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ABSTRACT

An alternative approach to the design of nonhydrostatic numerical weather prediction (NWP) models is
presented. Instead of extending mesoscale nonhydrostatic modeling concepts to the synoptic scales and beyond,
a hydrostatic NWP model using the mass-based s vertical coordinate has been extended to include the non-
hydrostatic motions, preserving the favorable features of the hydrostatic formulation. In order to do so, the
system of nonhydrostatic equations was split into two parts: (a) the part that corresponds to the hydrostatic
system, except for higher-order corrections due to the vertical acceleration, and (b) the system of equations that
allows computation of the corrections appearing in the first system due to the vertical acceleration. This procedure
does not require any linearization or approximation.

With this approach, the nonhydrostatic dynamics has been introduced through an add-on nonhydrostatic
module. The separation of the nonhydrostatic contributions shows in a transparent way where, how, and to what
extent relaxing the hydrostatic approximation affects the hydrostatic equations. The nonhydrostatic module can
be turned on and off depending on resolution, so that the model can be run in the hydrostatic mode at lower
resolutions with no extra cost. This also allows easy comparison of hydrostatic and nonhydrostatic solutions
obtained using otherwise identical model.

The nonhydrostatic model developed appears to be computationally robust at all resolutions and efficient in
NWP applications. With the current coding, the extra computational effort needed due to the nonhydrostatic
extension is of the order of 20% of that required by the hydrostatic dynamics, both in terms of computer time
and memory. Compared to the hydrostatic version of the model, no additional computational boundary conditions
are needed in real data runs.

At lower resolutions, in the hydrostatic limit, the forecasts of traditional meteorological parameters obtained
using the hydrostatic and the nonhydrostatic modes are almost indistinguishable. The model also demonstrated
the presence of important two-dimensional nonhydrostatic effects at very high horizontal resolutions. At these
scales, the nonhydrostatic model was generally more robust than the hydrostatic one and produced smoother
solutions.

The impact of the nonhydrostatic dynamics appears to be weak at the horizontal resolutions of about 8 km.
However, a visible effect on the orographic precipitation was detected. In addition to that, the nonhydrostatic
deviation of pressure made a significant small-scale contribution to the pressure gradient force at places.

The proposed approach appears well suited for models designed for a wide range of horizontal resolutions,
and in particular for unified global and regional forecasting systems. Being developed from an existing model,
the new model requires only minimal changes to the existing preprocessing and postprocessing infrastructure.

1. Introduction

Weather forecasting models have reached, or will
shortly reach, horizontal resolutions that allow the rep-
resentation of processes for which the hydrostatic ap-
proximation ceases to be valid. For this reason, the for-
mulation and/or implementation of nonhydrostatic nu-
merical weather prediction (NWP) models is considered
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a matter of priority at many meteorological services and
research institutions.

Hydrostatic NWP models evolved over the past four
decades and have achieved a high level of reliability
and accuracy. Even though claims that optimum model
configurations have been reached cannot be supported
by rigorous scientific arguments, the vast engineering
efforts involved appear to have converged toward sev-
eral common characteristics shared by the dynamical
parts of most major weather forecasting and climate
simulation models.

Within the mesoscale modeling community, consid-
erable experience has been accumulated in the formu-
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lation and application of nonhydrostatic models, partic-
ularly on cloud or single storm scales. Yet this expe-
rience may not be directly applicable in its entirety to
NWP, which is dealing with the motions on a much
wider range of temporal and spatial scales. Difficulties
that may not be significant, or may go unnoticed on the
mesoscale, could spoil a nonhydrostatic forecast on the
synoptic scale. For example, the conservation of mass
is not a matter of much concern at the mesoscale. Yet
an erratic gain or loss of mass from case to case would
be hard to tolerate in an operational environment where
the absence of such errors with the highly evolved hy-
drostatic models is taken for granted. Another problem
may arise concerning the need to control spurious mo-
tions generated in upper levels by the nonhydrostatic
model dynamics and numerics. Time-dependent com-
putational top boundary conditions that could control
this problem could further limit the capacity of a re-
gional nonhydrostatic model to develop more accurate
synoptic-scale forecasts than the parent hydrostatic
model. Finally, there is insufficient experience concern-
ing the benefits that can be expected in NWP from non-
hydrostatic models.

For these reasons, the first priority appears to be that
a nonhydrostatic NWP model gives solutions that at
least are not inferior to solutions of a good hydrostatic
model in the range of validity of the hydrostatic ap-
proximation. Of course, the model should also be able
to reproduce important nonhydrostatic motions at very
high resolutions. Although such resolutions may not be
affordable for NWP applications in the near future, and
therefore may not be relevant for NWP, this condition
must be satisfied in order to demonstrate the soundness
of the formulation. Another obvious requirement is that
the extra computational cost due to the more complex
nonhydrostatic dynamics be affordable. This becomes
even more important considering the uncertainty of the
benefits that will accrue from the nonhydrostatic for-
mulation.

Most NWP and climate hydrostatic models use hy-
drostatic pressure, or mass-based vertical coordinates,
which, almost automatically, guarantee the mass con-
servation. On the other hand, most mesoscale models,
including those intended for NWP applications, use the
geometrical height as the basis for their vertical coor-
dinates. Attempts to use hydrostatic pressure as the ver-
tical coordinate in nonhydrostatic models have also been
made. Recently, Bubnova et al. (1995) reported a suc-
cessful application of the hydrostatic coordinate in a
limited area spectral model following Laprise (1992).

Having in mind the stated criteria, a new approach is
proposed as an alternative to the usual practice of ex-
tending mesoscale nonhydrostatic concepts to the syn-
optic scales. This approach is based on relaxing the
hydrostatic approximation in a mass-based s coordinate
hydrostatic model, thereby extending the applicability
of the model to the nonhydrostatic motions. In order to
do so, the system of nonhydrostatic equations is split

into two parts: (a) the part that corresponds to the hy-
drostatic system, except for higher-order corrections due
to the vertical acceleration, and (b) the system of equa-
tions that allows computation of the corrections ap-
pearing in the first system due to the vertical acceler-
ation. This procedure does not require any linearization
or approximation. With this, evolutionary, approach, the
favorable features of the hydrostatic model are pre-
served within the range of validity of the hydrostatic
approximation.

Following the described strategy, the nonhydrostatic
dynamics is introduced through an add-on module. The
separation of the nonhydrostatic contributions shows in
a transparent way where, how, and to what extent re-
laxing the hydrostatic approximation affects the hydro-
static equations. The nonhydrostatic module can be
turned on and off depending on resolution, so that the
model can be run in the hydrostatic mode at lower res-
olutions with no extra cost. This also allows easy com-
parison of hydrostatic and nonhydrostatic solutions ob-
tained using otherwise identical models.

2. Nonhydrostatic model equations

Following Laprise (1992), the symbol p will repre-
sent the hydrostatic pressure. The generalized vertical
coordinate s is defined in terms of the hydrostatic pres-
sure by the expression

s 5 (p 2 pt)/(ps 2 p t), (2.1)

wherein ps and pt stand for the hydrostatic pressures at
the surface and at the top of the model atmosphere. Let
m represent the difference in hydrostatic pressure be-
tween the base and top of the model column; that is, m
5 ps 2 pt. It is assumed that pt is a positive constant,
whereas ps is a function of time and horizontal position.

Assume that a box with cross section S contains mass
of the air M with the density r. Then,

Mg 5 mDsS 5 grSDz, (2.2)

where g is gravity and Dz is the height of the box. The
hypsometric equation that relates the geopotential F to
the hydrostatic pressure,

]F
5 2am, (2.3)

]s

is readily obtained from (2.2). In (2.3), a is the specific
volume. Using the definitions of s and m, (2.3) may be
rewritten as

]F
5 2a. (2.4)

]p

Assuming that the atmosphere is dry, the specific vol-
ume is related to the temperature T and pressure p by
the ideal gas law: a 5 RT/p, R being the gas constant.
Note that the ideal gas law does not involve the hydro-
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static pressure but rather the actual pressure. Using the
ideal gas law, from (2.3),

]F RT
5 2m . (2.5)

]s p

Upon integration of (2.5) from the surface, where the
geopotential is denoted by Fs, to an arbitrary level s,

1 RT
F 5 F 1 m ds. (2.6)s E p

s

Using (2.4), the third equation of motion may be writ-
ten as

dw ]p
5 g 2 1 . (2.7)1 2dt ]p

Defining the ratio of the vertical acceleration and
gravity g,

1 dw
« [ , (2.8)

g dt

(2.7) may be rewritten as

]p
5 1 1 «, (2.9)

]p

which defines the relationship between the hydrostatic
and the nonhydrostatic pressures. Integrating (2.9) with
respect to p, one obtains the nonhydrostatic pressure at
an arbitrary hydrostatic pressure or s level, that is,

p s]p
p 5 dp9 5 (1 1 «)m ds9. (2.10)E E]p9

p 0t

As can be seen from (2.9) and (2.10), should « vanish,
the pressure and the hydrostatic pressure become equiv-
alent.

In the hydrostatic s coordinate system, the time de-
rivative of a fluid property q following the motion of
an air parcel may be written as

dq ]q ]q
5 1 v · = q 1 ṡ . (2.11)sdt ]t ]s

Here, is the vertical velocity.ṡ
The conservation of mass may be expressed by

1 ]F ]F
w 5 1 v · = F 1 ṡ , (2.12)s1 2g ]t ]s

and, if m is substituted for ]p/]s, by

dm ]ṡ
1 m = · v 1 5 0. (2.13)s1 2dt ]s

Equation (2.12) may be regarded as a definition of w,
the time rate of change of geopotential height following
the motion of a fluid parcel. Equation (2.13) is the mass
continuity equation in the form used in hydrostatic mod-
els.

Using the material surface boundary conditions [ṡ
ds/dt 5 0 at s 5 0 and s 5 1, one may obtain two
equations from (2.13). The first one gives the tendency
of the hydrostatic surface pressure

1]m
5 2 = · (mv) ds9, (2.14)E s]t 0

and the second one is used to calculate the vertical ve-
locity in the s coordinate system

s]m
mṡ 5 2s 2 = · (mv) ds9. (2.15)E s]t 0

Using the relations (2.4) and (2.9), in the case of a
nonhydrostatic atmosphere one obtains

1
2 = p [ 2(1 1 «)= F 2 a= p. (2.16)z s sr

Here the subscripts indicate the variable that is kept
constant while the differentiation is performed. Using
(2.16), the inviscid nonhydrostatic equation for the hor-
izontal part of the wind takes the form

dv
5 2(1 1 «)= F 2 a= p 1 f k 3 v. (2.17)s sdt

Again, for vanishing «, (2.17) reduces to the form used
in hydrostatic models.

The first law of thermodynamics for adiabatic pro-
cesses has the form

dT dp
c 5 a , (2.18)p dt dt

in which cp is the specific heat at constant pressure. In
hydrostatic models, the derivative dp/dt is replaced by
the derivative of hydrostatic pressure dp/dt, often de-
noted by the Greek letter omega. For this reason, the
right-hand side of the equation is frequently referred to
as the omega–alpha term. The derivative of pressure can
be separated into a component v1 that reduces to the
hydrostatic expression when « vanishes, and a com-
ponent v2 that vanishes with vanishing «. Note that,
generally, p 5 p(x, y, p, t). Then

]p ]p ]p ]p ]p ]p
5 1 5 (1 1 «) 1 , (2.19)

]t ]p ]t ]t ]t ]tt p p

where the subscripts indicate the variable that is kept
constant while the differentiation is performed. In ad-
dition to that, as can be seen from (2.9),

]p ]p
ṡ 5 (1 1 «)ṡ . (2.20)

]s ]s

Thus, dp/dt is written in the form

dp
5 v 1 v , (2.21)1 2dt

where
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]p ]p
v [ (1 1 «) 1 v · = p 1 (1 1 «)ṡ , (2.22)1 s]t ]s

or taking into account (2.15) and the fact that m 5
]p/]s,

s

v 5 v · = p 2 (1 1 «) = · (mv) ds9. (2.23)1 s E s

0

Note that the contribution of the second term of the
pressure gradient force (2.16) to the kinetic energy gen-
eration is compensated by the contribution of the hor-
izontal advection of pressure in (2.22). The second part
of v is defined by

]p ]p
v [ 2 (1 1 «) . (2.24)2 ]t ]t

Starting from (2.13), it can be shown that

s ]« ](s9m) ](s9m) ]«
v 5 2 ds9. (2.25)2 E [ ]]t ]s9 ]t ]s90

Note that the term (2.24) indeed vanishes for vanish-
ing «.

In view of the separation of omega into two parts,
the thermodynamic equation is separated into two parts
as well:

]T ]T 1
5 2v · = T 2 ṡ 1 (av ) and (2.26)s 11 2]t ]s cp1

]T 1
5 (av ). (2.27)21 2]t cp2

Note that with the aid of (2.23), (2.26) may be re-
written as

]T ]T
5 2v · = T 2 ṡs1 2]t ]s

1

sa
1 v · = p 2 (1 1 «) = · (mv) ds9 .s E s[ ]cp 0

(2.28)

Again, when « vanishes, (2.26) and (2.28) take the form
used in hydrostatic models, and the equation for the
second part (2.27) takes the trivial form (]T/]t)2 5 0.

The nonhydrostatic system of equations is closed by
applying the operator (2.11) to the continuity equation
(2.12) in order to obtain the vertical acceleration dw/dt.
Then, from (2.8),

1 dw 1 ]w ]w
« 5 5 1 v · = w 1 ṡ . (2.29)s1 2g dt g ]t ]s

The parameter « is evidently the central point of the
extended, nonhydrostatic dynamics. Assume for a mo-
ment that « is zero. Then, Eqs. (2.4), (2.13), (2.17), and

(2.28), together with the gas law, represent the set of
equations describing the hydrostatic, inviscid, adiabatic
atmosphere. However, the presence of nonzero « in
(2.9), (2.17), and (2.28) demonstrate in a very trans-
parent way where, how, and to what extent relaxing the
hydrostatic approximation affects the familiar hydro-
static equations. Note that the system of equations de-
veloped above bears a close relation to the system which
Laprise (1992) referred to as an ‘‘alternative formula-
tion.’’ Therefore, all theoretical considerations of La-
prise (1992) apply to this system as well.

On the synoptic scales, « is very small and approaches
the computer round-off error. However, in case of vig-
orous convective storms, or strong vertical accelerations
in the flows over steep obstacles, the vertical velocity
can reach the order of 10 m s21 over the period of the
order of 1000 s. This yields an estimate of the vertical
acceleration of the order of 1022 m s22, and conse-
quently, « of the order of 1023. As can be seen from
(2.9), for this value of « the nonhydrostatic deviation
of pressure can reach 100 hPa. Bearing in mind that the
typical synoptic-scale horizontal pressure gradient is of
the order of 100 hPa over 100 km, this suggests that
significant local nonhydrostatic pressure gradients and
associated circulations may develop on small scales.

3. Temporal discretization

The numerical model described here uses the equa-
tions discussed in the preceding section cast into finite
difference form. By using numerical methods that have
been successful in hydrostatic models, it is expected that
the model will behave well in the hydrostatic limit, that
is, when applied with resolutions that do not support
significant vertical accelerations.

For vanishing «, the prognostic equations of the quasi-
hydrostatic system of equations, that is, (2.4), (2.13),
(2.17), and (2.28), together with the gas law, can be
conveniently split into two energy conserving subsys-
tems of prognostic equations, that is,

]v
5 2= F 2 a= p 1 f k 3 v, (3.1)s s1 2]t

i

s]T a
5 v · = p 2 = · (mv) ds9 , (3.2)s E s1 2 [ ]]t cp 0i

]m ](mṡ)
1 = · (mv) 1 5 0, (3.3)s]t ]s

]v ]v
5 2v= v 2 ṡ , (3.4)s1 2]t ]s

ii

]T ]T
5 2v · = T 2 ṡ . (3.5)s1 2]t ]s

ii

The time derivatives of the two subsystems are denoted
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by subscripts i and ii, respectively. As can be readily
verified, the system (3.1)–(3.2), together with the con-
tinuity equation (2.13) rewritten here in somewhat dif-
ferent form (3.3), conserves energy. The same applies
to the system (3.4)–(3.5) combined with the continuity
equation that links the two subsystems.

An economical forward–backward scheme (Ames
1969; Gadd 1974) with the trapezoidal scheme for the
Coriolis term (Janjic and Wiin-Nielsen 1977) has been
successfully applied in a hydrostatic model to the system
(3.1)–(3.3) (cf. Janjic 1979). The properties of the
scheme used in the model were examined in the case
of the linearized shallow water equations [e.g., by Janjic
and Wiin-Nielsen (1977) and Janjic (1979)]. Concerning
the contributions of the advection terms (3.4)–(3.5),
there is a variety of possible choices. For example the
split, iterative, first forward then (slightly off ) centered
time differencing scheme (cf. Janjic 1979) has been suc-
cessfully used in synoptic-scale models with time steps
twice longer than those used to solve the subsystem
(3.1)–(3.3) (Janjic et al. 1995). In the formulation dis-
cussed here, this two-step iterative scheme has been
replaced by the Adams–Bashforth scheme, and the di-
rectional splitting has been eliminated. The Adams–
Bashforth scheme allows the same computational effi-
ciency as the two-step, iterative scheme, and the ac-
curacy is improved by reducing or avoiding the effects
of splitting. However, somewhat more memory is need-
ed in order to store some of the variables at the third
time level, and the physical mode of the Adams–Bash-
forth scheme is weakly unstable. As experience shows,
this instability can be tolerated if the time steps are not
too long. Note that large ratios between the advection
time step and the time step used for the remaining terms
of the equations cannot be used in NWP applications.
Namely, since the wind speed can exceed 100 m s21,
this ratio is restricted to 2 or 3, at most.

The described time differencing schemes are applied
to the system (2.13), (2.17), and (2.28). However, certain
extensions are needed in order to compute «. These
extensions will be described here and analyzed in more
detail in the next section.

The superscripts n and n 1 1 will be used to denote
the time levels for all variables, with the exception of
the vertical velocity w, which is defined at the inter-
mediate time levels indicated by superscripts n 1 ½ or
n 2 ½. The superscript n 1 ½ will be used also in the
advection terms in order to indicate the terms extrap-
olated in time in the Adams–Bashforth procedure. Be-
cause the nonhydrostatic equations have been separated
into two components, similar to the previous section,
the subscript 1 will be used to indicate that a variable
has been advanced in time only by the first component
equation. For example, the solution of (2.28) starting
from the time level n will be denoted by the subscript
1, since (2.27) remains to be solved before reaching the
time level n 1 1.

As usual, the vertical velocity in the hydrostatic sigma
coordinate is computed from

1 s

n n n ns = · (m v ) ds9 2 = · (m v ) ds9E s E s

0 0
nṡ 5 , (3.6)

nm

and the surface pressure tendency equation is

1

n11 n n nm 5 m 2 Dt = · (m v ) ds9. (3.7)E s

0

From the solution for mn11, one readily obtains

n n n11 np 5 p 1 s (1 1 « )(m 2 m ), and (3.8)1

s

n n n n nv 5 v · = p 2 (1 1 « ) = · (m v ) ds9. (3.9)1 s E s

0

The first component of the thermodynamic equation is
then

nDt RT
nT* 5 T 1 v , (3.10)1 1nc pp

and after adding the Adams–Bashforth advection,

n11/2]T *1n n11/2 nT 5 T* 2 Dt v · = T * 2 ṡ . (3.11)1 1 s 11 2]s

The superscript n 1 ½ in the advection terms indicates
symbolically the extrapolation in time for half the time
step forward involved in the Adams–Bashforth proce-
dure. In the actual algorithm, the values denoted by the
superscript n 1 ½* and the subscript 1 are obtained
using the current and one time step old .T* T*1 1

The second component of the thermodynamic equa-
tion is

1 RT1n11 n11T 2 T 5 (p 2 p ). (3.12)1 1c pp 1

The hypsometric equation yields the geopotential as-
sociated with the first component solutions for temper-
ature and pressure,

1 RT1n11F 5 F 1 m ds9, (3.13)1 s E p1s

and the second component equation yields
1 n11RT

n11 n11F 5 F 1 m ds9. (3.14)s E n11p
s

The value of vertical velocity w associated with the first
component solutions is obtained from

nF 2 F ]F1 1n ngw 5 1 v · = F 1 ṡ . (3.15)1 s 1Dt ]s

Note that F1 is an intermediate value of geopotential
between Fn and Fn11, that is,
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Fn11 2 F1 # O(Dt). (3.16)

Therefore, using F1 in the advection terms of (3.15) in
order to compute w is a consistent numerical approxi-
mation. On the other hand, neglecting the contribution
(Fn11 2 F1)/Dt would be wrong in view of (3.16). Thus,

n11F 2 F1n11/2w 2 w 5 , (3.17)1 gDt

which must also satisfy the third equation of motion,

n11gDt ]p
n11/2w 2 5 w 2 gDt(1 1 « ). (3.18)1 1n11m ]s

The value of « associated with the first component so-
lutions is obtained from

nw 2 w ]w1 1n ng« 5 1 v · = w 1 ṡ , (3.19)1 s 1Dt ]s

and the second component from

n111 ]p
n11« 5 2 1. (3.20)

n11m ]s

Upon solution of the preceding equations for thermo-
dynamic variables, the pressure gradient force at the
time level n 1 1 can be computed, and the horizontal
equation of motion can be used to advance the wind
components in time. The Adams–Bashforth scheme is
used to compute the contribution of the advection terms,

n11/2]v
n11 n n n11/2 nv * 5 v 2 Dt v · = v 1 ṡ , (3.21)s1 2]s

and then the backward scheme for the pressure gradient
force term, and the trapezoidal scheme for the Coriolis
term, are used to complete the step

n11 n11 n11 n11 n11 n11v 5 v * 2 Dt (1 1 « )= F 2 a = ps s[
n11 n11(v * 1 v )

1 f k 3 .]2
(3.22)

Here, the specific volume an11 is

n11RT
n11a 5 . (3.23)

n11p

4. Solution of the coupled equations

Equations (3.12), (3.14), (3.17), and (3.18) are cou-
pled equations. Their solution will be sought by elim-
inating all unknowns except pn11, solving the resulting
equation, and then back-substituting to obtain Tn11,
Fn11, wn11/2, and «n11. Namely, (3.13) and (3.14), to-
gether with (3.17) and (3.18), can be combined to give

1 n11T T1n11Rm 2 ds9E n111 2p p1s

n111 ]p
25 (gDt) 2 (1 1 « ) . (4.1)1n11[ ]m ]s

Using (3.12) to eliminate Tn11, (4.1) may be rewritten as

1 1 1
n11R(1 2 k)m T 2 ds9E 1 n111 2p p1s

n111 ]p
25 (gDt) 2 (1 1 « ) , (4.2)1n11[ ]m ]s

where k [ R/cp. Define a pressure p* that satisfies the
equation

]p*
n11[ m (1 1 « ), (4.3)1]s

subject to the boundary condition p* 5 pt at s 5 0.
Upon inserting (4.3) into (4.2), one obtains

1 n11 n11R(1 2 k) m m
T 2 ds9E 12 n111 2g p p1s

n11p p*
] 2

n11 n111 2m m
25 Dt . (4.4)

]s

Note that
n11p p*

2 # O(Dt), (4.5)
n11 n11m m

so that, from (4.4),

1 n11 n11R(1 2 k) m m
3T 2 ds9 # O(Dt ), (4.6)E 12 n111 2g p p1s

which illustrates how subtle is the difference between
p1 and pn11.

Differentiating (4.4) with respect to s, introducing
the definitions

n11p p* p1c [ , c* [ , c [ ,1n11 n11 n11m m m

RT1G [ (1 2 k) (4.7)
2(gDt)

and rearranging the resulting equation, one obtains
2] (c 2 c*) c 2 c11 G 5 0. (4.8)

2]s c c1

Finally, define

x [ c 2 c*, D [ c 2 c*, and1

]c1c(s) [ c (s) 1 k c(s 2 ds) 1 ds 2 c (s) . (4.9)1 1[ ]]s
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The product c1c that appears in the denominator of the
undifferentiated term in (4.8) may be approximated by
c 2. Letting g2 [ G/c 2, (4.8) can then be rewritten as

2] x
2 22 g x 5 2g D. (4.10)

2]s

This equation can be solved, for example, by iterative
relaxation subject to the specification of appropriate
boundary conditions. A suitable first guess for the it-
eration is x 5 c 2 c*. Note that instead of using c 2

in (4.12), the product c1c could have been retained in
the iterative process. Concerning the accuracy, however,
this appears meaningless in view of (4.6).

In order to address the problem of specification of
appropriate boundary conditions for (4.10), consider a
horizontally homogenous atmosphere at rest and in hy-
drostatic equilibrium. Let the equations be linearized
around such a basic state. Also, consider only the so-
lutions that preserve the horizontal homogeneity. As can
be readily verified, the requirement for the horizontal
homogeneity eliminates all motions that belong to the
first part of the time stepping procedure. In other words,
the intermediate solutions denoted by subscript 1 will
coincide with the initial values denoted by superscript
n. The only solutions left will be those described by the
linearized set of coupled equations leading to (4.10). In
particular, from (3.12),

n11 n(T 2 T ) 2 (T 2 T )0 0

1 RT0 n11 n5 [(p 2 p ) 2 (p 2 p )], (4.11)0 0c pp 0

and after differentiation of (3.14) with respect to s,
linearization, and rearrangement,

n11 n11 n11](z 2 z ) R(T 2 T ) RT (p 2 p )0 0 0 0g 5 2 1 .
]p p p p0 0 0 0

(4.12)

Here, z is the height and subscript 0 denotes the basic-
state variables. From (3.17) and (3.18)

n11 n(z 2 z ) 2 (z 2 z )0 0n11/2w 5 , (4.13)
Dt

n11/2 n21/2 n11w 2 w ](p 2 p )05 g . (4.14)
Dt ]p0

Introducing primes to denote the deviations from the
basic state, applying the simplest time differencing op-
erator to (4.12) and using (4.13),

n11/2 n11 n]w R(T9 2 T9 )
g 5 2

]p p Dt0 0

n11 nRT (p9 2 p9 )01 . (4.15)
p p Dt0 0

Using (4.11) to eliminate T9 in (4.15), and differencing
in time the resulting equation, one obtains

n11/2 n21/2 n11 n n21] w 2 w c RT (p9 2 2p9 1 p9 )y 0g 5 .
2 2]p Dt c p Dt0 p 0

(4.16)

On the other hand, differentiating (4.14) with respect to
p0,

n11/2 n11/2 2 n11] w 2 w ] p9
5 g . (4.17)

2]p Dt ]p0 0

Thus, combining (4.16) and (4.17), and taking into ac-
count that the basic state is hydrostatic,

n11 n n21 2 n11c(p9 2 2p9 1 p9 ) ] p9p
5 RT . (4.18)02 2Dt c ]zy 0

The equation for vertically propagating sound waves is
readily recognized in (4.18), although finite differencing
is used instead of differentiation with respect to time
on the left-hand side.

Now that the physical nature of the processes in-
volved in the second part of the integration procedure
have been revealed, the question of the boundary con-
ditions for (4.10) can be readdressed. It appears natural
to keep the upper end of the oscillator described by
(4.18) fixed, and the lower end free. Thus, x is set to
zero at s 5 0, and ]x/]s 5 0 at s 5 1. Such an upper
boundary condition is perfectly justified for vanishing
pressure at the top of the atmosphere of the model.

5. The nonhydrostatic limit

The tests discussed in this section deal with small-
scale buoyancy driven flows and disturbances of uni-
form flow induced by small orographic obstacles. Such
problems are typically studied in two dimensions, that
is, in the vertical plane.

In contrast to the flow regimes typically encountered
in NWP, the flow on the small scales is not quasi hor-
izontal; it is very divergent, very nonlinear, and very
dissipative. The numerical solutions in these flow re-
gimes are sensitive to the specification of the boundary
conditions and the intensity and nature of the damping
techniques used. In addition to that, typically thousands,
or tens of thousands, of time steps are made. Thus, the
numerical solutions are likely to develop the nonlinear
instability. An effective method for controlling the non-
linear instability on these scales is either damping im-
plied in the numerical algorithm (historically very pop-
ular in computational hydrodynamics other than NWP),
or explicit artificial damping or filtering if the conser-
vative spatial differencing is chosen.

Another typical difference between the limited area
NWP models and the two-dimensional models for sim-
ulating small-scale flows is the treatment of the lateral
boundary conditions. In the limited area NWP models,
the lateral boundary conditions are typically overspe-
cified as required by the centered finite differences.
However, zones of increased damping, filtering, or
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blending along the boundaries are usually used in order
to control the inconsistencies between the model solu-
tion inside the integration domain and at the boundaries
(cf. Davies 1976). In contrast to that, radiative lateral
boundary conditions are usually applied in the two-di-
mensional nonhydrostatic models.

Within this study, a two-dimensional model was de-
veloped in order to test the ideas exposed in the pre-
ceding sections. As usual for these scales, the Coriolis
force is neglected. Since there is no implied dissipation
in the numerical schemes, following the usual practice,
artificial damping kept to a necessary minimum is used
in order to control the nonlinear instability. The cyclic
lateral boundary conditions are prescribed. However, in
order to reduce the interference with the recurring pe-
riodic solutions, in some of the tests, the Rayleigh damp-
ing was applied along the lateral boundaries. Otherwise,
the dynamics and numerics of the two-dimensional
model are as close as possible to those of the three-
dimensional model that will be used for real data tests
in the next section.

The processes discussed in this section require hor-
izontal and vertical resolutions of the order of few hun-
dred meters. These processes are not, and most likely
will not be, resolved in NWP applications in foreseeable
future. For this reason, the objective of the tests pre-
sented here is only to demonstrate, even qualitatively,
that the important nonhydrostatic motions are present
in the proposed model formulation. The study of these
processes is beyond the scope of this paper.

a. The cold bubble test

Following Straka et al. (1993), in a neutrally stratified
atmosphere with the potential temperature of 300 K, an
initial cold disturbance of the form

T(x, z) 5 T(x, z)

2 2
p x 2 x z 2 zc c22 15 cos 1 ,1 2 1 2[ ]!2 x zt t

2 2x 2 x z 2 zc cif 1 # 1 (5.1)1 2 1 2! x zt t

was introduced, where

x 5 0 m, z 5 3000 m, x 5 4000 m,c c t

z 5 2000 m. (5.2)t

The integration domain extended 40 km in the x direc-
tion, and the free surface was located at 442 hPa, that
is, at about 6400 m. The center of the initial disturbance
was in the middle of the domain in the x direction, that
is, 20 km away from either of the lateral boundaries.
As in the main test in the Straka et al. (1993) study, the
horizontal resolution was 100 m, and the vertical res-
olution was 100 m on the average. The time step was
0.3 s, which was proportionally considerably longer than

the time steps used in the tests described by Straka et
al (1993). There was no divergence damping or Ray-
leigh damping. However, as in the tests reported in
Straka et al. (1993), second-order diffusion was applied
in both horizontal and vertical directions with the dif-
fusion coefficient K 5 75 m2 s21. In addition to that, a
centered three-point spatial filter with the coefficient wa
5 0.15 was applied to «1 defined by (3.19). As dem-
onstrated by numerical tests (not shown), the amount
of damping introduced by this filter is negligible. In
contrast to the tests discussed by Straka et al. (1993),
no time filtering was used.

The potential temperatures after 300, 600, and 900 s
are displayed in Fig. 1. The area shown in the figure
extends from the center of the domain to 19 200 m to
the right, and from the surface to 4600 m. The contour
interval is 1 K. The u component of the wind (upper
panel) and the w component of the wind (lower panel)
after 900 s are shown in the same arrangement in Fig.
2. The dashed contours indicate negative values. The
contour interval is 2 m s21. Comparison of Figs. 1 and
2 with the Straka et al. (1993) converged reference so-
lution reveals very reasonable quantitative and quali-
tative agreement.

An already mentioned advantage of the current ap-
proach is that solutions of the exact hydrostatic coun-
terpart of the model can be studied. The hydrostatic
model was unable to reproduce the results shown in
Figs. 1 and 2. The hydrostatic solution was computa-
tionally unstable unless the lateral diffusion was in-
creased by an order of magnitude. In that case, however,
only very crude, qualitative resemblance to the non-
hydrostatic solution was preserved.

b. The warm bubble test

Following Drogemeier (1985), and Gallus and Rancic
(1996), in a neutral atmosphere with the potential tem-
perature of 300 K, an initial disturbance of the potential
temperature

2 2
p x 2 x z 2 zc c2u(x, z) 5 u(x, z) 1 6.6 cos 1 ,1 2 1 2[ ]!2 x zt t

2 2x 2 x z 2 zc cif 1 # 11 2 1 2! x zt t

(5.3)

was introduced, where

x 5 0 m, z 5 2750 m, x 5 2500 m,c c t

z 5 2500 m. (5.4)t

The integration domain extended 20 km in the x direc-
tion. The free surface was located at 135 hPa, that is,
at about 13 500 m. The center of the initial disturbance
was in the middle of the domain in the x direction, that
is, 10 km away from either of the lateral boundaries.
The horizontal resolution was 100 m, and the vertical
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FIG. 1. The cold bubble test. Initial potential temperature and the potential temperatures
after 300, 600, and 900 s in the right-hand part of the integration domain extending from the
center to 19 200 m, and from the surface to 4600 m. The grid size is Dz ø Dx 5 100 m and
Dt 5 0.3 s. The contour interval is 1 K.

FIG. 2. The cold bubble test. The u component of wind (upper panel) and the w component of
wind (lower panel) after 900 s in the right-hand part of the integration domain extending from
the center to 19 200 m, and from the surface to 4600 m. The grid size is Dz ø Dx 5 100 m and
Dt 5 0.3 s. The contour interval is 2 m s21. The dashed contours indicate negative values.
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FIG. 3. The potential temperature deviation after 360, 540, 720, and 900 s (from upper left to lower right panel,
respectively) in the warm bubble test. The area shown extends 16 km along the x axis, and from 0 to 13 200 m along
the z axis. The contour interval is 1 K.

resolution was l00 m on the average. The time step with
this spatial resolution was 0.3 s as before. The cyclic
boundary conditions were prescribed. The divergence
damping and time filtering were not used. The diffusion
coefficients KDt/Ds2 along the x and s axes were, re-
spectively, 0.0015 and 0.0 for u, 0.0015 and 0.0015 for
T, and 0.015 and 0.015 for w. As before, the three-point
spatial filter with the coefficient wa 5 0.15 was applied
to «1 defined by (3.19).

The potential temperature deviation is presented after
360, 540, 720, and 900 s in Fig. 3. The area shown
extends 16 km along the x axis, and from 1000 to 13 200
m along the z axis. The contour interval is 1 K. The
rate of ascent and the intensity of the disturbance agree
with those reported by Gallus and Rancic (1996). The

low resolution test by Mendez-Nunez and Carroll (1994)
can also be used for qualitative comparison.

c. The nonlinear mountain wave test

Xue et al. (1995) compared an analytical solution of
the nonlinear mountain wave problem with the Bous-
sinesq approximation and the numerical solution ob-
tained with the version of the Advanced Regional Pre-
diction System model using the Boussinesq approxi-
mation. The test reported here was made using the fully
compressible model without any approximation, follow-
ing as closely as possible the experiment of Xue et al.
(1995). The height of the bell shaped hill was 500 m,
and its half-width was 2000 m. The basic-state hori-
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FIG. 4. The deviation of the horizontal wind from its basic-state
uniform value (10 m s21) after 9000 s. The area shown extends
18 400 m on each side of the center of the mountain, and from 0
to 8000 m in the vertical. The contour interval is 0.5 m s21 and the
dashed contours indicate negative values.

FIG. 5. The momentum flux normalized by its theoretical value.
The height on the abscissa ranges from 1000 to 6400 m. The flux
profiles after, respectively, 9000 and 17 000 s are marked by empty
diamonds and empty squares.

zontal wind was 10 m s21, and the Brunt–Väisälä sta-
bility parameter N was approximately 0.01 s21. The hor-
izontal grid size was 400 m covering a domain of about
145 km. The pressure at the top was 64 hPa, and the
initial sea level pressure was 105 Pa. The height of the
atmosphere of the model was about 17 500 m. The ver-
tical coordinate used 143 layers of equal mass (constant
Ds), which provides about 125-m vertical spacing on
the average. The time step was Dt 5 1.2 s. The cyclic
boundary conditions are used at the lateral boundaries.
In the top part of the domain, the Rayleigh damping
was applied with the weight proportional to the formula

p z 2 zmax2cos for z . z , (5.5)c1 22 z 2 zmax c

where z is the height of the grid point. The maximum
height zmax is equal to the height of the domain, and zc

was 9000 m. For the maximum height, the weight reach-
es the maximum of 0.001/Dt. In addition, the Rayleigh
damping was applied along the lateral boundaries as
explained before. The horizontal divergence damping
and time filtering were not used. The second-order dif-
fusion coefficients KDt/Ds2 along the x and s axes were,
respectively, 0.005 and 0.0 for u, 0.007 and 0.0 for T,
and 0.005 and 0.0 for w. As before, a centered three-
point spatial filter with the coefficient wa 5 0.15 was
applied to «1 defined by (3.19).

The deviation of the horizontal wind from the basic
state after 9000 s is shown in Fig. 4 with the contour

interval of 0.5 m s21. The area shown extends 18 400
m on each side of the center of the mountain, and from
0 to 8000 m in the vertical. The qualitative and quan-
titative agreement with the analytical solution and the
numerical solution discussed by Xue et al. (1995) are
reasonably good considering the remaining differences
between the tests. Note that in the test by Xue et al.
(1995) the prognostic fields were initialized over a pe-
riod of 1000 s.

The vertical momentum flux profiles normalized by
the theoretical value of the flux (Xue et al. 1995) after
9000 and 17 000 s are shown in Fig. 5. The height is
on the abscissa ranging from 1000 to 6400 m. The flux
profiles after 9000 and 17 000 s are marked by empty
diamonds and empty squares, respectively. As can be
seen from the figure, after 9000 s the solution is rather
close to the steady state. After 17 000 s, the normalized
fluxes vary between 0.98 and 1.03.

6. Real data tests

The approach described in the previous sections has
been implemented starting from the National Centers
For Environmental Prediction Meso Eta Model. The de-
tails about the finite differencing schemes used in the
model can be found in Janjic (1979, 1984, 1997), Janjic
et al. (1995), and Mesinger et al. (1988). The model
physics is discussed in Chen et al. (1997), Janjic (1990,
1994, 1996a,b), and Zhao and Carr (1997). The three-
dimensional nonhydrostatic model dynamics and nu-
merics agree to the maximum possible extent with those
of the two-dimensional model used in the tests of the
preceding section. The model appears to be computa-
tionally robust at all horizontal resolutions and efficient
in NWP applications. The extra computational cost due
to the nonhydrostatic extension is about 20% of that
required by the hydrostatic dynamics, in terms of both
computer time and memory.
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FIG. 6. The topography of the 28 by 28 region in California shown
with 120-m contour interval.

FIG. 7. The 24-h nonhydrostatic forecast of height at 500 hPa valid
at 1200 UTC 25 Jan 2000. The contour interval is 10 m.

There is insufficient evidence concerning the impact
of the nonhydrostatic dynamics on numerical weather
forecasts using the horizontal resolutions of the order
of 1–10 km. In order to elucidate this point a test was
carried out with the horizontal resolution (i.e., the short-
est distance between two grid points carrying the same
variable) of about 8 km. Such a relatively coarse res-
olution was chosen because it was believed to be rep-
resentative for the next generation of numerical weather
prediction models that will be applied on continental
and larger scales.

The model had 32 levels in the vertical and used the
terrain-following s vertical coordinate. In order to im-
prove the accuracy of the pressure gradient force cal-
culation, a scheme was used that reduces to the scheme
proposed by Janjic (1977) (see also Janjic 1998) for the
hydrostatic atmosphere. The model topography was de-
fined in the most straightforward way, by bilinear in-
terpolation of the 10-min U.S. Navy data. After the
interpolation, one pass of five-point averaging was ap-
plied over the land points in order to eliminate the two-
grid-interval wave in the terrain height, and thereby
prevent the generation of small-scale noise by the moun-
tains.

The case considered occurred in California between
1200 UTC 24 January 2000 and 1200 UTC 25 January
2000. The integration domain was 48 by 48 in the rotated
latitude–longitude coordinate system with the coordi-
nate origin located in the center of the domain. The
topography of the 28 by 28 region in the middle of the
integration domain is presented in Fig. 6 with a 120-m
contour interval. The 24-h nonhydrostatic forecast of

the 500-hPa height valid at 1200 UTC 25 January 2000
is shown in the same domain in Fig. 7 with a contour
interval of 10 m. As can be seen from the figure, the
flow aloft is southwesterly, forcing the moist maritime
air to ascend over the steep mountain slopes.

The accumulated precipitation over the 24-h forecast
period ending at 1200 UTC 25 January 2000 obtained
using the nonhydrostatic model is shown in Fig. 8 only
for the central 28 by 28 part of the integration domain.
The contour interval is 10 mm. The precipitation amount
at the maximum reaches about 180 mm. Almost all of
the precipitation came from the grid-scale precipitation
and not from the convection. The corresponding result
for the hydrostatic run is shown in Fig. 9 using the same
arrangement. As can be seen from the figure, the pre-
cipitation pattern remained generally similar to that from
the nonhydrostatic run. However, differences in details
are noticeable even at the horizontal resolution of 8 km.
In particular, note the appearance of ‘‘cut-off’’ minima
in the precipitation pattern located upstream with respect
to the major maxima in the nonhydrostatic run. In order
to check whether this feature was indeed an artifact of
the nonhydrostatic dynamics, the test was repeated
around one of these minima with approximately 1-km
horizontal resolution and in a proportionally reduced
integration domain. The precipitation forecasts obtained
with the nonhydrostatic and the hydrostatic models in
the middle quarter of the small domain are presented in
Figs. 10 and 11, respectively, with 5-mm contour in-
terval. As can be seen from the figures, the nonhy-
drostatic model again produced a cut-off minimum in
the precipitation pattern in place of a trough in case of
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FIG. 8. Accumulated precipitation over the 24-h forecast period
ending at 1200 UTC 25 Jan 2000 obtained using the nonhydrostatic
model with 8-km resolution. The contour interval is 10 mm.

FIG. 10. Accumulated precipitation over the 24-h forecast period
ending at 1200 UTC 25 Jan 2000 obtained using the nonhydrostatic
model with 1-km resolution. The contour interval is 5 mm.

FIG. 11. Accumulated precipitation over the 24-h forecast period
ending at 1200 UTC 25 Jan 2000 obtained using the hydrostatic model
with 1-km resolution. The contour interval is 5 mm.

FIG. 9. Accumulated precipitation over the 24-h forecast period
ending at 1200 UTC 25 Jan 2000 obtained using the hydrostatic model
with 8-km resolution. The contour interval is 10 mm.

the hydrostatic model. Understandably, the precipitation
amounts in the 1- and the 8-km runs do not coincide.

The 24-h forecast of the nonhydrostatic pressure at
the 700-hPa hydrostatic pressure level obtained in the
8-km nonhydrostatic run is shown in Fig. 12 in the same

28 by 28 area as before with the contour interval of 1
Pa. As can be seen from the figure, the nonhydrostatic
deviation can reach a fraction of 1 hPa, which agrees
with theoretical estimates. Although these deviations are
small, their contributions to the local values of the pres-
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FIG. 12. The 24-h forecast of the nonhydrostatic pressure at the
700-hPa hydrostatic pressure level valid at 1200 UTC 25 Jan 2000.
The contour interval is 1 Pa.

sure gradient force are comparable in magnitude with
the synoptic-scale contributions and presumably affect
the small-scale circulations significantly.

It should be reiterated that the proposed approach has
demonstrated a good computational efficiency in NWP
applications. For example, with 4-km grid size, 41 by
81 grid points in the horizontal, 32 levels in the vertical,
and 10-s time step, the 24-h nonhydrostatic forecast
takes slightly over 7½ h on a single processor 450 mHz
Pentium II personal computer. The forecast with exactly
the same setup, but with the nonhydrostatic extension
switched off, takes slightly less than 6½ h.

7. Conclusions

Instead of extending mesoscale nonhydrostatic mod-
eling concepts to the synoptic scales, a hydrostatic NWP
model using the mass-based s vertical coordinate has
been extended to include the nonhydrostatic motions,
preserving the favorable features of the hydrostatic for-
mulation. Nonhydrostatic model obtained in this way
represents a natural, evolutionary extension of the hy-
drostatic model. The equations solved are equivalent to
those discussed by Laprise (1992).

The basic idea applied was to split the system of the
nonhydrostatic equations into two parts: (a) the part that
corresponds basically to the hydrostatic system, except
for higher-order corrections due to the vertical accel-
eration, and (b) the system of equations that allows com-
putation of the corrections appearing in the first system

due to the vertical acceleration. This procedure does not
require linearization or approximation of any kind.

The nonhydrostatic dynamics is introduced through
an add-on nonhydrostatic module. The separation of the
nonhydrostatic contributions shows in a transparent way
where, how, and to what extent relaxing the hydrostatic
approximation affects the familiar hydrostatic equa-
tions. The nonhydrostatic module can be turned on and
off depending on resolution, so that the same model can
be run in the hydrostatic mode at lower resolutions with
no extra cost. This also allows easy comparison of hy-
drostatic and nonhydrostatic solutions of otherwise
identical models.

The proposed nonhydrostatic model appears to be
computationally robust and efficient in NWP applica-
tions. With the current coding, the extra computational
cost due to the nonhydrostatic extension is of the order
of 20% of that required by the hydrostatic dynamics,
both in terms of computer time and memory. The rel-
atively low cost of the nonhydrostatic dynamics justifies
the application of the nonhydrostatic model even at me-
dium resolutions. Compared to the hydrostatic version
of the model, no additional computational boundary
conditions were needed in real data runs.

At lower resolutions, in the hydrostatic limit, the fore-
casts of traditional meteorological parameters obtained
using the hydrostatic and the nonhydrostatic model are
almost indistinguishable. The model also demonstrated
the presence of important two-dimensional nonhydro-
static effects at very high resolutions. At these scales,
the hydrostatic and the nonhydrostatic solutions were
substantially different. The nonhydrostatic model was
generally more robust than the hydrostatic one and pro-
duced smoother solutions.

The impact of the nonhydrostatic dynamics appears
to be weak at the horizontal resolutions of about 8 km.
However, a visible effect on the orographic precipitation
was detected. In addition, the nonhydrostatic deviation
of pressure made a significant small-scale contribution
to the pressure gradient force at places.

The proposed approach appears well suited for mod-
els designed for a wide range of horizontal resolutions,
and in particular for unified global and regional fore-
casting systems. Being developed from an existing mod-
el, the new model requires only minimal changes of the
existing preprocessing and postprocessing infrastruc-
ture.
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