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ABSTRACT

Multigrid methods solve a large class of problems very efficiently. They work by approximating a problem
on multiple overlapping grids with widely varying mesh sizes and cycling between these approximations, using
relaxation to reduce the error on the scale of each grid. Problems solved by multigrid methods include general
elliptic partial differential equations, nonlinear and eigenvalue problems, and systems of equations from fluid
dynamics. The efficiency is optimal: the computational work is proportional to the number of unknowns.

This paper reviews the basic concepts and techniques of multigrid methods, concentrating on their role as
fast solvers for elliptic boundary-value problems. Analysis of simple relaxation schemes for the Poisson problem
shows that their slow convergence is due to smooth error components; approximating these components on a
coarser grid leads to a simple multigrid Poisson solver. We review the principal elements of multigrid methods
for more general problems, including relaxation schemes, grids, grid transfers, and control algorithms, plus
techniques for nonlinear problems and boundary conditions. Multigrid applications, current research, and

available software are also discussed.
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1. Introduction

Elliptic boundary-value problems arise in many
areas of geophysical fluid dynamics. Perhaps the sim-
plest type is the Poisson problem

~Vu = f, (1.1)

which occurs in a variety of contexts. For example, in
nondivergent barotropic models V2 is the two dimen-
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sional horizontal Laplacian, # the unknown stream-
function, f the known relative vorticity, and (1.1) is
solved with Dirichlet boundary conditions. In Bous-
sinesq models of shallow convection V2 is the three
dimensional Laplacian, u the unknown nonhydrostatic
pressure, and f a function of the known temperature
and motion fields, and (1.1) is solved with Neumann
boundary conditions (e.g., Ogura and Phillips, 1962).
Another simple elliptic problem which often arises is
the Helmholtz problem. An example is in the appli-
cation of semi-implicit time differencing to primitive
equation models which use finite differences in space
(e.g., Haltiner and Williams, 1980, p. 149). Then u
represents the geopotential at the present time level
and f'is known in terms of the geopotential and wind
fields at previous time levels.

Not all the elliptic boundary-value problems which
arise in geophysical fluid dynamics have constant coef-
ficients. As a prototype of variable coefficient problems
in two dimensions let us consider

(auy), + (buy)y =£ (1.2)

which can be classified as a problem with weakly or
strongly varying coefficients depending on the per-
centage variation of the known coefficients a(x, y) and
b(x, y). In the balanced vortex theory of hurricane de-
velopment (e.g., Schubert and Hack, 1983) we en-
counter an equation of the form (1.2) with u repre-
senting the streamfunction for the transverse part of
the mass circulation; the coefficients involve the po-

Unauthenticated | Downloaded 11/30/23 12:52 PM UTC



944

tential vorticity and the inertial stability and become
strongly varying as the vortex develops. Variable coef-
ficient problems in three dimensions arise in both
quasi-geostrophic and semi-geostrophic theory (e.g.,
Hoskins, 1975; Hoskins and Draghici, 1977). Examples
include the omega equations, tendency equations, and
the relations between geopotential and potential vor-
ticity.

Occasionally, nonlinear boundary-value problems
are also encountered. For example, in the balanced
vortex theory of hurricanes there arises a two-dimen-
sional nonlinear problem relating the unknown poten-
tial function to the known Ertel potential vorticity
(Thorpe, 1985). In more general three-dimensional
nonlinear balance models and in certain initialization
schemes (e.g., Haltiner and Williams, 1980, pp. 215,
368) one must solve a nonlinear problem which relates
the streamfunction for the rotational flow to the known
geopotential field.

If the elliptic boundary-value problem needs to be
solved many times (e.g., at every time step in evolution
problems), an efficient solution procedure is important,
especially in three-dimensional problems. The subject
of this review paper is the multigrid method, which can
be regarded as an approach to developing fast solvers
for all of the above examples of elliptic boundary-value
problems in geophysical fluid dynamics.

Solving an elliptic problem is usually a two-stage
procedure. First, one approximates the continuous
problem by a discrete analogue, usually based on finite
difference approximations over a sufficiently fine grid.
Second, one solves the resulting discrete equations,
usually by an iterative technique. For the simplest
problems, such as the Poisson problem, there exist “fast
solvers” which give the solution with optimal efficiency,
i.e., computational work proportional to the number
of unknowns. However, for more complicated prob-
lems iterative schemes tend to be slow, and typically

‘get even slower as the resolution of the grid increases.

In the early 1970s, multigrid methods were intro-
duced as a means of constructing fast solvers for general
elliptic problems. While various components of mul-
tigrid processes had been known earlier, especially from
the work of Fedorenko (1962, 1964), Achi Brandt
(1973) was the first to demonstrate the practical effi-
ciency and generality of multigrid methods. The fun-
damental components were also developed indepen-
dently by W. Hackbusch and by P. Frederickson at
about the same time. Multigrid methods have been
analyzed, applied and generalized in many ways since
their introduction, and are gradually becoming rec-
ognized as a powerful tool in applied mathematics.

Multigrid methods differ from the perhaps more fa-
miliar nested grid techniques in that the primary use
of multiple grids is not to obtain nonuniform resolu-
tion. Instead, the basic multigrid idea is to approximate
the same continuous problem on a set of overlapping
uniform grids of widely varying mesh sizes, and cycle
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between these discrete problems to produce the solution
on the finest grid with optimal efficiency. Each grid is
employed specifically in solving for those components
of the solution which require the corresponding reso-
lution; error in these components is reduced efficiently
using a simple relaxation scheme. The computational
cost of the coarser grids is small since they involve
relatively few points.

The primary advantages of multigrid methods are
efficiency and generality. Defining a work unit as the
number of operations needed simply to express the
discrete equations, the typical multigrid efficiency is to
solve a problem to the level of truncation error in just
a few (4 to 10) work units. This efficiency has been
obtained for a wide class of problems, including general
elliptic boundary-value problems, singular perturbation
and nonelliptic problems, minimization problems, and
integral equations. Self-adaptive local mesh refinement
can be incorporated in a natural way, and nonlinear
problems are solved with the same efficiency as linear
problems.

This paper gives a concise review of the basic con-
cepts and techniques of multigrid methods. It is in-
tended both to serve as a simple introduction to these
methods and to call attention to their potential for
solving problems in geophysical fluid dynamics. The
emphasis here is on methods for solving a single elliptic
equation such as those discussed above; more detail,
plus information on methods for more complicated
problems, is available from a number of sources. The
first comprehensive treatment of multigrid methods
was Brandt (1977a), which remains very useful. The
review article of Stiiben and Trottenberg (1982) con-
tains detailed analyses of simple model problems, along
with some interesting historical notes. Both of the above
sources also contain listings of sample multigrid pro-
grams, Brandt (1982) is an invaluable practical guide
to developing multigrid algorithms for a wide range of
problems; an updated version (Brandt, 1984) contains
additional introductory material plus detailed infor-
mation on multigrid methods for systems of equations
in fluid dynamics. Comprehensive multigrid bibliog-
raphies are given in all of these sources and in Brand
(1982). ‘

In the body of this paper we first review several clas-
sical methods for solving discretized elliptic boundary-
value problems, including Gaussian elimination, point
iterative methods, and an ADI method. These are ap-
plied to the Poisson problem in section 2 to illustrate
the amount of computational work they require. The
reason for the slow convergence of relaxation methods
is analyzed in section 3, leading naturally to the basic
multigrid concept of using corrections computed on
coarser grids. A simple two-grid method is described
and then generalized to give a workable multigrid
method.

Developing a multigrid algorithm for a particular
problem involves choosing a relaxation scheme, a set
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of grids, grid transfer operators, and a control algo-
rithm. In section 4 we examine each of these principal
components in more detail. Also discussed are the Full
Approximation Scheme for nonlinear problems and
advanced techniques, basic principles governing the
treatment of boundary conditions, and some general-
izations to finite-element and spectral discretizations
and other types of problems. Section 5 surveys recent
applications of multigrid methods, areas of current re-
search, and available software. Concluding remarks are
given in section 6.

2. Classical methods

As a prototype elliptic problem, consider the Poisson
problem
Lu=-Vy=f inQ
u=g onadQ

2.1

where V2 = 3*/dx* + 6*/dy? is the Laplacian operator,
Q = [0, 1] X [0, 1] is the unit square with boundary
9, and fand g are regarded as known. Equation (2.1)
may be approximated on the grid

Q= {(x;, y) = (b, kh): 0 < j, k< N, h = 1/N}
(2.2)

using second-order centered finite differences as
F 24wy —~ Uimije ~ Wprrpe — Uigmt — Uigs1]
=fx (0<j,k<N), (23a)
Ur=8x (J=0,j=N,k=0,ork=N). (2.3b)

Here wy is the discrete approximation to the true so-
lution u(x, ) at the point (x;, yi), fix = f(x;, ¥&) and g
= g(x;, yi). Let us denote the discrete problem (2.3a)
by the shorthand notation )

Lhh = fh (2.4)

where L" is a linear operator (the discrete approxi-
mation to L = —V?) and u” and f* are “grid functions”
consisting of the values ;. and f; on the grid Q,,. Next,
we consider several classical methods for solving this
problem.

a. Gaussian elimination

Eliminating the boundary values using (2.3b), the
discrete problem (2.4) may be expressed in matrix form
as

Au=1 2.5)

Here u and f represent the grid functions u” and f*
with values taken in lexicographic order, e.g., u = (1,
Unty « ooy UN—1,05 Ui2, Uddy oo oy UN—125 « « + 5 UN_1,N=1)

with T denoting the transpose. The matrix A has di-
mension (N — 1)? by (N — 1)? with the structure shown
in Fig. 1, which can be viewed as either banded or
block-tridiagonal. It is nonsingular and hence the dis-
crete problem (2.4) is uniquely solvable. Standard

FULTON, CIESIELSKI AND SCHUBERT

945

. TIZT ———— 1 T
1 44 -l :
<14~ 1 -l ,
-1 41! -1 1
-4l Al
_______ L W
i 14 1 iy 1
-1 Liaa ; N |
-1 O A
-1 -1 4-1 -1 |
-1 -1 4_1 -1 _
'''''' T T o) 1
\ -1 -1 4 -1 o= \
-t bataa 10 4 1
i -1 -t 4 -1l -1 i
- il el ey
_____ T r4=i i
. It 4-1 -
i -1 boliaa 1
: -1 : -1 4 -1 -t
- U K. 1 DA &
et 14 -1
[ - 4 -l
o bt 4
{ -1 : -1 4 -
L. . § . . 4

FiG. 1. Structure of the matrix A in (2.5), shown for
N = 6 after multiplying by 4.

Gaussian elimination can be used to solve (2.5); this
is a direct method in that (with exact arithmetic) it
yields the exact (discrete) solution in a finite number
of operations. Treating A as a band matrix of band-
width 2N-1, this method requires O(N*) operations
[O(N*) for the decomposition and O(N?) for the for-
ward and backward substitution] and O(N?) storage.
However, the true sparsity of A (the fact that A has
only five nonzero bands) is not utilized. Gaussian
elimination based on the block-tridiagonal point of
view, e.g., the algorithm of Lindzen and Kuo (1969),
requires the same number of operations and storage,
i.e., O(N* and O(N?), respectively.

b. Point iterative methods

In contrast to direct methods, indirect or iterative
methods do not generate the true (discrete) solution
itself, but rather a sequence of approximations which
converge to it. In this paper we will consistently use
a tilde to denote such approximations. In a point it-
erative method the values i of an approximation #”
are modified point by point to obtain a new approxi-
mation #%,,. For example, the Jacobi method (also
known as simultaneous relaxation) defines the new
value #}" at a point (x;, y;) by requiring that the dis-
crete equation (2.3a) hold at that point using the old
values at the surrounding points, so that

2405 — oy — W — Wigo1 — Wigerr] = S
(2.6)

A Jacobi “sweep” consists of computing #j" at all

(interior) points via (2.6) and then replacing the old

approximation #” by #i%, . This method requires O(N?)
operations per sweep and O(V?) storage.
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The Gauss-Seidel method (also known as successive
relaxation) is similar to the Jacobi method except that
each value is updated immediately after it is calculated.
In contrast to the Jacobi method, the order in which
the points are taken is significant. Using lexicographic
ordering [i.e., taking the points (x;, y) in the order
(j, k) = (1’ l)’ (2’ 1)9 ey (N— 1, l)a (2’ 1)) ceey
(N — 1, N ~ 1)] the Gauss-Seidel relaxation equation
is
405 — a2k — T x

-4t - ﬁj,ku] =f}k~ 2.7

This equation gives #" explicitly since #}<fx and
#7%Y, have been computed before reaching the point
(x;, ¥i). As before, O(N?) operations per sweep- and
O(N?) storage are required; however, the storage is ac-
tually less than for the Jacobi method since the new
values may be written over the old values immediately.

The Gauss-Seidel method can be viewed as adding
a correction #j5™ — i to each value & successively.
The rate of convergence may be accelerated by scaling
this correction by a relaxation parameter w before add-
ing it, leading to the SOR (successive over-relaxation)
method defined by

. . @ o
at = (1 — Wty + 2 [hzﬁk + A7

(2.8)

Again, O(N?) operations per sweep and O(N?) storage
are required, with the SOR method reducing to the
Gauss-Seidel method if w = 1. .

The convergence of the above methods can be de-
scribed by writing them as fixed-point iterations so that
the errors v = y"* — " satisfy

Tyt T+ G

(2.9)

where T* is an iteration operator. From (2.9) the it-
eration converges (for any initial approximation) if and
only if the spectral radius p(7”) is less than one, with
o(T") providing an estimate of the factor by which the
error will be reduced by one relaxation sweep. For the
discrete Poisson problem considered above it can be
shown (e.g., Stoer and Bulirsch, 1980) that the optimal
rate for the SOR method is obtained with the relaxation
parameter o = 2/[1 + sin(wh)], and that

View = Th",

( cos(wh) = 1 — % =22 + O(h®),

Jacobi
cos¥(wh) = 1 — wh? + o(n*),

o(Th = 3 Gauss-Seidel (2.10)
1 — sin(wh
L SOR (optimal).
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Thus the rate of convergence of each of these methods
depends on the resolution, with higher resolution
(smaller A) resulting in slower convergence. Since each
sweep essentially reduces the error by the factor p( "),
reducing the error by a specified factor e requires s
sweeps, where [p(T")}° = e Solving for s and using
(2.10) gives

(a2 + O™ = OV,
Jacobi
[7°h* + O(hY)]™" = O(N?),
Gauss-Seidel
[27h + O(WP)]™' = O(V),
SOR (optin]lal).

@.11

.

Since each method requires O(N?) operations per
sweep, the total work required to reduce the error by
a specified factor ¢ is O(N*) operations for the Jacobi
and Gauss-Seidel methods and O(V?3) operations for
the optimal SOR method.

¢. ADI method

In contrast to the point iterative methods described
above, block iterative methods produce a new approx-
imation #i%.,, from a previous one #” by simultaneously
modifying the values of a “block™ or set of points. As
an example, consider the following ADI (alternating
direction implicit) method, in which the “blocks™ are
lines of points in the x and y directions. Each ADI
sweep consists of two steps, each based on the discrete
Eq. (2.3a) in the form

(Ui p + 2up — Wi p)
' + (-—uj,k_l + 2ujk - uj,kﬂ) = hz_ﬁk (2.12)
The first step treats the x-dependence implicitly to pro-
duce an intermediate approximation %, via
@R+ 2+ DR~ Ak
= e = (=ljp-1 + 2 = Dl — Ten],  (2.13a)
where 7 is an iteration parameter, and the second step

treats the y-dependence implicitly to obtain the new
approximation #”.,, via

—@0 4+ (2 + Daly — A
= By — [@8 + (2 — DAR — @54,]. (2.13b)

Each step involves solving N tridiagonal linear systems
of order N; thus the ADI method requires O(NV?) op-
erations per sweep and O(N?) storage.

For the Poisson problem the above ADI method can
be shown to converge if a fixed positive iteration pa-
rameter r is used for all sweeps. The optimal constant
r is 2 sin(«h), for which the method converges at the

Unauthenticated | Downloaded 11/30/23 12:52 PM UTC



MaAy 1986

same rate as the optimal SOR method. Faster conver-
gence can be obtained by allowing r to vary from sweep
to sweep. A simple algorithm for determining the op-
timal set of n parameters, with n a power of 2, is given
in Stoer and Bulirsch (1980). One cycle of n ADI sweeps
using these parameters reduces the error by a factor of
approximately 1 — 8(3xh)"/", so that

n
s~ -y (47h)™'" In € ADI
sweeps aré required to reduce the error by a specified

factor . This number is minimized by choosing n ~
In(4/xh), yielding s = O(InNV). Since O(N?) operations

are required per sweep, the ADI method requires O(N?,

InN) operations to reduce the error by a specified factor.

d. Discussion

With low resolution (small V), direct solution of dis-
cretized elliptic problems by Gaussian elimination may
be practical. With higher resolution (larger &), iterative
methods become more attractive, in part because they
require less storage [O(NV?) vs O(N*)] and in part be-
cause they are less sensitive to round-off error (in
Gaussian elimination round-off error tends to accu-
mulate—albeit slowly—while in iterative methods it
is automatically reduced by the iteration). The simplest
iterative schemes (e.g., Jacobi and Gauss-Seidel relax-
ation) require O(N*) operations, as does Gaussian
elimination. The SOR method reduces this operation
count to O(N?) by introducing a relaxation parameter;
the ADI method lowers it to O(N? InN) by using several
iteration parameters and a more complicated iteration
scheme. For more general elliptic problems with vari-
able coeflicients, suitable values for these parameters
must be determined by either eigenvalue analysis or
numerical experimentation.

A number of algorithms for the efficient direct so-
lution of the discretized Poisson problem have been

.introduced (e.g., Buzbee et al.,, 1970; Sweet, 1977;
Swarztrauber, 1977). These “fast Poisson solvers™ are
based on cyclic reduction, matrix decomposition, or a
combination of the two; many make use of the Fast
Fourier Transform (FFT) algorithm. While highly ef-
ficient for the Poisson problem, these techniques usu-
ally cannot be extended to more complicated problems
such as (1.2). As we shall see, multigrid methods solve
the Poisson problem as efficiently as these fast Poisson
solvers, giving the solution in O(N?) operations, but
also generalize to solve a wide range of more compli-
cated problems with essentially the same efficiency.

3. Basic multigrid concepts

In this section we motivate multigrid methods by
analyzing the convergence of Gauss-Seidel relaxation.
This analysis suggests a simple two-grid method, which
naturally generalizes to an efficient multigrid method.
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a. Analysis of relaxation

Consider a single sweep of Gauss-Seidel relaxation,
and denote the approximations to the true (discrete)
solution u” of (2.4) before and after the sweep by 7’
and #%.,, respectively. Subtracting the relaxation
equation (2.7) from the discrete equation (2.3a) shows
that the corresponding errors v” = u* — #i* and vZ,,
= y" — k., satisfy
DI = 3 @I+ Dy + DI+ k) 3.0
Thus the new error produced at a point (x;, yi) by
relaxation is simply the average of the current errors
at the four surrounding points. This indicates that error
components which oscillate on the scale of the grid will
be reduced substantially by relaxation, due to cancel-
lation on the right-hand side of (3.1), while smooth
error components will be reduced only slightly. Thus
relaxation is efficient as a smoother, but inefficient as
a solution method.

To quantify this result without the complexity of a
rigorous eigenvalue analysis one can use local mode
analysis (Brandt, 1977a). The discrete Fourier modes
are

Ei(x;, yi) = expli(j6: + k)], (3.2)
where 0 = (6,, 0) is the discrete vector wavenumber;
on a grid with mesh spacing /# the components 6, and
6, are integral multiples of 2x/ between —w and +.
For periodic problems, expansions in terms of the
modes (3.2) are appropriate, but even in nonperiodic
problems they provide useful and quantitatively correct
information about local processes such as relaxation.
Suppose that the error v” before the relaxation sweep
has a component 4, E,, where 4, is the amplitude. Then
from (3.1) and (3.2) the error vy, after the sweep has
the component 4,"VE,, with 4, and A,"°" related by

Aanew = % (e—iolAgnew + EwlAg + e—ihAonew + szAg).
(3.3)

Thus, one relaxation sweep reduces the amplitude of
the error component E; by the convergence factor
Aonew eiﬁ] + eiﬂz

wo) = 4, 4 g0 _ g

3.4)

Figure 2 shows u as a function of 4, and 6,; as argued
above, p is small for high wavenumbers and large for
low wavenumbers. In particular, from (3.4) we have u
= Y5 when |6,] = |65] = =, but p = 1 — O(A?) when both
6, and 8, are O(h). Thus the modes responsible for the
slow convergence (2.10) of Gauss-Seidel relaxation are
in fact the lowest wavenumbers; these modes could be
adequately approximated on a coarser grid with much
less work. This observation is the key to the multigrid
method.
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FI1G. 2. Convergence factor u(8) for the Poisson problem (2.3) using
Gauss-Seidel relaxation with lexicographic ordering.

b. A two-grid method

The use of a coarser grid to approximate low-wave-
number error components can be illustrated as follows.
Suppose that several relaxation sweeps have been car-
ried out for the problem (2.4) on the grid ©,, yielding
an approximate solution #*. From the discussion in
the previous section, the associated error v” is smooth,
i.e., the high-wavenumber modes have been reduced
" substantially, and further relaxation will reduce the re-
maining low-wavenumber modes very slowly. Now the
error satisfies the residual equation

L= ph, 3.5)

where

rh=fh— L't (3.6)
is the residual; since v”* is smooth, (3.5) can be ap-
proximated on the coarser grid Q4 with mesh spacing
H> hby

LPpH = [Hph, 3.7)
Here L¥ is the same discrete operator as L” except for
grid spacing H, and v¥ is the grid H approximation to
v*. Usually one takes H = 24 as shown in Fig. 3. The
right-hand side of (3.7) is obtained by computing the
residual r* on the fine grid Q,, using (3.6) and transfer-
ring it to the coarse grid Qy, e.g., by injection (simply
copying the values of r” at points common to both
grids); the operator I,” represents the fine-to-coarse grid
transfer. Assuming that (3.7) can be solved, the result
v¥ is an approximation to the error v” and hence can
be transferred back to the fine grid 9, e.g., by bilinear

MONTHLY WEATHER REVIEW

VOLUME 114

interpolation, and added to the previous approximate
solution 7" to obtain a new approximation

it = it + I, 3.8)
where I represents the coarse-to-fine grid transfer.

In the simple two-grid cycle described above, relax-
ation is used on the fine grid to efficiently reduce high-
wavenumber error components, and the coarse-grid
correction cycle (3.6)—(3.8) is used to eliminate the low-
wavenumber errors. Here the ‘“high-wavenumber”
modes are the modes not representable on the coarse
grid Qp; these satisfy pm < |0 < 7, where p = A/H and
|6f = max({8,], |6,]), corresponding to the region between
the two boxes in Fig. 2 (assuming p = 12). We define
the smoothing factor p as the maximum convergence
factor () for the high wavenumbers, i.e.,

p = max u(f), (3.9

pr<|fl<n
where |6] = o7 has been included for convenience. For
Gauss-Seidel relaxation with p = ¥z one finds from (3.4)
or Fig. 2 that u = ¥%,; thus each relaxation sweep reduces
the high-wavenumber error by at least a factor of 2.
Assuming that the coarse-grid equation (3.7) is solved
exactly and neglecting any errors introduced by the
grid transfers, a two-grid cycle consisting of » relaxation
sweeps on the fine grid followed by the coarse-grid cor-
rection (3.6)—(3.8) reduces the error in a/l wavenumbers
by the factor u*. Since the grid transfers in fact usually
introduce a small amount of error, the accuracy cannot
be increased without limit by simply increasing ».
However, with small v the above estimate holds, and

FiG. 3. The fine grid Q4 and coarse grid Q5 = @, for the
two-grid method and their superposition.
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the two-grid cycle can be repeated as needed to attain
the desired accuracy. With » = 3 the error is reduced
by almost an order of magnitude per cycle, independent
of h.

¢. A multigrid method

The method used to solve the coarse-grid equation
(3.7) was left unspecified in the two-grid cycle described
above. However, since this equation has the same form
as the original equation (3.1), it can be solved by the
same method; i.e., make several relaxation sweeps on
the coarse grid Qy and then apply a correction com-
puted using a still coarser grid Q,4. Continuing this
process recursively leads directly to a simple multigrid
cycle.

More precisely, we define a set of grids G, = Q,
(I=1,..., M) with mesh sizes A, satisfying h;_, = 2h;.
The finest grid Gy, has the desired resolution Ay, = h,
while the coarsest grid G has only a few points in each
direction; the number of grids M is typically about five
or six. Changing notation slightly, for each grid G,(often
referred to as “level” /) we form a discrete problem

L' = [, (3.10)

where L' is the finite difference approximation to the
operator I = —V? for mesh size #;. For the finest grid
I = M, (3.10) is simply the original discrete problem
(2.4) with 4™ = y" and f™ = f* However, for each
coarser grid (3.10) is an approximation to the residual
problem on the next finer grid, so that for 1 < /< M,
u"! and f*! are approximations to the error v’ = '
— i’ and residual ' = f/ — L', respectively (where i’
denotes the current approximation to the exact discrete
solution u*). Thus v# and I,r" in the two-grid method
have been replaced by u*~! and f/! for uniformity of
notation.

The multigrid cycle, shown schematically in Fig. 4,
starts on the finest grid G,, with an approximation #¥
to the desired solution u™. For each level | = M,
M—1,...,2inturn, the corresponding problem (3.10)
is relaxed », times to smooth the error on the scale of

grid G,, and the resulting residual ' = f/ — L'’ is
transferred to the next coarser grid G, via
f‘l—l = Ill—lrl = I]I—l(f‘l — Llﬁl) (31 l)

to form the right-hand side of the level / — 1 problem
(3.10). In this procedure the initial approximations #'
on the coarser grids G; (1 < [ < M) are simply taken
to be zero. Upon reaching the coarsest grid G, the re-
sulting problem L'y' = /! is simply solved, either di-
rectly (by Gaussian elimination) or by many relaxation
sweeps; either approach is efficient since the coarsest
grid contains very few points. Then for each level / = 1,

.» M — 1 in turn, the current approximate soluuon

il , being an approximation to the error ut*' — "' on

the next finer grid, is interpolated to that grid and added
to the previous approximation via
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Solve / < Interpolate Correction

FIG. 4. A multigrid V-cycle for M = 6 grids.

lag IZI+1 + II+1 ~I

Unew (3.12)

and the level / + 1 problem is relaxed v, more times
to smooth any remaining errors on the scale of that
grid. The overall cycle from the finest grid to the coars-
est and back is called a multigrid V-cycle.

To estimate the effect of a multigrid V-cycle, note
that each Fourier mode 4 on the original grid @, is in
fact a high-wavenumber mode on one of the grids used.
Thus the error in each mode is reduced by at least the
factor p* by » = v; + v, relaxation sweeps on one of
the grids during one V-cycle. If » is not large (typically
one might choose », = 2 and v, = 1), the errors intro-
duced by the grid transfers are negligible, so the overall
error (i.e., the error in a/l modes) is reduced by at least
the factor i* per V-cycle. This convergence factor is
independent of h, unlike the factors (2.10) for classical
iterative methods which deteriorate as the grid reso-
lution increases. Therefore, reducing the overall error
by a specified factor e requires s = Ine/(v Inp) V-cycles,
independent of 4. Furthermore, since each grid con-
tains only one-fourth as many points as the next finer
grid, the total number of grid points (and hence storage)
involved is only

L+ LT IR

16 27173
times that requnred for the original problem (3.1) on
the finest grid. Therefore, the work required per V-
cycle (ignoring the overhead of residual transfers and
interpolation, which is usually small) is less than b
times the work required for » relaxation sweeps on the
finest grid alone. Thus with O(N?) points on the finest
grid the work per V-cycle is O(N?) operations; since
the number s of V-cycles required is independent of s
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(and hence N), the multigrid method reduces the error
by a specified factor in O(N?) operations.

4. Survey of multigrid techniques

In this section we discuss in more detail the various
elements of a multigrid method for a problem of the

general form
Lu=f, 4.1

where L is an elliptic partial differential operator (typ-
ically in two or three space dimensions), u is the un-
known, and fis specified. These elements include the
relaxation scheme, grids, grid transfers, and control al-
gorithm. In most of the discussion we assume for sim-
plicity that L is linear; the Full Approximation Scheme,
which can be used to treat nonlinear problems, is also
described. Since the boundary conditions do not
strongly influence the essential features or efficiency of
a multigrid method, their treatment is discussed sep-
arately. More detailed information on all of the topics
reviewed here can be found in Brandt (1984).

a. Relaxation schemes

The heart of a multigrid method is the relaxation
scheme used on each grid to smooth the error, i.e., to
reduce the high-wavenumber error components. The
relaxation scheme is the most problem-dependent part
of a multigrid method, and has the most impact on
the overall efficiency. Since smoothing high-wave-
number errors is essentially a local process, it may be
analyzed using local mode analysis, and constant (fro-
zen) coefficients may be assumed in the analysis for
problems with variable coefficients (unless they vary
drastically on the scale of the grid). The primary mea-
sure of the effectiveness of relaxation is the smoothing
factor p defined by (3.9); small z is desired for fast
smoothing. In addition, a relaxation scheme should be
simple (relatively few operations per grid point for ef-
ficiency) and robust (relatively insensitive to changes
in parameters or coefficients).

The simplest relaxation schemes are the successive
(Gauss-Seidel) schemes, in which the new values of
unknowns replace the old values immediately after
being calculated. These schemes are appropriate for
most elliptic problems. For example, ordinary (point)
Gauss-Seidel relaxation with lexicographic ordering
gives u = 0.5 for the Poisson problem, as shown above.
This scheme is simple, involving only four additions
and one multiplication per grid point. The smoothing
factor u = 0.5 is not improved by introducing a relax-
ation parameter; in contrast, when relaxation is used
as a solver, faster convergence is obtained by over-
relaxation (i.e. the SOR method).

For anisotropic problems, point Gauss-Seidel relax-
ation may not be as effective. For example, discretizing
the equation (1.2) using centered differences on a grid
with mesh spacing 4 yields

W @2 — Uin) = iy i — Ujm1 )

+ bj,k+l/2(uj,k+l — Upg) — bj,k—l/Z(ujk — U] = J;'k,
4.2)

where g,y = a((j + 1/2)h, kh) and so forth. Point
Gauss-Seidel relaxation for (4.2) with lexicographic or-
dering, defined by '

P2 1o g2k + Gt gl

F bige1283000 + Birrrollinns — (@12 + G

+ bjg-12 + b1 X" = fie, (4.3)
yields the convergence factor
ae™ + pe™

2(a+ b) —ae™® — pe™®
using local mode analysis with ¢ and b frozen. When
a = b (i.e., the problem is isotropic), (4.4) reduces to
(3.4) so that u = 0.5 as for the Poisson problem, but
when ¢ and b differ, i can be considerably larger. Figure
5 shows u(8) for the case b/a = 10, for which u = 0.83;
as bfa— o (or a/b— o), g — 1.

The difficulty here is that point relaxation smooths
the error only in directions of strong local coupling.

This can be seen by noting from (4.2) and (4.3) that
the errors vy and vj™ satisfy

pnew = AOETk F Vi) + bR + Vjger)
* 2a + b)

u() = (4.4)

4.5)

|

e B

Q?%gz:b
6, ot ‘
u |

——'/
\'\—"0(;;_/”’__‘_,_‘"1

rf

1 L
m T
-7 ) [0} 2 L4

HG. 5. Convergence factor u(f) for problem (4.3) using
Gauss-Seidel relaxation with lexicographic ordering and b/a = 10.
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When b/a > 1 the solution is coupled more strongly
in y than in x; cancellation between errors at (j — 1,
k) and (j + 1, k) will have little effect in (4.5) so that
high wavenumbers in x will be changed only slightly
by relaxation. Since point relaxation is siow to converge
in this case, locally strongly coupled blocks of points
should be relaxed simultaneously. For the case b/a > 1,
y-line Gauss-Seidel relaxation is appropriate; this
scheme is defined the same as (4.3) except with @,
replaced by @74, so that all points along a y-line (con-
stant x) are relaxed simultaneously. Relaxing each y-
line in turn is easy and efficient, since the linear systems
involved are tridiagonal and diagonally dominant. The
resulting convergence factor

aem:

2(a + b — b cosby) — ae™™

w(0) =

(4.6)

is shown in Fig. 6a for the case b/a = 10. It can be
shown from (4.6) that

b= rnax(S“’2 4.7

=
‘a+2b
so that u =~ 0.45 for any b/a = 1. However, (4.7) shows
that u — 1 as b/a — 0, as can be seen in Fig. 6b which
shows u(f) for the case b/a = 1/10. This case requires
x-line relaxation by the same reasoning. When b/a is
large in some regions and small in others, one can use
alternating direction line relaxation, consisting of one
sweep of y-line relaxation followed by one sweep of
x-line relaxation. Such a double sweep gives g < 57172
=~ 0.45 for any ratio b/a. This method is similar to the
ADI solution method, but much simpler since there
are no iteration parameters to be chosen.

The Gauss-Seidel schemes discussed above are not
directly vectorizable and hence do not exploit the full
potential of vector processors such as the CRAY-1 or
CYBER 205. Simultaneous (Jacobi) relaxation
schemes, in which all of the new values in a single
sweep are computed before overwriting any of the old
values, would seem preferrable since they do vectorize.
However, in addition to using more storage, Jacobi
schemes usually require underrelaxation (i.e., using a
relaxation parameter w < 1) and thus more work per
grid point, and have poorer smoothing factors (e.g., u
= 0.6 with w = 4/5 for the Poisson problem). A better
approach is to use Gauss-Seidel schemes with the grid
points or lines taken in a different order. For isotropic
problems one can use point Gauss-Seidel relaxation
with red-black ordering: first relax at all ““red” points
(j + k even) and then at all “black” points (j + k odd),
where the colors refer to the pattern of a checkerboard.
Similarly, when line relaxation is required one can use
zebra relaxation: first relax along all “white” (even)
lines and then along all “black” (odd) lines. Each of
these schemes is fully vectorizable. Moreover, they have
better smoothing factors than the corresponding
schemes with standard ordering. (Their mode analysis
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FI1G. 6. Convergence factor u(6) for problem (4.3) using y-line
Gauss-Seidel relaxation for (a) b/a = 10 and (b) b/a = 1/10.

is more complicated, however, since they couple several
modes.) For example, point Gauss-Seidel relaxation
gives ¢ = 0.25 with red-black ordering, as opposed to
g = 0.5 with lexicographic ordering; this excellent
smoothing factor makes the red-black scheme the re-
laxation method of choice for the Poisson problem.
For anisotropic problems with variable coefficients, al-
ternating direction zebra relaxation is robust and effi-
cient.
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b. Grids

A multigrid method for (4.1) typically uses a gnd
structure much like that described in section 3c: a set
of grids G, G, . . ., Gy with mesh sizes 1, > hy > + - «
> hyy, each grid covering the whole computational do-
main. For convenience of notation it is assumed that
on each grid the same mesh size is used in each coor-
dinate direction, although this need not be the case.
The mesh size ratio A, /#;1s usually the same constant
p between all grids; this ratio affects the efficiency in
two ways. First, p must be relatively small so that the
coarse grids G, . . ., Gas_; involve relatively few points
compared to the finest grid G, and thus do not con-
tribute substantially to the total work or storage. Sec-
ond, if p is too small then relaxation becomes inefficient
as a smoother, since more modes must be considered
as high wavenumbers in (3.9). For these reasons, the
computationally convenient ratio p = 1/2 is usually
optimal, although p = 1/3 orp = 142 (with rotatable
operators) may be useful in some cases.

The basic grid structure described above may be
modified in several ways. First, a given grid G, may be
coarser than the next finer grid G, in only some of
the coordinate directions; this semi-coarsening can
provide an alternative to block relaxation. For example,
for the three-dimensional problem Lu = au,, + bu,,
+ cu,, = fwith 0 < a € b < c, the strong coupling in
y and z requires y-z plane relaxation, which is rather
awkward. An alternative approach is to coarsen the
grids in y and z only, and use z-line relaxation point
by point in x and y. This approach is economical in
three dimensions since the coarse grids still contain
relatively few points.

Second, the grids do not all need to cover the whole
problem domain. (This requires the Full Approxima-
tion Scheme described below.) In this way nonuniform
resolution can be obtained, e.g., more resolution near
singularities and sharp gradients and less resolution in
outer regions to simulate unbounded domains. Pro-
gramming is relatively easy since all operations are still
performed on uniform grids. Local refinements can also
be made adaptively, i.e, as required by the numerical
solution as it evolves, leading to what Brandt refers to
as Multi-Level Adaptive Techniques (MLAT).

c. Grid transfers

Associated with each grid G, is a discrete problem

L'y = f', (4.8)
where L' is a discrete (finite difference) approximation
to L for mesh size 4;. For linear problems with coex-
tensive grids, these discrete problems are interpreted
as described in section 3c. That is, on the finest grid
(I = M), (4.8) approximates the original problem (4.1),
while on each coarser grid (/ < M), (4.8) approximates
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the residual problem for the next finer grid. This in-
terpretation is called the Correction Scheme (CS), since
u"! is a correction to u'. Two types of grid transfers
are required: the fine-to-coarse transfer of the residual
rl = f' — L' via (3.11), represented by the operator
I}7', and the coarse-to-fine interpolation of the correc-
tion via (3.12), represented by I/*!. The proper choice
of grid transfers depends in part on the order of the
derivatives in L; precise rules are givén in Brandt (1984,
section 4.3). For most second-order problems one can
use linear interpolation in each coordinate direction
for the coarse-to-fine transfers. The choice of appro-
priate residual transfers, however, is somewhat more
involved.

When the residual is smooth after relaxation, it may
usually be transferred to the coarse grid by injection,
i.e., simply copying the values to the coarse grid at the
points common to both grids. In some cases, however,
the residual is not smooth after relaxation, even though
the error is. For example, with red-black or zebra or-
dering of relaxation, the residual is zero at the set of
points most recently relaxed and nonzero elsewhere;
nonsmooth residuals also can occur when L' has nons-
mooth coefficients. In such cases injection does not
give an adequate approximation to the residual, and
Jull weighting should be used instead. In this procedure
the residual value transferred to a coarse-grid point is
a weighted average of residual values at surrounding
fine-grid points, with the weights chosen to preserve
the integral of the residual over the problem domain.
For example, 9-point full weighting in two dimensions
is given by

1 2 1
I,"‘r":;g 2 4 2\ 1 (4.9)
‘12 1

where the weights are applied in the pattern indicated.
As in all residual transfers, if the discrete problem has
been multiplied by a power of A; this must be taken
into account: the residual to be transferred must be
based on the divided form of L/, i.e., the form which
directly approximates L.

d. Control algorithms

A multigrid method requires an algorithm which
determines when to switch from one grid to another.
Such algorithms fall into the two basic classes discussed
in this subsection.

1) CYCLING ALGORITHMS

A multigrid cycle for a discrete problem on a given
grid G, starts with an initial approximation to the so-
lution on that grid and ends with an improved ap-
proximation on the same grid. A cycle uses relaxation
for the G, problem and corrections computed by trans-
ferring the G residual problem to the next coarser grid
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Gy_y; the G, problem in turn is also solved approxi-
mately by one or more multigrid cycles (unless G-, is
the coarsest grid, in which case it is solved either directly
or by many relaxation sweeps). Multigrid cycles can
be used as a solution method by starting on the finest
grid G, with an initial approximation to the solution
and making cycles repeatedly until the desired accuracy
is obtained.

Multigrid cycles can be either fixed or accommo-
dative. That is, the decisions of when to switch grids
and which direction to go (i.e., to a coarser or finer
grid) can be either prescribed in advance or made in-
ternally as the numerical solution develops. The V-
cycle described in section 3c is a simple example of a
fixed multigrid cycle. Other examples include the #-
and F-cycles described in Brandt (1984); these solve
the coarse-grid problems more accurately than V-
cycles, and hence are more robust but often less effi-
cient. Such fixed multigrid cycles are especially desir-
able during the development of a muitigrid code, since
accommodative algorithms can obscure conceptual or
programming errors by their more complex internal
interactions. On the other hand, accommodative al-
gorithms are more robust.

The cycle-C algorithm of Fig. 7 is a generally appli-
cable, fully accommodative cycling algorithm. The flow
can be traced starting with the box labeled # — Relax
[L' - = Y44, a shorthand notation for “make one re-
laxation sweep on the level / problem L'u’ = f* to im-
prove the current approximation ##”’. After a relaxation
sweep, i’ is tested to see whether it has converged. If
it has, the level / problem has been solved, so if / < M

FoF e ()
-— +Iz f e o

FIG. 7. The multigrid cycle-C algorithm (after Brandt, 1977a).
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its solution is interpolated to the next finer level / + 1
and used as a correction to the current approximation
7! there. On the other hand, if &' has not converged,
the speed of convergence is checked. Fast convergence
indicates that the error is not smooth yet (i.e., sub-
stantial high-wavenumber errors still exist); relaxation
is still effective, so another sweep is made. Slow con-
vergence indicates that the error is smooth (i.e., high-
wavenumber errors have been reduced substantially
by relaxation); further relaxation would be ineffective,
so the residual is transferred to the next coarser level
! — 1 to serve as the right-hand side of the discrete
problem there, and the initial approximate solution
#i"" is set to zero. On the coarsest grid / = 1, relaxation
continues until the solution converges. The cycle starts
on the finest grid / = M with an initial approximation
#* to u™, and ends on that grid when #* has con-
verged.

In an accommodative algorithm the tests of con-
vergence are generally made in practice using dynamic
residuals, i.e., residuals computed during the relaxation
process. For example, point Gauss-Seidel relaxation
with lexicographic ordering (2.7) for the Poisson prob-
lem can be written as

2
Y = dp + 7 Tiks (4.10)

where
Tie = S — W [4dx
= WPV — Wrp — Uhmy — jpen]  (4.11)

is the dynamic residual at the point (j, k). The speed
of convergence can be tested by computing the ratio
of some norm (e.g., rms or max norm) of the dynamic
residual associated with the current relaxation sweep
to the corresponding residual norm for the previous
sweep. If this ratio is close to the smoothing factor u
(or smaller), the convergence is fast and relaxation is
still effective; if it is significantly larger than u, the con-
vergence is slow and relaxation is no longer effective.
Similarly, convergence is obtained on a given grid G,
when the residual norm is less than a specified factor
7 times the latest residual norm on the next finer grid,
i.e., the accuracy of the Gy, solution (for which itis a
correction). The performance of the algorithm is not
very sensitive to the choice of the parameter n; Brandt
(1984) suggests the choice n = 277, where d is the num-
ber of dimensions of the problem.

On the finest grid / = M one usually solves “to the
level of truncation error”, i.e., so the norm of the re-
sidual r™ = fM — [M3M (or the dynamic residual) is
comparable to that of the truncation error

™M= [M(fMyy — M 4.12)

where u is the solution of the continuous problem (4.1)
and I represents a continuum-to-grid M transfer of
the solution. Further algebraic convergence of #™ to
uM is usually not needed, since it would not necessarily
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make #¥ any closer to u. An estimate of the norm of
the truncation error can be specified in advance (using
Taylor expansions and typical values of derivatives of
), or can be generated internally during the multigrid
process if the Full Approximation Scheme (FAS) is
used.

2) FULL MULTIGRID (FMG) ALGORITHMS

When using multigrid cycles as a solution method
one starts with an initial approximation #* on the finest
grid Gys. One possible choice is simply #¥ = 0; how-
ever, if a better initial approximation can be made then
fewer cycles will be required to solve the problem. To
get a better first approximation one can first solve the
discrete approximation to (4.1)—not a residual prob-
lem—on the next coarser grid Gj._,, and interpolate
that solution to grid G,,. Extending this idea recursively
back through coarser and coarser grids leads to a Full
Multigrid (FMG) algorithm.

Figure 8 illustrates a simple FMG algorithm for a
problem with M = 4 grid levels. The process starts on
the coarsest grid / = 1 where the discrete approximation
to (4.1) is simply solved. The resulting solution is in-
terpolated to the next finer grid / = 2 and used as the
first approximation to the solution of the corresponding
G, problem, which is then solved by a multignd V-
cycle. This process is repeated, interpolating the solu-
tion from one level to the next as a first approximation
and solving by a V-cycle, until the final solution is ob-
tained on the finest level / = M. Thus the FMG algo-
rithm is, in fact, a nested iteration method, ie., a
“bootstrap” method which uses an iterative solver on
each grid G, through G, in turn; the iterative solver

@ 1N Relaiution Sweeps
[s] :

@ :  Solution Converged

FIG. 8. A Full Multigrid (FMG) algorithm for a problem with M = 4 grids.
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used for each grid is a multigrid cycle. Although Fig.
8 shows simple V-cycles, any multigrid cycle, fixed or
accommodative, can be used. The initial interpolation
to a finer grid (denoted by a double arrow in Fig. 8)
may be different than that used in the multigrid cycles;
in particular, it generally should have a higher order
of accuracy, since the function being interpolated is
relatively smooth (Brandt, 1984, sec. 7.1).

FMG algorithms are very efficient. In going from
one level / to the next finer level / + 1, the truncation
error decreases by roughly the factor p?, where p = Ay, /
A, is the mesh ratio and p is the order of the difference
approximations. Since a single multigrid cycle typically
reduces the error by at least this factor, an FMG al-
gorithm which uses just a single cycle per grid level
will give the final solution on each level (denoted by
the double circles in Fig. 8) to at least the level of the
respective truncation error. The computational work
expended is usually expressed in terms of the multigrid
work unit, defined as the amount of computational
work required per relaxation sweep on the finest grid.
For the algorithm of Fig. 8 the total work required
(assuming a two-dimensional problem with p = %2 and
ignoring the work of grid transfers) is '

2 3 M 16
V(l +Z+:‘3+ se s +4_1ufi')<‘9_ll (4.13)
work units, where v = »; + v,. Typically» =2 orv =3
is sufficient, so only 3.6-5.3 work units are required.
This efficiency is typical: optimal multigrid methods
for most problems yield the solution to the level of
truncation error in only a few (4-10) work units,

Mesh Size

hy =2h
h, = 4h
h, =8h

\ Transfer Residual
f Interpolate Correction

/ Initial  Interpolation
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e. The Full Apbroximation Scheme (FAS)

The multigrid methods described so far use the cor-
rection scheme: each coarse-grid equation is an ap-
proximation to the residual problem on the next finer
grid, so the coarse-grid solution is an approximate cor-
rection to the fine-grid solution. This scheme is valid
for linear problems only, since it depends on the lin-
earity of L to write the residual problem for the cor-
rection v* = y” — g% as L"v" = rh = fh — [*3" Sim-
ilarly, the correction scheme requires coextensive grids,
since the coarse grid cannot provide a correction to
the fine-grid solution where the fine grid does not exist.
An alternative scheme which circumvents these re-
strictions is described below,

~Without assuming linearity, the fine-grid residual
equation

LYa" + v*) — Lt = rk = f* — [Mg" (4.14)

can be approximated by the coarse-grid equation

LA HEG" + vH) — LAGHGY = LErh. (4.15)
Here, v¥ approximates the true correction v* to ",
and the solution transfer operator I, may differ from
the residual transfer operator 7,7, Putting the known
quantities on the right reduces (4.15) to

LHGH = fH (4.16)

where R
= LEG" + v¥ (4.17)

and A A
7 =LA@ ek + 1,Hrh, (4.18)

This is known as the Full Approximation Scheme
(FAS), since from (4.17) the coarse-grid variable #7
approximates the full solution ", not just the correc-
tion v”. After solving (4.16), the fine-grid solution is
updated via

it = 4" + LM@Y — [,FG"), (4.19)

which represents interpolating and adding the approx-
imate correction v”. Note that (4.19) cannot be sim-
plified to @k, = I"4" without losing all high-wave-
number information in #".

Using the FAS, multigrid methods can solve non-
linear problems with the same efficiency as the corre-
sponding linearized problems. No global linearization
is needed: a single Newton iteration often suffices to
solve the nonlinear relaxation equation at a single
point, but even this simple local linearization is usually
unnecessary. In addition, FAS allows local mesh re-
finement for obtaining nonuniform resolution orga-
nized by simple uniform grids, as mentioned in section
4b. Where the fine grid exists, the coarse-grid variable

represents 4 as defined by (4.17); where the fine grid

does not exist, the coarse-grid variable simply represents
the coarse-grid solution.
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The FAS also provides a useful analogue of the local
truncation error as follows. From (4.12), the truncation
error 77 on the coarse grid satisfies

LH([Hyy = [7f+ +H (4.20)
and thus .
™ = LH(IHy) — 1*(Lu), 4.21)

where I and I represent continuum-to-grid H trans-
fers of the solution and right-hand side, respectively.
Thus 77 is the quantity which must be added to the
coarse-grid equation so that its solution coincides (on
the coarse grid) with the continuous solution. Similarly,
substituting from (4.18) the FAS coarse-grid equation
(4.16) becomes

LHGH = LHEfh + 1 H 4.22)
where

= LALHG"Y) — LE(LMa"). (4.23y
At convergence, 17 = [,7u", so 7,¥ is the relative local
truncation error, i.e., the quantity which must be added
to the coarse-grid equation so that its solution coincides
(on the coarse grid) with the fine-grid solution.

The computable analogue 7, to the truncation error
makes possible several useful techniques. First, 7,7 can
be used to raise the order of approximation on the
coarse grid; this T-extrapolation is similar to Richardson
extrapolation but more general, since it extrapolates
the equation, not the solution. Second, 7, can be used
to estimate the truncation error 77 (or r*), thus pro-
viding criteria for stopping multigrid cycling or for
adaptive local mesh refinement. These and other ap-
plications of 7, are discussed in Brandt (1984, sections
8 and 9). :

f. Boundary conditions

Ideally, boundary conditions should not affect the
overall efficiency of a multigrid method (assuming, of
course, that the problem is well-posed). The boundary
typically contains far fewer grid points than the interior
of the problem domain; if extra work per grid point
must be invested near the boundary it will not increase
the total computational work by much. However, with
complicated boundary conditions one must design each
element of the multigrid method carefully in order to
attain this ideal.

Dirichlet conditions (i.e., u specified along the
boundary) are easily incorporated into multigrid
methods. Each time an initial approximation is formed
on a grid, the known boundary values are inserted di-
rectly. In correction schemes, this means using the
specified values on the boundaries of the finest grid
and zeros on the boundaries of the coarser grids. Only
the interior equations are relaxed, so the boundary
conditions are satisfied on all grids at all times.

More general conditions, such as Neumann condi-
tions (i.e., the normal derivative of u specified along
the boundary) can be implemented, keeping in mind
the following two basic principles. First, boundary
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conditions are equations and hence must be relaxed,
just as the interior equations are relaxed; their residuals
after relaxation must be transferred to the coarse grid
along with the interior residuals. These residuals must
be based on the divided form of the equations, i.e.,
with the finite difference approximations to derivatives
not multiplied through by a power of 4. Second, the
role of boundary relaxation is not to impose the
boundary conditions but to smooth the error along the
boundary (similar to the role of interior relaxation).
Thus, relaxation should change a boundary value not
so that the corresponding boundary condition is sat-
isfied exactly but so that the resulting error is the av-
erage of the errors at neighboring boundary points.

g Generalizations

The basic multigrid idea of cycling between different
levels of discretization to reduce the error efficiently
on all scales can be applied to discretizations other than
finite differences. For example, series approximation
methods (finite element and spectral) represent the un-
known as a truncated series of known basis functions.
Multigrid (or, more properly, multilevel) techniques
for such discretizations use a set of approximation sub-
spaces Sj, 52, ..., Sy In place of the grids G,, G,
..., Gar. The transfer operations between levels are
usually very natural; for example, since S;_; is usually
a subset of S; the coarse-to-fine transfer 7, is simply
the identity operator. With finite-element discretiza-
tions (i.e., local basis functions) most aspects of the
multigrid process are similar to the finite difference
case (e.g., Brandt, 1977a, sections 7.3 and A.5; Nico-
laides, 1977; Brandt, 1980; Bank, 1981). With spectral
or pseudospectral discretizations (i.e., global basis
functions) the relaxation scheme must be designed
carefully to take advantage of fast transform techniques
(Zang et al., 1982, 1984).

The multigrid idea can-also be used in solving dis-
crete problems which have no underlying geometric

- interpretation. Algebraic multigrid (AMG) methods
solve matrix problems of the form Ax = b, where A is
positive definite, using only the information in the ma-
trix A to construct an appropriate set of coarser “lev-
€ls”, each consisting of a subset of the original variables
in x (Stiiben, 1983). Such methods exhibit the usual
multigrid efficiency, i.e., solution in just a few work
units; however, they require considerable overhead in
terms of storage and set-up time. They are useful when
the construction of conventional (geometric) multigrid
methods would be impossible (e.g., no underlying ge-
ometry) or very difficult (e.g., nonuniform finite-
element discretizations).

Multigrid methods can be generalized in many other
ways, e.g., to nonelliptic problems, eigenvalue prob-
lems, and systems of equations; some of these gener-
alizations are mentioned briefly in section 5. However,
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a discussion of the techniques involved is outside the
scope of this review, and the interested reader is referred
to the multigrid literature cited, especially Brandt
(1984), for details.

5. Applications

Multigrid methods have been applied successfully
to a wide range of problems. Much of this work is quite
recent; some methods are still being refined, and new
applications are currently being demonstrated. This
section briefly surveys some of the more prominent
applications to date, and points out areas of current
research.

Multigrid methods were originally developed as fast
solvers for discretized elliptic boundary-value prob-
lems. The multigrid treatment of the Poisson problem
was discussed in detail by Stiiben and Trottenberg
(1982). Gary et al. (1983) compared multigrid, SOR,
and conjugate gradient methods for the diffusion
equation

—V-(DVu) = f, 3.1
where D is a diffusion coefficient (scalar or tensor),
treating the three-dimensional case with D assumed to
vary slowly. In some applications, such as neutron dif-
fusion, D may have strong discontinuities (i.e., jumps
of several orders of magnitude); this more difficult case
has been treated in two dimensions by Alcouffe et al.
(1981) and in three dimensions by Behie and Forsyth
(1983). Kettler (1982) studied multigrid methods for
the convection-diffusion equation

V- (DVu)+v-Vu=f (5.2)
in two dimensions, giving detailed analyses of smooth-
ing properties for many different relaxation schemes.
Singular-perturbation problems have also been treated
(Brandt, 1979; Hemker, 1982); efficient multigrid
methods for such problems rely heavily on appropriate
local mesh refinements.

Various types of nonlinear problems have also been
solved by multigrid methods. Among mathematicians,
a favorite nonlinear test problem is

et — Vi =f, (5.3)
which arises in chemical reaction theory. Multigrid
methods for (5.3) have been developed by Meis et al.
(1982); current research includes continuation tech-
niques for this and other bifurcation problems (Mit-
tlemann and Weber, 1985). Ordinary (linear) eigen-
problems can also be regarded as nonlinear, since the
unknown eigenvalue multiplies the unknown eigen-
function. An FAS-FMG method obtains each eigen-
function with the usual multigrid efficiency (Hack-
busch, 1979; Brandt et al., 1983).
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Much research has been done on applying multigrid
methods to more complicated nonlinear problems in
fluid dynamics, including systems of equations. The
equation governing transonic potential flow (e.g., air
over an airfoil) is not only nonlinear, but also elliptic
over parts of the domain and hyperbolic elsewhere. It
has been solved efficiently by multigrid methods in two
dimensions (Boerstoel, 1982), three dimensions
(Caughey, 1983), with mesh refinement (McCarthy and
Swanson, 1983), and with finite-element (Deconinck
and Hirsch, 1982) and spectral (Streett et al., 1985)
discretizations. Multigrid methods have also been de-
veloped for the Euler equations (e.g., Jespersen, 1983)
and the Navier-Stokes equations (e.g., Ghia et al.,
1982); a detailed summary of techniques for these sys-
tems appears in Brandt (1984). Most applications in
fluid dynamics so far have been for steady state solu-
tions; multigrid methods for time-dependent flows have
been discussed by Brandt et al. (1980), Lee and Myers
(1980), Jameson (1983), and Johnson (1983).

Research in basic multigrid techniques also contin-
ues. One area of interest is higher-order techniques.
Schaffer (1984) investigated higher-order difference
schemes, defect correction methods, and 7-extrapola-
tion as means of obtaining high accuracy with multigrid
methods. Brandt et al. (1985) developed improved re-
laxation schemes for Fourier-spectral multigrid meth-
ods for isotropic and anisotropic problems. Mesh gen-
eration and refinement techniques have also seen much
attention (e.g., Van Rosendale, 1983; Bai and Brandt,
1984). With the increasing importance of vector and
parallel processors such as the CRAY-1, CRAY X-MP
and CYBER 205, research on vectorizable and paral-
lelizable multigrid algorithms has expanded. Brandt
(1981) gives a comprehensive discussion of such al-
gorithms, and Barkai and Brandt (1983) discuss the
details of implementing a multigrid Poisson solver on
the CYBER 205.

The relative complexity of multigrid methods may
have been a factor in their relatively slow acceptance
up until now. Recognizing this, many researchers have
attempted to develop “black box” solvers, i.e., software
which can be used as a tool by other researchers without
having to deal with the multigrid details. Dendy (1982,
1983) has developed such routines for various types of
problems; similar work has been done by Wesseling
(1982) and Hemker et al. (1983). Foerster and Witsch
(1982) describe a package of routines (MG00) for solv-
ing second-order elliptic boundary value problems on
rectangular domains; listings of some routines from
this package appear in Stiiben and Trottenberg (1982),
and further details appear in Stiiben et al. (1984). The
latter paper also describes a code (AMGO1) based on
perhaps the ultimate “black box” approach, namely,
the algebraic multigrid concept mentioned in subsec-
tion 4g. Many of the solvers described above are avail-
able on a tape of multigrid software MUGTAPE) from
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the Department of Applied Mathematics at the Weiz-
mann Institute of Science, Rehovot 76100, Israel. This
tape also contains code for simple model problems
from Brandt (1977a) and Brandt (1984), plus a package
of general grid manipulation routines (GRIDPACK)
described by Brandt (1977b) and Brandt and Ophir
(1984). In addition, the code MGOO has been incor-
porated into the ELLPACK system of software for
solving elliptic problems (Rice, 1984).

6. Concluding remarks

The multigrid approach is a powerful, flexible way
to develop fast solvers for discretized elliptic boundary-
value problems. This power comes at the price of some
complexity, but some general software is available, in
addition to detailed information on developing specific
multigrid codes. As discussed in section 1, many elliptic
problems arise in geophysical fluid dynamics, often in-
volving variable coefficients or nonlinearities. Even
though high efficiency is often crucial, these problems
are currently being solved by methods which are less
than optimal. We hope this review will encourage oth-
ers to try multigrid methods in such cases. In addition,
multigrid methods can be combined with adaptive dis-
cretization in so-called Multi-Level Adaptive Tech-
niques (MLAT); while still in their infancy (especially
for hyperbolic problems), these techniques hold con-
siderable promise for the efficient and accurate solution
of geophysical problems involving localized phenom-
ena and widely differing scales of motion.
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