Ohnishi
(1987) created an elegant geodesic grid model for the
shallow-water equations on the sphere. The design of
his model is discussed in detail in section 4.

This paper discusses some of the problems associ-
ated with fluid flow on a rotating sphere and shows that
through the use of a spherical geodesic grid and the
streamfunction—velocity potential form of the shallow-
water equations, many of these difficulties can be over-
come. A companion paper, Heikes and Randall (1995;
hereafter referred to as Part IT) describe the grid in more
detail.

2. The streamfunction—-velocity potential form of
the shallow-water equations

The shallow-water equations are the simplest form
of the equations of motion capable of describing the
response of a fluid to both gravitational and rotational
accelerations. Their solutions represent many of the
types of motion found in the real atmosphere, including
slow-moving Rossby waves and fast-moving gravity
waves.
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The motions of the atmosphere are nearly geo-
strophic. For this reason, it is useful to partition the
wind into rotational and divergent parts; this can be
done using Helmholtz’s theorem, which states that any
vector field V = (u, v) can be written V =V, + V,,
where V-V, = 0and V X V, = 0. Let the vector field
be the horizontal wind. We can define a horizontal
streamfunction i to express the rotational part k X V,,
and a velocity potential x to express the divergent part
Vx, that is

v=kX V¢ + V. (1)

Using (1), we can state the streamfunction—velocity
potential (SFVP) form of the shallow-water equations.
The time rates of change of absolute vorticity 7 and
divergence 6 are given by

0

5’} +V-(Vx) — J(n, ) =0 (2)
and
26 ,
5~ VnV) — J(n.x) + VK + gh) =0, (3)

respectively, where the Jacobian operator is defined by
J(A,B)=k-(VA X VB).In the divergence equation,
the kinetic energy K is given by

K= S 1V-(499) — 49%

+V-(xVx) = xVx1 + J(¥, x). (4)

The streamfunction and velocity potential satisfy a pair
of elliptic equations,

Vi =0=n—f
where fis the Coriolis parameter.

The third prognostic equation describes the evolu-
tion of the height field. Let & be the height of the free
surface and A, be the height of the underlying surface
topography. Then 2* = h — h; is the depth of the fluid.
With these definitions, the continuity equation can be
written as

and Vx =6 (5)

gth* + V-(h*Vyx) — J(h*, ) = 0.

The SFVP form of the shallow-water equations,
given by (2), (3), and (6), has the advantage that all
the fields are expressed in terms of true scalars. This
avoids the difficulties associated with vector-valued
quantities near the poles. The SFVP equations can be
written using only three differential operators, namely
the flux divergence, the Jacobian, and the Laplacian.
Furthermore, Randall (1994) shows that geostrophic
adjustment is well simulated using the linearized form
of the vorticity and divergence equations on an unstag-
gered grid.

(6)



FiG. 1. (a) An icosahedron inscribed in a unit sphere. (b) Bisect of
each edge forming four new faces. (c) Projection of the new vertices
onto the unit sphere. (d) Rotation of the faces in Southern Hemisphere
to form a twisted icosahedron.

There are some drawbacks, however. In particular,
the elliptic equations in (5) must be solved to obtain
new fields for streamfunction and velocity potential.
This is a costly task that must be performed at each
time step as the equations are integrated.

3. A simple spherical geodesic grid

Next we consider a simple algorithm to construct a
spherical geodesic grid on which to approximate the
solution. Such a grid can be constructed by starting
with an ordinary icosahedron inscribed inside a unit
sphere, as shown in Fig. 1a. First each face of the ico-
sahedron is subdivided into four new faces by bisecting
the edges. The result of this process is shown in Fig.
1b. Next, the new vertices are projected onto the unit
sphere, creating the polyhedron shown in Fig. 1c. Ma-
suda and Ohnishi (1987) continue this process, further
partitioning the spherical triangles and projecting onto
the sphere. The resulting spherical geodesic grid is not
symmetric across the equator, however. In Masuda’s
numerical results, initial conditions that are symmetric
across the equator slowly evolve to a state that is asym-
metric across the equator, presumably as a result of the
flow interacting with the grid. This suggests that it is
desirable to construct a spherical geodesic grid that is
symmetric across the equator. By simply rotating all
the faces of Fig. 1c in the Southern Hemisphere through
7/5 rad, we obtain a polyhedron that is symmetric, as
shown in Fig. 1d. This polyhedron is called the rwisted
icosahedron. Grids based on this polyhedron will be
called twisted icosahedral grids, or twigs. By recur-
sively subdividing each triangular face and projecting
the new vertices onto the unit sphere, we can generate
polyhedra that progressively approximate a sphere. Ex-
amples are shown in Fig. 2.

We define the vertices of these polyhedra to be the
grid points, and the two terms are synonymous in the
discussion to follow. All three prognostic variables as
well as ¢ and x are defined at the grid points of this
unstaggered grid. We associate a Voronoi cell, defined
below, with each grid point. Augenbaum and Peskin
(1985) discuss the construction of a Voronoi grid on a
sphere. Given a set of N grid points {P,, P,, ..., Py}
on the unit sphere S, the Voronoi cell k associated with
P, is defined by
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FiG. 2. Continuing the recursive subdivision of Fig. 1d. (a) 320
faces and 128 vertices. (b) 1280 faces and 642 vertices.

cel, ={|lp—-PJ < |p—-P] VpeS and

l€{1,2, k= Lk+1, - N}), (7)

where | x, — x,| is the distance between points x,, x,
€ S measured along the surface of the sphere. In other
words, the Voronoi cell of a grid point consists of all
the points on the sphere equidistant or closer to that
grid point than any other grid point. Let P, and P, be
neighboring grid points, as shown in Fig. 3. From the
above definition, it follows that a Voronoi cell has the
important property that the cell wall shared by P, and
P, is the perpendicular bisector of the circular arc be-
tween the two grid points. The segment connecting Py
and P, does not bisect the cell wall, however. This point
is of some importance and will be expanded upon in
Part II. A cell wall is a segment of a great circle. The
end points of a wall are the Voronoi corners, the points
where three cell walls intersect. The position of a cor-
ner is computed using three grid points. Again, con-
sider Py, P,, and P, in Fig. 3. Consider these points
in three-dimensional Cartesian coordinates, that is, Pq
= (Xo, Yo, 20)> P1 = (X1, 1, 21), and P, = (x2, y2, 22)-
From the definition of a Voronoi cell, the Voronoi cor-
ner C is the point on the sphere equldlstant from these
three grid points: '

(P, — Py) X (P, — Py)

C =1, “ Py x (B, —Po)|

(8)

Note that the points are ordered in a clockwise fashion
to ensure that C lies in the same hemisphere as Py, P;,

Cell Wall

Voronoi
Corner

Grid
Point

F1G. 3. Properties of Voronoi cells.



JUNE 1995

P A
et

Fi1G. 4. Voronoi grids constructed with a twisted icosahedron. (a)
642 cells. This is the Voronoi grid generated from Fig. 2b. (b) 2562
cells.

and P,. Ordering in a counterclockwise fashion gives
the point on the opposite side of the sphere from C.
Voronoi grids constructed from the polyhedra, like
those in Fig. 2, consist of hexagons and 12 pentagons.
An example is shown in Fig. 4. Each pentagon corre-
sponds to a vertex of the original icosahedron. It can
be shown that the number of cells N, is related to the
number of recursive subdivisions g by
N.=5(2%") + 2. 9)
The grid described above is similar to but not exactly
the same as the grid used to obtain the numerical results
presented in section 6. In Part II we show that the finite-
difference operators discussed below are inconsistent
when used in conjunction with a grid constructed using
this simple algorithm. For this reason, the cells of the
grid used to obtain the numerical results have been
moved slightly to improve the accuracy of the finite-
difference operators. The construction of this alterna-
tive, the tweaked grid is described in detail in Part II.
Some basic properties of the untweaked grid are shown
in Table 1.

4. Finite-difference form of the equations

Our derivation of the finite-difference operators fol-
lows exactly the methods of Masuda and Ohnishi
(1987). Consider arbitrary scalars a« and S. Using
Gauss’ theorem, we can write the three operators we
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need, namely the Jacobian, the flux divergence, and the
Laplacian, as follows:

_ o
j;](a,ﬂ)dA = ﬁa L)
0B
: = el 11
Lv (aVB)dA ﬁa 54 aD
f VladA = é g—:ds. (12)
A C

The finite-difference approach we use approximates the
line integrals on the right-hand sides of (10), (11), and
(12). Referring to Fig. 3, let ; and §; be the values of
functions « and 3 evaluated at the cell centers P;. In
the finite-difference form of the Jacobian operator, we
need to interpolate to the corners of the cells. Let

bi =5 (Bo+ Bi + B) (13)
be an approximation for § at the cell corner C;, where
C, is the Voronoi corner common to the three cells with
centers Py, P;_,, and P; . It can be shown that this is the
only choice of weights that conserves energy and po-
tential enstrophy in the case of nondivergent flow. Let
A, be the area of a cell. If the cell is small, J(«, 8) can

be considered constant across the cell, and we can ap-
proximate the left-hand side of (10) by

j;J(a, BYdA ~ J(a, ﬂ)lp(,j;dA

= J(av ﬂ)lPoAc’ (14)

where J(a, )| g, is the Jacobian evaluated at P,. The
line integral on the right-hand side of (10) is replaced
with a summation, so we approximate the Jacobian by

1 N ay + a; bi+ *b,’
J(a’ﬁ)lPomXZ( 02 )( ll_ )li’ (15)
¢ j=1 i

where N = 5 for pentagons and N = 6 for hexagons.
In (15), the expression

> (a0 + @) (16)

TABLE 1. Properties of the simple grid as a function of recursive subdivisions of the twisted icosahedron polyhedron.

Number of cells  Number of cells  Average cell

Ratio of smallest cell

Ratio of smallest distance

Average distance between to largest distance

q N, along equator area (km?) to largest cell cell centers (km) between cell centers
0 42 10 1.214 x 107 0.885 3755.5 0.881
1 162 20 3.149 x 10° 0.774 1912.8 0.848
2 642 40 7.946 x 10° 0.763 961.0 0.840
3 2562 80 1.991 x 10° 0.742 481.1 0.838
4 10 242 160 4.980 x 10* 0.736 240.6 0.837
5 40962 320 1.245 x 10* 0.733 120.3 0.837
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approximates « evaluated along the cell wall. This is
reasonable since each wall bisects the arc between cell
centers. Let /; be the length of the arc between corners
C; and C,,,. The expression

1 .
Z(bi+l - b;) (17)
approximates the tangential derivative along the cell
wall. If the grid consists of perfect hexagons, then the
arc between cell centers is also the perpendicular bi-
sector of the cell wall. In this case, the approximation
of the tangential derivative is second-order accurate at
the same point where « is approximated along the cell
wall. The final /; approximates the infinitesimal element
of curve ds. Equation (15) can be rewritten as

1 »
J(aaﬂ)IPomgA_Z(aO"'ai)(ﬁH-l_ﬁi—l)- (18)
¢ =]

Similarly, we can approximate flux-divergence and
Laplacian operators. Let L; be the length of the arc
between cell centers Py and P;. Using (11), the flux-
divergence can be approximated by

1 N

l;
-V-(aVB)le, = A Z L (ap + a;)(B; — Bo), (19)

where the expression

1

— (6 — 20
7 (B = Bo) (20)
approximates the derivative normal to the curve. Fi-

nally, using (12), the Laplacian can be approximated
by

~

M=
[

o~

1
Vialp, ~— (a; — o). (21)

Ac

1 T

4

5. Time stepping

The model uses the third-order Adams—Bashforth
scheme discussed by Durran (1991). This is an explicit
scheme requiring only one function evaluation per time

step. It has the advantages (over the more common

leapfrog time-stepping scheme) of a reduced phase-
speed error and a damped computational mode. Its ma-
jor disadvantage is an increased storage requirement.
This is not a serious limitation with current computers,
however. ‘

Consider an ordinary differential equation of the
form

df

o~ F. (22)

The third-order Adams—Bashforth scheme approxi-
mates (22) with
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£n+l - £n B _1— , et
AL T [BFE) 16K ()

+5F(E"H], (23)

where £" is the numerical approximation to £(nAt).
We see from (23) that £° (the initial condition), £!,
and £? are required to compute £°. In the model ¢' and
¢? are computed using two successive Matsuno time
steps.

6. Multigrid elliptic equation solver

One computational cycle of the model can be divided
into two steps. First, the model time steps the prognos-
tic (2), (3), and (6) for new values of absolute vortic-
ity, divergence, and geopotential. Next, the new abso-
lute vorticity and divergence are used to solve (7) for
a new streamfunction and velocity potential, and the
cycle repeats. Efficient numeric implementation of this
cycle hinges on being able to solve the elliptic equa-
tions quickly. The recursive nature of the grid lends
itself well to multigrid methods.

Multigrid algorithms are discussed by Fulton et al.
(1986) and Brandt (1977). Because the twig is not
composed of rectangular elements as is the Cartesian
grid, interpolating from a coarse to a fine grid is a little
complicated. Figure 5 shows the relation between hex-
agonal cells for two different resolutions. The residual
correction at cells common to both grids can be trans-
ferred simply from the coarse grid to the fine grid. The
remaining grid points of the fine grid all lie on a cell
wall of the coarse grid. Figure 5b shows six cells on
the coarse grid, their walls shown with dashed lines,
and one cell on the fine grid, its walls shown with thin,
solid lines. This stencil is used to associate every grid
point on the fine grid with six grid points on the coarse
grid. For the cells P, who have a pentagonal neighbor,
the stencil is the same except that the point labeled P,
in Fig. 5b is associated with a pentagonal cell. We
never have to interpolate to the pentagons themselves
since they belong to the coarsest grid and therefore be-
long to all grid resolutions. Each point has spherical
coordinates P; = (6;, \;) for 0 < i < 6. Suppose we

FIiG. 5. (a) The relation between cells on two grid resolutions. (b)
Interpolation stencil. Values at grid points P,, P,, P;, Ps, Ps, Ps are
interpolated to get a value at P,
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assign arbitrary values f,, f>, . .., fs at grid points P,
P,, ..., Ps. Then there exists a quadratic surface de-
termined by constants c¢,, ¢, . . ., C¢ such that

610% + 0201)\1 + C3)\% + C49| + C5)\1 + Cg =fl

610% + C202)\2 + C3)\% + C402 + CS)\Z + Cg =f2

102 + coB6hs + C3NE + cafls + Cshe + s = fs.
(24)

The corresponding matrix is known as the Vander-
monde matrix; see Press et al. (1988). Solving the lin-
ear system, the constants have the form ¢; = ¢;(6;, - - -,
O, N1, 5 Ns, f1, -, fo) for 1 < i < 6. At the fine
grid point Py, we can write

0103 + C200)\0 + C3)\(2) + C400 + CS)\Q + Cg =fb. (25)

Substituting ¢, ¢;, . . . , ¢ and rearranging gives

Wlﬁ + W2‘f2 + ng;; + W4f;; + W5f‘5 + W6.f6 =.f6’ (26)

where w; = w; (8, -+, 06, N1, * ", Ng).

We would like the weights to depend only on the
relative distances and angles between each set of seven
points, but because of the use of spherical coordinates,
the weights, if computed as shown above, differ de-
pending on the position of the points on the sphere.
Therefore, before solving the system in (24), each
group of seven points is translated, preserving their rel-
ative positions, so that P, = (0, 0). Then P,, P,, .. .,
Ps are drawn closer to Py by replacing each point P, i
=1, ..., 6, with the midpoint of the arc between P,
and P;. This process repeated until all the points are
nearly coplanar. A Mathematica program (Wolfram
1988) computes the weights wy, w,, . . . , Wg in advance
and stores them in a file that is read by the model at
the beginning of execution. We can use the arbitrary
high numerical precision available in Mathematica to
overcome the ill conditioning associated with the Van-
dermonde matrix.

Next we need to perform relaxation on the grid. Us-
ing (21) and referring to Fig. 3, we can transform the
continuous problem V2U = fto difference form:

1 X
XZf(ui — ) = fo

Vcells,
7 cells

(27)

where f, is fevaluated at Py. Solving (27) for u,, we

get
N li -1 N li ?ld
useW=<Z—) (2—“——Affo>. (28)

im Li i=1 L

We use the ¢ and x from the previous time step as
very good initial guesses for the new ¢ and x. In prac-
tice only one multigrid V-cycle (see Fulton et al. 1986)
is necessary to compute a new solution for Eq. (5) on
each time step.
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7. Numerical results
a. Introduction

The model described in sections 4 to 6 has been sub-
jected to the suite of seven test cases proposed by Wil-
liamson et al. (1992). For purposes of comparing
height field errors, some of the test cases were also run
using the National Center for Atmospheric Research
(NCAR) spectral transform model at T42 resolution
(see Hack and Jakob 1992) and the Arakawa and Lamb
(1981; hereafter AL ) shallow-water model with 4° lat-
itude by 5° longitude resolution. Results from the
NCAR spectral transform model are further described
in Jakob et al. (1993).

The physical parameters of the earth are the same as
those used by Williamson et al. (1992) [their Eqgs.
(72)-(74)]. Also, the norms used to measure differ-
ences between solutions are the same as those used by
Williamson et al. (1992) [their Egs. (81)~(84)].

In the following test results, twig02562 refers to tests
performed on a grid with 2562 cells, corresponding to
g = 3 in (9). This is the grid shown in Fig. 4b. Simi-
larly, twig10242 refers to test results obtained using the
grid with 10 242 cells, corresponding to n = 4.

For test cases 3 and 5 we measure the model’s per-
formance in part by recording how well it conserves
certain global invariants. Following Williamson et al.
(1992), the quantities we check include total energy &,
= 0.5[h*v-v + g(h? — h?) — E,1m’ s, where E, is
the potential energy of the ‘‘reference state’” in which
the surface of the water is flat and potential enstrophy
& =n?*(2h*) "' m s 2. For each time step, we compute
and record the normalized integral

11 (6, N, 1)] — 1[&: (6, N, 0)]
1[61(0’ )\’ 0)]

for i = 1, 2, where I[£] is the global integral of &. It

should be noted that the model conserves only mass in

case of divergent flow and energy and enstrophy in the
case of nondivergent flow.

1€ (1)] = (29)

b. Test case 1: Advection of a cosine-shaped bell

This test case differs from the remaining six in that
the winds are prescribed rather than predicted. That is,
instead of time stepping the wind equations, the initial
wind field remains constant with time. Since the initial
wind field is nondivergent, the height equation reduces
to the advection equation for A* with constant coeffi-
cients, and the initial height field is simply advected
along by the wind. In other words, V-v = 0, and v is
constant in time, so the mass conservation equation

Qh*—kV-(vh*):O (30)
ot
reduces to the linear advection equation
0
— Rp* . * = ().
o1 +v-Vh 0 3D
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FI1G. 6. Test case 1. (a) Initial height field. (b) Height field after 12 days. Here @ = 7/2. The bell is advected
first over the North Pole then the South Pole. Contour interval 50 m.

In the absence of computational dispersion, the height
field should maintain its initial shape for all time. The
advecting wind is a jet along a great circle, and the
initial height field is a cosine-shaped bump of fluid. We
define the parameter « to be the angle between the axis
of solid-body rotation and the polar axis of the numer-
ical grid. In testing the models, we used a = 0.0, 0.05,
w/2 — 0.05, and 7/2. These choices allow comparison
of advecting the bell along the equator and advecting
it over the pole. Only results using « = 0.0 and a = 7/
2 are shown here. The initial conditions are given in
Egs. (75) - (80) in Williamson et al. (1992).

From Table 1, the grid with 2562 cells has 80 cells
along the equator. The average distance between grid
_ points is approximately

23 _ Ax ~ 500.4 km.

80 (32)

We set the Courant number to u = 0.5. The speed of

the advecting current is about ¢ ~ 38.6 m s~! so the
CFL condition requires
A
Ats%m 6480 s. (33)

This is the Ar used in twig02562 tests, and At = 3240 s
is used in the twig10242 tests.

Because of computational dispersion, as the bell is
advected, it tends to flatten toward the upwind side and
to steepen on the downwind side, and regions of neg-
ative height form behind the bell. The phase speed of
the bell is underestimated. The computational disper-
sion can be clearly seen in Fig. 6. Because the spectral
transform model suffers no dispersion error for linear

advection, its results, although not shown here, are es-
sentially perfect. This test is somewhat misleading,
however, because spectral models do produce disper-
sion errors for advection by more realistic nonuniform
currents.

All four angles were run for both the AL and twig
models, and the height fields, to the eye, are nearly
indistinguishable for all four angles. The height field
errors are computed using Eqgs. (81) — (84 ) of William-
son et al. (1992) and are shown in Fig. 7. The AL
model and the twig02562 model look pretty compara-
ble. With a = 0.0 the bell is advected along the equator.
The twig02562 grid has 80 grid points along the equa-
tor, while the AL model at this resolution has 72 grid
points along the equator. These two models have com-
parable resolution for this value of «. We can see a
slight glitch in the infinity norm in Fig. 7d as the bell
passes over the poles.

c. Test case 2: Global steady-state nonlinear
geostrophic flow

This test case represents a steady-state solution of
the shallow-water equations. To test for possible cor-
ruption of the numerical solution resulting from inter-
action with the grid, the Coriolis force is rotated, mak-
ing it a function of latitude, that is,

f = 2Q(—cos\ cosf sina + sinf cosa). (34)

Clearly, (34) reduces to the usual Coriolis parameter
when a = 0. If the computational grid is considered fixed
in space, then by changing the Coriolis parameter we are,
in effect, changing the direction of the axis of the planet’s
rotation so that it is no longer coincident with the axis
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FIG. 7. Test case 1. Height field errors. (a) Arakawa—Lamb with 72 X 44 resolution, (b) twig02562,
(c) twigl10242 model, a = 0.0, (d) twigl0242, a = =/2.

through the poles of the grid. In this way, flow can be
directed over the poles of the grid. We will direct the flow
to be parallel and nearly parallel to the equator of the grid
and nearly directly over and directly over the pole. That
is, as in test case 1, the parameter « in (34) is set «
=00, =005, a« = 7/2 — 0.05, and a = w/2. As the
models run, the initial fields should remain constant. The
initial conditions are given in Egs. (90)—(96) in Wil-
liamson et al. (1992). For this test case we set the max-
imum depth of the water Ay = 2998 m, and the maximum
speed of the current is uo = 38.6 ms™'.

Even though the solution is nondivergent, errors tend
to accurnulate in the numerical solution of V2x = §. The
spurious gravity waves generated in this way limit the
length of a time step and create noise in the solution.
Somewhat arbitrarily we pick At = 600 s for the AL
model and the twig02562 model and At = 300 s for the
twig10242 model. The Arakawa—Lamb model filters the
gradient of total energy and the mass fluxes near the poles.

Height errors for @« = 0 in the AL, twig02562, and
twig10242 models and o = /2 in the twig10242 model
are shown in Fig. 8. There are no noticeable differences

between the results for « = 0.0 and a@ = 7/2, indicating
that the flow is hardly affected by the poles of the grid.
A triangularly truncated spectral model would produce
no error at all for this case, except for that due to round-
off. Although not shown, the NCAR model’s error is in-
deed several orders of magnitude smaller than that of ei-
ther finite-difference model.

Figure 9 shows the true height field minus the simu-
lated height field after 5 days for the case with & = 0.05.
Clearly, there is a weak wavenumber 5 periodicity to the
error, indicating that the flow is slightly distorted by the
grid.

d. Test case 3: Steady-state nonlinear zonal
geostrophic flow with compact-support

This test case was designed by Browning et al.
(1989) to mimic the real atmosphere. The wind is
purely zonal, as in test case 2, but it is nonzero only in
a range of latitudes. This choice is modeled after the
observed zonal component of the wind at about 10 km.
Again, as the integration progresses, the solution
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FIG. 8. Test case 2. Height field errors. (a) Arakawa~Lamb with 72 X 44 resolution; (b) twig02562,
(c) twig10242 model, a = 0.0, (d) twigl0242, « = 7/2.

should remain constant. The initial conditions are given
in Egs. (101)—(115) in Williamson et al. (1992).

Although nondivergent, as in test case 2, the numer-
ical computation of V*y = § limits the time step.
Again, we pick At = 600 s for the AL model and the
twig02562 model, and At = 300 s for the twig10242
model.

Height error plots for @ = 0 in the AL and twig
models are shown in Fig. 10. Again, a spectral trans-
form model should produce no error, and although the
results are not shown, the spectral model is far superior.
The twig models ‘perform a little better than the AL
model. The twig10242 results are quite a bit better than
those of twig02562. There appears to be no difference
when the flow is directed over the pole.

The normalized conservation plots for total energy
and potential enstrophy are shown in Fig. 11. These
values are computed using (29). These quantities are
better conserved with higher resolution. It can be
shown this finite-difference scheme will exactly con-
serve energy and enstrophy in the case of purely non-
divergent flow, and they are conserved pretty well
here.

e. Test case 4: Forced nonlinear system with a
translating low

There are few examples of analytic solutions to the
unsteady nonlinear equations. However, by including
forcing terms in the shallow-water equations, we can
test the model in an unsteady nonlinear simulation for
which we know an analytic solution. In this case, in-
troduced by Browning et al. (1989); the forcing terms
are designed to simulate a short-wave trough embedded
in a midlevel tropospheric jet. In our simulation the jet
has a maximum speed of o = 20 m s ™.

The shallow-water equations written in advective
form in spherical coordinates with forcing terms F,,
F,, and F, are given by

du  uvtand g

d  a a cosf 6)\ ~fo= (39
dv  uu tanéd g(?h
it 3
dt T a a69 fu B (30
dh h Ou
E-i_a cosé [5):+—(v COSG’)] = G
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FiG. 9. Test case 2. True height minus twig10242 height after S days with @ = 0.05; 0.4-m contour interval.
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F1G. 11. Test case 3. Normalized conservation of total energy and potential enstrophy.
(a), (b) Test case 3 with a = 0.0. (¢), (d) Test case 5.

where we have assumed # = h*. The forcing functions
are given in Egs. (120)-(129) in Williamson et al.
(1992). A Mathematica program was used to symbol-
ically perform the calculus in Egs. (120)-(129) in
Williamson and to produce Fortran code for F,, F,
and F;. ‘

The initial height is shown in Fig. 12a. The maxi-
mum zonal velocity u, = 20 m s~' advects the region
of low pressure '

Uy

86 400 ~ 22° day ', (38)

2 . A
i 2ma cosfy,

where 0, = /4 is the latitude of maximum zonal ve-
locity. It should be noted that we modified Eq. (129)
in the Williamson paper to

C = sind, sind

Up

+ cosf, cosd cos()\ - —
a cosf,

- )\0) . (39)

As the simulation evolves, the region of low pressure
moves toward the east, maintaining its initial shape.

Figure 12b shows the true solution minus the numerical
solution after 5 simulated days. It appears most of the
difference is due to phase error between the two solu-
tions. The model does not move the region of low pres-
sure fast enough.

[ Test case 5: Zonal flow over an isolated mountain

This is the only test case in the suite with topography.
Zonal flow is directed over a mountain, a 2000-m-tall
hemispherical bump centered at 30°N, 90°W, which on
earth would be near New Orleans. Takacs (1988) first
used this set of initial conditions to study an a posteriori
method for conservation of integral invariants. The ini-
tial conditions are given in Egs. (90)-(95) and Eq.
(134) in Williamson et al. (1992). However, now the
maximum depth of the water is h, = 5960 m and the
maximum speed of the current is u, = 20 m s ™.

We used At = 300 s for the twig02562 and AL mod-
els, and Ar = 150 s for the twigl0242 model. The
spectral transform model was run with a time step of
At = 600 s. The semi-implicit time stepping used in
the spectral model allows for a larger time step.
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FIG. 12. Test case 4. (a) Initial height field: 4, = 20 m s~'; 25-m contour interval. (b) True height field
minus twig10242 height field after 5 days; 2-m contour interval.
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FIG. 13. Test case 5. Height field errors. High-resolution spectral transform model minus (a) Arakawa—Lamb model with
72 X 44 resolution, (b) spectral transform T42, (c) twig02562, (d) twig10242.
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This test case, unlike those discussed above, does not
have an analytic solution with which to make compar-
isons. Instead, the numerical results are compared to
those of the NCAR spectral shallow-water model run
with T213 resolution. The results of that model, trun-
cated to T106 resolution and stored in a netCDF file
called REFO114.cdf, are available from NCAR.

The height field errors for AL, the spectral transform
model with T42 resolution, twig02562, and twig10242
are shown in Fig. 13. The initial infinity norm in each
of these plots is not zero. This can be attributed to the
spectral model’s inability to resolve the sharp edges
near the base of the bell. This makes the infinity-norm
suspect for both finite-difference models. The AL and
twig02562 models look similar, and the spectral trans-
form model and twig10242 look similar. The height.
field after 15 simulated days for twig10242 resolution
is shown in Fig. 14. The difference plots for the AL,
twig02562, and twigl0242 are shown in Fig. 15. There
appears to be phase error in the wave train in the South-
ern Hemisphere.

The normalized conservation plots for total energy
and potential enstrophy are shown in Fig. 11. These
values are computed using (29). Clearly the total en-
ergy is not conserved well. The finite-difference oper-
ators do not exactly conserve energy in the exchange
between kinetic and potential energy. Note the im-
provement in energy conservation with increasing res-
olution in test case 3, which is more or less nondiver-
gent. We are currently working to solve this problem
following methods similar to those of Arakawa and
Lamb (1981).

g. Test case 6: Rossby—Haurwitz wave

Phillips (1959) devised this set of initial conditions,
and it has been used by many investigators since. It
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was used by Masuda and Ohnishi (1987), although
with different parameters, so at least qualitatively we
can compare our results with Masuda’s results. The ini-
tial conditions for this test case are given in Egs.
(141)-(149)in Williamson et al. { 1992). In particular
the zonal pattern has wavenumber 4.

Again, since there is no analytic solution to the di-
vergent shallow-water equations for these initial con-
ditions, we will compare our results with those of the
NCAR spectral model run at T213. In this case the daily
spectral coefficients truncated to T106 are available
from NCAR in a netCDF file called REF0092.cdf.

The same time steps used in test case 5 are used
here. The spectral model was run without diffusion.
The height field errors for this test case are shown in
Fig. 16. The Arakawa-Lamb model appears to lie
between the twig02562 and twig10242 models. In-
terestingly, the error of the spectral transform T42
model periodically improves unlike the other models
in which the errors monotonically worsen. Figure 17
shows the spectral transform T213 height minus the
twig10242 height field after 14 days. There is a large
error with zonal wavenumber 4 since the pattern
moves slower in the twig10242 model than in the
spectral transform model. Also, we can see that the
initial pattern that starts with a zonal wavenumber 4
structure has changed to a wavenumber 1 pattern at
higher latitudes. The same thing occurs in the results
of Masuda and Ohnishi (1987) results. However,
while Masuda’s fields develop wavenumber 1 pat-
terns that are antisymmetric across the equator, the
twig height field remains symmetric across the equa-
tor because of the symmetry of the grid. Lorenz
(1972) and Hoskins and Hollingsworth (1973) dis-
cuss the conditions necessary for the instability of a
Rossby—Haurwitz wave for the case of nondivergent
shallow water on a 3 plane.
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FiG. 14. Test case 5. Height field for the twig10242 model after 15 simulated days; 50-m contour interval.
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FIG. 16. Test case 6. Height field errors. High-resolution spectral transform model minus (a) Arakawa—Lamb model with
72 X 44 resolution, (b) spectral transform T42, (¢) twig02562, (d) twig10242.
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FIG. 17. Test case 6. Height field difference after 14 days. Spectral transform
minus twig10242; 20-m contour interval.
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h. Test case 7: Analyzed 500-mb height and wind
field initial conditions

The last test case initializes the model with observed
500-mb height and wind fields from 0000 UTC 21 De-
cember 1978. This set of initial conditions produces
strong flow over the North Pole and is therefore a good
test of the model’s performance at the poles. Ritchie
(1988) used this case to test a semi-Lagrangian model.
The initial conditions are contained in a netCDF file
called REF0077.cdf. These data are truncated at T106
and have been processed with nonlinear normal-mode
initialization to prevent spurious gravity waves from
contaminating the results. The mean height field has
been set to 10 km.

The same time steps used in test case 5 are used here,
and again the spectral model was run without diffusion.
The height field error plots are shown in Fig. 18. The
results for the twig02562 grid for this test case were
quite dissatisfying. The poor performance can be at-
tributed to the fact that this resolution has only 176 grid
points north of 60°N. This seems to be insufficient to
resolve the structures in the region of interest. In con-
trast, the Arakawa—Lamb model with 72 X 44 reso-
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lution has 576 grid points north of 60°N. Here we show
the results from the twigl10242 and twig40962. Figure
19 can be used to compare the spectral transform model
and the twig10242 model. The region of high pressure
located near the pole along the prime meridian is mov-
ing toward the northeast. In the twig10242 model, the
high has not moved as far to the east as it has in the
spectral transform model. Also, the region of low pres-
sure along the 90°E meridian is much deeper in the
twig10242 than it is in the spectral transform model.
These factors combine to produce jets in different di-
rections in the two models. The jet in the twig model
is directed roughly parallel to the 45°W meridian, while
the jet in the spectral transform model is parallel to the
90°W meridian. This discrepancy causes large errors
near the pole as shown in Fig. 20. Figure 20 also shows
that the simulation is improved by increasing the res-
olution.

8. Performance resuits

To test the computational performance of the model,
test case 5 was run for 3000 time steps, with grid res-
olutions of 642, 2562, 10 242, and 40 962 cells. Efforts
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F1G. 18. Test case 7. Height field errors. High-resolution spectral transformm model minus (a) Arakawa—-Lamb model with
72 X 44 resolution, (b) spectral transform T42, (c) twig10242, (d) twigd0962.
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FIG. 19. Test case 7. Height field after 5 days. (a) Spectral transform, (b) twig10242; 75-m contour interval.

were taken to minimize I/0 and to perform only those
calculations necessary to time step the equations. The
model was run on one processor of a CRAY Y-MP
C90, which has a peak speed of 750 Mflops, and the
performance results were obtained using the CRAY
utility perfview. Figure 21 shows the time per cell per
time step for the twig model and the Arakawa—Lamb
model. The twig model was run at the four resolutions
listed above, and the AL model was run with three grid
resolutions 64 X 32, 128 X 64, and 256 X 128. The
time required per cell per time step decreases as the

vector length increases with increasing resolution. The
AL model is about three times faster than the twig
model. In a GCM with full physics this would corre-
spond to a factor of 2 slow down. We believe that a
parallel version of the twig model will be considerably
more competitive, relative to a parallel version of the
AL model.

9. Conclusions

" We have explained the basic design of a new shal-
low-water model for spherical geometry, based on a

Fi1G. 20. Test case 7. Height field difference after 5 days. Spectral transform minus
‘ (a) twig10242, (b) twig40962; 35-m contour interval.
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spherical geodesic grid derived from a twisted icosa-
hedron. The grid is symmetrical across the equator. The
grid actually used is slightly modified for reasons dis-
cussed in Part II. Following the approach of Masuda
and Ohnishi (1987), the model uses the streamfunc-
tion—velocity potential form of the shallow-water
equations.

The model has been tested using the suite of seven
test cases devised by Williamson (1992). The results
are compared with exact solutions where these are
known and also with the NCAR spectral transform
shallow-water model and with a shallow-water
model based on the potential enstrophy—conserving
scheme of Arakawa and Lamb (1981). The results
are encouraging. The comparisons between the AL
and twig models in Fig. 8 and Fig. 10 show the twig
model to be more accurate. In Fig. 13 and Fig. 16 we
see the accuracy of the AL model and the T42 spec-
tral model lies between the twig02562 model and the
twig10242.

We are undertaking further development of this
model. Planned improvements include modifying the
finite-difference schemes so as to obtain formal guar-
antees for conservation (in appropriate limits) of po-
tential vorticity, potential enstrophy, and total en-
ergy; addition of a tracer equation; and enhancement
of the computational performance. We also plan to
port the model to a massively parallel architecture;
in fact, the code has been written with this in mind.
Finally, we plan to construct a multilayer version and
test it using the benchmarks devised by Held and
Suarez (1994).
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