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7. One-Dimensional Diffusion Equation

From a computational perspective the diffusion equation contains the same
dissipative mechanism as is found in flow problems with significant viscous or heat
conduction effects. Consequently computational techniques that are effective for
the ditfusion equaiion will provide guidunce in choosing appropriate algorithms
for viscous fiuid flow (Chaps. 15 18).

In this chapter the one-dimensional diffusion equation wilk be used as a vehicle
for developing explicit and implicit schemes. Attention will be given to the stability
and accuracy of the various schemes. The problem of accurately implementing
boundary and initial conditions will also be considered.

The one-dimensional diffusion or heat conduction cquation
T
at ox* 0 0
has alrcady been introduced as a model parabolic partial differential equation
(Sect. 2.3) and used to Alustrate the discretisation process (Sect. 3.1) and the
implementation of the finite difference method (Sect. 3.5

In (7.1) T may be interpreted as the velocity, vorticity, temperature or concet-
tration depending on whether the diffusion of momentum, vorticity, heat or mass is
being considered. I T is the temperature, (7.1) governs the flow of heat in a rod
which is insulated along its edges but can transfer heat to the surroundings via the
ends of the rod (4 and B in Fig. 7.1).

Two lypes of boundary condition are common. First the dependent variable is
4 known function of time. In the notation of (7.1) this would be (for the end A)

TO,1)=h1) . (12)
TO (x}m
o

T R

A ST hocanaaddy insulation NN B o

AT,/ dx aTg/dx

given CEEEEEEEEEEEEENSSS  given  Fig. 7.1 One-dimensional, unsteady

x=0 x=1 heat conduction
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This is @ Dirichle.t boun_dary condition (Sect. 2.1.2). In practice b is often a constant.
gecond, the spatial derivative of the dependent variable may be specified. To suit
) this could be written ({or the end A),

oT
— (0, =c{t) .
ax(’ )=c{1) (1.3)
This is @ Ncu'mann boundary condition (Sect. 2.1.2). As with Dirichlet boundary
conditions, ¢ is often a constant.

To obtain unique solutions of (7.1) it is also necessary to specify initial
conditions. These are given by

Fe0)=Tol) - (74)

The exact solution T(x, 1) satisfies (7.1) in conjunction with (7.4) and (7.2) or (7.3)
applied at x=0 and x=10. -

To obtain the approximate solution, (7.1) is discretised (Sect. 3.1) and the
resulting filgcbrzlic equation is manipulated to generate an algorithm, The al-
gorithm gives the solution at the (n + 1)-th time level (Fig. 3.2) in terms of the known
so]uti3ox; at the nth and earlier time levels. The overall procedure is described in
Sect. 3.5.

7.1 Explicit Methods

For expiicil_ methods a single unknown, e.g. T7* ', appears on the leflt hand side of
the algebraic formula resulting from discretisation.
111 FTCS Scheme

lfa Fwo-point forward‘ difference approximation is introduced for the time de-
rivative and a three-point centred difference approximation is introduced for the

spatial derivative in (7.1}, the result is

T T (T} =205+ T].)
At Ax?

-0 . (7.5)

Fquation {7.5) will be referred to as the FTCS (forward time centred spacc} scheme,
tcan be seen‘thal the spatial derivative has been evaluated at the nth time level, ie.
al a known time level. Rearranging (7.5) gives the algorithm

n+ n " "
Tj 1=STjﬁ1+(l-2.§}Tj+STj+l B (7.6)

where the discretisation parameter s=ga At/4x? .
o TTht;gnd points c.onnectcd togcther by (7.6) are shown in Fig. 7.2. Substitution
» the exact solution of (7.1), into {7.5) and expansion of the various terms as a
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n+l n+l1 n+l
n‘h—-L—v_ - n n
-1 ] 141
n-1 n-1
T I B R

DuFart-Frankel

10 e
FTCS Richardson

n+! 0——0——o n+l n+l

n o—>b——0 n n o
i1 § M TR B A
n-1
. el
o Linear F.E.M.
Crank-Nicolson 3LFI Crank-Nicolson

Fig. 7.2. Active nodes for diffusion equation algebraic schemes

Taylor series about the (j,n)-th node (as in Scct. 3.2.1) gives

or aGZT "+E"*0
it x|,

where the truncation error E} is given by

APT AP T
=l et S Lol axty 17
; [2 FTERRENT 6x4:L+(I ) a7

It can be seen that (7.5) is consistent (Sect. 4.2) with (7.1).

From the leading term in £} the FTCS scheme will be referred to as being first-
order accurate in time and second-order accurate in space. However, it should be
remembered that this statement is strictly only correct in the limit 4¢, Ax—0. In
practice, solutions are obtained on a grid of finite spacings and the magnitude of
terms like 82T /1% is not known, a priori.

Application of the von Neumann stability analysis (Sect. 4.3) indicates that the
amplification factor G is given by

0
G=1-4ssin*| =] ,
$ Sin (2)

where s =xAt/Ax* and 8 = mmAx. For any value of 8, (G{ £ 1 if s £0.5. Thus (7.6) will
produce stable solutions if s<0.5. It has already been seen (Sect. 4.2.1) that the
particular choice s = 1/6 introduces a cancellation of terms in the truncation error
and (7.6) then has a truncation error of 0(41%, Ax®).

The above propertics of the FTCS scheme applied to the diffusion equation
(7.1) are summarised in Table 7.1. It may be noted that the form of the truncation

~

Table 7.1, Algebraic {discretised) schemes for the diffusion equation 37T /81 — 82T /0x* =0

Stability

Amplification factor

G(f

Truncation error® (E)

{leading term)

Remarks

restrictions

mndx)

Algebraic form

Scheme

At
o« —
Ax?

n+1

ar;

§

5205

7=0

—al,, T

At

FTCS

-[, -2, 1]

1
= Ax

L

L

nel __ +1
AT} =Ty -1

None

{1+25)

2scost +(1 —4s?sin? §)772

)G‘T
12/ &x*

1

B
_a(
!

=0

1

(73,
:“*1

]

n~1
i

Ax?
AT YT

;T
24t
_(T;'

T

DuFort-Frankel
s

v
N

None

1—2ssin(8/2)
1+2ssin?(8/2)

2T
cx?

)

24T

Ax?
12

)=o

Ti+T301

AaLn(

nel
jarat?

AT
At

¥

|

Three-level

Crank-Nicolson
.

T4+43i[F5+s(1 —cosd)]'?

e}
i

None

4T
&x*

Ax?

147"
2 At

=0

A+ ]

—al,  T7

J

Ar

2

fully implicit

AT}=T'—

7.1

211+4%s(1 —cos6)]

)

4

Explicit M.

Ax? (2—3s)+cosO(t +3s)
{2+ 335)+cosB(1 —13s)

a+1
1

T+7T

AT}[+I

Linear F.E.M.

—al,, (

None

ox*®

12

}oo

At

x

M

/Crank-Nicolson

ds

_

l

*The truncation error has been expressed solely in terms of Ax and x-derivatives as in the modified equation method (Section 9.2.2). Thus the algebraic scheme is

equivalent to 8T /8t —ad*T/éx? + E{(T)

I

219

=0
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error shown in Table 7.1 is equivalent to (7.7). The accuracy of numerical solutions
using the FTCS scheme is shown in Table 7.3.

7.1.2 Richardson and DuFort-Frankel Schemes

In (7.6) the usc of a two-point one-sided difference formula produces a first-order
contribution to the truncation error and the use of a three-point centred difference
formula produces a second-order contribution to the truncation error, Therefore a
logical improvement (0 (7.6) would be the scheme

T;f+ 1_ T;!-l _o:(T}', L —2T'}+ T?+-ﬁ=0

, 7.8
24t Ax? 8

due to Richardson (Fig. 7.2). However, although the scheme is of 0(4r?, 4x%),a von
Neumann stability analysis (Noye 1983, p.138) indicates that the scheme is
unconditionally unstable for s>0. Thus it is of no practical use. It may be noted
that the unstable behavior refers to the equation as a whole. When the centred
difference approximation for the time derivative is introduced into the convection
equation (9.2) a stable algorithm can be obtained, (9.15).

The Richardson scheme (7.8) can be modified to produce a stable algorithm.
This is achicved by replacing 7] in (7.8) with 0.5(Tj"+T;”). The resulting
equation is
Tt [T, (T

241 Ax?

AT g (1.9)

Equation {7.9), which is known as the DuFort-Frankel scheme (Fig. 7.2), can hc
manipulated to give the explicit algorithm

SR O T VPR ke PERS (7.10)
P\ T e s ‘

The DuFort-Frankel scheme is three-level in time unless s=0.5, for which it
coincides with the FTCS scheme. For a three-level scheme, two time-levels of the
solution must be stored and an alternative two-level scheme is required for the first
time step.

Application of the von Neumann stability analysis (Sect. 4.3) to (7.10) produces
the amplification factor G given in Table 7.1. Since |G| <1 for any value of # with
s3>0, it follows that the DuFort-Frankel scheme is stable [or any value of 4t. There
is a price to pay for this very favorable stability result. A Taylor expansion of the
exact solution substituted into (7.9) about the { j, n)-th node produces the result

oF & (T
_ ) R oA, AxH=0 . 1.
[ax °‘ax2+°‘(4x) aﬂl (4¢% AxH=0 1

Thus for consistency At/Ax must —0 as At, Ax—0, i.e. it is required that At € Ax

7.1 Explicit Me 3}

for consistency. However a(4t/4x)* =sAt and we expect s to be of O(1) for diffusion
problems. Therefore the DuFort-Frankel scheme is consistent with (7.1} but will be
inaccurate if sz is large. The alternative form of the truncation error (Table 7.1)
indicates that if s=(1/12)"/2, the DuFort-Frankel scheme has a truncation error of
0(4x*). A corresponding solution accuracy is indicated in Table 7.3.

From a practical point of view there is still an effective restriction on the size of
At when using the DuFort-Frankel scheme, even though it arises from an accuracy
restriction rather than a stability restriction, as with the FTCS scheme.

7.1.3 Three-Level Scheme

A general explicit three-level discretisation of (7.1) can be written as
aT;f“+bT'}+cT}"lf(de,Tf,!+eL”T;")=0 , (7.12)
where
Lo T= (T =204 Ty AX>

The parameters «, b, ¢, d and ¢ may be determined by expanding each term in (7.12)
as a Taylor serics about node ( j, ) and requiring that (7.12) is consistent with {7.1).
Examples of this procedure are provided in Sccts. 3.2.2 and 3.2.3. This procedurc
permits (7.12) to be rewritten with only two disposable constants, y and f3, instead
of five. Thus (7.12) is replaced by

(45003 =T (T T ]
T AR a1 B LT Bl T 11=0. (T.13)

A Taylor series expansion of (7.13) about node ( j, n) indicates consistency with (7.1)
and a truncation error given by

- T 1
E?=asAx? a3 (0.5+}'+/ff1—2- )+O{Ax‘) . (7.14)

et s
where s=241/Ax%. In (7.14) all time derivatives have been replaced with spatial

derivatives, using the governing equation, as in Table 7.1.
Clearly (7.13) has a truncation error of fourth order if f§ is given by

1

(7.15)

Equation (7.13) produces the algorithm

T’”‘:(liz}i o LY DL —p T Ty (16
i S R CIVY R R VY ptphs e A

where L., I;=T,_ —2T;+ T} .
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Equation {7.16) turns out to be only conditionally stable, with the maximum
value of s for stability being a function of y. This can be established by applying the
von Neumann stability analysis (Sect. 4.3) to (7.13). This requires solution of the
following quadratic equation for G:

G (1 4+y)— G142y + 2s(1 — B)cosf — )]+ [y—2Bs(cosé—1)]=0 . 717

For stability it is necessary that |G| <1 for all values of . This generates the
stability map as a function of y and s shown in Fig. 7.3. At y=0, (7.17) has a more
restrictive stability limitation on s (s £0.34) than the FTCS scheme. For very large
values of y the stability limitation becomes s<0.5, the same as for the FTCS
scheme. The accuracy of the three-level scheme (7.13) is examined in Sect. 7.1.4.

030 ynstasie
s
040} STABLE
Q.30
{ A L 4 " ITH
") 2.0 40 60 Fig. 7.3. Stability map for (7.13

Y ’ and 5)

7.1.4 DIFEX: Nu}nerical Results for Explicit Schemes

eme (Sect. 7.1.1), [the DuFort-Frankel scheme
(Sect. 7.1.2) are/compared wilh the three-level pcheme (Sect. 7.1.3). All three
methods are ifcorporated info program DIFEX (Fig 7.4), which is an exten-
sion of DIFF

Solutions fre sought in the computational Jomain 0<x<1.0 and 2.00=¢
<9.00, with igitial conditiong given at =200 by|the exact solution {3.42) divided
by 100. Bounfary conditiong are

T{0,0)=T](1,1)=10 . (7.18)
The accuracy of the various; schemes is assessed|by evaluating the rms difference
between the komputed and exact solutions at) T=9.00. The exact solution is
computed in{subroutine HXTRA (Fig.7.5). F¢r the DuFort-Frankel scheme
and the three}level scheme ftwo levels of initial data are required at t=2.00 and
t=2.00—4t.

The major\ parameters \used by program DIFEX (Fig. 7.4) arc defined in
Table 7.2. A typical solution, produced by the thige-level scheme on a relatively
coarse grid, is shown in Fig. 7.6.

T
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rate of convergence is main
three-level fourth-order
puFort-Frankel sche
fine grid.

The results
higher-ordez/schemes by truncation error cancellatiper” Such schemes, typically,
igher accuracy on a fine grid, but n with more severe stability
restricyons. The degree of improvement in ;

ffied, approximately. For s=041 and y=1.0 the
eme demonstrates comparable accuracy t

1.2 Implicit Methods

For implicit schemcs the spatial term 2T /0x? in (7.1} is evaluated, at least
partially, at the unknown time level (n+1). In practice this leads to a coupling of
the equations for each node { j,n+ 1) at the (m+ 1)-th time level, and the need to
solve a system of algebraic equations to advance the solution,

7.2.1 Fully Implicit Scheme
The simplest implicit finite difference representation for (7.1) is
(rett =Ty (T 2T+ IS

b S LRl Sl S A I 7.19
p e 0 (7.19)

To generate a uscful algorithm (7.19) is rewritten as
—sT}i’i+(l+2s)’1‘}"—sTjI,‘:T'} . {7.20)

A Taylor expansion about the (j,#Hh node indicates that this scheme has a
truncation efrror

At 1 AT
e T [ g | 04 Ax)
! 2( 65)[&Zl+ ( <

This is the same order as for the explicit (FTCS) scheme, (7.5) with s+ 1/6, although
the multiplying constant is larger.

Application of the von Neumann stability analysis (Sect. 4.3) produces the
following expression for the amplification factor:

G [l +2s(t —cost)]™" .

For any choice of 1, G| £ 1 if s> 0. That is, (7.20) is unconditionally stable. This 1s
clearly an improvement over the conditionally stable explicit scheme (7.5).
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However, to solve (7.20) it is necessary to consider all the nodes j and the
corresponding equations. Thus a matrix of equations can be written for the
unknown values 77°":

(1+2s) —s ™! d,

—s (1425 —s Ty dy
—s (1429 —s | (T T 4 (7.21)

—s  (+29] T3] (diey

In (7.21)
d,=Th+sT7""
d=T" dy ,=T%  +sT5"

where T%*! and 74! are known from the Dirichlet boundary conditions. It is
apparent that the system of equations is tridiagonal. Consequently the Thomas
algorithm (Sect. 6.2.2) can be used to solve (7.21) in 5(J —2)—4 operations (only
multiplications and divisions arc counted).

in practice, allowing for the sctting up of the equations, the solution of the
implicit system of equations (7.21) via the Thomas algorithm, requires {(wice as
much computer time, typically, as solving the same number of explicit equations
(7.6). The time-step can be made considerably larger than the limiting explicit time-
step, Ate,=0.54x%/2; however, then the accuracy of the solution will be less.

7.2.2 Crank-Nicolson Scheme

An alternative implicit algorithm for (7.1) is provided by the Crank-Nicolson
scheme (Fig. 7.2) which is
(T'!+14T")

i

Lo (05L,, T+ 0.5L,, T )=0 , (1.22)

L T:MTEH

i Ax? '
Effectively this scheme evaluates the spatial derivative at the average of the ath and
(n+ 1)}-th time levels, i.c. at the {n+ 1/2)-th time level. If a Taylor expansion is made
about (j, n+ 1/2), (7.22} is found to be consistent with (7.1} with a truncation error of
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0(4t?, Ax?). This is a considerable improvement over the fully imptlicit and FTCS
schemes that are only first-order accurate in time.
A von Neumann stability analysis indicates that the Crank-Nicolson scheme is
unconditionally stable, Table 7.1. A rearrangement of (7.22) gives the algorithm
—0SsT " 4 (1+9) T =05 T30

i—1

=05 T 4 (1 -9 TI+05s Ty, (7.23)

which may be compared with (7.20). By considering all spatial nodes (7.2
produces a tridiagonal system of equations which can be solved efficiently using the
Thomas algorithm.

Because of the second-order temporal accuracy, the Crank-Nicolson scheme is
a very popular method for solving parabolic partial diflerential equations. The
properties of the Crank-Nicolson scheme are summarised in Table 7.1.

A generalisation of (7.22) can be obtained by writing

AT

o U= LT Ly, T 1}=0, (7.24)

where AT ' =777~ T7 and 01 If f=0 the FTCS scheme is obtained.
If #=0.5 the Crank-Nicolson scheme is obtained and if =10 the fully implicit
scheme is obtained.

A von Neumann stability analysis of (7.24) indicates that a stable solution is
possible for

05452

A< L ifO<p<1/2
At —2f)

no restriction il 12=f<1 .

It may be noted that the Crank-Nicolson scheme is on the boundary of the
unconditionally stable regime. For many steady flow problems it is cflicient to
solve an equivalent tramsicnt problem unti! the solution no longer changes
{Sect. 6.4). However, often the solution in different parts of the computational
domain approaches the stcady-state solution at significantly different rates; the
equations arc then said to be stff (Sect. 7.4). Unfortunately the Crank-Nicolson
scheme often produces an oscillatory solution in this situation which, although
stable, docs not approach the steady state rapidly. Certain three-level (in time)
schemes are more effective than the Crank-Nicolson scheme in this regard.

7.2.3 Generalised Three-Level Scheme

For the diffusion equation, a generalised three-fevel scheme that includes (7.24) can
be written

1+ ATY AT

Li‘)}!---f—— ‘7’ —a[(1 =P LTI+ BL, T ]=0, (7.25)
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where AT"=T1-T5" " The inclusion of the extra time-level implies a larger
memory requirement to store the solution. However, the modern trend is for
computer memories to become cheaper and larger. A second effect is that ad-
ditional exccution time is required, typicaily 10%-15%, to manipulate the ad-
ditional terms.

A particularly effective threc-level scheme 1s given by the choice: y =05, fi=10.
This scheme has a truncation error of 0(Ar*, Ax?),is unconditionally stable, can be
solved using the Thomas algorithm and damps out the spurious oscillations,
discussed above in relation (o stiff problems. We will refer to this scheme as the
three-level fully implicit (3LFI) scheme and will make further use of it when
discussing approximate {actorisation (Sects. 8.2 and 8.3}, The ILFT scheme has the
useful property of being A-stable (Sect. 7.4).

The properties of some of the various numerical schemes for representing the
diffusion equation (7.1) are shown in Table 7.1. Many more schemes arc given by
Richtmyer and Morton (1967, p. 189).

7.2.4 Higher-Order Schemes

The starting point for this section will be the discretised equation, (7.23), modified
to embrace both finite difference and finite clement three-level schemes. Thus (7.25)
is replaced by
AT M AT et , )
(M- 7 P (BT U= LT =0 (7.26)

At
where
ATj”=T’;”»—T'}, ATj:T'}—T;’" . and

L T.:,TJ':L 2T+ Ty

xd Ax? |

The similarity in the structure of (7.26) and (7.13) 1s noteworthy. For the finite
element method, M, = {4, %, 41. s0 that

M AT, = AT, w3 o AT (7.27)

For the finite differcnce method, M, =!0,1,0}. The parameters 7 and f# may be
chosen to provide particular levels of accuracy and/or stability. In Sect. 7.2.2 the
various schemes correspond to »=0. The particular choice ; =0, #=0.5 gives the
Crank-Nicolson method. Results for both finite element and finite difference forms
of the Crank-Nicolson method arc provided in Table 73 The choice y =05, fi=1.0
is discussed, briefly, in Sect. 7.2.3. In this section - will be treated as a free parameter
but fi will be treated as & function of 3.

A Taylor series expansion of (7.26} about node {j,n} produces the following
expression for the truncation error leading term:

o*T 515
E}‘=cxsdx2 —7 (0.5+'f+——”~ﬁ) , (7.28)
ax s
where the mass operatot is writlen as

M, ={5,1-25,8} . _ (1.29)

This includes both the finite difference (8=0) and finite element (§=3) formu-
lations. The form of the truncation error (7.28) has eliminated all time derivatives,
as in Table 7.1.

The schemes considered previously {Sect. 7.2.3, etc.) have corresponded to the
choice f=0.5+7. However, it is clear that fourth-order accuracy should be possible
for the choice

5 L
11:0.5+}'+‘7\_” . (7.30)

In turn this motivates the choicee M ={/5 & h). since this will produce a fourth-
order truncation error with f=0.5+7. :

Equation (7.26) 1s applied at every node producing a tridiagonal system of
equations of the form

AT BT G TR =0 M LM T = ST

7.31
where { )

A=C=( typd--sp. Bi=( (=28} + 2sft and

L, =T 2T T
Although the solution of {7.31} requires a higher operation count than the fully
implicit or Crank-Nicolson schemes it is considerably more accurale (Sect. 7.2.5).

7.2.5 DIFIM: NumcriT‘l Results for Implicit Schemes

In this scction the accutacy of the higher-prder schemg (7.31} is compared with the
accurhey of the lower-okder implicit scheipes and the Yow and high-order explicit
schemies of Seet. 7.1

cxtension of program DIFF\lo obtain the compu-
Lationdt solution of (7.1 sybject to the boundary conditions (7.18) by repeatedly
solving {7.31) to advance thdsolution in time for all interior n des. The solution of
(7.31) is yndertaken by subroutines BANFAC ynd BANSOL.
are indepyndent of time it is only necessary to call BANFAC onctyat the first time-
step. A lishng of program DIFM is provided 1 DIFIM can
invoke five Yptions as shown in Table 7.4, which cdgrespond to differdny choices of
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8. Multidimensional Diffusion Equation

A broad conclusion from Chap. 7 is that implicit schemes are more effective than
explicit schemes for problems with significant dissipation, as exemplified by the
one-dimensional diffusion equation.

[n extending implicit schemes to multidimensions, special procedures arc
necessary if economical algorithms are to be obtained. The special procedures are
often built around some means of splitting the equation on a convenient coordinate
basis (Sects, 8.2, 8.3 and 8.5). The use of splitting constructions also requires careful
attention being given to the implementation of derivative {Neumann) boundary
conditions (Sect. §.4). The splitting techniques developed 1n this chapter are ap-
plicable to finite difference, finite element and finite volume methods.

8.1 Two-Dimensional Diffusion Equation

In two dimensions, the diffusion equation is written

For the region shown in Fig. 8.1, Dirichlet boundary conditions are
TO.v.0=aly.1) .
Ty 0y=b(y1) . (8.2)
T(x,0,ty=c(x,0) ,
Tix, ,n=d(x1) ,

Tix1,4) = dix.t)

y:'l =
= — | Ax e -
T{Ow.1) + kel T(Lyt1)
cafy.t) Ay X = biy.t}

f
) k-1 .
j=1 I B I Y j=NX Fig. 8.1. Two-dimensiona do-
y=01 _ k=1 l main and Dirichiet boundary
x=0 T{x,0.1) =c(x,t} x=1 conditions
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and initial conditions
T(x,5,0)="Ty(x,y) . (8.3)

In this section, typical explicit and implicit schemes for the one-dimensional
diffusion equation are extended to two dimensions to see if they are directly
applicable.

8.1.1 Explicit Methods

The FTCS scheme, in two dimensions, is

Ar' —a, L, T5,—o,L,T7,=0 where ;
porr, THam 2t T

Ax?

As an algorithm this becomes
T =5, Tt (1 =25, =28 Thu+ s T i aa

+5, TS+, T 5 s (8.5

where s, =, At/Ax” and s, =2, 41/Ay*. A Taylor scries expansion about il}c (j. k,n)
node indicates that (8.5) is consistent (Sect. 4.2) with (8.1) and has a truncation error
of O{Ar, 4x3, Ay, . .

A von Neumann stability analysis demonstrates that (8.5) will be stabie if

5. +5,<05 . (8.6)

It may be noted that if s, =s,=s, (8.6) gives s £0.25, which is more restrictive t.han
the corresponding expression in one dimension (Sect. 7.1.1). However, if small time-
steps must be used to obtain a sufficiently accurate sofution. the restrictive stability
condition may not be critical. _

For the case x=a, =¢, and Ax=4y, Mitchell and Griffiths (1980, p. 55) provide
an extension to (8.4), ie.

AT

—al T —al, Th, AL L, T5,=0, (8.7)

xx =yy

which is stable in the range 0<s<0.5. Although (8.7) is a nine-point scheme it can
be implemented economically in two stages

T, =(1+adtL,)T7, and (8.8)

T =(l+adt L, )T, . (8.9)
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This scheme extends to a three-stage algorithm in three dimensions while maintain-
ing the “one-dimensional” stability range 0<s£0.5. By contrast, the three-
dimensionai FTCS scheme with Ax= Ay = Az is stable in the range 0 <s<1/6
One of the more interesting explicit algorithms is the hopscotch method
(Gourlay 1970). This method can be interpreted, in its simplest form, as a two-stage
FTCS scheme. In the first stage, (8.5) is applied at all grid points for which j+k +n
is even; that is, on a grid pattern corresponding to the btack squares on a chess-
board. In the second-stage the following equation is solved at ail grid points for
which j+k+n is odd, i.e. on the red squares of an “equivalent” chess-board.

(L4254 25) T = T4 sA T34 THLD+s,(TIRL +TIR0) - (B10)

The terms evaluated at ¢, , ; on the right-hand side of (8.10) are known from the first
stage. The simple hopscotch method has a truncation error of O{4t, Ax?, Ay?) but,
in contrast to the FTCS scheme, is unconditionally stable. Mitchell and Griffiths
(1980, p. 77} discuss the hopscotch family of methods in more detail.

8.1.2 Implicit Method

Following the same procedure as for one-dimensional problems, it is possible to
obtain an implicit scheme by evaluating the spatial derivatives in (8.1) at the time-
level (n+1). The resulting algorithm is

=5, T+ 25,4+ 25} 70 -5, T
—s, Th =5, T =T, (8.11)

This scheme has a truncation error of Q(dAt, Ax?, Ay?) and is unconditionally
stable. However, the difficulty here is in obtaining, cconomically, the solution of the
equations that result from applying (8.11) at every node.

For the present equation, (8.11), it is possible to number the nodes so that three
terms are on or adjacent to the main diagonal but the other two terms are
displaced, effectively, by the number of internal nodes across the grid {say, NX -2
in Fig.8.1}. Consequently, the Thomas algorithm cannot be used. Using con-

-ventional Gauss elimination (Sect. 6.2.1) would be prohibitively expensive; using

sparse Gauss elimination would still be unacceptably uneconomical for refined
grids.

8.2 Multidimensional Splitting Methods

The problem with the two-dimensional implicit scheme can be overcome by
splitting the solution algorithm (system of algebraic equations) into two half-steps
to advance one time-step. At each hall-step, only terms associated with a particular
coordinate direction are treated implicitly. Consequently, only three implicit terms
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appear and these can be grouped adjacent to the main diagonal. As a result, the
very efficient Thomas algorithm can be used to obtain the solution. The overall
process of treating each time-step as a sequence of simpler substeps is referred to as
(time-)splitting.

8.2.1 ADI Method

The best known example of a splitting technique is the alternating direction
implicit (AD1) method (Peaceman and Rachford 1955). We will examine the ADI
method in detail and then introduce 2 generalisation of the splitting approach.

The ADI interpretation of (8.1) is written in two halfl time-steps as follows.
During the first half-step the following discretisation is used:

*x _ T
Lﬁﬂ}i_a‘L“Tﬁk—ayl‘wT}k=0 » (8.12)
and during the second
n+l _T* - -
Tf"‘m/z Pk g L, TH—u,L,T5 =0 {8.13)

During the first half-step the solution Tis known at time-level n but is unknown
at the (n+ 1/2) time-level, denoted by *. However, unknown nodal values T* are
associated with the x-direction only {ie. constant value of k in Fig. 8.2). Equation
(8.12) can be rewritten as one member of a system of equations as

—0.55, T4+ +5) T 055 TTe1s
=0.55, T -1 +(1—5,) T4, +038,Tjks1 - (8.14)
Other members of the system are formed around the other nodes in the samme row k.
Thus, the solution of the system of equations gives the intermediate soiutlgn T,
j=2,...,NX-1, for one value of k only. Sequentially, systems of equations are

solved for T%,.j=2, ..., NX -1, for each row, k=2, ..., NY—1, using the
Thomas algorithm.

kel Sweep in the
x-direction
(constant k]
during the
k-1 first half

time -step

) —
-~

v
RN
\.____.4—‘7'-'—-———/

Sweep in the y—direction (constant i
during the second half time -step

Fig. 8.2. ADI implementation
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During the second half-step (8.13) is used, but in the form
—05s,T20E +(145,) T35 —0.5s, i
=055, TF 1 p+(1—5) T +0.55 THox - (8.15)

During the second half-step the solution at time-level n+ 1 is unknown but the
solution at the intermediate time-level * is known. A system of equations associated
with all the nodes along one grid line in the y-direction {j fixed) is solved for T13%,
k=2, ..., NY—1. The process is repeated for each grid line,j=2, ..., NX—1Lin
turn.

The stability of the ADI scheme can be ascertained by applying the von
Neumann stability analysis to obtain the amplification factor for each half-step.
The stability of the complete time-step is determined by the product of the two half-
step amplification factors, i.ec.

1—2s,sin?(6,/2) 1 —2s,.sin?(6,/2)
G=GG = 2 i Ly 16
G [ +2s,5in2(0,/2) 1 +2s,5in(0,/2) (8.16)

An examination of {8.16) indicates that {G|=1 for any value of s, s,, 0,,0

However, a consideration of |G| and |G"| indicates that whereas the full step ;s
unconditionally stable, each W&E. But only the full
step 1s of interest.

The composite scheme (8.12 and 13) is consistent with (8.1) and has a truncation
error of 0(At?, Ax% 4y?). The second-order time accuracy follows from the
symmetry of the scheme, just as the second-order accuracy of the Crank-Nicolson
scheme followed from the symmetry about the time-level (n+ 1/2).

However, to achieve a global truncation error of Q{At%), it is necessary to
introduce boundary values for the intermediate solution T%, that are compaltible
with the interior algorithms (8.14 and 15). For example, if Dirichlet boundary con-
ditions are imposed, the evaluation of THy,=bi " at x=1 produces an al-
gorithm that has a truncation error of 0(4r). To produce a truncation error of
0(At?) it is necessary to evaluate T iy from (8.12 and 13) as

Ttxa =055 +by 71} —0254 L, (b —hy) . 8.17)

A similar problem arises with approximate factorisation schemes; appropriate
boundary condition specifications are discussed in Sects. 8.3.2 and 8.4.

Thus, it may be concluded that the ADI scheme, in two dimensions, has the
~desirable attributes of being unconditionally stable, second-order accurate and
economical to solve. The ADI scheme extends to the three-dimensional diffusion
equation where three steps, each occupying A4t/3, replace (8.14 and 15). In three
dimensions, the ADI scheme is economical, spatially second-orde_rj‘g_cm@__g_u—t_is
only conditionally_siable. It 1s necessary that s, s,, §; WC
s, =g, At/Az*, -

i —
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\/8.2.2 Generalised Two-Level Scheme

We now seck to generalise the splitting concept. A general two-level implicit finite
difference scheme for {8.1) can be written

AT a ™
T_(l _ﬁ)(axLxxT}'-k+a)’LYy J'J‘)

—,B(a,Lx,T;.’,j‘+a,L”,T}_’,'(‘)=0, where (8.18)

p+l__ e+t __TH
ATj‘k -“T}"k J,k *

Lk At .
in order to advance to time-level (n+ 1). In order to mimmize the build-up of

round-off error it is uscful to have AT],' appear explicitly in the computer
program. The role of fin (8.18) is to weight the time-levels n and (n+ 1% this same

idea was used in {7.24). _ o _ . "
Equation (8.18) will be manipulated to give an implicit algor:t.hm in 4T T
First the term T3 is expanded as a Taylor series about the nth time-level, as in

(3.16), viz.

ar aT* |°
ntl_Tn oo 54 2 + ...,
= j_k+zlz\:a[]j'k+05 t [612 "

which can be approximated by

Here AT"}' can be thought of as the correction to the solution at time-level n

AT”
Th =T+ A (7;‘—’()+O(dtz} . (8.19)

Substituting (8.19) into (8.18) gives

f%ﬂ;jl_ (ot L Tt Ly T74)
Bla L, AT +a, Ly, AT H=0, (8.20)
or, after rearrangement,
[1—para L+ a, L, )14 To4 = At Lt a,L,) T i - (8.21)

Algebraic operators appropriate to both directions appear on lbc left hand side of
(8.21). In orde ; of the Thomas algorithm, (8.21) 15 replaced by the

approximate factorisation

(1 — At L)1 — Bty L) AT5L = At(a Lo+, L) T (8.22)
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Comparing (8.21) and (8.22) indicates that (8.22) contains an additional term, on
the left hand side,

ﬁz 4t* aranyerA T:I L.

That is, (8.22) approximates (8.21) to 0(dr?).

Equation (8.22) can be implemented as a two-stage algorithm at each time-step.
As the first stage the following system of equations is solved on every grid-line in
the x-direction (constant k in Fig. 8.2):

(1 — BAto, L, ) AT = At Loy + o, Lyy) Ty (8.23)

for AT?,, which can be thought of as an intermediate approximation to AT

When L, is a three-point centred difference operator, (8.23)isa tridiagonal system
that can be solved efficiently using the Thomas algorithm (Sect. 6.2.2). During the
second stage, the following system of equations is solved:

(1 -fata,L,)ATL = 4T}, (8.24)

on every grid-line in the y-direction (constant j in Fig 8.2). The structure of (8.23,
24} is similar to that of the ADI scheme (8.14, 15). For more complicated equations
the evaluation of all the spatial terms on the right hand side of (8.23) is a major
contribution to the execution time. The present implementation only requires one
evaluation of the spatial terms per time-stcp. 1n contrast, the ADT scheme requires
two evaluations. The algorithm (8.23, 24) 75 duc to Douglas and Gunn (1964).
The two-stage algorithm (8.23, 24) < uncondiionally stabic for f=0.5 and has

a truncation error of O(41?, 4ax%, AyY) if f=05. The approximate factorisation
construction extends to three dimensions and, in contrast to the ADI scheme, is
unconditionally stabte for F20.0.

— 1T the present formulation is used to obtain solutions of steady problems as the
steady-state limit of the transient solution (Sect. 6.4), it is useful to define

RHS = (o, L+, Ly,) T (8.25)

in (8.23). As the steady-state solution is approached RHS tends to zero; thus
monijtoring the value of RHS indicates the proximity to the steady-state solution.

823 Generalised Three-Level Scheme

For the one-dimensional diffusion equation a generalised three-level implicit
scheme was given by (7.25). A corresponding three-level scheme is written in two
dimensions as

L+ 4Tt v4T], .
YAt e AEJk=(1_ﬁ)(a’Lxx+°‘yLyy)Tj.k

+ Bl Lo+, L) TR, where (8.26)

AT =T5— T -
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With the same construction as was used to develop (8.23, 24) from (8.18), the
following two-stage algorithm is obtained from (8.26). During the first stage

B L A . y )
(1 T+7) Ata, Loy ATj,k—(l n) (Lot Lyy) T“+(1 e AT,  (827)

generates a tridiagonal system of equations associated with each grid line in the x-
direction.
During the second stage of every time-step, the following equation is used:

(1_(1 iw Ata,,L”,) AT 4 = AT, . (8.28)
For the particular choice B=1,y=0.5 the two-stage algorithm, given by (8.27,28),
is consistent with (8.1) with a truncation error of O(d¢?, Ax2, Ay?), and is
unconditionally stable. For the first time-step (n=0), a two-level scheme, such as
given by (8.23, 24), is required.

The splitting schemes discussed in this section extend naturally to three
dimensions {(Mitchell and Griffiths 1980, p. 85). The modern approach to splitting
whereby a term, typically of 0(Ar?), is added to the implicit equation to construct
the factorisation is discussed at length by Gourlay (1977). Higher-order split
schemes are possible for the diffusion equation in two and three dimensions. Some
of these are discussed by Mitchell and Griffiths (1980, pp. 61, 8.

8.3 Splitting Schemes and the Finite Element Method

Here we apply the Galerkin finite element method (Sect. 5.3) to the two-dimen-
sional diffusion equation (8.1) with boundary and initial conditions given by (8.2, 3)
and determine whether the splitting schemes developed in Sect.8.2 must be
modified to include the finite element form of the discretised equations. Rec-
tangular elements are used with bilinear interpolating functions (5.59) in each
element. IT the Galerkin finite element method is applied on a grid that is uniferm in
the x and y directions, the result can be written (after dividing all terms by Ax Ay) as

or
Mx®My[Ta£—]_k:axMy'@Lxxri.k'*-any@Lny:i.k 3 (829)
I

where ® denotes the tensor (or outer) product (Mase 1970, p. 15); M, and M, are
directional mass operators and Ly, and L, are directional difference operators
(Appendix A.2). The directional mass operators are

M= %Y and M,=(38", (8.30)
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It is of interest to compare the treatment of Neumann boundary conditions by
the finite difference and finite element methods. The equivalent finite difference
form to (8.29) is

ar
[“] =ax Lxx Tj‘k+ay Ly’. Tj,k N (866)
at {;x

where L and L are given by (8.31). Introduction of (8.53} on x =1 produces the
following local form for (8.66):

T
[_37] k=za,c(zg*;+1‘“ T,-‘k)+a,, LT, (8.67)
5

where L,, is now given by (8.63) and L, by (8.31) as before.

In introducing the concept of mass operators it has been noted (Sects. 5.5 and
§.3.1) that an equivalent finite difference representation can be constructed by
lumping the mass operators. Thus, in (8.62) the mass operators would be

M©={0,05,0} and M ={0,1,0}7 . (8.68)

The resulting form of (8.62) is identical with (8.67). Thus, for bilinear Lagrange
interpolation on rectangular finite elements, it is possible to implement Neumann
boundary conditions with the Galerkin finite element method by introducing an
additional set of points T}, | . and T}, given by (8.53) and to apply an interior
formula, such as (8.29), throughout. It should be stressed that although this
approach is expedient for coding efficiency, it should only be used afier the
equivalence has been demonstrated.

Typical resuits using the finite element method with Neumann boundary
éT/ex(1, v, 1)=0 and 67T/dy(x, 1, t)=80, are shown in Table 8.3. The trends are
similar to those with Dirichlet boundary conditions except that the errors are
generally larger when Neumann boundary conditions are present. This same trend
was apparent with the finite difference method.

\_/ 8.5 Method of Fractional Steps

For the implicit methods described in this chapter the overall strategy has been to
discretise and then to manipulate or modify the resulting algebraic equations to
generate the ‘one-dimensional” algorithms like (8.27 and 28).

An alternative strategy to the above is to split the governing equation, for
example (8.1) into a pair of equations, each of which is locally onc dimensional.
Thus, (8.1) is replaced by

05———~a,—5=0 and (8.69)
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The equations are discretised and solved sequentially at ca'ch timg—steg. This (lzlass
of methods was developed by Soviet mathematicians and is deseribed in detail by
Yanenko (1971} and Marchuk (1974). Mitchell and Griffiths (1980, pp. 70-74) refer

to this class of methods as locall one—dimep i methods.
An explicit implementation of (8.69, 70} 1s
Thi =t e, At L) T, and (8.71)
7o =1+, 4t L) TiEM (8.72)

This scheme coincides with (8.8 and 9) if a=a, =,. The algorithm (8.71, 72} has a
truncation error of 0(4t, Ax*, Ay*) and, if A_x=Ay, is stable [or‘s§0.5.
A Crank-Nicolson (implicit) implementation of (8.69 and 70) is

(1 -0.50,4tL,,) T4 W2 (14050, 4tL,,} T4 8.73)
and
(1—-05x,4tL,.) T?_i‘:(l +05a,Atl,,) Tﬂ”z . (8.74)

Equations (8.73, 74) lead to tridiagonal systems of equations glong yand x g"d'h.n;]:s
respectively; consequently, the solution can be a_dvanced in time cco'nor.mc..i y
using the Thomas algorithm. The scheme (8.7;, T4)is s_ccon.d-ordcr aCC}lra;t_: in tfrHc
and space with appropriate boundary condition specification and unconditionalty

able i nd three dimensions. _
Stdbéi:;:ivsg:(&n and 74) can be combined into a single composng:scheme by
clinTi;T.lating_](‘_}'ﬁj’,i2 as long as the L, and L operators com}mute.That 15, lthe same
formula is produced by Ly L, T5y"" as by Ly, Ly, 77377 The resulting com-
posite scheme coincides with the ADI composite scheme produced by climinating

* 12 and 13). N
Tl‘kl{f(r)(\)vrgv(frli rlnajor éiﬁerencc occurs in the treatment of boundary cqndluons.
For the metk;od of fractional steps applied in the two-dimensional domat.n §hown
in Fig. 8.1 a Dirichlet boundary condition on x=1, T(L, y,t)=h{y, 1) is imple-
mented, traditionally, at the intermediate time-level as

Taxi=pr12 (8.75)
and similarty for boundary conditions on other boundaries. Thi.s lr_eatment effec-
tively reduces the accuracy of the overall scheme to first order in time. .
Dwoyer and Thames (1981) examine the prob!em of correctly implemenl?ng
boundary conditions in conjunction with a two-dimensional transport equgu.on
(Sect. 9.5). Mitchell and Griffiths (1980) show that the correct boundary condition

on x=1, when using (8.71 and 72), is

T2 = ta,dtLy,) b . (8.76)
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This suggests that, when using (8.73,74), compatible intermediate Dirichlet
boundary conditions on x =1 may be obtained by solving

(1-05a,AtL,) Thx 2 =(1+0.5a, 4t L, )b . (8.77)

It may be noted that the method of fractional steps does not provide an
economical algorithm in terms of the corrections AT%}", as was possible with
approximate factorisation (Sect. 8.2.2 and following). Also, the method of fractional
steps does not provide a direct evaluation of the steady-state residual (8.25), which

is important when solving steady problems with a pseudotransient formulation
(Sect. 6.4).

8.6 Closure

For multidimensional parabolic partial differential cquations, e.g., the diffusion
equation, implicit schemes arc more effective than explicit schemes, primarily duc
to their inherently more stable behaviour. Additionally, an implicit formulation
provides more flexibility for constructing higher-order schemes (Mitchell and
Griffiths 1980, p. 61).

To retain the economy of the Thomas algorithm with a multidimensional
implicit formulation, it is necessary to introduce some form of dircctional splitting.
The recommended construction is to cast the equations as a lincar system for the
correction AT, " and to introduce an approximate factorisation, e.g. (8.22) which
permits a multistage algorithm to be applied with each stage requiring the solution
of a tridiagonal system of equations.

Approximate factorisation is effective with both the finite difference and finite
element methods. The appearance of directional mass operators in the finite
element approximate factorisation algorithm (8.39, 40) provides a means of obtain-
ing a spalially more accurate scheme; that is, by choosing d=15 in (8.44). The
higher accuracy is achicved with both Dirichlet (Sect. 8.3) and Neumann (Sect. 8.4)
boundary conditions.

However, to maintain second-order temporal accuracy special attention must
be given to the implementation of the boundary conditions for the intermediate
solution correction A T¥, that arises with the approximate factorisation con-
strum finitc difference and finite cicment methods handle
Neumann boundary conditions in conceptually different ways, the form of the
discretised equations are often structurally equivalent.

The splitting (approximate factorisation) lechniques developed in  this
chapter are applicablg, with minor modification, to the two-dimensional transport
equation (Scct. 9.5), the two-dimensional Burgers' equations (Sect. 10.4) and the
equations governing various classes of fluid flow, particularly when the Navier-
Stokes equations gre 1o be solved, e.g. Sects. 17.2.1, 17.3.3, 18.3 and 18.4,

Complele LT






