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4. Theoretical Background :

In practice the algebraic equations that resuit from the discretisation process,
Sect. 3.1, are obtained on a finite grid. It is to be expected, from the truncation
errors given in Sects. 3.2 and 3.3, that more accurate solutions could be obtained on
a refined grid. These aspects are considered further in Sect. 4.4. However for a given
required solution accuracy it may be more economical to solve a higher-order finite
difference scheme on a coarse grid than a low-order scheme on a finer grid, if the
exact solution is sufficiently smooth. This leads to the concept of computational
efficiency which is examined in Sect. 4.5.

An important question concerning computational solutions is what guarantee
can be given that the computational solution will be close to the exact solution of
the partial differential equation(s) and under what circumstances the compu-
tational solution will coincide with the exact solution. The second part of this
question can be answered (superficially) by requiring that the approximate (compu-
tational) solution should converge to the exact solution as the grid spacings A4z, Ax
shrink to zero (Sect. 4.1). However, convergence is very difficult to establish directly
so that an indirect route, as indicated in Fig. 4.1, is usually followed. The indirect
route requires that the system of algebraic equations formed by the discretisation
process {Sect. 3.1) should be consistent (Sect. 4.2) with the governing partial differ-
ential equation(s). Consistency implies that the discretisation process can be
reversed, through a Taylor series expansion, to recover the governing equation(s).
In addition, the algorithm used to solve the algebraic equations to give the
approximate solution, 7, must be stable (Sect. 4.3). Then the pseudo-equation
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Fig. 4.1. Conceptual relationship between consistency, stability and convergence
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is invoked to imply convergence. The conditions under which (4.1) can be made
precise are given by the Lax equivalence theorem (Sect. 4.1.1).

It is very difficult to obtain theoretical guidance for the behaviour of the
solution on a grid of finite size. Most of the useful theoretical results are strictly
only applicable in the limit that the grid size shrinks to zero. However the
connections that are established between convergence (Sect.4.1), consistency
(Sect. 4.2) and stability (Sect. 4.3} are also qualitatively useful in assessing compu-
tational solutions on a finite grid.

4.1 Convergence

A solution of the algebraic equations (Fig. 4.1) which approximate a given par-
tial differential equation is said to be convergent if the approximate solution
approaches the exact solution of the partial differential equation for each value of
the independent variable as the grid spacing tends to zero. Thus we require
T:—T(x;,t,), as 4x, At—0.

The difference between the exact solution of the partial differential equation
and the exact solution of the system of algebraic equations is called the solution

error, denoted by e}; that is

e'=T(x;,t,)—T" . (4.2)

The exact solution of the system of algebraic equations is the approximate solution
of the governing partial differential equation. The exact solution of the system of
algebraic equations is obtained when no numerical errors of any sort, such as those
due to round-off, are introduced during the computation. The magnitude of the
error, ef, at the ( j, n)-th node typically depends on the size of the grid spacings, Ax
and 4¢, and on the values of the higher-order derivatives at that node, omitted from
the finite difference approximations to the derivatives in the given differential
equation.

Proof that a solution to the system of algebraic equations converges to the
solution of the partial differential equation is generally very difficult, even for the
stmplest cases. For the approximate solution to the diffusion equation, using the
very simple FTCS algorithm (3.41), a proof of convergence for s<3 is given by
Noye (1984, pp. 117-119). Convergence is very difficult to show when the given
partial differential equation is more complicated than the diffusion equation and
the method of discretisation is less direct.

A few flow problems possess exact solutions so that, for these cases, conver-
gence can be inferred by obtaining computational solutions on progressively
refined grids (Sect. 4.1.2).

4.1.1 Lax Equivalence Theorem

For 4 restricted class of problems convergence can be established via the Lax
equivalence theorem (Richtmyer and Morton 1967, p. 45). “Given a properly posed
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linear initial value problem and a finite difference approximation to it that satisfies
the consistency condition, stability i1s the necessary and sufficient condition for
convergence’.

Although the theorem is expressed in terms of a finite difference approximation
it 1s applicable to any discretisation procedure that leads to nodal unknowns, e.g.,
the finite element method. The Lax equivalence theorem is of great importance,
since it 1s relatively easy to show stability of an algonthm and its consistency with
the original partial differential equation, whereas it is usually very difficult to show
convergence of its solution to that of the partial differential equation.

Most “real” flow problems are nonlinear and are boundary or mixed initial/
boundary value problems so that the Lax equivalence theorem cannot always be
applied rigorously. Consequently the Lax equivalance theorem should be inter-
preted as providing necessary, but not always sufficient, conditions. In the form of
(4.1) the Lax equivalence “equation” is useful for excluding inconsistent discretis-
ations and unstable algorithms.

4.1.2 Numerical Convergence

For the equations that govern fluid flow, convergence is usually impossible to
demonstrate theoretically. However, for problems that possess an exact solution,
like the diffusion equation, it is possible to obtain numerical solutions on a
successively refined grid and compute a solution error. Convergence implies that
the solution error should reduce to zero as the grid spacing is shrunk to zero.

For program DIFF (Fig. 3.13), solutions have been obtained on successively
refined spatial grids, Ax=0.2,0.1, 0.05 and 0.025. The corresponding rms errors are
shown in Table 4.1 for s=0.50 and 0.30. It is clear that the rms error reduces like
Ax? approximately. Based on these results it would be a reasonable inference that
refining the grid would produce a further reduction in the rms error and, in the
limit of Ax (for fixed s) going to zero, the solution of the algebraic equations would
converge to the exact solution.

The establishment of numerical convergence is rather an expensive process
since usually very fine grids are necessary. As s is kept constant in the above
example the timestep is being reduced by a factor of four for each halving of 4x. In
Table 4.1 the solution error is computed at ¢ =5000 s. This implies the finest grid
solution at s=10.30 requires 266 time steps before the solution error is computed.

For the diffusion equation (3.1) with zero boundary values and initial value
T{x,0)=sin(nx), 0<x <1, the rms solution error |e|,. is plotted against grid

Table 4.1. Solution error (rms) reduction with grid refinement

Ims error
s=gAt/Ax? Ax=02 Ax=0.1 Ax=0.035 Ax=0.025
0.50 1.658 0.492 0.121 0.030

0.30 0.590 0.187 0.048 0.012
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spacing Ax in Fig. 4.2. The increased rate of convergence (fourth-order conver-
gence) for s =%, compared with other values of s <1 (second-order convergence), is
clearly seen, i.e. the convergence rate is like Ax* for s=%, and like Ax? otherwise. As
will be demonstrated in Sect. 4.2, the superior convergence rate for s=% is to be
expected from a consideration of the leading term in the truncation error. Typi-
cally, for sufficiently small grid spacings 4x, At, the solution error will reduce like
the truncation error as Ax, 4t—0.

4.2 Consistency

The system of algebraic equations generated by the discretisation process is said to
be consistent with the original partial differential equation if, in the limit that the
grid spacing tends to zero, the system of algebraic equations is equivalent to the
partial differential equation at each grid point.

Clearly, consistency is necessary if the approximate solution is to converge to
the solution of the partial differential equation under consideration. However, it is
not a sufficient condition (Fig.4.1), for even though the system of algebraic
equations might be equivalent to the partial differential equation as the grid
spacing tends to zero, it does not follow that the solution of the system of algebraic
equations approaches the solution of the partial differential equation. For instance,
choosing s>1 in program DIFF causes the solution using the FTCS algorithm
(3.41) to diverge rapidly. Thus as indicated by the Lax equivalence theorem (Sect.
4.1.1), both consistency and stability are required for convergence.

The mechanics of testing for consistency requires the substitution of the exact
solution into the algebraic equations resulting from discretisation, and the expan-
sion of all nodal values as Taylor series about a single point. For consistency the
resulting expression should be made up of the original partial differential equation
plus a remainder. The structure of the remainder should be such that it reduces to
zero as the grid is refined.




