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ABSTRACT

This paper discusses the generation of icosahedral hexagonal–pentagonal grids, optimization of the grids,

how optimization affects the accuracy of finite-difference Laplacian, Jacobian, and divergence operators, and

a parallel multigrid solver that can be used to solve Poisson equations on the grids. Three different grid

optimization methods are compared through an error convergence analysis. The optimization process in-

creases the accuracy of the operators. Optimized grids up to 1-km grid spacing over the earth have been

created. The accuracy, performance, and scalability of the multigrid solver are demonstrated.

1. Introduction

All early global atmosphere models used longitude–

latitude grids. Near the poles, the grid spacing on such

a grid is much larger in the meridional direction than the

zonal direction, and the horizontal area associated with

a grid cell is much smaller than at lower latitudes. The

small zonal grid spacing drastically reduces the size of

the maximum time step that is compatible with linear

computational stability. These issues are generically re-

ferred to as the ‘‘pole problem.’’ Longitudinal filters can

be applied near the poles to allow longer time steps (e.g.,

Arakawa and Lamb 1977), but the filters have undesir-

able side effects and do not scale well to high resolution

on parallel computers.

Spectral methods were used by Bourke et al. (1977)

to eliminate the pole problem for rapidly propagating

inertia–gravity waves. Spectral models suffer from the

‘‘Gibbs phenomenon’’ induced by sharp topography

(Hoskins 1980). In addition, spectral advection does not

work well for positive-definite scalars (e.g., Williamson

and Rasch 1994), and in recent years spectral advection

has been almost universally replaced by grid-based ad-

vection schemes.

Alternative grids have also been proposed to solve the

pole problem. A quasi-spherical design derived from the

icosahedron was used byWalther Bauersfeld in 1923 for

the construction of the dome of the Zeiss planetarium

located in the city of Jena, Germany. Later, Buckminster

Fuller constructed a series of ‘‘geodesic’’ domes (Rothman,

1989). Icosahedral grids were first introduced to the

earth sciences in the pioneering work of Vestine et al.

(1963). A few years later, Sadourny et al. (1968) and

Williamson (1968) independently proposed the use of

icosahedral grids for atmospheric models. They took

different approaches, however. Sadourny et al. (1968)

proposed icosahedral hexagonal–pentagonal (IHP) grids

(Fig. 1a), and Williamson (1968) proposed icosahedral

triangular grids (Fig. 1b). The Nonhydrostatic Icosahe-

dral Atmospheric Model (NICAM; Satoh et al. 2008),

the models developed at Colorado State University

(CSU; Heikes and Randall 1995a,b, hereafter HR95a,b,

respectively; Randall et al. 2002), the operational global

numerical weather prediction model of the German

Weather Service (GME; Majewski et al. 2002), and

Flow-Following Finite-Volume Icosahedral Model

(FIM; Lee and MacDonald, 2009) all use IHP grids.

Further discussion of IHP grids is given by Miura and

Kimoto (2005) and Thuburn (1997). The icosahedral

triangular grid has been used in Icosahedral Nonhydro-

static General Circulation Model (ICON; Bonaventura

et al. 2005; Bonaventura and Ringler 2005; Wan 2009),

although the most recent version of the triangular grid

that allows regional grid refinement is not based on an
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icosahedron. Another version of ICON with an IHP

grid is under development (B. Stevens, 2011 and 2012,

personal communication). The Model for Prediction

Across Scales (MPAS; Skamarock et al. 2012) can be

configured to use an IHP grid, although it has been de-

signed with more general grids in mind.

Sadourny (1972) also proposed the cubed-sphere grid

(Fig. 1c), which is widely used today (Rancic et al. 1996;

Ronchi et al. 1996). Versions of it have been imple-

mented at the Massachusetts Institute of Technology

(MIT; Adcroft et al. 2004), Geophysical Fluid Dynamics

Laboratory (GFDL; Putman and Lin 2007), and the

National Center for Atmospheric Research (NCAR;

Mishra et al. 2011). The cubed-sphere grid can be thought

of as a spherical version of the planar Cartesian grid, and

schemes designed for the Cartesian grid can easily be

adapted to the cubed-sphere grid.

Additional grids are discussed in the recent review

article by Staniforth and Thuburn (2012).

In this paper, we explain the motivation for and de-

scribe the construction of a family of optimized IHP grids.

We discuss grid generation and optimization, the con-

vergence of three important operators as the grid spacing

is reduced, and the solution of global elliptic problems. A

key goal of our work has been to enable the use of very

high-resolution IHP grids on massively parallel com-

puters. We explore the convergence properties of three

finite-difference operators on successively finer versions

of the grids. We also discuss the computational perfor-

mance of a parallel multigrid solver that uses the grids.

In many respects, this paper is an updated and ex-

tended version of HR95a,b, although the icosahedral

grid presented here is not twisted hemispherically along

the equator1 as in HR95a. The optimization algorithm

presented here, which we call tweaking, is a modified

version of the method used by HR95b. We have modi-

fied the cost function to obtain more accurate operators.

We compare the tweaking optimization with a version of

the spring dynamics optimization introduced by Tomita

et al. (2001, 2002) and with a version of the centroidal

voronoi tessellation (CVT) introduced by Du et al.

(1999) and Ju et al. (2011).

The paper is organized as follows. Section 2 presents

a comparison of properties of the Cartesian, icosahedral,

and triangular grids on a plane. The generation of the

icosahedral grid is discussed in section 3.We then present

analyses of the convergence of finite-difference Lap-

lacian, Jacobian, and divergence operators on the un-

optimized grid. In section 4, we compare three different

optimization algorithms, and present error analyses

for the optimized grids. Section 5 presents the two-

dimensional multigrid solver and discusses convergence

and scaling to very fine grids. A summary and conclusions

are presented in section 6.

This paper is the first of a sequence. The second paper

describes and presents results from a shallow-water

model and a three-dimensional hydrostatic model, both

based on the grid described here. The third paper de-

scribes a three-dimensional nonhydrostatic generaliza-

tion of the model. The grids and codes will be made

available as supplemental material to the second paper.

2. A comparison of three planar grids

We first consider idealized planar grids, which are free

from variations in the size, shape, and orientation of the

grid cells. As is well known, only three regular polygons

tile the plane: equilateral triangles, squares, and hexa-

gons. Figure 2 shows planar grids made up of each of

these three possible polygonal elements.

On the triangular and square grids, some of the neigh-

bors of a given cell lie directly across cell walls, while

FIG. 1. (a) Icosahedral hexagonal/pentagonal grid, (b) icosahedral triangular grid, and (c) cubed-sphere grid.

1While the hemispheric twisting results in symmetry across the

equator, it is a complication that we now choose to avoid.
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others lie across cell vertices. As a result, finite-difference

operators constructed on these grids tend to use ‘‘wall

neighbors’’ and ‘‘vertex neighbors’’ in different ways.

For example, the simplest second-order finite-difference

approximation to the gradient, on a square grid, uses

only wall neighbors; vertex neighbors are ignored. It is

certainly possible to construct finite-difference opera-

tors on square grids (and triangular grids) in which in-

formation from all neighboring cells is used [e.g., the

Arakawa Jacobian, as discussed by Arakawa (1966)],

but the operators can be cumbersome.

Hexagonal grids, in contrast, have the property that

all neighbors of a given cell lay across cell walls; there

are no vertex neighbors. In this sense, hexagonal grids

are quasi-isotropic. As a result, the most natural finite-

difference operators on hexagonal grids treat all neigh-

boring cells in the same way; the discrete operators are

as symmetrical and isotropic as possible.

On the other hand, both square grids and triangular

grids can be nested, but hexagonal grids cannot because

it is not possible to construct large hexagons from smaller

hexagons. This can be viewed as a disadvantage of hex-

agonal grids. A second disadvantage is that, for a given

number of grid cells per unit area, the distance between

hexagon centers is slightly larger than the distances be-

tween the centers of triangles or squares.

With triangular and hexagonal grids, there can be an

imbalance in the number of centers, walls, and corners.

In particular, hexagonal grids have twice as many cell

corners as cell centers and 3 times as many cell walls as

cell centers. If the variables of a model are distributed

over the centers, walls, and corners, computational modes

can easily occur.

This mismatch in the degrees of freedom can be avoi-

ded by using ‘‘hexagonal A’’ staggering, in which the

mass and the horizontal wind vector are both predicted

at cell centers, but this again permits computational

modes, due to averaging in the mass-convergence term

of the continuity equation and the pressure-gradient

force term of the momentum equation. NICAM (Satoh

et al. 2008) and FIM (Lee and MacDonald, 2009) use

grids like this. In global cloud resolving simulations with

NICAM, it is observed that there are a high number of

single-gridcell clouds, which is consistent with the exis-

tence of the computational mode associated with the

A-grid (H. Muira 2010, personal communication).

With hexagonal C staggering, in which the mass is

defined at cell centers and the normal components of the

winds are predicted on the cell walls, the horizontal wind

has three degrees of freedom for each degree of freedom

in the mass; this permits a computational mode in the

wind field. Although there are ways to minimize the am-

plitudes and deleterious effects of computational modes

(see Thuburn 2008), they can be avoided altogether by

the use of the ‘‘Z staggering.’’

With the Z staggering, in which the mass, the vertical

component of the vorticity, and the horizontal divergence

are defined at cell centers without staggering, there is no

room for computationalmodes (Randall 1994).Additional

advantages of the Z staggering are that it gives a good

simulation of geostrophic adjustment (Randall 1994), and

that direct prediction of the vorticity facilitates the use of

an accurate form of the discrete vorticity equation.

We choose an IHP grid because of its good homoge-

neity and isotropy, and we are then led to choose Z

staggering because it avoids computational modes while

giving a good simulation of geostrophic adjustment and

enabling an accurate form of the vorticity equation. The

price we pay for using Z staggering is that we must

solve a pair of Poisson equations on each time step. The

method that we use for this is discussed in section 5. We

use the Z-grid staggering in the hydrostatic and non-

hydrostatic models to be discussed in the forthcoming

papers mentioned above.

FIG. 2. (a) Cartesian, (b) hexagonal, and (c) triangular grids on a plane.
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3. Grid generation

a. The ‘‘raw’’ grid

The icosahedron has 20 triangular faces and 12 verti-

ces (Fig. 3a). Five triangles come together at each ver-

tex. The icosahedron can be inscribed inside a sphere,

which can represent the (approximately) spherical

Earth. The icosahedron can be oriented so that two of

its vertices align with Earth’s North and South Poles of

rotation.

In our grid-generation algorithm, each face of the

icosahedron is subdivided into four new triangular faces

by bisecting the edges of the triangles (Fig. 3b).2 The

vertices of the new triangles are projected onto the

surface of the sphere, creating 80 new triangular faces

(Fig. 3c). This bisection procedure can be repeated as

many times as necessary to obtain the desired resolu-

tion. The edges of the triangular faces are then projected

to the surface of the sphere, where they define spherical

triangles.

We call the (spherical) triangular grid generated

through this process the raw grid. The resolution of the

raw grid can be specified by the number of recursive

bisections needed to generate it. For example, grids 0, 1,

and 2 have 12, 42, and 162 vertices, respectively. IfN and

G are the number of grid cells and the grid level, re-

spectively, we can write

N5 53 223(G21)131 2. (3.1)

Using this terminology, the raw grid shown in Fig. 3c

corresponds to G5 1, which we will shorten to G1.

b. From the raw grid to the IHP grid

The grid cells of our unoptimized IHP grid are the

Voronoi cells centered at the vertices of the corre-

sponding raw grid. The Voronoi cell associated with

a particular vertex of the raw grid is, by definition, the set

of all points closer to that vertex than to any other ver-

tex. It follows that the corners of the Voronoi cells,

called Voronoi corners, are equidistant from three or

more vertices—three in the case of the IHP grids (and

four in the case of a Cartesian grid). For discussions of

Voronoi grids on the sphere, see Okabe et al. (2000),

AugenbaumandPeskin (1985), andHR95a. The dual grid

associated with the hexagonal and pentagonal Voronoi

cells consists of Deluanay triangles (e.g., Bonaventura

and Ringler 2005). The model discussed in this paper

does not make use of the Delaunay triangles.

In Fig. 4a, the vertices of the raw grid are represented

by the blue dots. Consider the spherical triangle formed

by connecting three neighboring vertices of the raw grid,

as represented by the green lines in Fig. 4a. The corners

of the Voronoi cells are represented by the green dots in

Fig. 4a. As mentioned above, these corners are equi-

distant from the three neighboring vertices. The loca-

tions of the Voronoi corners can be determined using

Eq. (8) of HR95a. The IHP grid cells are constructed by

connecting neighboring Voronoi corners with segments

of great circles, as shown by the blue lines in Fig. 4b. The

areas of the grid cells are determined taking into account

that they are patches of a sphere. Twelve pentagonal

grid cells are generated, with their centers at the 12

vertices of the original icosahedron. All of the other cells

are hexagonal. The pentagons and hexagons are un-

avoidably distorted in the construction of an IHP grid,

so that they have slightly varying shapes and sizes.

We use the term ‘‘arc’’ to denote a segment of a great

circle. The Voronoi cells have the important property

FIG. 3. Bisections and projections during the generation of the raw grid. (a) An icosahedron inscribed in the sphere.

(b) Bisection of each edge of the icosahedron to form four new triangular faces. (c) Projection of the new vertices

onto the sphere.

2 Trisection and various other strategies are also possible but will

not be discussed here.
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that the ‘‘cell walls’’ (i.e., the arcs connecting the Voronoi

corners) are perpendicular bisectors of the intersecting

arcs, called ‘‘grid segments,’’ which connect the centers of

the two grid points that they separate. The converse is not

true, however; as can be seen in Fig. 4c, the grid segments

do not necessarily bisect the cell walls. This has important

consequences, which are discussed in section 3c and in

section 4.

As discussed above, our grid is truly spherical: we use

great circles to determine the distances between points

on the IHP grid, and the curved surface of the sphere to

determine the cell areas. This ensures that the shape and

total area of the grid are independent of resolution. If

two geodesic grids of different resolutions are used to

represent the atmosphere and Earth’s surface (i.e., the

ocean and the land surface), the total surface area seen

by the atmosphere grid is the same as the total area seen

by the surface grid. This ensures, for example, that the

upward flux of energy or mass or momentum from the

surface grid can exactly match the corresponding upward

flux of energy entering the atmosphere from below.

The alternative to our spherical grid can be called a

‘‘faceted’’ grid, in which the linear distances between the

points on the grid are used instead of great-circle dis-

tances, and the planar areas between the corner points

are used to determine the cell areas, as if the sphere was

replaced by a faceted jewel. A faceted grid converges

toward a spherical grid as the resolution increases.

For a technical reason explained in section 4c, we use

the spherical grid up to G11 and faceted grids for G12

and G13. At such high resolutions, the differences be-

tween the faceted and spherical grids are very minor.

There are three important differences between the

planar hexagonal and spherical IHP grids. (i) The regular

hexagons have uniform shapes and sizes, while the

spherical IHP grid has a mixture of hexagons and pen-

tagons of varying sizes. The ratio of the smallest to

largest cell sizes is about 78% on the raw grid with me-

dium and high resolutions. (ii) The distances between

the grid points are uniform on the regular hexagonal

grid, but not on the spherical IHP grid. (iii) The grid

segments bisect the cell walls on the regular hexagonal

grid, but not on the spherical IHP grid. Recall that, be-

cause of the use of Voronoi corners, the arcs connecting

the corners are already perpendicular bisectors of the

grid segments on the spherical IHP grid, as on the reg-

ular hexagonal grid. In section 4, we will show that the

spherical IHP grid can be optimized to yield improved

error convergence properties.

c. Convergence of selected finite-difference operators
on the raw grid

Wenow analyze the truncation errors of three second-

order finite-difference operators on the spherical IHP

grid:

Laplacian operator: (=2b)0[
1

A0

�
n

i51

d0,i

 
bi 2b0

‘0,i

!
,

(3.2)

Jacobian operator:

[J(a,b)]0[
1

A0

�
n

i51

d0,i
ai1a0

2

"
(bC)i 2 (bC)i21

d0,i

#
(3.3)

and

FIG. 4. Generation of an IHP grid from a raw grid for the case of G1 resolution. (a) The blue dots are the vertices of

the raw grid. The Voronoi corners, represented by the green dots, are equidistant from the three neighboring vertices

of the raw grid, and so lie at the centers of the triangular cells of the raw grid. (b) The hexagonal–pentagonal cells of

the icosahedral grid are obtained by connecting the Voronoi corners. The dots are the cell centers. (c) The triangular

cells of the raw grid and the hexagonal and pentagonal cells of the IHP grid are both shown. The vertices of the raw

grid correspond to the centers of the IHP grid cells.
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Divergence operator:

[$ � (aC)]0[
1

A0

�
n

i51

d0,i(aw)0,i(cn)0,i . (3.4)

In Eq. (3.2), b is an arbitrary two-dimensional scalar

expressed at cell centers, as shown in Fig. 5a; A0 is the

area of the cell 0; n is the number of edges (or walls) and

corners of the polygon, n5 6 and n5 5 denote hexagons

and pentagons, respectively; d0,i is the length of the arc

edges separating cells 0 and i; and ‘0,i is the length of the

arcs connecting the grid points 0 and i (i.e., the grid

distance). In Eq. (3.3), a is another two-dimensional

arbitrary scalar expressed at cell centers as shown in

Fig. 5a, and (bC)i is the value of b interpolated to the cell

corners using

(bC)i [
a0b01 aibi 1 ai11bi11

a01 ai 1 ai11

. (3.5a)

In Eq. (3.5a), ai is the area of the triangular region shown

in Fig. 5b. The expression on the right-hand side of Eq.

(3.5a) interpolates b from the three surrounding centers

to the corner by fitting a two-dimensional linear function

of space passing through the three cell centers (Fig. 5b).

An alternative to Eq. (3.5a) is

(bC)i [
b01bi1bi11

3
, (3.5b)

which was proposed by Sadourny et al. (1968), and

Masuda and Ohnishi (1986). The Jacobian given by

Eq. (3.5b) satisfies the conditions J(a,b)52J(b,a),

aJ(a,b)5 0, and bJ(a,b)5 0, where an overbar denotes

a global average. With these properties, the discrete

Jacobian conserves enstrophy and kinetic energy for

two-dimensional nondivergent flow (Arakawa 1966).

The alternative form, Eq. (3.5a), does not have the same

conservation properties, but has higher local accuracy,

as shown later in this section.

Now consider the divergence operator. In Eq. (3.4),C

is an arbitrary vector, (cn)0,i is the component ofC that

is normal to the cell wall separating cells 0 and i, and

(aw)0,i is the interpolated value of a from the cell centers

to walls, for which we use (aw)0,i [ (1/2)(ai 1a0) for this

case. Positive values of the normal vector point out of

the cells as shown in Fig. 4a, and (cn)0,i [ 2(cn)i,0 ac-

cording to this definition. We define (cn)0,i as a gradient

given by (cn)0,i [ (bi 2b0)/‘0,i.

In these analyses, we prescribe test functions

a(l,u)[ cos3u sin5l, where l andu are the longitude and

latitude, respectively, and b(l,u)[ 2(a2/2) cos3u cos3l,

FIG. 5. An illustration of the portion of the hexagonal grid, grid indexing, and distribution of variables for (a) a hexagonal cell and

(b) a triangunal region at the corner.
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where a is the radius of the earth. The true solutions are

obtained by analytically computing the Laplacian, Jaco-

bian, and divergence of these functions. For each opera-

tor at each grid point, the truncation error is computed as

the difference between the analytical and numerical so-

lutions. The L2- and L‘-norm errors, which are also

called the RMS and maximum errors, respectively, are

calculated for each operator using the resolutions from

G4 to G13, and the results are plotted in Fig. 6.

We define L2 [ [(1/AEarth)�i51,NAi(f
approx
i 2ftrue

i )2]1/2,

where AEarth [�i51,NAi, N is the number of cells

on the sphere and f is an arbitrary variable, and

L‘[Max
i51,N

(jfapprox
i 2ftrue

i j). Note that the interpolation

formula given by Eq. (3.5a) is used in the calculations

of the Jacobian in these analyses, unless otherwise

specified. Figures 6a,c show that theL2-norm (or RMS)

errors with the Laplacian and Jacobian operators fol-

low a first-order convergence. The L2-norm errors with

the divergence operator follow a second-order con-

vergence for low resolutions and a first-order conver-

gence for high resolutions. TheL‘-norm (or maximum)

errors for all these operators show no convergence at

all, as shown in Figs. 6b,d,f. The hexagonal grid on

a plane gives second-order convergence with the same

operators.

4. Grid optimization

We now compare the convergence properties of three

different grid-optimization algorithms. The first is the

‘‘tweaking’’ algorithm introduced byHR95b, the second is

the ‘‘spring dynamics’’ algorithm introduced by Tomita

et al. (2001, 2002), and the third is CVT introduced by Du

et al. (1999) and Ju et al. (2011).Adiscussion of the various

aspects of grid optimization can also be found inMiura and

Kimoto (2005).We have created tweaked grids up toG13,

which has a grid spacing of approximately 1km on the

earth. Optimization of high-resolution grids is computa-

tionally expensive and requires highly efficient codes, but

in principle it only has to be done once. We are making

both the tweaking codes and the tweaked grids available

to the community. The discussion below focuses on the

performance of the finite-difference Laplacian, Jacobian,

and divergence operators with the optimized grids.

a. The tweaking algorithm

The tweaking optimization algorithm was introduced

by HR95b, and is briefly described in the appendix of

this paper. The goal of the optimization is to minimize

the distance l between the midpoint of the cell wall and

the point where the grid segment intersects the cell wall,

by displacing the grid points (or cell centers) relative to

those of the raw grid (see Fig. 7). The algorithm tries to

globally minimize a cost function, which is proportional

to (l/d)4. Since l 5 0 for the planar hexagonal grid

(section 3b), we can say that the tweaking algorithm tries

to globally minimize the difference (iii) between the

spherical and planar hexagonal grids as discussed at the

end of section 3b. This point will be made clear with

discussion in the next two paragraphs.

Table 1 shows some basic properties of the tweaked

and unoptimized IHP grids. (The properties of the un-

optimized IHP grids are shown in parentheses.) Through

the tweaking the ratio of the smallest to the largest grid

sizes (fifth column) and the maximum of l/d (last col-

umn), where d is the length of the grid wall, is made

closer to one. However, the tweaking does not improve

the ratio of the shortest to longest grid distances (fourth

column). The grid distances on the tweaked grid are

slightly less uniform than those on the raw grid.

The L2- and L‘-norm errors for each operator on the

tweaked grid are shown in Fig. 8. Truncation errors are

reduced overall compared to the unoptimized grid.

Moreover, error convergence rates with the tweaked

grid are substantially improved. The L2-error (or mean

error) convergence rate of the divergence operator is

almost second order, and it is close to second order for

the Laplacian and Jacobian operators. The L‘-error (or

maximum error) convergence rate of the three opera-

tors is at least first order.

The Jacobian results presented in Fig. 8 are obtained

by using the interpolation Eq. (3.5a). In Fig. 9, we

present the L2- and L‘-norm error analyses for the Ja-

cobian operator using the interpolation equation in

Eq. (3.5b), which maintains the important conservation

properties mentioned above. The L2-norm error con-

verges through a first-order slope, as shown in Fig. 9a,

while its counterpart converges through a nearly second-

order slope (Fig. 8c). The L‘-norm error does not in-

dicate any convergence with Eq. (3.5b), as shown in Fig.

9b, while its counterpart converges through a nearly

first-order slope (Fig. 8d). Since the L‘-norm error does

not satisfy either the minimum accuracy requirement or

consistency, we do not use the conservative Jacobian

operator in the divergence equation. The conservative

Jacobian expressed by the combination of Eqs. (3.3) and

(3.5b) may produce inaccurate solutions of the diver-

gence equation. Note that we use a highly accurate

enstrophy-damping advection scheme in the vorticity

equation instead of the Jacobian operator.

The spring dynamics algorithm is discussed in detail

by Tomita et al. (2001, 2002), Tomita and Satoh (2004),

and Satoh et al. (2008). The primary purpose of this

optimization is to homogeneously distribute the grid

points throughout the globe. The algorithm determines

the steady state solution of the dynamical system through
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FIG. 6. (left) L2-norm and (right) L‘-norm errors for (a),(b) Laplacian; (c),(d) Jacobian; and (e),(f) divergence

operators on the raw grid. Red and blue dashed lines indicate the slope of first- and second-order convergences,

respectively. The Jacobian operator uses the interpolation given by Eq. (3.5a).
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a numerical integration, in which the grid points on the

raw grid are connected to each other with springs. Non-

uniform horizontal resolution can be achieved by allow-

ing the ‘‘spring constant’’ to vary in space, and this is

a major motivation for the approach. Here we consider

only spatially uniform spring constants.

We repeated the calculations described by Tomita

et al. (2001) and Tomita et al. (2002) with the two values

of the tuning parameter, k5 0:8 and k 5 1.1, which cor-

respond to the tuning parameter b in the original pa-

pers. The notation is changed to avoid confusion with b

used in section 3c. Larger values of k give more ho-

mogeneous distributions of grid points. It appears that

there is a practical upper limit for k; our algorithm was

stable only up to k 5 1.1, while the highest value of k

used by Tomita et al. (2001, 2002) was 1.2. We stopped

the integrations when the maximum displacement of

grid points between the time steps becomes less than or

equal to 0:33 1024 m. After the spring grid points were

located, Tomita and colleagues selected the centroids

of the triangular regions as the cell corners. In our

implementation, on the other hand, the cell corners

were obtained by using the Voronoi principle, as for the

tweaked grid.

Table 2 shows some basic properties of the spring grid,

obtained using k5 1.1 and raw grids up toG12. Through

the spring dynamics, the ratio of the smallest to the

largest grid sizes (fifth column) and the ratio of the

shortest to the longest grid distances (fourth column) do

not change significantly. Although not shown here, the

cell sizes are distributed much more smoothly on the

spring grid than on the unoptimized and tweaked grids,

which are shown in Table 1. There is an improvement in

the maximum of l/d (last column) compared to the raw

grid although the improvement is not as great as that

obtained by tweaking.

Figure 10 shows L2- and L‘-norm errors for each

operator on the spring grid, obtained with k 5 1.1 and

k 5 0.8. We apply the spring dynamics optimization up

to G10, which is sufficient for a comparison of the results

with those from the raw and tweaked grids. Truncation

errors are reduced overall, compared to the raw grid,

with both k 5 1.1 and k 5 0.8. The L2-error (or mean

error) convergence rate of the divergence operator is

almost second order, and is between the first and second

orders for the Laplacian and Jacobian operators. There

is a small improvement in the mean error for k 5 1.1,

relative to k 5 0.8. The L‘-error (or maximum error)

convergence rate of the three operators is less than first

order, but it is still quite a bit better than the conver-

gence rate on the raw grid. Compared to k5 0.8, the use

of k5 1.1 appearsmore effectively reduce themaximum

errors and the convergence rates, although it has little

effect on the mean error. The convergence rates are

FIG. 7. An illustration of the tweaking algorithm on a couple of

neighboring cells. The cell centers (solid black circles) are moved

to their new positions (gray circles) to satisfy l 5 0. The cell wall

already bisects the line connecting the cell centers at a right angle

because of the use of Voronoi corners.

TABLE 1. Some properties of the tweaked and raw grids. The raw grid properties are shown in the parentheses. Averaged grid distance is

the arithmetic average of the maximum and minimum of grid distances.

Grid

No. of grid

points N

Avg grid

distance ‘ (km)

Ratio of shortest to

longest grid distance (%)

Ratio of smallest to

largest grid size (%) Max of l/d (%) Avg l/d (%)

G0 12 6699.1 100 (100) 100 (100) 0.0 (0.0) 0.0 (0.0)

G1 42 3709.8 88.1 (88.1) 88.5 (88.5) 9.9714 (9.9714) 5.0061 (5.0061)

G2 162 1908.8 82.0 (84.8) 91.6 (84.2) 5.8020 (9.9718) 3.6172 (3.6700)

G3 642 961.4 79.8 (83.9) 94.2 (76.3) 3.0933 (9.6888) 2.0437 (2.1255)

G4 2562 481.6 79.0 (83.7) 94.8 (74.1) 1.6020 (9.6758) 1.0699 (1.1363)

G5 10 242 240.9 78.7 (83.6) 95.0 (73.6) 0.8168 (9.6726) 0.5447 (0.5867)

G6 40 962 120.4 78.6 (83.6) 95.2 (73.4) 0.4128 (9.6718) 0.2743 (0.2980)

G7 163 842 60.2 78.6 (83.6) 95.2 (73.4) 0.2075 (9.6714) 0.1375 (0.1501)

G8 655 362 30.1 78.6 (83.6) 95.3 (73.4) 0.1041 (9.6715) 0.0688 (0.0753)

G9 2 621 442 15.0 78.6 (83.6) 95.3 (73.4) 0.0522 (9.6715) 0.0344 (0.0377)

G10 10 485 762 7.53 78.6 (83.6) 95.3 (73.4) 0.0260 (9.6715) 0.0172 (0.0189)

G11 41 943 042 3.76 78.6 (83.6) 95.3 (73.4) 0.0131 (9.6715) 0.0086 (0.0094)

G12 167 772 162 1.88 78.6 (83.6) 95.3 (73.4) 0.0065 (9.6715) 0.0043 (0.0047)

G13 671 088 642 0.94 78.6 (83.6) 95.3 (73.4) 0.0056 (9.6715) 0.0021 (0.0023)
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FIG. 8. As in Fig. 6, but on the tweaked grid.
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slower overall than those obtained with the tweaked

grid.

b. Comparison of tweaking with the CVT algorithm

The CVT algorithm is discussed in detail by Du et al.

(1999), and its application to a sphere is described by Ju

et al. (2011). The primary purpose of the CVT optimi-

zation is tomake the centers of theVoronoi cells coincide

with their centroids (or barycentric centers), using an it-

erative procedure. Unlike the tweaking algorithm, the

CVT algorithm does not involve a global constraint.

We generated ourCVT grids using an algorithm based

on Lloyd’s method as described by Ju et al. (2011). We

then confirmed that our CVT grids are virtually identical

to those generated by Ju et al. (2011) through the com-

parison of the grid statistics tabulated in Table 10.1 of Ju

et al. (2011). Table 3 shows some basic properties of the

CVT grids and unoptimized IHP grids. (The properties

of the unoptimized grids are given in parentheses.)

Through the CVT algorithm, themaximum values of l/d

are greatly improved relative to those of the unoptimized

grid. However, the optimization does not improve the

ratio of the shortest to longest grid distances (fourth

column). The grid distances on the optimized grid are

slightly less uniform than those on the unoptimized IHP

grid.

Figure 11 shows L2- and L‘-norm errors for each

operator on CVT grids up to G10, which is sufficient for

a comparison of the results with those from the un-

optimized IHP, as well as tweaked and spring grids.

Truncation errors are reduced overall, compared to the

unoptimized grid. These error characteristics are com-

parable to those obtained by the spring grid with k5 1.1.

The L2-error (or mean error) convergence rate of the

divergence operator is almost second order, and is be-

tween the first and second orders for the Laplacian and

Jacobian operators. The L‘-error (or maximum error)

convergence rates of the three operators are less than

first order, but still quite a bit better than on the un-

optimized grid. The convergence rates are lower overall

FIG. 9. As in Fig. 7, but for the Jacobian operator with the interpolation given by Eq. (3.5b).

TABLE 2. As in Table 1, but for the spring grid obtained with k 5 1.1 for resolutions up to G10.

Grid

No. of grid

points N

Avg grid

distance ‘ (km)

Ratio of shortest to

longest grid distance (%)

Ratio of smallest to

largest grid size (%) Max of l/d (%) Avg l/d (%)

G0 12 6699.1 100 (100) 100 (100) 0.0 (0.0) 0.0 (0.0)

G1 42 3937.6 88.1 (88.1) 88.5 (88.5) 9.9714 (9.9714) 5.0061 (5.0061)

G2 162 2033.5 85.7 (84.8) 84.5 (84.2) 8.7992 (9.9718) 3.1710 (3.6700)

G3 642 1016.5 84.3 (83.9) 81.4 (76.3) 7.9470 (9.6888) 1.6847 (2.1255)

G4 2562 509.3 82.7 (83.7) 78.6 (74.1) 7.4475 (9.6758) 0.8558 (1.1363)

G5 10 242 254.6 81.5 (83.6) 78.6 (73.6) 6.8878 (9.6726) 0.4327 (0.5867)

G6 40 962 127.3 80.5 (83.6) 74.5 (73.4) 6.2919 (9.6718) 0.2181 (0.2980)

G7 163 842 63.6 79.5 (83.6) 73.1 (73.4) 5.6742 (9.9714) 0.1095 (0.1501)

G8 655 362 31.8 78.8 (83.6) 72.1 (73.4) 5.0305 (9.6715) 0.0548 (0.0753)

G9 2 621 442 15.9 78.2 (83.6) 71.4 (73.4) 4.3481 (9.6715) 0.0274 (0.0377)

G10 10 485 762 7.96 78.8 (83.6) 70.9 (73.4) 3.6060 (9.6715) 0.0137 (0.0189)
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FIG. 10. As in Fig. 6, but for the spring grid obtained using k5 1.1 (solid lines) and k5 0.8 (dashed lines). Note that k

corresponds to b in Tomita et al. (2001) and Tomita et al. (2002).
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than those obtained with the tweaked grid, but compa-

rable to those of the spring grid.

c. Concluding remarks on grid optimization

The results presented above demonstrate that icosa-

hedral grids must be optimized in order to obtain good

convergence properties. Tweaking yields a more uni-

form cell size distribution than the spring dynamics and

CVT optimization. Tweaking tends to place the largest

hexagonal cells close to the smallest cells, which are the

pentagons. As mentioned above, the Voronoi principle

is used to locate the cell corners in all optimization al-

gorithms. It appears that the tweaking algorithm yields

the best overall error convergence properties, of the three

optimizations tested here. CVT optimization produces

‘‘well optimized’’ grids, in the sense that the error con-

vergence rates are almost second order, away from the

pentagons, but it fails at and near the pentagons, where

the maximum errors are large and do not converge with

increasing resolution.

The tweaking algorithm is the most computationally

demanding of the three methods, but of course the op-

timization only has to be performed once.We aremaking

the FORTRAN-90 tweaking code and the tweaked grid

data up to G13 available to the community as supple-

ments to this paper. We are also providing the code that

generates the raw and unoptimized IHP grids.

With the G12 and G13 grids, we used faceted grids, as

defined in section 3b, because the inverse cosine function

used to generate the G12 and G13 spherical grids re-

quired the use of very high precision (128 bits) for accu-

rate results. This made the optimization of the spherical

G12 and G13 grids impractical because of the required

CPU time and memory size. We overcame the difficulty

by the use of faceted G12 and G13 grids generated with

64-bit precision. This technical problem can undoubtedly

be resolved in the future. We repeat that we have used

spherical grids for resolutions up to and including G11.

5. Multigrid solver

a. Description of the solver

We have developed a parallel multigrid solver that

works on our geodesic grids. In our models, the solver

is used to solve the Poisson equations to obtain the

streamfunction and velocity potential from the predicted

vorticity and divergence, respectively. The multigrid and

conjugate gradient methods are the two most common

methods used for the solution of such elliptic equations.

The reader is referred to Fulton et al. (1986) and Zhou

and Fulton (2009) for additional information about the

multigrid method, and Smolarkiewicz and Margolin

(1994), Smolarkiewicz et al. (1997), and Skamarock

et al. (1997) for the conjugate gradient method. Although

we are not aware of any comprehensive comparison of

these methods in the context of atmospheric modeling, it

is our belief that the multigrid method yields optimal

computational scalability to very large grids. This is our

main reason for choosing it.

We consider the two-dimensional elliptic equation on

a global domain given by

=2
Hg5F , (5.1)

where g and F are two-dimensional functions of longi-

tude (l) and latitude (u). We discretize Eq. (5.1) using

the finite-difference Laplacian in Eq. (3.2) on the ico-

sahedral grid shown in Fig. 5 as

1

A0

�
n

i51

d0,i

 
gi 2 g0
‘0,i

!
5F0 , (5.2)

where g0 and gi are the numerical solutions at grid

point 0 and neighboring i obtained by the multigrid

solver and F0 [F(l0,u0) is the discrete value of F cal-

culated at grid point 0.

TABLE 3. As in Table 1, but for the CVT up to G10.

Grid

No. of grid

points N

Avg grid

distance ‘ (km)

Ratio of shortest to

longest grid distance (%)

Ratio of smallest to

largest grid size (%) Max of l/d (%) Avg l/d (%)

G0 12 6699.1 100 (100) 100 (100) 0.0 (0.0) 0.0 (0.0)

G1 42 3709.8 88.4 (88.1) 88.5 (88.5) 9.9714 (9.9714) 5.0061 (5.0061)

G2 162 1905.8 85.8 (84.8) 83.9 (84.2) 9.1214 (9.9718) 3.1710 (3.6700)

G3 642 959.2 81.0 (83.9) 79.5 (76.3) 8.7016 (9.6888) 1.6847 (2.1255)

G4 2562 480.4 81.0 (83.7) 75.1 (74.1) 8.7649 (9.6758) 0.8558 (1.1363)

G5 10 242 240.3 78.6 (83.6) 70.6 (73.6) 8.8001 (9.6726) 0.4327 (0.5867)

G6 40 962 120.1 76.3 (83.6) 66.5 (73.4) 8.8093 (9.6718) 0.2181 (0.2980)

G7 163 842 60.0 74.1 (83.6) 62.6 (73.4) 8.8115 (9.9714) 0.1095 (0.1501)

G8 655 362 30.0 71.8 (83.6) 59.0 (73.4) 8.8120 (9.6715) 0.0548 (0.0753)

G9 2 621 442 15.0 69.4 (83.6) 55.4 (73.4) 8.8121 (9.6715) 0.0274 (0.0377)

G10 10 485 762 7.50 67.2 (83.6) 50.1 (73.4) 8.8121 (9.6715) 0.0137 (0.0189)
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The multigrid solver finds g through iterations on the

native grid and coarser grids to maximize accuracy and

efficiency. The rationale this is that the iterations on

the native (high resolution) grid cannot effectively and

efficiently reduce the errors in the large-scale (or smooth)

fields. Therefore, coarser grids are used to reduce the

large-scale errors, on which less iteration is enough to

reduce the error than those on the native grid. For more

FIG. 11. As in Fig. 6, but for the CVT grid.
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information about the multigrid method, see Brandt

(1977), Fulton et al. (1986),Briggs et al. (2000), Trottenberg

et al. (2001), and Yavneh (2006). We use V cycles, as

schematically illustrated in Fig. 12. The solid arrows on

the downward side of the V cycle indicate the injections

(or restrictions), in which the residual (R) [i.e., the dif-

ference between the left and right hand sides of Eq.

(5.2)], and ‘‘deviations (g 0)’’ (i.e., the values of g required

to satisfy the residual), are ‘‘transferred’’ to a lower

resolution grid, where convergence is advanced through

a few iterations. The term ‘‘transfer’’ is used because the

grid points of a lower-resolution grid always coincide

with the points of the higher-resolution grid, so that no

interpolation is needed for injections. The grid points of

the 12 pentagons are the same for all resolutions, so that

no interpolations are needed for these grid points either.

The injections continue until G0 is reached. On the up-

ward or ‘‘prolongation’’ side of the V cycle, R andg0are
interpolated to higher resolutions using simple inter-

polations from neighboring points, which is a deviation

from the algorithm described by HR95a (p. 1866). Then

iterations are performed to correct g 0. Several of these V
cycles are needed to achieve convergence.

We investigated the convergence rate as a function of

the number of V cycles, for tweaked grids G4 to G12.

The test function used was g(l,u)[2(a2/2) cos3u cos3l,

which gives F(l,u)5 6 cos3u cos3l. We compared the

‘‘true’’ solution gtrue with the solution from the multigrid,

which is denoted by gmg. The right-hand side of Eq. (4.2)

was determined using F0 [F(l0,u0)5 6 cos3u0 cos3l0.

The error was defined by jgtrue 2 gmgj. Figure 13 shows

the maximum error as a function of the V-cycle count,

for G4, G8, and G12. The error decreases with in-

creasing resolution, but the number of V cycles required

for convergence also increases with resolution. To show

the order of accuracy, we plot the errors as functions of

the resolution for the V cycle in Fig. 14. The slope is

almost second order for the low resolutions (between

G4 and G8), and slightly better for the high resolutions

(between G8 and G12). These results are encouraging.

To examine the sensitivity of the multigrid solutions

to the grid optimization, we repeated the solutions dis-

cussed above on the unoptimized grid as well. The so-

lutions with the optimized and unoptimized grids showed

no significant difference. This is not surprising because

the errors in the elliptic equation solutions are domi-

nated by the large-scale errors, which are not affected by

the grid-scale differences between the optimized and

unoptimized grids.

b. Computational performance of themultigrid solver

The FORTRAN code for implementing the two-

dimensional multigrid solver described above has been

parallelized using a domain-decompositionmethod. The

global grid is divided into process domains with equal

numbers of grid points, and each domain is enlarged by

one row of ghost points to carry the information from

neighboring domains. Purple lines in Fig. 15a denote the

borders of these domains. To illustrate the domain de-

composition during the grid injections, we use the ex-

ample shown in Fig. 15. In this example, the native

resolution isG3, andwe use 40 processes with 40 domains.

FIG. 12. A schematic illustration of the V cycle for G3.

FIG. 13. Maximum error between the true and multigrid so-

lutions as a function of V-cycle counts. The a is the radius of the

earth.
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During the injections, if the number of grid points per

process is greater than or equal to 16, the number of

processes used for the calculations is not changed from

the previous injection step, as shown in Fig. 15b. If the

number of grid points per process is less than 16, then

domains are merged to form new domains with 16 grid

points or more each, and the number of processes is

reduced accordingly. Figure 15c illustrates an example

of domain merging. Four-cell domains are merged to-

gether to form 16-cell domains (bordered by cyan lines),

and we use only 10 processes out of 40 to perform the

calculations. The relaxation scheme used in the multi-

grid solver is based on an underrelaxed Jacobi solver.

We tested several relaxation coefficients with different

test functions. The reader is referred to Briggs et al. (2000,

p. 9) for the definition of the relaxation coefficient v.

Based on these tests, we concluded that there is no

single universal coefficient yielding the fastest conver-

gence in every case. Nevertheless, we found that v 5
0.75 yields the fastest convergence in many cases. Thus

we selected this value of the coefficient for use in our

model.

We now examine the strong parallel scalability of

the multigrid solver. Strong scalability is defined as the

change of wall-clock time with the number of processes

for a fixed problem size, as identified by the resolution

level. Figure 16 shows the time (seconds) needed to

execute one V cycle for a 192-layer application, as a

function of the number of processes for the resolutions

G4 to G13. The multigrid solver is tested with 192 lay-

ers because we intend to use the solver in a multilayer

model with a deep vertical domain. The thin red lines

show the slope of ‘‘perfect scalability’’ for a given res-

olution; with perfect scalability, the wall-clock time is

cut in half when the number of processes is doubled.

Small grids, such as G4 and G5, yield very poor strong

scalability. The strong scalability improves as the prob-

lem size increases. For example, the G11 solution, which

corresponds to 4-km grid spacing, scales reasonably well

at least up to 81 920 processes.

6. Summary and conclusions

In this paper, we have discussed the generation

and optimization of IHP grids, the accuracy of finite-

difference Laplacian, Jacobian, and divergence op-

erators applied on the grids, and the performance of a

two-dimensional multigrid elliptic solver designed for

use on the grids.

FIG. 14. Convergence of errors with the V-cycled multigrid as

a function of grid resolution. The red and blue lines show the slopes

of the first and second-order error convergences, respectively. The

a is the radius of the earth.

FIG. 15. A schematic depiction of the domain decompositions used in the parallelization of the injection (or

restriction) steps of the multigrid with G3 native resolution and 40 processes. The purple and cyan colored lines are

the borders of the process domains.
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Our raw grid generation algorithm starts by bisecting

the triangular faces of the icosahedron inscribed. The

resulting vertices rare projected onto the sphere. The re-

cursive bisections and projections continue until the

desired resolution is reached. Projecting the edges of the

triangles onto the sphere completes the generation of

the grid. The vertices or corners of the spherical triangles

form the center points of the hexagonal–pentagonal

cells, which are Voronoi cells with respect to those center

points.

Optimization of the grid is needed to obtain good

convergence of finite-difference operators. Analyses of

truncation errors of the finite-difference Laplacian, Ja-

cobian, and divergence operators on the raw icosahedral

grids show a nearly first-order convergence rate for the

RMS (L2-norm) errors and almost no convergence of

the maximum (L‘-norm) errors. These rates are much

slower than the desired second-order convergence, which

is obtained (as expected) using a regular hexagonal grid

on a plane.

We have tested three different optimization algo-

rithms that can be applied to unoptimized IHP grids to

improve the error convergence rates of the three oper-

ators. The tweaking algorithm tries to minimize the

distance between the midpoint of the cell wall and the

point that the grid segments intersect the cell wall by

moving the grid points (or cell centers) of the raw grid.

The spring dynamics algorithm tries to homogenize the

distances between the grid points, or cell centers. The

CVT optimization makes the Voronoi cell centers co-

incide with the barycentric centers of the cells. All three

optimization algorithms reduce the errors and improve

the convergence rates. The tweaking optimization pro-

duces nearly first- and second-order convergence rates

for the L‘- and L2-norms. The spring grid and CVT

optimizations produce slightly slower convergence rates

for theL2-norms, relative to the tweaked grid. However,

both the spring grid and CVT optimizations produce

very poor convergence rates for the L‘-norms.

The tweaking optimization algorithm presented here

uses a different cost function than that of HR95b. The

new tweaked grid produces more accurate operators and

smoother simulations.

Both the code used to generate the raw grid and the

tweaking optimization code are being made available as

supplements to this paper. The grids themselves are also

being made available.

Finally, we have designed and demonstrated a parallel

multigrid solver that scales reasonably well up to 81 920

processes.We aremaking the solver code available to the

community as a supplement to this paper.
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FIG. 16. Strong parallel scalability of the V-cycled multigrid for the native resolutions G4–
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(seconds) are doubled, respectively. The slope of the red thin lines indicate perfect scalability.
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APPENDIX

The Tweaking Optimization Algorithm

Consider the function f : Rn /R defined as

f (x)5 �
all cells

n51
�

cell walls

i51

 
ln,i
dn,i

!4

, (A.1)

where x is a vector with n degrees of freedom that de-

scribes the position of cell centers in the global grid. For

a given x we calculate the Voronoi corners, which de-

termine ln,i and dn,i. The function sums the distance ln,i
normalized with the length of a cell wall dn,i for each cell

wall over all cells. The exponent causes larger ratios to

have an increased influence relative to smaller ratios

in the global sum. Our goal is to minimize this function

over all possible configurations of grid points, that is, to

find

min
x

f (x) " x 2 R
n . (A.2)

This function is designed to optimize a particular prop-

erty of the grid. Similar functions could be constructed

to optimize other properties of the grid using the ap-

proach described below.

We minimize the function f using quasi-Newton opti-

mizationmethods, constructing a sequence fx0, x1, x2, . . . g
of approximations that converge to the optimal solution.

The starting point, x0, is the raw grid. Quasi-Newton

methods, and in particular, the BFGSmethod used here,

are described in detail by Fletcher (1987).

The quadratically truncated Taylor series f (x) ex-

panded about the kth iterate xk is given by

f (xk 1 d)’ f (xk)1 gTkd1
1

2
dTBkd , (A.3)

where d5 x2 xk, gk 5$f (xk), and Bk is the Hessian

matrix evaluated at xk. The Hessian matrix B is the

square matrix of second-order partial derivatives where

the (i, j)th element is given by ›2f (x)/›xi›xj. The gradi-

ent of the Taylor series is

$f (xk 1 d)5 gk 1Bkd . (A.4)

A local minimum of the Taylor series is characterized by

a zero gradient. Setting the gradient to zero gives the

conventional Newton step d5B21
k gk.

In quasi-Newton methods, B21
k is approximated di-

rectly by a symmetric positive definite matrix that is

corrected from iteration to iteration using only first-

order derivative information. This avoids the need for

second-order derivatives to calculate the Hessian. If

we define dk 5 xk11 2 xk and gk 5 gk11 2 gk, then Hk11

is chosen so thatHk11gk 5 dk. There are several ways to

choose Hk11. We use the so-called Broyden–Fletcher–

Goldfarb–Shanno (BFGS) formula, which is given by

Hk115Hk1

 
11

gTkHkgk
dTkgk

!
dkd

T
k

dTkgk
2

 
dkg

T
kHk 1Hkgkd

T
k

dTkgk

!
.

(A.5)

The algorithm implemented in the optimization code is

(i) determine a search direction sk with sk 52Hkgk,

(ii) perform a line search along sk giving xk11 5
xk 1aksk,

(iii) update Hk giving Hk11,

(iv) repeat until the convergence criterion is met.

For a very high-resolution grid, it is impossible to store

the dense n3 n matrix associated with Hk, so we use

the limited-memory BFGS, or ‘‘L-BFGS,’’ algorithm

FIG. A1. Partitioning of the grid to reduce degrees of freedom in

the optimization.
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pioneered by Nocedal (1980). With L-BFGS only a

few vectors are required to represent Hk.

We reduce the problem size by taking advantage

of certain symmetries of the grid. The 20 spherical

triangles of the projected icosahedron are all identi-

cal, and reflectively symmetric. This implies that each

spherical triangle can be partitioned into six self-

similar pieces. Figure A1 shows the global grid parti-

tioned into 120 (520 3 6) pieces. The optimization is

applied to only one small triangular piece. The posi-

tions of the grid points in the remaining pieces are then

determined through reflections.
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