34 1. Introduction

5. Show that the backward heat equation,
W
g axl’

and the initial condition ¥(x,0) = f(x) do not constitute a well-posed
problem on the domain —oo < x < 00,1 > 0.
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2
Basic Finite-Difference Methods

As discussed in the preceding chapter, there are two conceptually different ways
to represent continuous functions on digital computers: as a finite set of grid-
point values or as a finite set of series-expansion functions. The grid-point ap-
proach is used in conjunction with finite-difference methods, which were widely
implemented on digital computers somewhat earlier than the series-cxpansion
techniques. In addition, the theory for these methods is somewhat simpler than
that for series-expansion methods. We will parallel this historical development by
studying finite-difference methods in this chapter and deferring the treatment of
series expansion methods to Chapter 4. Moreover, it is useful to understand finite-
difference methods before investigating series-expansion techniques because even
when series expansions are used to represent the spatial dependence of some at-
mospheric quantity, the time dependence is almost always discretized and treated
with finite differences.

The derivative of a function f{x) at the point xy could be defined in any of the
following three ways:

df Sxp + Ax) — f(xo)

E(m) - aliin.n Ax @b
df . [lxo) — flxp — Ax)

w00 = m T @2
df . [l Ax) — flxo— Ax)

e @

If the derivative of f(x) is continuous at xo, all three expressions produce the
same unique answer. Suppose, however, that f is an approximation to some dif-
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ferentiable function that is defined on a discrete grid; then the preceding expres-
sions must be evaluated using a finite value of Ax. The approximations to the true
derivative obtained by evaluating the algebraic expressions on the right side of
(2.1}-(2.3) using finite Ax are known as finite differences. The basic idea behind
finite-difference metheds is to convert the differential equation into a system of
algebraic equations by replacing each derivative with a finite difference.

When Ax is finite, the finite-difference approximations (2.1)-(2.3) are not equiv-
alent; they differ in their accuracy, and when they are substituted for derivatives in
differential cquations they generate different algebraic equations. The differences
in the structures of these algebraic equations can have a great influence on the
stability of the numerical solution. In this chapter, we will examine the stability
and accuracy of basic finite-difference methods.

2.1 Accuracy and Consistency

The exact derivative can be calculated to within an arbitrarily small error using
any one of (2.1)-(2.3) by insuring that Ax is sufficiently small. However, since
computer capacities always place a practical limit on the numerical resolution, it is
necessary to consider the case when Ax is small but finite and to inquire whether
one of the finite-difference formulas (2.1}-(2.3) is likely to be more accurate than
the others. If f(x) is sufficiently smooth, this question can be answered by ex-
panding the terms like f(xg & Ax) in Taylor series about xp and substituting
these expansions into the finite-difference formula. For example, when

df (Axy2d’ f (axy & f
flxo+ Ax) = flxg) + AXE(IO) + 2 E(xﬂ) + Td—x:"(xl)) +--
is substituted into (2.1), one finds that
fo+ A~ fGo) _df | _AxdSf . (A4S
Ax - a;(xo) = (x0) + PR (o) +---. 2.4

The right side of (2.4) is known as the truncation error. The lowest power of
Ax in the truncation error determines the order of accuracy of the finite differ-
ence. Inspection of its truncation error shows that the one-sided difference (2.1) is
first-order accurate. In contrast, the truncation error associated with the centered
difference (2.3) is

(Ax)*d’ f
“6— Eg(xo) +

(An*adf
]20 dxj(xo)'*'"',

and the centered difference is therefore second-order accurate. If the higher-order
derivatives of f are bounded in some interval about xg (i.e., f is “smooth”) and
the grid spacing is reduced, the error in the second-order difference (2.3) will ap-
proach zero more rapidly than the error in the first-order difference (2.1). The fact

t
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that the truncation error of the centered difference is of higher order does not,
however, guarantee that it will always generate a more accurale estimate of the
derivative. If the function is sufficiently rough and the grid spacing sufficiently
coarse, neither formula is likely to produce a good approximation, and the supe-
riority of one over the other will be largely a matter of chance.

Higher-order finite-difference approximations can be constructed by including
additional grid points in the finite-difference formula. Suppose, for exampie, that
one wishes 1o obtain a fourth-order approximation to df/dx by determining the
five coefficients a, b, .. ., e that satisfy

d
% 0y = af o + 2800 1 bf 0 + A0+ f o)
vd f(xo— Ax) +efixo—2Ax) 1+ O [(Ax)“]. 2.5)

Expanding f(xg £ Ax) and f{xp £ 2Ax) in Taylor serics, substituting those
expansions into (2.5), and cquating the cocfficients of like powers of Ax yields
five equations for the unknown coefficients:

atb+c+d+te=0,
204+b-d-2¢=1/Ax,
da+b+d+4e=0,
Ba+b—d—8e=0,

16a+b+d+ 16e =0,

The unique solution to this system requires ¢ = 0 and yields an approximation to
the derivative of the form

df 4(f(xo+Ax)~f(xo—Ax))
—(xg) = 2

dx 3 2Ax

1 (f(xo 4+ 2Ax) — fixg — 2Ax)

3 4Ax

) +0 [(Ax)"]. 2.6)

Similar procedures can be used to generate even higher-arder formulae, off-cen-
tered formulae, and formulae for irregular grid intervals.

As an alternative to the brute force manipulation of Taylor series, the derivation
of higher-order finite-difference formulae can be facilitated by the systematic use
of operator notation and simple lower-order formulae. A simpler derivation of
(2.6) may be obtained by defining a finite-difference operator é,; such that

Sx +nAx /2y — fix —nAx/2)

b - 2.7
xfx) Ar (2.7
Using this notation, the second-order centered difference satisfies
df (Ax)} d3f 4
by f = 2L it o[ Aaxyl. .
wf =+ 4+ 0|80 ] (2.8)
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From the definition of 4,4,

flx+ Axy = 2f{(x} + flx - hax)
(Ax)? '

05 = 8:(6:f) =
and a conventional Taylor series analysis of the truncation error shows that
4 f
2y, 7Y 2
2f==540 [(Ax) ]

Jt follows that ngﬁff is a second-order approximation to the third derivative of
S, since

dx?

dZ d3
52,821 = 8 o [(Ax)z] o [(Ax)z].
dx?
Substitution of the preceding into (2.8} yields

2
(1 - (Ag) ai) b f = Yo [(Ax)“]. (2.9)

dx

Expansion of this formula via the operator definition (2.7) yields the centered
fourth-order difference (2.6). Although it allows finite-difference equations o be
expressed in a very compact form, operator notation will not be used for all finite-
difference equations throughout the remainder of this book, but will be reserved
for complicated formulae that become unwieldy when written in expanded form.
Most of the finite-difference schemes considered in the remainder of this chapter
are sufficiently simple that they will be expressed without using operator notation.
We now turn from the consideration of individual finite differences to examine

the accuracy of an entire finite-difference scheme. Suppose that an approximation
to the advection equation

ayr Y

51 +cax =0 (2.10)
is to be obtained at the grid points (nAf, jAx), where n and j are integers. It
is convenient lo represent the numerical approximation 1o Y ((nAl, jAx}) in the
shorthand notation qu. One possible finite-difference formula for the numerical
approximation of (2.10} is

i’ —¢) ¢
0 2.11
A T Ax @1

when ¢ > 0, this is known as the “upstream” or “donor-cell” scheme. The accu-
racy of a finite-difference scheme is characterized by the residual error with which
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the solution of the continuous equation fails to satisfy the finite-difference formu-
Jation. Under the assumption that v is sufficiently smooth, its value at adjacent
grid points can be obtained from a Taylor serics expansion about (nAr, jAx) and
substituted into (2.11} to yield

W;‘ 711’7?+Cwi79’fj,| —Eﬂ, Ax anﬁ
Al Ax 22 ‘2wt 212

The right side of (2.12} is the truncation error of the finite-difference scheme. The
order of accuracy of the scheme is determined by the lowest powers of At and
Ax appearing in the truncation error. According to (2.12), the upstream scheme
is first-order accurate in space and time. If the truncation error of the finite-
difference scheme approaches zero as At — 0 and Ax — 0, the scheme is
consistent. Inspection of (2.12) clearly shows that the upstream scheme is con-
sistent, Although it is not difficult o design consistent difference schemes, this
property should not be taken for granted. One sometimes encounters methods
that require additional relations between At and Ax, such as Af/Ax — {,in
order to achieve consistency.

2.2 Stability and Convergence

The preceding measures of accuracy do not describe the difference between the
numerical solution r;b;f and the true solution ¥ {nAt, jAx), which, of course, is the
most direct measure of the quality of the numerical solution. Before discussing
this error one needs a way to measure its size, i.e., one needs to define a norm.
The general mathematical notation for a norm is a pair of vertical bars || ||. In the
following we will be concerned with the maximum norm and the Euclidean, or
£7, norm, The maximum norm, defined as

¢lloo = max, Il (2.13)

is simply the extremum of the grid-point values. The Euclidean, or £;, norm is
defined as

N 12
lgll2 = (Z |¢j12Ax) . (2.18)

i=l

lf the constant scaling factor Ax is ignored, (2.14) is just the length of an N-
dimensional vector (hence the name Euclidean norm). The inclusion of the Ax
faclor makes (2.14) a numerical approximation 1o the square root of the spatial
integral of the function times its complex conjugate, ¢¢*, whence the name £;
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norm.! It might appear that the maximum norm is the most natural one to compute
when working with grid-point values; however, the £ norm is also useful, because
it is more closely related to conserved physical guantities, such as the total energy.

A finite-difference scheme is said to be convergent of order {p, ¢} if in the limit
Ax, At — 0,

Iy (nAt, jAx) — ¢ = O [(anf]+ 0 [(ax)?).

The relationship between convergence and consistency is described by the Lax
equivalence theorem, which states that if a finite-difference scheme is linear, sta-
ble, and accurate of order (p,q), then it is convergent of order (p, q) {Lax and
Richtmyer 1956). Lax's theorcm shows that mere consistency is not enough 1o
assure the convergence of a numerical method. The method must also be stable.
There are a great number of consistent finite-difference methods that are utterly
useless because they are unstable. 1t is common practice to describe a finite-
difference scheme as “unstable” if it generates a numerical solution that grows
much more rapidly than the true solution. When “stable™ and “unstable” are used
in this sense, some reference must be made to the propertics of the true solution,
and since the true solution can exhibit a wide range of different behaviors, one
can arrive at several different criteria for “stability.”

The fundamental definition of stability makes no reference to the propertics of
the true solution and only identifies the least-restrictive additional constraint that
must be satisfied in order to ensure the convergence of solutions generated by 2
consistent finite-difference scheme. A consistent linear finite-difference scheme
will be convergent, and the Lax equivalence theorem will be satisfied, provided
that for any time T there exists a constant Cr such that

9"l < Crilg®| forall nAr<T (2.15)

and all sufficiently small values of At and Ax. In the preceding, Cr may depend
on the time T, but not on A, Ax, or the number of time steps n. This defini-
tion leaves the numerical solution tremendous latitude for growth with time, but
it rules out solutions that grow as a function of the number of time steps. If a
difference scheme is unstable in the sense that it fails to satisfy (2.15), repeated
reductions in A? and Ax may generate an unbounded amplification in the numeri-
cal approximation to the true solution at time T. In such a situatien, the numerical

I'To better appreciate the notation used 1o represent the maximum and £, norms, note that ¢ lleo

is essentially the intcgral
1jo0
(fores)

(fure)”

and lgllz is
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solution could hardly be expected to converge to the true solution in the limit Ax,
Ar — O

The practical shortcoming of the preceding definition of stability is that it says
nothing about the quality of the solution that might be obtained when using finite
values of A7 and Ax; it only ensures that an accurate solution will be obtained
in the limit Ax, Ar — 0. Schemes that are stable according to the criteria (2.15)
may, nevertheless, generate solutions that “blow up” in practical applications (see
Section 3.4.3 for an example). In order to ensure that the numerical solution is
qualitatively similar o the true solution when Ax and At are finite, it is often
useful to impose stability constraints that are more stringent than (2.15). In many
wave propagation problems, the norm of the true solution is constant with time,
and in such instanccs it is appropriate to require that the numerical scheme satisfy

g™l < Ig°ll forall n. (2.16)

In contrast to (2.15), this condition is not nccessary for convergence, and it cannot
be sensibly imposed without specific knowledge about the boundedness of the
solutions to the associated partial differential equation. Nevertheless, (2.16) is a
Perfecily reasonable constraint to impose in applications where the true solution
is not growing with time, and unlike (2.15), it guarantees that the solution will not
blow up.

It is relatively easy to formulate consisient difference schemes and to determine
their truncation error and erder of accuracy. The analysis of stability can, however,
be far more difficult, particularly when the finite-difference scheme and the asso-
ciated partial differential equation are nonlinear. Thus, our initial discussion of
stability will be focused on the simplest case—linear finite-difference schemes
for the approximation of linear partial differential equations with constant coeffi-

cient.s. Nonlinear equations and linear equations with variable coefficients will be
considered in Chapter 3.

2.2.1 The Energy Method

In practice, the energy method is used much less frequently than the Von Neumann
method, which will be discussed in the next section. Nevertheless, the energy
method is important, because unlike the Von Neumann method, it can be applied
to nonlinear equations and to problems without periodic boundaries. The basic
idea behind the energy method is to find a positive definite quantity like 3" j(¢>;'.)2
and show that this quantity is bounded for all n. If Y .(¢")? is bounded, the
solution is stable with respect to the £-norm. Y

As an example, let us investigate the stability of the upstream finite-difference
scheme (2.11). Defining i = cAt/Ax, the scheme may be written as

07" = (1 — we} +ud],. @.17)
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Squaring both sides and summing over all j gives

Ty = Y [ - e + 20 e @] 2]
i

! (2.18)

Assurning cyclic boundary conditions,?
Y@ )= @ 2.19)
i J

and using the Schwarz inequality (which states that for two vectors u and v, |u -

v| < fullfvii),

1/

1/2 Z
Y ¢ < {Zw;)z} [Z(qﬁ’;_])ﬂ =Yt QW
i ) i i

Ifu(l —u)=0 all three coefficients in (2.18) are positive, and {2.19) and (2.20)
may be used to construct the inequality

Y@ < [(1 — )t 4 2u( - )+ u?] Y @ht= Yo@pt @2y
J; ¥ j)

which requires o™ < ¢z and implies that the scheme is stable, The
condition used to obtain (2.21),

pu(l —w) =0, (2.22)

is therefore a sufficient condition for stability. Under the assumption that & > 0,
division of (2.22) by i leads to the relation i < 1, and the total constraint on
i is therefore 0 < jt < 1. A similar treatment of the case ju = 0 leads to the
contradictory requirement that u > 1 and provides no additional solutions. Thus,
recalling the definition of 1 and noting that g = 0 satisfies (2.22), the stability
condition may be written
0<— =<1l
Vi

As is typical with most conditionally stable difference schemes, there is a maxi-
mum limit on the time step beyond which the scheme is unstable, and the stability
limit becomes more severe as the spatial resolution is increased.

23 more general boundary conditions are imposed at the edges of the spatial domain, a rigor-
ous stability analysis becomes much more difficult. The determination of stability in the presence of
nonperiodic boundaries is discussed in Section 8.1.6.
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2.2.2 Von Neumann's Method

One drawback of the energy method is that each new problem requires fresh in-
sight in order to definc an appropriate energy and to show that the finite-difference
scheme preserves a bound on that energy. Von Neumann's method has the advan-
tage that it can be applied by following a prescribed procedure; however, itis ap-
plicable only to linear finite-difference equations with constant coefficients.” The
basic idea of the Von Neumann method is 1o represent the discretized solution at
some particular time step by a finite Fourier series of the form

N

¢?: Z H;eikl&x,

=—N

and to examine the stability of the individual Fourier components. The total so-
lul%on will be stable if and only if every Fourier component is stable. The use of
finite Fourier serics is strictly appropriate only if the spatial domain is periodic.
When problems are posed with more general boundary conditions, a rigorous sta-
bility analysis is more difficult, but the Von Neumann method still provides a
useful way of weeding out obviously unsuitable schemes.

. A key property of Fourier series is that individual Fourier modes are eigenfunc-
tions of the derivative operator, i.e.,

Finitc? Fourier series have an analogous property in that individual modes ekidx

a1"c. eigenfunctions of linear finite-difference operators. Thus, if the initial con-

ditions for some linear, constant-coefficient finite-difference scheme are ¢ =
j

k A . . . -
e'*/ 2% after one iteration the sotution will have the form
n+l _ ikjAx
¢ i = Age ,

wl.lere Ay is a complex constant, known as the amplification factor, that is deter-
mlqed by the form of the finite-difference formulae. Since the analysis is restricted
to linear constant-coefficient schemes, the amplification factor will not vary from
time step to time step, and if aj denotes the amplitude of the kth finite Fourier
component at the nth time step, then

—1
ap = Aray | = (A) g},

3
i In order 10. apply Von l\.leumann's method to more general problems, the governing finite-
erence equations must be linearized and any variable coefficients must be frozen al some constant

value. The Von Neumann stability of i incari i
y of the family of linearized, frozen-coef! t
o 1 ficient systems may then be
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1t follows that the stability of each Fourier component is determined by the mod-
ulus of its amplification factor.

The Von Neumann stability condition, which is necessary and sufficient for
the stability of a linear constant-coefficient finite-difference cqualion,"‘ requires
the amplification factor of every Fourier compenent resolvable on the grid to be
bounded such that

|Ag] < 1+ y AL, (2.23)

where y is a constant independent of k, A, and Ax. This condition ensures that
a consistent finite-difference scheme satisfies the minimum stability criteria for
convergence in the limit Ax, Az — 0, (2.15). In applications where the truc
solution is bounded by the norm of the initial data, i is usually advantageous to
enforce the more-stringent requirement that

|Agl <1, (2.24)

which will guarantee satisfaction of the stability condition (2.16). When the Von
Neumann condition is satisfied, every finite Fourier component is stable, and the
full solution, begg a linear combination of the individual Fourier components,
must also be stable.

As an illustration of the Von Neumann method, consider once again the finite-
difference equation (2.17). The solutions to the associated partial differential equa-
tion (2.10) do not grow with time, 50 we will require [Ax| < 1. Substitution of an
arbitrary Fourier component, of the form ¢ kidx into (2.17) yields

AgekiBE = (1 — 1)ekisx 4 LIRS

Dividing out the common factor e'*/4% gives
Ap=1— pt pe RAE (2.25)

The magnitude of Ay is obtained by multiplying by its complex conjugate and
taking the square root. Thus,

AR = (1= o+ e #00(1 — e+ et
=1-2u(1 — )1 —coskAx). (2.26)

The Von Neumann condition (2.24) will therefore be satisfied if
1 —2p(1 — {1 —coskAx) < 1.
4The sufficiency of the Von Neumann condition holds only for single equations in one unknown.

The stability of systems of finite-difference equations in several unknown variables is discussed in
Section 3.1
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Since 1 — coskAx > 0 for all wave numbers except the trivial case k = 0, the
preceding inequality reduces 1o

pll — ) >0,

which is identical to the condition (2.22) obtained using the energy method, As
discussed previously in connection with (2.22), this stability condition may be
expressed as

Inspection of (2.26) shows that the 2Ax wave grows most rapidly in any inte-
gration performed with an unstable value of 14, Thus, as it “blows up,” an unstable
solution becomes dominated by large-amplitude 2Ax waves. Most other finite-
difference approximations to the advection equation exhibit the same tendency:
When solutions become unstable, they usually become contaminated by large-
amplitude short waves. The upstream scheme is, nevertheless, unusual in that all
waves become unstable for the same critical value of g. In many other schemes,
such as the leapfrog-time centered-space formulation (2.91), there exist values
of i for which only a few of the shorter wavelengths are unstable. One might
suppose that such nominally unstable values of & could stili be used in numeri-
cal integrations if the initial data were filtered to remove all amplitude from the
unstable finite Fourier components; however, even if the initiat data have zero am-
plitude in the unstable modes, round-off error in the numerical computations will
excite the unstable modes and trigger the instability.

2.2.3 The Courant—Fredrichs—Lewy Condition

Th.e basic idea of the Couranmt—Yredrichs—Lewy (CFL) condition is that the so-
lution of a finite-difference equation must not be independent of the data that
dcter.rqines the solution to the associated partial differential equation. The CFL
condition can be made more precise by defining the domain of influence of a point
(..to. tp) as that region of the x -t plane where the solution to some particular partial
differential equation is influenced by the solution at {xg, to).'A related concept, the
domain of dependence of a point (xg, fp), is defined as the set of points containing
(x.o, fp) within their domains of influence. The domain of dependence of (xg, 1p)
will therefore consist of all points (x, 1) at which the solution has some inﬂuc;nce
on tl'1e solution at {xg, fo). A similar concept applicable to the discretized prob-
lem is the numerical domain of dependence of a grid point (ngAt, joAx), which
consists of the set of all nodes on the space-time grid (nAt, jAx) at which the
value of the numerical solution influences the nemerical solution at (ngAt, joAx).
Tfle CFL condition requires that the numerical domain of dependence of a finite-
dlrﬁ'erence scheme include the domain of dependence of the associated partial
differential equation. Satisfaction of the CFL condition is a necessary condition
for stability, but is not sufficient to guarantee stability.
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FIGURE 2.1. The influence of the lime step on the relationship between the numerical
domain of dependence of the upstream scheme (open circles) and the true domain of de-
pendence of the advection equation (heavy dashed line): (a) unstable At, (b) stable Ar.

The nature of the CFL condition can be illustrated by considering the advection
equation (2.10), which has general solutions of the form v {x — c1). Thus the true

domain of influence of a point (xo, f) is the straight line
t=1lp+1(x —x0), 1=t

The same “characteristic line” also defines the true domain of dependence of
(xg, I}, except that one looks backward in time by requiring ¢ < to. The true do-
main of dependence is plotted as 2 dashed line in Fig. 2.1, together with those grid
points composing the numerica! domain of dependence of the upstream finite-
difference scheme (2.17). The two panels in this figure show the influence of
two different time steps on the shape of the numetrical domain of dependence. In
Fig. 2.1a, the initial value of y along the x-axis, which determines the solution to
the partial differential equation at (nAt, jAx), plays no role in the determination
of the finite-difference solution ¢7. The numetical solution can be in error by any
arbitrary amount, and will not converge 10 the true solution as At, Ax — Ounless
there is a change in the ratio A#/Ax. Hence, the finite-difference method, which
is consistent with the original partial differential equation, must be unstable (or
else the Lax equivalence theorem would be violated).

The situation shown in Fig. 2.1b is obtained by halving the time step. Then the
numerical domain of dependence contains the domain of dependence of the true
solution, and it is possible for the numerical solution 1o be stable. In this example
the CFL condition requires the slope of the characteristic curve to be greater than
the slope of the left edge—and less than the slope of the right edge—of the domain
of dependence. As evident from Fig. 2.1, the slope condition at the right edge of
the domain is 1/¢ < oo, which is always satisfied. The slope condition at the left
edge of the domain may be expressed as At/Ax < 1/c. If ¢ > 0, this requires

cAt/Bx <1, 227
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and the nonnegativity of Az and Ax implies

cAt/Ax > 0. (2.28)

Simultaneous satisfaction of (2.27) and (2.28) is obtained when

A
OSC—I<1.
Ax —

In the case ¢ < 0, similar reasoning leads to contradictory requirements, and the
solution is unstable. '

The preceding stability condition is identical to those already obtained using the
energy and Von Neumann metheds, but such agreement is actually rather unusual
The CFL condition is only a necessary condition for stability, and in many cases.
the sufficient conditions for stability are more restrictive tha;l those required by

the CEL condition. As an example, consider the following approximation to the
advection equation,

4 1
g +c (552;:?5 - 354x¢) =0,

which uses the fourth-order accurate approximation to the spatial derivative (2.6).

Since the spatial difference utilizes a five-gri i i i

ince the -grid-point-wide stencil, i-

tion is satisfied when P the CFL cond
At

=

<2
Ax '

\.(et the actual sufficient condition for stability is the much more restrictive condi-
tion

At 0.728
c— | =U

Ax |~ '

which may be derived via a Von Neumann stability analysis.

2.3 Time-Differencing

A given partial differential equation can be approximated by an almost unlimited
Yanety of different finite-difference formulae. In order to systematically exam-
ine t%lc properties of various finite-difference schemes, let us begin by discussin,

poss.1b16 approximations to the time derivative without explicitly considering lhﬁ
spatial derivatives. The primary reason for discussing time and space differencin

separ.atcly is that they present the numerical analyst with rather different sets ogf
prac.tlcal problems. After the nth step of the integration, the numerical solution
¢ will be k_nown at every point on the spatial mesh, and several grid-point values
may be e.asﬂy included in any finite-difference approximation to the spatial deriva-
tives, It is easy, for example, to construct high-order centered approximations to
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spatial derivatives. In contrast, storage limitations dictate that ¢ be rctained at as
few time levels as possible, and the only time levels available arc those from pre-
vious iterations. Thus, higher-order finite-difference approximations to the time
derivative are inherently one-sided.

The following discussion of the effects of time-differencing on the numerical
solution is transferable, after minor modification, 1o situations where the spatial
derivatives are approximated by centered differences. In addition, this discussion
provides an cxact analysis of the influence of time-differencing on schemes, such
as the spectral method, where finite differences are not used to evaluate the spa-
tial derivatives. Nevertheless, one must be careful not 10 assume that space and
time differences are completely independent. Indeed, techniques such as the Lax-
Wendroff method cannot be properly analyzed without understanding the inter-
action between space truncation etror and time truncation error. The combined
effects of space- and time-differencing will be discussed, together with schemes
like the Lax-Wendroff method, in Section 2.5.

Time-differencing formulac used in the numerical solution of partial differen-
tial equations are related, naturally enough, to the numerical methods used 10
integrate ordinary differential equations. In comparison with typical ordinary dif-
ferential equation solvers, the methods used to integrate partial differential equa-
tions are of very low order. Low-order schemes are used for two basic reasons.
First, the approximation of the time derivative is not the only source of finite-
differencing error in the solution of partial differential equations; other errors arise
through the approximation of the spatial derivatives. In many circumstances the
largest errors in the solution are introduced through the numerical evaluation of
the spatial derivatives, so it is pointless to devote additional computational re-
sources to higher-order time-differencing. The second reason for using low-order
methods is that practical limitations on computational resources often leave no
other choice.

2.3.1 The Oscillation Equation: Phase-Speed
and Amplitude Error

Hundreds of papers have been written investigaling various technigues for the
finite-difference solution of the advection equation (2.10), many of which are
listed in the extensive review by Rood {1987). The vastness of this body of lit-
erature is a testament to the subtle tradeoffs involved in the selection of the “best”
numerical method for even very simple equations. It might be supposed that the
relative accuracy of different methods could be easily determined by comparing
their respective truncation errors. The analysis of truncation error is, however,
most effective at predicting the behavior of well-resolved waves, and the most
serious errors are often found in the poorly resolved waves. The accuracy of both
well resolved and poorly resolved waves can be better examined by extending the
standard Von Neumann analysis to study the phase-speed and amplitude error in
each Fourier component of the numerical solution.

N
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If the spatial structure of the solution to the advection equation

ay dfr
— 4 ¢— =
of ¢ ox
is represented by a Fourier series (or a Fourier Integral), the amplitude of an indi-
vidual Fourier mode b (1) must satisfy

db
B0k _ _ikehy. (2.29)

dt
The preceding is an ordinary differential equation that can be used to examine the
numerical error intreduced by time-differencing in wave-propagation problems.
Equation (2.29) is a specific example of the oscillation equation
dy

—r =iy, (2.30)

where « is a real constant representing a frequency. Integrating the oscillation
equation over atime Af yields

0

Yo + A1 = ™2y (1g) = A (10). (231

Here the last refation defines an “exact amplification factor” A, which is a com-
plex number of medulus one. According to (2.31), ¥ moves x At radians around
a circle of radius |¢r(sp)| in the complex plane over the time interval As.

Suppose that a finite-difference scheme is used to compute an approximate
solution ¢ to the oscillation equation. A numerical amplification factor may be
defined such that ¢"™t! = Ag", where ¢" is the numerical approximation to
Y¥{nAt). The standard Von Neumann stability analysis seeks a yes—no answer to
the question, Is |A| < |A.| = 17 Additional information about the amplitude and
phase-speed error in the numerical solution can, however, be obtained by writing
the numerical amplification factor in the form {A[e'®, where

|A] = @R{A) + 3{A}H'/? and @ = arctan (M) :

R{A}
Phase-speed errors arise from the difference between the argument of the finite-
difference amplification factor & and the correct value of x At. A useful way to
characterize phase-speed error is through the relative phase change R = 8/(x At),
which is the ratio of the phase advance produced by one time step of the finite-
difference scheme divided by the change in phase experienced by the true solution
over the same time interval. If R > 1, the finite-difference scheme is accelerating,
if R < 1, the scheme is decelerating.

Amplitude errors arise from the difference between the modulus of the finite-
difference amplification factor |A| and the correct value of unity. When |A| =1,
the scheme is newtral. If |A| < 1, the scheme is damping; and if |A| > 1, it
is amplifying. Amplifying schemes are certainly unstable in the sense that they
generate approximate solutions to the oscillation equation that blow up, whereas
the correct solution remains bounded by [¢°|. A more subtle characterization of
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the stability of amplifying schemes, which will be considered in Sections 2.3.2
and 2.5, concerns the extent to which they can produce approximate solutions to
ordinary and partial differential equations that converge in the limit Ar - 0 and
Ax — 0.

232 Single-Stage Two-Level Schemes

The simplest techniques for the solution of the differential equation

dy
— = F(y) (2.32)
di

are members of the general family of single-stage two-time-level schemes, which

may be written in the form

¢n+l - ¢n " ]
ar =af (") + BF (@) (2.33)
Here ¢" is the numerical approximation to Y(nAr), and ¢ + B = | for con-
sistency with the original equation. The preceding general form includes several
well-known elementary methods. When e = 1, § = 0, the scheme is known
as forward differencing or Euler’s method. Backward differencing corresponds to
the case @ = 0, B = 1, and the trapezoidal method is obtained whena = 8 = %
The finite-difference scheme (2.33) may be alternatively expressed in the form

"' = ¢ + ot (aF (0" + BE@™)), @2.34)
which is analogous to the integrated form of the original differential equation
(n+DAL
¥ {n+ DAL = YnAn + f F (g (1)) dt.
nAt

Although (2.33) and (2.34) are clearly equivalent, confusion sometimes arises in
determining the accuracy of numerical methods expressed in the integrated form
(2.34). If the numerical method is convergent of order r and if v is the solution
{0 the continuous problem, expansion of ¥ ina Taylor series and substitution of
that series into the discrete derivative form (2.33) will yield a residual error of
O[(A1Y ], whereas substitution into the discrete integral form (2.34) will yield an
error of O[(Ar)'“]. Of course, if the solutions to (2.33) and (2.34) converge 10
the true solution as Ar — 0, they must converge at the same rate, because the two
schemes are algebraically equivalent. This rate of convergence is equal to the or-
der of the global truncation error, which is the same order as the truncation error
associated with (2.33). The 0{(A#)"*!] truncation error associated with the in-
tegral form (2.34) is the local truncation error, of one-step error, and represents
the error introduced in each step of the integration, iec., the difference between
¥+ as computed by one step of the finite-difference method and the exact solu-
tion 10 the differential equation at { = (n + 1) A1 subject to the initial condition
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y (nAr) = ", The rate at which the solution of a stable finite-difference scheme
converges to the true solution as A7 — 0 is onc power of A7 lower than the order
of the local truncatien crror because, roughly speaking, the global error generated
by a stable scheme during an intcgration over a time interval T is the cumulative
sum of T/ At local errors, When the term “truncation error” is used without qual-
ification in this book, it will refer to the global truncation error. The truncation
error of all members of the family of schemes (2.33) is O(Ar), except for the
trapezoidal method, which is O [(A1)?], ’
Application of (2.34) to the oscillation cquation (2.30) yields

(1 —ipcANg™t' = (1 + iax Ang".
The amplification factor for this scheme is
gl I +iaxht
7 | —ifuAr
Multiplying A by its complex conjugate gives

A

1 2,242
| A]Z _ + otk At
1 + 2212
kZA1?

1+ B22A
Inspection of (2.35) shows that the scheme is neutral when @ = #, damping
whei a < B, and ampliiiying when a > B. The amplification produced when
@ > B is clearly unstable in the sense that approximate sotutions computed with
finite _At can generale floating-point overflows on digital computers, whereas the
magnitude of the correct solution is bounded by |¢”|. Note, however, that the

amp-li.ﬁcation factor for forward differencing satisfies the general Von Neumann
stability condition (2.23), since for Ar < 1,

=1+’ -8 (2.35)

| Ao = 1+ (0 AD? < AR, .0 < 1 + 3241
to yield

| Alforwsrs < 1A g = 1+ (AD? < 1+ x%At
As a consequence, the amplifying solutions obtained using forward differencing
df’ converge to the correct solution of the osciliation equation as At — 0. Forward
dlffert?ncmg also generates convergent approximations to most other ordinary dif-
ferential equations, but convergence is not guaranteed, and (2.23) is not satisfied
when f_orwz?rd time differencing is used in conjunction with centered-differencé
approximalions to the spatial derivative in the advection equation. This point is
discussed further in Section 2.5.

The amplitude and phase errors in the approximate solution are functions of the
nun-zerical resolution. The solution to the governing differential equation (2.30)
o.smlllates with a period T = 2 /x. An appropriate measure of numerical resolu-
t10f1 is me number of time steps per oscillation period, T/At. The numerical reso-
lution is improved by decreasing the step size. In the limit of very good numerical
resolution, T/At — oo and x At — 0. Assuming good numerical resolution,
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Taylor serics expansions, such as

2

(!+x)”2:1+%—%+--- for x| <1,

may be used to reduce (2.35) to
1AL =14 Le? - B AN’
It follows that
Al % 14 20cAD? and Alawas = | = 3ADY, (236)

indicating that the spurious amplitude changes introduced by both forward differ-
encing and backward differencing are Of(x Ay .
The relative phase change in the family of single-stage two-level schemes s

R 1 . ((af+ﬁ)xm)
_Earcan 1 - afkaAtyt)’

Thus,
arctan k At

KAt

which ranges between 0 and 1, implying that both forward differencing and back-
ward differencing are decelerating. Assuming, once again, that the numerical so-
lution is well-resolved, the preceding expression for the phase-speed error may be
approximated using the Taylor series expansions, such as

, (2.37)

Rfurward - wa:kward =

20X
arctanx = x — — + — —--- for |x| <1,
3 5
to obtain
(x Ar)?
Riorvward = Risciwa = 1 — 3

The phase-speed error, like the amplitude error, is O[(A1)?].
The trapezoidal scheme gives the best results; it generates no amplitude error,
and its relative phase change is

R 1 . K At
g =  —arctan | ——5— 1 .
rapezodal KA 1 — K2A!2/4

For small values of x At, this may be approximated using Taylor series expansions

i arl k?Ar? ~1 k2Ar?
Ricapersidal == mﬂIClﬂﬂ kAr| 1+ 2 ] 2
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As with forward differencing and backward differencing, the rapezoidal scheme
retards the phase change of well-resolved oscillations. However, the deceleration
is only % as greal as that produced by the other schemes.

Although the trapezoidal scheme is accurate and unconditionally stable, it suf-
fers from one serious disadvantage: It requires the evaluation of F(¢"t!) during
the computation of ¢"*!. A scheme such as the trapezoidal method, in which the
calculation of ¢"*! depends on F(¢"*'), is known as an implicit method. If the
calculation of ¢"*' does not depend on F(g"t"), the scheme is explicit. In the
case of the oscillation equation, implicitness is a trivial complication. However,
if F is a nonlinear function, any implicit finite-difference scheme will convert the
differential equation into a nonlinear algebraic equation for ¢"*'. In the general
case, the solution to this nonlinear equation must be obtained by some iterative
technique. Thus, implicit finitc-difference schemes generally require much more
computation per individual time step than do similar explicit methods. Some of
that extra computation may be offset if the imaplicit method is unconditionally sta-
ble, in which case the step size is determined solely by accuracy considerations,
and the implicit time slep can sometimes be much larger than the maximum stable
time step of comparable explicit schemes.

2.3.3 Multistage Methods

All stable schemes of the form (2.33) have the disadvantage that they are implicit.
Moreover, all except the trapezoidal scheme are only of first order. Is there a sta-
ble, accurate scheme that is not implicit? One may attempt to construct such a
scheme by evalualing the function F in (2.32) at additional points in the inter-
val (nAt, (n 4+ 1)At) and using this extra information to improve the accuracy
of the calculation. These schemes are often referred to as multistage methods,
because each integration step may require the estimation of ¢ at several interme-
diate times, or “stages,” before a final approximation to ¥ ((n + 1) Af) is obtained.
Each stage involves an additional evaluation of F, the right side of the differen-
tial equation. The family of consistent two-stage schemes may be wrilten in the
general form

$"+a = ¢" +(IA‘F(¢");
¢" = ¢" + BAIF (@) + (1 — BIAIF (@),

Here ¢" is an “intermediate”™ approximation to ¥[{rn + a)Ar]. One might at-
tempt to choose & and B to maximize the erder of the local truncation error, This
criterion does not produce a unique solution, but rather leads to the requirement
af = }. The family of schemes satisfying @B = 1 compose the set of second-
order Runge—Kutia methods. One particular member of the Runge—Kutta family
is the Heun method, obtained by settinga = 1, = % The Heun method creates
a trapezoidal-like approximation to the integral of F, but differs from the true
trapezoidal method because F(¢"t!) is replaced by the estimate F(¢"!). An-
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other Runge-Kutta scheme is the midpoint method, in whicha = % and § = 1.
An example of a non-Runge-Kutia scheme is the Matsuno, or forward—backward,
method, for which a = 1 and 8 = | (Matsuno 1966b).

If the preceding multistage formula is applicd to the oscillation equation, the
result is

o™l = 97 + Bik AL(" + ik A1") + (1 — Blik Al". (2.38)
The amplification factor is
A=11ikAl—afixAn’,

and
1A =1+ (1 — 20) (kA + o? B2 AD®, (2.39)

which shows that the set of second-order Runge~Kutla schemes (i.e., thosc
schemes for which a8 = 12) have O[(A}*Y) amplitude error, whereas the ampli-
tude error in the two-stage non-Runge—Kutta schemes 1s Of (m)2 J. Unfortunately,
all the Runge—Kutta schemes are unstable, since in the limit of good numerical
resolution,

ALk = 1+ Scan®.

Although the Runge-Kutta schemes are unstable, the growth is Ol(ADY). Ata
given step size, the erroncous amplification produced by the second-order Runge—
Kutta methods will be much weaker than the O[(A1)?] growth produced by for-
ward time-differencing (see [2.36]). The slow growth generated by the Runge-
Kutta methods can sometimes be tolerated if « A7 is sufficiently small and the
total length of the integration is sufficiently short.>
Many physical systems contain several different modes, each oscillating at a
different frequency. When simulating these systems, the highest-frequency com-
ponents of the numerical solution are likely to be most seriously in error because
of their poor numerical resolution. It is precisely these poorly resolved features
that amplify most rapidly in the Runge-Kuita solutions, The amplification of the
highest-frequency components can be prevented by choosing other values for o
and B, although such a choice also increases the truncation error. According to
(2.39), very low frequency oscillations (k At & 1) will be stable whenever aff is
greater than % Matsuno (1966b) suggested settinga =1, f =1, in which case
{2.39) becomes
AR = 1—wAD? 4 (kAD% (2.40)

Matsuno

The Matsuno scheme damps the solution whenever 0 < kAf < 1. Differentia-
tion of (2.40) with respect to x At shows that the maximum damping occurs when

SAs explored in Problem 15, the auxiliary relation Q(Af) < 0[(Ax)4f3] may be required to
ensure the convergence of finite-difference approximations 1o the advection equation when the time
difference is evaluated by a second-order Runge-Kutta scheme.
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FIG.URE 2.2, The modulus of the amplification factor |A| as a function of temporal res-
olution « At for the true solution and five two-level schemes: exact solution and trape-

zoidal method (ET), forward differencing (F), backward differencing (B), second-order
Runge-Kutta (R), and Matsuno (M).

KAl = 1/\/5. Thus, if the time step is chosen such that 0 < « At < l/ﬁ for
all frequencies « in the physical system, Matsuno time-differencing will preferen-
tially damp the highest-frequency waves. The damping properties of the Matsuno
scheme have been exploited to eliminate high-frequency gravity waves gener-
ated during the initialization of weather prediction models. The standard Matsuno
scheme produces too much damping, however, for most nonspecialized applica-
tions. The fourth-order Runge—Kutta scheme (see Section 2.3.6) may also be used
1o preferentially damp high-frequency modes, and in most instances it would be a
better choice than the Matsuno scheme because it is more efficient and far more
accurate.

The amplitude errors generated by the preceding two-level schemes are com-
pared in Fig. 2.2. The strong damping associated with the backward and Matsuno
schemes is evident, along with the rapid ampiification produced by forward dif-
ferencing. These relatively large errors may be contrasted with the significantly
weaker amplification produced by the second-order Runge—Kutta method and the
neutral amplification of the trapezoidal method.

. The relative phase change associated with the general two-stage scheme (2.38)
is

R 1 ( K At
= ——arctin| ——= | .
kAt 1 —aBleAr)?
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FIGURE 2.3. Relative phase change R as a function of temporal resolution « At for the true
solution and five two-level schemes: exact solution (E), trapezoidal method (T), forward
and backward differencing (FB), second-order Runge-Kutta (R}, and Matsuno (M).

In the limit of good numerical resolution, the relative phase changes produced by
second-order RungeKutta schemes and the Matsuno scheme are

RR*KZ = 1 + %(KAI)Zs RMa1suno = 1 + %(KAI)Z-

The relative phase change for several two-level schemes is plotted as a func-
tion of temporal resolution in Fig. 2.3. The Matsuno and second-order Runge-
Kutta schemes are accelerating, whereas the forward, backward, and trapezoidal
schemes are decelerating.

2.3.4 Three-Level Schemes

As an alternative to multistage methods, information from several earlier time
levels can be incotporated into the integration formula. This increases the storage
requirements of the scheme, but it avoids the necessity of performing more than
one evaluation of the right side per time step. According to the terminology de-
veloped for ordinary differential equations, these are multistep methods. A typical
multistep ordinary differential equation solver might use data from a half dozen
preceding time levels. The large storage requircments of many atmospheric and
ocean models have, however, discouraged researchers from using data from more
than two earlier time levels in their time-differencing schemes. Let us therefore
consider the family of three-time-level schemes.

2.3 Time-Differencing 57

The general form for an explicit three-time-level method is
" = " 4 oa" T+ BIALF (") + A1 F (") (2.41)

When formulating a three-level scheme, one seeks to improve upon the two-time-
level methods, so it is reasonable to require that the global truncation error be of
at least second order. The three-level scheme will be of at least second order if

ay=1l-ay Pi=io+3), fr=3-), (2.42)

where the coefficient oz remains a free parameter. One could choose a3 to further
reduce the truncation error, but the result is not a useful scheme (see problem 9).
The most important explicit three-level schemes are obtained by choosing o3 10
minimize the amount of data that must be stored and carried over from the 1 — 1
time level, i.e., by setting oz = 1, in which case 8z = 0, or by setting oz = 0.
If &5 is set to one, (2.41) becomes the leapfrog scheme. The choice o = 0 gives
the second-order Adams—Bashforth method. The remainder of this section will be
devoted to an examination of these two schemes.
If the leapfrog scheme is applied to the oscillation equation, the result is

"t =" 4 2ikArg". (2.43)

Since the preceding is a linear finite-difference equation with constant coeffi-
cients, the amplification factor is constant from time step to time step and satisfies
the quadratic equation

AY - 2ikAtA-1=0.

The two roots are 12
As = ikAr £ (1 - xzmz) . (2.44)

In the limit of good numerical resolution, kAt — Gand Ay — 1; A_ — —1.Ev-
idently, the numerical solution is capable of behaving in two very different ways,
or modes. The mode associated with A is known as the physical mode because
it approximates the solution 1o the original differential equation. The mode asso-
ciated with A_ is referred to as the computational mode, since it arises solely as
an artifact of the numerical computation. If [x Ar} < 1, the second term in (2.44)
isreal and |A4+| = JA_] = 1; i.e., both the physical and the computaticnal modes
are stable and neutral. In the case x At > 1,

1Ay] = likAf +i (x’-mz - 1) 172 5 ik At > 1,

and the scheme is unstable. When ¥ At < —1, a similar argument shows that
|A_| > 1. Note that when k At > 1, A, lies on the positive imaginary axis in the
complex plane, and thus each integration step produces a 90° shift in the phase of
the oscillation. As a consequence, unstable leapfrog solutions grow with a period
of 4A1.

The complete leapfrog solution can typically be written as a linear combination
of the physical and computational modes. An exception occurs if K Ar = %1, in
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which case A, = A_, and the physical and computational modes are not linearly
independent. In such circumstances, the gencral solution o (2.43) has the form

o" = C) ik A1)" + Canlix A",

Since the magnitude of the preceding solution grows as function of time step, the
leapfrog scheme is nof stable when |k Art = 1. Nevertheless, the O (n) growth of
the solution that occurs when k At = +1 is far slower than the O (A") amplifica-
tion that is produced when |c Af] > 1.

The source of the computational mode is particularly casy io analyze in the
wrivial case of & = 0; then the analytic solution to the oscillation equation (2.30)
is ¥ (1) = C, where C is a constant determined by the initial condition at t = to.
Under these circumstances, the leapfrog scheme reduces 1o

¢n+| — ¢nfl, (2.45)
and the amplification factor has the roots A4 = 1, A = - 1. The initial con-
dition requires ¢ = C, which, according to the difference scheme (2.45), also
guarantees that ¢ = ¢* = ¢© = ... = C. The odd time levels are determined by

a second, computational, initial condition imposed on ¢'. In practice, @' is often
obtained from ¢° by taking a single time step with a iwo-level method, and the
resulting approximation to ¥ (1o + A1) will contain some error E. It is obvious
that in our present example, the correct choice for ¢! is C, but in order to mimic
the situation in a more general problem, suppose that @' = C + E. Then the
numerical solution at any subsequent time will be the sum of two modes,

@" = (C + Ef2) — (=1)"E /2.

to yield ¢" = (C + E/2) — (—D"E/2.

Here, the first term represents the physical mode, and the second term repre-
sents the computational mode. The computational mode oscillates with a period of
2At, and does not decay with time. In this example, the amplitude of the computa-
tional mode is completely determined by the error in the specification of the com-
putational initial condition ¢'. Since there is no coupling between the physical
and computational modes in solutions to linear problems, the errors in the initial
conditions also govern the amplitude of the computational mode in leapfrog solu-
tions to most linear equations. If the governing equations are nonlinear, however,
the nonlinear terms introduce a coupling between ¢, and ¢ that often amplifies
the computational mode until it eventually dominates the solution. This spurious
growth of the computational mode can be avoided by periodically discarding the
solution at ¢" ~! and taking a singlc time step with a two-level scheme, or by filter-
ing the high-frequency components of the numerical solution. Various techniques
for controlling the leapfrog scheme’s computational mode will be discussed in
Section 2.3.5.

The relative phase changes in the two leapfrog modes are

R _ 1 . +x At
Eieapfrog — K_A?m an (- k2AD2 )"
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The computational mode and the physical mode oscillate in opposite dircctions.
In the limit of good time reselution,

(K A1)?
R*'!capimg =1 + 6

showing that leapfrog time differencing is accelerating.
Now consider the second-order Adams—Bashforth method, which has the form

o = ¢+ A (JF@M - SF@). (2.46)

The sccond-order Adams- Bashforth formula may be interpreted as numerical
integration via the midpoint method, except that the value of the integrand at
the midpoint, £ (¢"*'/2), is obtained by linear extrapolation. Application of the
Adams-Bashforth method to the oscillation equation yields

ot = ¢ +inat (307 - o).
The amplification factor associated with this scheme is given by the quadratic

ik At i At
Az—(l+ iK )A+m _o,

2 2

in which case

12
1 At 9(x A1)
Ar=- {1+ ”; i(l— 0‘4) +im:) L @4

2

As the numerical resolution increases, A, — 1 and A_ — 0. Thus, the Adams—
Bashforth method damps the computational mode. The highly desirable damping
of the computational mode is somewhat offset by a weak instability in the physical
mode. This instability is revealed if (2.47) is approximated under the assumption
that « At is small; then

2 4 3

2 8 4
wAn?  (want feAr A’
A_= ia T X7 L.
( 2 + 3 + +1i 5 4 ,
and
|A+|A—B2 A2 ]+ %(KAI)d, lA—lA—BZ Az %'CA!.

The modulus of the amplification factor of the physical mode exceeds unity by
an O[(x A1)*] term. As was the case for the second-order Runge-Kutta methods,
this weak instability can sometimes be tolerated if the length of the integration is
limited and the time step is sufficiently small. The dependence of (A | and |[A_|
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FIGURE 2.4. Modulus of the amplification factors for the second-order Adams—Bashforth
scheme as a function of temporal resolution « A¢. The solid and dashed lines represent the
physical and the computational modes, respectively.

upon temporal resolution is plotted in Fig. 2.4. The relative phase change in the
physical mode in the Adams-Bashforth method is

5
Ropp 1+ E(Kﬁf)z,

where as before, it is assumed that x Ar <« 1.

Three-level schemes require information from two previous time levels, yet
initial conditions for well-posed physical problems give information about the
solution at only one time, It is therefore necessary to initialize the leapfrog and
second-order Adams—Bashforth methods by taking a single time step using a two-
level method. In most instances, a simple forward step is adequate. Although for-
ward differencing is unstable, the amplification produced by a single step will
generally not be large (see Problem 20). Moreover, even though the truncation er-
ror of a forward difference is € (Ar), the execution of a single forward time step
does not reduce the O [(A)?] global accuracy of leapfrog and Adams-Bashforth
integrations. The basic reason that O [(Af)?] aceuracy is preserved is that for-
ward differencing is used only over a At-long portion of the total integration.
The contribution to the total error produced by the accumulation of O [(A1)?]
errors over a finite time interval is of the same order as the error arising from the
accurnulation of O (Ar) errors over a time Atf.

2.3.5 Controlling the Leapfrog Computational Mode

The trapezoidal method is unconditionatly stable, and it has the lowest trunca-
tion error of all the schemes presented in Sections 2.3.2-2.3.4. The weakness
of the trapezoidal method is that it is implicit, which is ofien a serious disad-
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vantage in computing numerical solutions to wave propagation problems. The
best explicit scheme presented in the preceding sections might appear to be the
leapfrog scheme. The leapfrog scheme is stable (unlike the second-order Runge—
Kutta and Adams—Bashforth methods), it is of second order (unlike the Matsuno
method), and it requires only one function evaluation per time step {(unlike the
Matsuno and Runge-Kutta schemes). The weakness of the leapfrog scheme is
its undamped computational mode, which slowly amplifics during simulations of
nonlinear wave propagation problems and generates an instability often known as
“time splitting.”

One way to control the growth of the computational mode is to periodically
discard the data from the r — 1 time level (or alternatively, 1o average the n and
n — 1 time-level solutions) and to restart the integration using a two-time-level
method. Forward differencing is often used to reinitialize leapfrog integrations.
Forward differencing is casy to implement, but since it is a first-order scheme, it
degrades the second-order accuracy of the unadulterated leapfrog method. In ad-
dition, forward differencing is unstable and tends 1o amplify the high-frequency
components of the solution. Moreover, it is difficult to quantify these adverse cf-
fects, since they vary according to the number of leapfrog steps between each
forward step. Restarting with a second-order Runge-Kutta scheme is a far bet-
ter choice, since this preserves second-order accuracy and produces less unstable
amplification, The midpoint methed is one second-order Runge—Kutta formula-
tion that can be used to restart leapfrog integrations in complex numerical models
without greatly complicating the model code. A midpoint-methoed restart may
be implemented by taking a forward step of length At /2 followed by a single
leapfrog step of length Ar/2.

In atmospheric science, it is common, though questionable, practice to control
the computational mode through the use of a second-order time filter. Consider,
therefore, the centered second-order time filter

F ="y (o7 - 2"+ ), (2.48)

where ¢" denotes the solution at time n At prior to time filtering, ¢" is the solution
after filtering, and y is a positive real constant that determines the strength of
the filter. The last term in (2.48) is the usual finite-difference approximation to
the second derivative and preferentially damps the highest frequencies. Suppose
that the unfiltered values are sampled from the exact solution to the oscillation
equation; then

= (1 oy (eixm 24 e—im:)) o".
Defining a filter factor X = ¢ /¢™, one obtains

Xeemered = 1 — 2y (1 — cos k Ar). (2.49)
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Since X e 15 eal, it does not produce any change in the phase of the solution.
In the limit « At — 0,

chmcrcd 2l Y(KAt)z-

showing that well-resolved oscillations undergo an ol(an?) damping. The cen-
tered filter has the greatest impact on the most poorly resolved component of the
solution, the 2A¢ oscillation. According to (2.49), cach filter application reduces
the amplitude of the 2A¢ wave by a factor of 1 — 4y If y is specificd 10 be ‘—11,
each filtering operation will completely eliminate the 2Ar oscillation.

Robert (1966) and Asselin (1972) suggested a scheme to contro! the leapfrog
computational mode by incorporating an approximate second-derivative time fil-
fer into the time integration cycle. They proposed following each leapirog step

¢"t = g1 + 2A1F (¢7)

by the filtering operation

F=gty (o297 40", (2.50)

A filter parameter of y = 0.06 is typically used in global atmospheric models.
Values of ¥ = 0.2 are common in convective cloud models; indeed, Schlesinger
et al. {1983) recommend choosing y in the range 0.25-0.3 for certain advection--
diffusion problems.

If the Asselin-filtered leapfrog scheme is applied to the oscillation equation, the
amplification factor is determined by the simultaneous equations

A2¢n—i :F+2"KAEA¢"_], (2.5])
Agnl = A" 4y (F — 240" + A2¢"") . (2.52)

Under the assumption that (A¢") = A(¢"), whose validity will be discussed
shortly, (2.52) may be written

(A—y)p" ' = A((1-2y) + Ay) 9™ L. (2.53)

Eliminating ¢"~! between (2.51) and (2.53) yields

172
Ay =y +ikhr £ ((1 ) — szrz) : (2.54)

which reduces to the result for the standard leapfrog scheme when y = 0. In the
limit of small x At, the amplification factor for the Asselin-filtered physical mode
becomes

(kAr)?

Anscinrr = 1 + ik Al — ——— 4 O[(kAD*].
Asselin—LF + ik At 2= [(xA1)*]
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A comparison of this expression with the asymptotic behavior of the exact ampli-
fication factor

wAD?  (kAnD?
- !

Ae = 0 = 1 AL —
¢ ' 2 6

+ Ol An?

shows that the local truncation error of the Asselin-filtered leapfrog scheme is
O1(k AD*). In contrast, the local truncation error of the unfiltered leapfrog scheme
(y =0)is Ol(x A1)3]. Thus, Asselin filtering degrades the global truncation error
of the leapfrog scheme from second order to first order.

The preceding derivation was based on the assumption that (Ag") = A(g™).
Is this justified? In practice, the initial condition is not time filtered; one simply
defines ¢° = ¢°. Thus,

(40"~ A@) =@ —¢' =y (¢° 20" +¢7) £ 0.
Nevertheless, an application of the Asselin time filter to ¢"*! gives
g7 = a¢" +y ((Ag"T) - 244" + A"9")
= A (8" +y (077 - 26"+ 49")) +y (A" ) - A9 )
=A@ +y ((Ag") - A1),

from which it follows that
(Ag™) — A@P™) = y"[¢! ~ ¢']. (2.55)

In all cases of practical interest, # 3> 1 and y < 1; therefore, (2.55) implies that
A may be factored out of the filtering operation with negligible error, and that
(2.53) is indeed equivalent to (2.52).

In the limit of k At < 1, the modulus of the amplification factor for the Asselin-
filtered leapfrog scheme may be approximated as

Y
|A ¢ |Asselin-LF = 1 — 2(1——]/)(‘““)2'
A _iAssetin-LF = (1 —2y) + AL——(KAI)".
26y +4y?

Like other first-order schemes, such as forward differencing and the Matsuno
method, the physical mode in the Asselin-filtered leapfrog scheme has an
O[(A1)?] amplitude error. The behavior of the computational mode is also no-
table in that |A_ | does not approach zero as [« At - G,

The asymptotic behaviar of the relative phase change in the physical mode is

P42y
R+Assc]ir|—LF =1+ m(KAf)z.
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FIGURE 2.5. Modulus of the amplification factor for the leapfrog--trapezoidal method as a
function of temporal resolution « At. The solid and dashed lines represent the physical and
the computational modes, respectively.

Asse}in—Roberl filtering increases the phase error; doubling it as y increases from
Oto 3.

'I'l:e main problem with the Asselin-filtered leapfrog scheme is its first-order
accuracy. There are two alternative techniques that control the leapfrog computa-
tional mode without sacrificing second-order accuracy—the leapfrog-trapezoidal
method and the Magazenkov method. The leapfrog—trapezoidal method (Kuri-
hara 1965; Zalesak 1979) is an iterative scheme in which a leapfrog predictor is
followed by a trapezoidal correction step, i.e.,

¢* =" +2AF (9",

A
o = ¢ 4 7’ (F¢") + F(¢").

If this scheme is applied to the oscillation equation, the amplitude and relative
phase changes in the physical mode are

(kA R el (kA1
4 s LF—1rap ]2 s

|A|LFklrap S

where as usual, these approximations hold for small x At. Leapfrog—trapezoidal
integrations of the oscillation equation will be stable provided that k At < /2.
The amplitude error associated with the leapfrog—trapezoidal scheme is plotted as
a function of temporal resolution in Fig. 2.5.

Magazenkov (1980) suggested that the computational mode could be controlled
by altermating each leapfrog step with a second-order Adams—Bashforth step.
Since the Magazenkov method uses different schemes on the odd and even time
steps, the amplification factor differs between the edd and even steps. In order to
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anatyze the behavior of the Magazenkov method, it is therefore, best to consider
the averaged effect of a combined leapfrog-Adams—Bashforth cycle.

Thus, for analysis purposes, the scheme will be written as a system of equations
that maps (¢" 2. ¢" Yy into (¢", ¢" 1),

¢" =¢" T +241F (9", (2.56)
¢n+l — (¢H—2 + 2AIF(¢H7|))

+ % [3F (¢“’2 + 2A:F(¢"“)) - F(d)"")] . (257

When actually implementing the Magazenkov method, however, (2.57) would be
replaced by the cquivalent expression (2.46). Application of (2.56) and (2.57) 10
the oscillation cquation yields a system of two equations in two unknowns,

1 2ik Al ) ¢n—2 B ¢n )
P+ 2kt dikAr —3An? ot )= gt )

The coefficient matrix in the preceding equation determines the combined ampli-
fication and phase-shift generated by each pair of leapfrog and Adams-Bashforth
time sieps. The eigenvalues of the coefficient matrix are determined by the char-
acteristic equation

ix At ik Af
12(3”‘2 —3(m:)2+1)x—”‘2 =0.

The eigenvalues are distinct and have magnitudes less than one when |k At| < %
implying that the method is conditionally stable. For well-resolved physical-mode
oscillations, the average amplitude and relative phase change per single time step
are 2

(AN (kA1)

—, Rmag =14+ .
4
The average amplitude error per single time step is plotied as a function of tem-

1/2
|Alysg = (ADY2 % 1 = =
poral resolution in Fig. 2.6.

2.3.6 Higher-Order Schemes

Relatively little attention has been devoted to the incorporation of third- or fourth-
order time differencing into schemes for the numerical solution of partial differen-
tial equations. A major reason for the lack of interest in higher-order time differ-
encing is that in many applications the errors in the numerical representation of the
spatial derivalives dominate the time-discretization error, and as a consequence
it might appear unlikely that the accuracy of the solution could be improved
through the use of higher-order time differences. Several higher-order schemes
do, nevertheless, have attractive stability characteristics that merit further discus-
sion, Schemes of particular interest are the third-order Adams—Bashforth method
and the third- and fourth-order Runge—Kutta methods. Whereas the second-ordcr
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FIGURE 2.6. Madulus of the average amplification factor per single time step of the Mag-
azenkov method plotied as a function of temporal resolution « At. The solid and dashed
lings represent the physical and the computational modes, respectively,

Runge-Kutta and Adams-Bashforth schemes produce amplifying solutions to the
oscillation equation, their third- and fourth-order formulations are stable with
strongly damped computational modes. As such, they offer additional possibil-
ities for achieving better than second-order accuracy with a stable explicit time-
differencing scheme. Moreover, they are better suited than the leapfrog-trape-
zoidal and Magazenkov schemes for the solution of a generalized oscillation equa-
tion in which « has a positive imaginary part and the amplitude of the oscillation
decays with time.

The distinctive advantage of the third-order Runge—Kutta scheme is the possi-
bility of selecting a low-storage variant. As discussed earlier, there is no unique
forraula for the second-order Runge-Kutta method. Instead, the requirement of
second-order accuracy leads to a family of schemes whose coefficients depend
on the value of a frec parameter. The coefficients of higher-order Runge-Kutta
schemes are similarly nonunique. For example, the coefficients of the third- and
fourth-order Runge-Kutta methods are determined by two independent parame-
ters (Gear 1971, pp. 34-35). Williamson (1980) examined the subset of all possi-
ble third-order Runge—Kutta schemes that may be evaluated with minimal com-
puter storage and recommended the following scheme:

q1 = ATF(¢"), &1 =0" +q1/3,
g2 =ALF(gy). —5q1/9, 2 = ¢1 + 15g2/16,
a3 =AtF () — 153g2/128,  ¢"*' = ¢, + 8g3/15.

In practical applications involving time-dependent partial differential equations,
@" may be an extremely long vector of unknown variables {(c.g., the velocity,
temperature, and pressure at every node on a large three-dimensional mesh). It
may therefore be difficult 1o store several copies of ¢ and F(¢) in the random
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access memory (RAM) of a digital computer. If m is the number of unknowns
in ¢, the Williamson-Runge—Kutta scheme economizes on storage by allowing
the integration to proceed using only 2m storage locations, divided between the
arrays ¢ and ¢, which are overwritten three times during cach integration step.
The storage requirement of the Williamson-Runge-Kutta scheme is identical to
that of forward time-differencing and the standard leapfrog scheme, and is less
than that required for the Asselin-filtered leapfrog scheme.

Finite-difference formulae for several time-differencing schemes are summa-
rized in Table 2.1. Although it is not apparcnt from their most common names,
most of the schemes shown in Table 2.1 are cither Adams—Bashforth, Adams-
Moulton, or Runge-Kuita schemes. Adams-Bashforth schemes are explicit mult-
level methods whose first-order variant is the forward difference. Adams-Moulton
methods are implicit multilevel methods that include backward and trapezoida)
differencing as their first- and second-order represcentatives. One way 1o approx-
imate the solution of the implicit algebraic equations generated by an Adams—
Moulton method is to estimate ¢" ' using an Adams—Bashforth scheme and
then substitute this estimate into the Adams-Moulton formula. The third-order
Adams-Bashforth-Moulton corrector is listed in Table 2.1. The particular sccond-
order Runge-Kutta scheme appearing in Table 2.1 is also the second-order Adams—
Bashforth-Moulton predictor corrector,

Several important properties of the schemes listed in Table 2.1 are given in
Table 2.2. The column labeled “storage factor” indicates the number of full ar-
rays that must be allocated for each unknown variable in order to implement cach
scheme. Storage factors are not provided for the implicit methods listed in Ta-
ble 2.2 because the storage factor for implicit methods can vary from problem to
problem, depending on the numerical algorithim used to solve the implicit system.
Inspection of Table 2.2 clearly reveals the low-storage advantage of the third-
order Runge—Kutta scheme. This advantage may, however, be slightly exagger-
ated, since the storage factors listed in Table 2.2 are upper limits that allow each
method 10 be programmed in a completely straightforward manner. In many in-
stances, it is possible to utilize less memory than that suggested by the storage
factor if newly computed quantities are initially placed in a small, temporary stor-
age array. As an example, when integrating a partial differential equation with
forward time differencing, it is not generally possibie to write the newly com-
puted ¢;'.+] directly into the storage occupied by qb’}, because ¢? may be required

for the computation of ¢‘:;‘L‘ . However, at some point in the integration cycle, ¢j}

will no longer be needed, and at that stage it may be overwritten by qb?“. During
the interim between the calculation of ¢’5+‘ and the last use of ¢:;3, qﬁ?" ! may be
held in a temporary storage array. In many applications, the temporary storage
array can be much smaller than the full array required to hold a complete set of
¢", and use of such a temporary array will reduce the storage factor by almost one
unit.

In applications where storage is not a problem, the third-order Adams-Bashforth
scheme
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Method Order Formula

Forward 1 ¢ = o" + hF(P")

Backward i " = " + hF(p"T]

Asselin ‘ o) = @l 2hE ")

Leapfrog & ="y @ 20" + 4t

Leapfrog 2 "t =" L 2RF @)

E;Z::Ifl;:h 2 ¢t =e" + g [3F00") - Fie" "]
Trapezoidal 2 "t =" + g [F[¢n+l Ly F[¢n)]

q1 = hF{@"). o1 =¢" +4q

Runge-Kuta 2 @ =hF@) —q. " =¢ +q/2

¢" =" 2hF")

A _
Magazenkov 2 PLE PPV 5 [3F(¢n) — F(g" 1)]
Leapfrog— ) #1 =" + 2hF(¢")
Trapezoidat 7t = " + g [Fion + Fio™)]
Adams— n¥l i "nyo_ n—1 n—2
i3 9! = ¢" b = [23F(@") — 16F @)+ 5F (9" )]
Adams- n+1 _ 4w i n+1 nyo n—1
Moutior 3 = ¢+ S [5FT) +8F" - Fig" )]
n E Ry _ n—1
ABM Predictor- o1 ="+ 3 BFON - F @ )]
h _
Corrector o =9+ = [sF@n) +8F@" - F@" H]
q1 = hF{g"), $ = ¢"+q1/3
Runge—Kutta 3 q2 = hF{d) — 501 /9. ¢ =1 +1592/16
g3 = hF(dg) — 1532/128, ¢"*1 = ¢ +843/15
q1 =hF{p"}, g2 =hF(¢" +q,/2)
Runge-Kutta 4 g3 = hF (" + q2/2), qa= hF@®" +4q1)

¢a+l =¢" +(q) + 292 + 243 +q4)/6

TABLE 2.1, Summary of methods for the solution of ordinary differential equations. The
second- and third-order Runge—Kutta methods are low-storage variants; b = At.
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Storage  Efficiency  Amplification Phase
M s
Method Factor Factar Factor Error axd
2 52
Forward 2 0 1+ — 1- = 0
orwar + 5 3
2 2
Backward * o] | 1 - — oo
2 3
Asselin 3 <1 - ysl N 1+ 2)/)52 ]
Leapfrog 2l -y 61— p)
52
Leapfrog 2 1 1 1+ 3 1
Adams 1 o | s I+ 2 o
Bashforth-2 ) + 4 125
_‘.2
Trapezoidal * 0 i I- 2 o6
5* s?
Runge—Kutia-2 2 0 1+ ] 1+ 3 0
54 52
Magazenkov 3 0.67 1- n 1+ 3 0.67
4 2
Leapfrog— 3 0.71 - - 141
Trapezoidal 4 12
Adams— 3, 289 4
0.72 - — X
Bashforth-3 4 By o’ o7
Adams- 54 11 4
* _ - —
Moulton—3 0 "+ ' o
ABM Predictor— 19 4 1243 ,
Corrector—3 4 0.60 1- T s 14 630 6403 1.20
Ia st
Runge-Kutta-3 2 0.58 - 1+ — i.73
Hnge—Ry -2 *3
. Sﬁ j.4
Runge—Kutta—4 4! 0.70 1 - — 1- — 2.82
144 120

A storage factor of 3 may be achieved following the algorithm of Blum (1962).

TABLE 2.2. Characteristics of the schemes listed in Table 2.1. The amplification factor
and relative phase change are for weil-resolved solutions 10 the oscillation equatien, and
§ = kAL, “"Max s” is the maximum value of x Ar for which the solution is nonamplifying.
The storage and efficiency faclors are defined in the text. No storage factor is given for
implicit schemes.
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FIGURE 2.7. Modulus of the amplification factot for the third-order Adams-Bashforth
method plotted as a function of temporal resofution « Ar. The solid line represents the
physical mode and the dashed lines the two computational modes.

¢ = ot % [23F(¢-") —16F(@" ") +5F(¢"—2)] (2.58)

can be an attractive alternative. The primary advantage of the third-order Adams-
Bashforth scheme is its relative efficiency. In most practical applications involv-
ing partial differential equations, the bulk of the computational effort is associated
with the evaluation of F, the function that determines the time derivative. Thus, a
rough measure of the comparative efficiency of each method may be obtained
by defining an efficiency factor as the maximum stable time step with which
the oscillation equation can be integrated, divided by the number of evaluations
of F(¢) that each scheme requires to perform a single integration step. Inspec-
tion of Table 2.2 shows that with the exception of the leapfrog scheme and its
time-filtered variant, the third-order Adams—Bashforth scheme has the highest ef-
ficiency factor. The amplitude error in the third-order Adams-Bashforth solution
to the oscillation equation is plotted in Fig. 2.7. Unlike the second-order Adams-
Bashforth method, instability is not associated with unstable growth of the physi-
cal mode; instead, it is one of the computational modes that becomes unstable for
KAt > 0.724,

Other schemes with efficiency factors almost as large as the third-order Adams—
Bashforth method are the leapfrog—trapezoidal method and the fourth-order
Runge-Kutta method. The leapfrog-trapezoidal scheme, being a lower-order
scheme, is not a particularly attractive alternative. On the other hand, the fourth-
order Runge—Kutta scheme is of higher order and potentially attractive, but its
high efficiency factor is somewhat misleading. Figure 2.8 shows the amplifica-
tion factor plotted as a function of temporal resolution for both the third- and
fourth-order Runge—Kutta schemes. As shown in Fig. 2.8, once the time step ex-
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FIGURE 2.8. Modulus of the amplification factor plotied as a function of temporal resolu-
tion « At for higher-order Runge—Kutta solutions to the oscillation equation. Dashed line:
third-order scheme; solid line: fourth-order method.

ceeds the maximum stable time step for the third-order scheme, the fourth-order
method becomes highly damping. In some circumstances it may be desirable to
selectively damp the highest-frequency modes, and in such cases the fourth-order
Runge-Kutta method would appear to be much preferable to the first-order Mat-
sunto method. On the other hand, if one wishes to avoid excessive damping of
the the high-frequency components, it will not be possible to use the full stable
time step of the fourth-order Runge-Kutta scheme, and as a result, the practical
efficiency factor of the scheme will drop.

Tables 2.1 and 2.2 alsoe list the order of accuracy of each scheme and give ex-
pressions for the relative phase change and amplitude error generated when each
scheme is applied to the oscillation equation {2.30). The relationship between a
scheme’s order of accuracy and the orders of the amplitude and phase error is not
entirely intuitive. As discussed in Section 2.3.1, the exact amplification factor for
solutions to the oscillation equation is

(xAN? ~ (kA N (xAD* .

Ao = "B — | kAL —
e 2 T s 24

The amplification factor A of an nth-order time-differencing scheme will match
all terms in the preceding expression through order (x Ar)*. The amplitude error
and the phase error characterize the errors in the modulus and the argument of
A, respectively, and as such, their order of accuracy may differ from the general
order of accuracy of the scheme. In particular, since amplitude and phase errors
are special aspects of the total error, it is possible for either of these quantities
to be smaller than the total error. The general relationship between the truncation
error and the amplitude and phase errors may be stated as follows (Durran 1991):
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If the oscillation equation (2.30) is integrated using a linear finite-
difference scheme and if the truncation error of the resulting finite-
difference approximation to the oscillation equation is of order r,
then as x A7 — 0 the amplitede change in each step of the numerical
solution is no worse than

n=r+1, ifrisodd;

n
I + Ol{xAn™].  where ln2r+2' if r is even;

and the relative phase change is no worse than

1+ Ol(cAN™],  where ['" zrl. ifrisodd

m=r, if r is even.
Switching from an even- 1o an odd-order scheme increases the order of accuracy
of the retative phase change without improving the order of accuracy of the am-
plitude error. Switching from odd to even order reduces the asymptotic amplitude
error without altering the order of the error in the relative phase change.

2.4 Space-Differencing

Having examined the errors associated with time-differencing in Section 2.3, let
us now consider the errors introduced when spatial derivatives are replaced with
finite differences. In order to isolate the infiuence of the spatial differencing, the
time dependence will not be discretized. Once again, our investigation will focus
on the constant-wind-speed advection equation

Iy ]

Ty~ =0, (2.59

at ax )
If the x-domain is periodic or unbounded, the spatial structure of the sclution
may be represented by a Fourier series or a Fourier integral, and a solution for
each individual mode may be sought in the form of a traveling wave

w(x, I) — ei(kx—w!).

Here k is the wave number, and w is the frequency. Substitution of this assumed
solution into (2.59) shows that the traveling wave will satisfy the governing equa-
tion only if its frequency satisfies the dispersion relation

w = ck.

The wave travels with constant amplitude at a phase speed w/k = c. These waves
are nondispersive, meaning that their phase speed is independent of the wave
number. The energy associated with an isolated “packet” of waves propagates
at the group velocity dw/dk = ¢, which is also independent of wave number.
Readers unfamiliar with the concept of group velocity may wish to consult Gill
(1982) or Whitham (1974).
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24.1 Differential-Difference Equations and Wave Dispersion

Suppose that the spatial derivative in the advection equation is replaced with a
second-order centered difference. Then (2.59) becomes the differential—difference

equation:®
‘% te (%f—fl) =0. (2.60)
Individual wave-like solutions to this equation may be obtained in the form
¢ (D) = ¢! kit —ant). (2.61)

ufhere wy, denotes the frequency associated with centered second-order spatial
differencing. Substitution of (2.61) into the differential-difference equation yields

. eikAx ﬁ e-»i‘k/\x
gm0,

from which onc obtains the dispersion relation

sinkAx
Ax

Because w,, is real, there is no change in wave amplitude with time, and therefore
no amplitude error. However, the phase speed,

Wy = ¢

(2.62)

o o P sinkAx

=—=c
2 P PN (2.63)
is a function of &, so unlike the solutions to the ori ginal advection equation, these
waves are dispersive. 1f the numericat resolution is good, kAx <« 1, and the

Taylor series expansion sinx ~ x — x?/6 may be used to obtain

ex & c[1 - Jkax?],

showing that the phase-speed error is second-order in kAx. Although the error
for a well-resolved wave is small, the phase-speed error does become significant
as the spatial resolution decreases. The least well-resolved wave on a numerical
grid has wavelength 2Ax and wave number k = x/Ax. According 10 (2.63), the
phase speed of the 2Ax wave is zero. Needless to say, this is a considerable error.
The situation with the group velocity

dew
—Z = ccoskAx (2.64)

ok
is, however, even worse. The group velocity of weli-resolved waves is approxi-
mately correct, but the group velocity of the poorly resolved waves is severely

6 . . : .

The sr:t of dlt?feremm'l—d:ﬁcn?noe equations (2.60) for ¢; at every grid point constitute & large sys-
lem of ordlnag differential equations that could, in principle, be evaluated numerically using standard
packages. This procedure, known as the mevhod of fines, is usually not the most efficient approach.
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retarded. The group velocity of the 2Ax wave is —c; its energy propagates back-
wards!

If the spatial derivative in the advection equation is replaced with a fourth-order
centered difference, the resulting differential-difference equation

de;  [4 ¢j+;—¢j_.)1(¢j+z-¢;z)]_
di H[3( 2Ax 3 Adx =0 (265)

has wave solutions of the form (2.61), provided that the frequency wa satisfics the
dispersion relation

. /4 1
Wy — — (f sinkAx - Esinzkm).

Ax 2

As is the case for centered sccond-order differences, there is no ampliude cr-
ror, only phase-speed error. Once again, the waves are dispersive, and the phasc
speed of the 2Ax wave is zero. The phasc-speed crror of a well-resolved wave 15,
however, reduced to O [(k Ax)a], since for k Ax small,

IO PR
Tk 30 )

The group velocity

e 4 1
9% _ o 2 coskAx — = cos 2kAx (2.66)
ak 3 3

is also fourth-order accurate for well-resolved waves, but the group velocity of
the 2Ax wave is —5¢/3, an even greater errer than that obtained using centered
second-order differences.

The influence of spatial differencing on the frequency is illustrated in Fig. 2.9.
As suggested by the preceding analysis, @, approaches the true frequency more
rapidly than e, as kAx — 0, but both finite-difference schemes completely fail
to capture the oscillation of 2Ax waves. The greatest advantages of the fourth-
order difference over the second-order formulation are evident at “intermediate”
wavelengths on the order of three to eight Ax. The improvements in the frequen-
cies of these intermediate waves also generates a considerable improvement in
their phase speeds and group velocities. The variation in the phase speed of a
Fourier mode as a function of wave number is shown in Fig. 2.10. The improve-
ment in the phase speed associated with an increasc from second- to fourth-order
accurate spatial differences is apparent even in the 3Ax wave. The fourth-order
difference does not, however, improve the phase speed of the 2Ax wave. In fact,
almost all finite-difference schemes fail to propagate the 2Ax wave. The basic
problem is that there are only two possible configurations, differing by a phase
angle of 180°, in which 2Ax waves can appear on a finite mesh.Thus, as shown
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FTIGURE 29 Scal.ed frequency (w/c} as a function of wave number for the analytic solu-
tion of the advection equation {dotted line) and for corresponding differential—difference

approximations using second- (solid line) and fourth-order (dashed line) centered differ-
ences.
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lfIGURE 2.10. Pt!ase spec(.i as a function of numerical resolution for the analytic solu-
tion of the advection equation (dotted line) and for corresponding differential-difference

approximations using second- (solid line) and fourth-order (dashed line) centered differ-
ences.



76 2. Basic Finite-Difference Methods

FIGURE 2.11. Misrcpresemation of a 2Ax wave iranslating to the right as a decaying
standing wave when the wave is sampled at fixed grid points on a numerical mesh. The
grid-point values are indicaied by dots at the earlier time and diamonds at the later lime.

in Fig. 2.11, the grid-point representation of a translating 2Ax wave will be mis-
interpreted as a decaying standing wave.

The group velocities for the true solution and for the solutions of the second-
and fourth-order differential-difference equations are plotted as a function of
wave number in Fig. 2.12. The fourth-order scheme allows a better approximation
of the group velocity for all but the shortest wavelengths. As discussed previously,
the group velocity of the 2Ax wave produced by the fourth-order fimite difference
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FIGURE 2.12. Group velocity as a function of numerical resolution for the analytic so-
lution of the advection equation {dotted line} and corresponding diﬁ'eremial—dllfer_ence
approximations using second- (solid line) and fourth-order (dashed linc) centered differ-
ences.
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is actually worse than that obtained with the second-order method. The degra-
dation of the 2Ax group velocity in the higher-order scheme—or, equivalently,
the increase in dew/dk at k = m/Ax in Fig. 29—is an unfortunate by-product
of the inability of all finite-difference schemes to propagate the 2Ax wave and
the otherwise desirable tendency of higher-order schemes to better approximate
@ for wavelengths slightly longer than 2Ax. In the absence of dissipation, the
large negative group velocities associated with the 2A x wave rapidly spread short-
wavelength noise away from regions where 2A x waves are forced.

One might attempt to improve the representation of extremely short waves by
avoiding centered differences. If the spatial derivative in the advection equation is
replaced with a first-order one-sided difference, (2.59) becomes

do; @ji—di1)
oy +c (_Ax =0 (2.67)

Substitution of a wave solution of the form (2.61) into (2.67) yields the dispersion
relation for the frequency associated with one-sided spatial differencing,

C
T iAx
The real part of w, is identical to the real part of w,,, and hence one-sided spatial
differencing introduces the same dispersion error as centered second-order spatial
differencing. Unlike centered differencing, however, the one-sided difference also

generates amplitude error through the imaginary part of w,,. The amplitude of the
differential-difference solution will grow or decay at the rate

s (1-e*8) = (sinkaxtioskax 1) @68)

exp (—ZC;(] — cas kAx)t) .

Thus, poorly resolved waves change amplitude most rapidly. If ¢ > 0, the solution
damps; the solution amplifies when ¢ < 0. Note that if ¢ < 0, the numerical
domain of dependence does not include the domain of dependence of the original
partial differential equation, so instability could alse be predicted from the CFL
condition.

A comparison of the performance of first-order, second-order, and fourth-order
spatial differencing is provided in Fig. 2.13, which shows analytic solutions to
the advection equation and numerical solutions to the corresponding differential-
difference problem, The differential-difference equations are solved numerically
on a periodic spatial domain using a fourth-order Runge—Kutta scheme to inte-
grate (2.60), (2.65), and (2.67) with a very small time step.

Fig. 2.13a shows the distribution of ¢ that develops when the initial condition
is a narrow spike, such that ¢;(r = 0) is zero everywhere except at the midpoint
of the domain. Although the numerical domain is periodic, large-amplitude per-
turbations have not reached the lateral boundaries at the time shown in Fig, 2.13a.
The narrow initial spike is formed by the superposition of many waves of differ-
ent wavelengths; however, the Fourier components with largest amplitude are all
of very short wavelength. The large diffusive error generated by one-sided differ-
encing rapidly damps these short wavelengths and reduces the spike to a highly
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FIGURE 2.13. Bxact solution and differential-difference solutions for (a) advection of a
spike over a distance of five grid points, and (b) advection of the sum of equal-amplitude
75ax and 10Ax sine waves over a distance of twelve grid points. Exact solution
(dot-dashed), one-sided first-order (short-dashed), centered second-order (long-dashed),
and centered fourth-order (solid). The distribution is translating to the right, Grid-point
locations are indicated by the tick marks at the top and bottom of the plot.

smoothed low-amplitude disturbance. The second- and fourth-order centered dif-
ferences also produce a dramatic distortion in the amplitude of the solution. Al-
though the centered schemes preserve the amplitude of each individual Fourier
component, the various components propagate at different speeds, and thus the
superposition of these components ceases to properly represent the true solution.
Consistent with the values of the group velocity given by (2.64) and (2.66), the
energy in the shortest waves propagates back upstream from the initial location of
the spike. As predicted by theory, the upstream propagation of the 2Ax wave is
most rapid for the fourth-order method. Switching to a higher-order scheme does
not improve the performance of finite-difference methods when they are used to
model poorly resolved features like the spike in Fig. 2.13a; in fact, in many re-
spects the fourth-order solution is worse than the second-order result.

The spike test is an extreme example of a common problem for which many nu-
merical schemes are poorly suited, namely, the task of properly representing so-
lutions with near discontinuities. As such the spike test provides a reference point
that characterizes a scheme’s ability to properly model poorly resolved waves.
A second important reference point is provided by the test in Fig. 2.13b, which
examines each scheme s ability to approximate features at an intermediate numer-
ical resolution. The solution in Fig.2.13b is the sum of equal-amplitude 7.5Ax and
10Ax waves; in all other respects the problem is identical to that in Fig.2.13a. Un-
like the situation with the spike test, the higher-order schemes are clearly superior
in their treatment of the waves in Fig. 2.13b. Whereas the first-order difference
generates substantial amplitude error and is distinctly inferior to the other two
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schemes, the second-order difference produces a reasonable approximation to the
correct solution. Second-order centered differencing docs, however, generate a
noticeable lag in the phase speed of the disturbance (as in (2.63)). Moreover, since
the phase lag of the 7.5Ax wave differs from that of the 10A x wave in the second-
order solution, the relative phase of the two waves changes during the simulation,
and a significant error develops in the amplitude of the two rightmost wave crests.
This example serves to emphasize that although centered differences do not pro-
duce amplitude errors in individual Fourier components, they still generate ampli-
wde errors in the total solution. Finally, in contrast to the first- and second-order
schemes, the errors introduced by fourth-order differencing are barely detectable
at this time in the simulation.

The damping associated with the first-order upstream scheme (2.67) can be sig-

nificantly reduced by using a higher-order one-sided difference. The differential-
difference equation

dp; ¢ (2¢;41+3¢; -6d;_1+¢;
ph J i -2y _
dt 6 ( Ax ) =0 (269
may be obtained by replacing the spatial derivative in the advection equation with
a third-order difference. The dispersion relation associated with this differential-
difference equation is

[

4 1 '
Wy = = [(3 sinkAx - - sm2kAx) - %(1 - coskAx)z] . (2.70)

The real part of e, is identical to that of w.., and the phase-speed errors associated
with the third- and fourth-order schemes are therefore identical. As was the case
with first-order one-sided differencing, the sign of the imaginary part of w;, is
determined by the sign of ¢ such that solutions amplify for ¢ < 0 and damp for
¢ > 0. The damping associated with the third-order scheme is considerably less
than that of the first-order scheme. According to (2.68) and (2.70),

s‘(““35) _ 1
o) = 5(1 —coskAx).

As might be expected with a higher-order scheme, the well-resolved waves are
damped much more slowly by the third-order approximation. Even the short waves
show substantial improvement.

Some idea of the relative performance of the first-, second-, and third-order
differences is provided in Fig. 2.14, which is identical to Fig. 2.13, except that
the salid curve now represents the third-order solution. As indicated in Fig. 2.14,
the damping produced by the third-order scheme is much weaker than that gen-
erated by first-order upstream differencing. Moreover, the third-order solution to
th.e spike test is actually better than the second- and fourth-order results (compare
Figs. 2.13a and 2.14a). In problems with extremely poor resolution, such as the
spike test, the tendency of the third-order scheme to damp short wavelengths can
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FIGURE 2.14. Exact solution and differential-difference solutions for (a) advection of a
spike over a distance of five grid points, and (b) advection of the sum of equal-amplitude
7.5Ax and 10Ax sine waves over a distance of twelve grid poinis. Exacl solution
(dot-dashed), one-sided first-order (short-dashed), centered second-order (long-dashed),
and one-sided third-order (solid).

be beneficial, because it largely eliminates the dispersive trail of waves found in
the centered difference solutions. On the other hand, the damping of intermedi-
ate wavelengths is sufficiently weak that the third-order solution retains almost
the same amptitude in the region of the spike as the “nondamping™ second- and
fourth-order schemes. The situation in Fig. 2.14b is somewhat different, and it
is not entirely obvious whether the third-order results should be preferred over
the second-order scheme. The third-order scheme clearly exhibits less phase-
speed error, but it also shows more amplitude error than the centered second-order
method.

2.4.2 Dissipation, Dispersion, and the Modified Equation

One way to estimate phase-speed and amplitude error is to derive the differential-
difference dispersion relation, as described in the preceding section. Another way
10 characterize the relative magnitude of the these errors is to examine the lowest-
order terms in the truncation error of the finite-difference formula. The truncation
errors for each of the finite-difference approximations considered in the preceding
section are as follows. One-sided, first-order:

=~ ———+——=10

’I’j - ‘pj—l 8_¢f Ax 32-“', sz 33"’ ,
Ax dx 2 8x2 6 ox3 [(AX) ] (2.71)
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Centered, second-order:

Vi —¥ia 0y Axt @y 4
T ax t e e tOl@]

One-sided, third-order:

Wi +3; -6y +v; 2y A%y Axt 3y 5
=—r 3o TP 2 TP oAt
6Ax R e (G

Centered, fourth-order:

4 \[’jH‘ﬁj])Ml(‘J’HZ*sz Ay Ax ¥y .
3( 285 3\ aax )‘E“Wﬁ*o[m”]'

If one of these formulae is used to determine the truncation error in a differen-
tial-difference approximation to the advection equation and the resulting scheme
is 0 [(Ax)’"] accurate, the same differential-difference scheme will approximate
the modified equation

ay ay amtty
o + Ca = al{Ax)" Py

3m+2¢
axm+2

+b(Ax)™H! (2.72)

to O [(Ax)™*2], where a and b are rational numbers determined by the partic-
ular finite-difference formula. Thus, as Ax — 0, the numerical solution to the
differential-difference equation will approach the solution to the modified equa-
tion more rapidly than it approaches the solution to the advection eguation. A
qualitative description of the effects of the leading-order errors in the differential-
difference equation may therefore be obtained by examining the prototypical re-
sponse generated by each of the forcing terms on the right side of the modified
equation (2.72).

The term with the even-order derivative in (2.72) introduces a forcing identical
to that in the prototypical equation

% = (_1)m+132£
at axim’

whose solutions
i 2mr
E(x,1) = Cettre ¥

become smoother with time because the shorter-wavelength modes decay more
rapidly than the longer modes. Thus, the term with the lowest-order even deriva-
tive produces amplitude error, or numerical dissipation, in the approximate solu-
tion of the advection equation. The odd-order derivative on the right side of (2.72)
introduces a forcing identical to that in the prototypical equation

ok 3 32m+IE
d  aximtl’
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whose solutions are waves of the form
Ex, 1) = Ce''b5=w  where o = (— et

Fot m > 0, these waves are dispersive, because their phase speed w/k depends
on the wave number k. As a consequence, the lowest-order odd derivative on the
right side of (2.72) produces a wave-number-dependent phase speed error known
as nuumerical dispersion.

Centered spatial differences do not produce numerical dissipation because there
are no even derivatives in the truncation error of a centered difference scheme. Nu-
merical dissipation is, however, produced by the leading-order term in the trunca-
tion error of the one-sided differences. There is a pronounced qualitative differ-
ence between the solutions generated by schemes with leading-order dissipative
and leading-order dispersive errors. The modified equations associated with the
preceding first- and second-order spatial differences both include identical terms
in 33y /3x>. As a consequence, hoth schemes produce essentially the same dis-
persive error. The dispersion errors in the third- and f; ourth-order schemes are also
very similar becausc the truncation error associated with each of these schemes
includes identical terms in @3y/8x>. Yet, as was illustrated in Figs. 2.13 and
2.14, the impact of dispersion on even- and odd-order schemes is very different.
Numerical dispersion is the only error in the centered even-order differences, so
when short-wavelength modes are present, the dispersion is quite evident. In con-
trast, the numerical dispersion generated by the one-sided odd-order schemes is
largely obscured by the lower-order dissipative errors that dominate the total error
in these schemes,

2.4.3 Artificial Dissipation

As suggested by the test problems shown in Figs. 2.13 and 2.14, the lack of dissi-
pation in centered-spatial differences can sometimes be a disadvantage. In partic-
ular, the error produced by the dispersion of poorly resolved Fourier components
is free to propagate throughout the solution without loss of amplitude. It is there-
fore often useful to add scale-selective dissipation to otherwise nondissipative
schemes in order to damp the shortest resolvable wavelengths. Moreover, in non-
linear problems it is often necessary to remove energy from the shortest spatial
scales to prevent the development of numerical instabilities that can arise through
the nonlinear interaction of shori-wavelength modes (see Section 3.6).

The centered finite-difference approximations to even spatial derivatives of or-
der two or higher provide potential formulae for scale-selective smoothers. Con-
sider the isolated effect of a second-derivative smoother in an equation of the
form dé

— = -2+ ¢0), 2.73)
where y; is a parameter that determines the strength of the smoother. Substitution
of solutions of the form

¢; = ADe't (279
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into (2.73) yields

dA

m = =2yl —coskAx)A,
implying that 2ZAx waves are damped most rapidly, and that well-resolved waves
undergo an O](kAx)?] dissipation. Indeed, if the second-derivative smoother is
combined with the standard second-order centered difference,” the total trunca-
tion error in the smoothed difference becomes

Vil — ¥
2Ax

RN RN 4
- 5~ (8x) (yz oo )o@,

— v (¥ — 29+ ¥io1)

Thus, the smoothed difference remains of second order, but the leading-order trun-
cation error becomes both dissipative and dispersive. Note that as Ax — 0, the
preceding scheme will generate less dissipation than onc-sided differencing, be-
cause as indicated by (2.71), one-sided differencing produces O (Ax) dissipation.
Furthermore, the addition of a separate smoother allows the dissipation rate to be
explicitly controlled through the specification of y;.

Greater scale selectivity can be obtained using a fourth-derivative filter of the

form
dg;
PTaRRL (—¢ji2t+ 41— 60 +4d;1 — ¢ 2). (2.75)
or the sixth-derivative filter
d¢j
o Y (¢j+3 —6¢j12 + 15¢ 51 —20¢; + 15¢;_1 — 6¢;_2 +¢;_3).
(2.76)

Substituting a single wave of the form (2.74) into any of the preceding smoothers
(2.73), (2.75), or {2.76) yields

dA
— = —y, [2(0 — coskAX)*? A, .77

dr
where n = 2, 4, or 6 is the order of the derivative in each of the respective
smoothers. In all cases, the 2Ax wave is damped most rapidly, and long waves are
relatively unaffected. The actual scale selectivity of these filters is determined by
the factor {1 — cos kAx)"/2, which for well-resolved waves is O {(kAx)"]. This
scale selectivity is illustrated in Fig. 2.15, in which the exponential decay rate as-

) "ifa dissipative filter is used in conjunction with leapfrog time-differencing, the terms involved
in the filtering calculation must be evaluated at the 1 — As time level to preserve stability. Time-
differencing schemnes appropriate for the simulation of diffusive processes are examined in Section 3.4.
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FIGURE 2.15. Normalized damping rate as a function of horizontal wave number for sec-
ond- (dotted line), fourth- (solid line), and sixth-order (dashed-line) diffusive filters.

sociated with each smoother is plotted as a function of wave number. In order to
facilitate the comparison of these filters, the decay rate of the 2Ax wave has been
normalized to unity by choosing y, = 27"

The test problems shown in Figs. 2,13 and 2.14 were repeated using fourth-
order centered differencing in combination with fourth-order and sixth-order spa-
tial smoothers and the results plotted in Fig. 2.16. The filtering coefficients were
set such that y4 = 0.2, and ys = y4/4; this choice for ¥ insures that both filters
will damp a 2Ax wave at the same rate. As evident in a comparison of Figs. 2.13a
and 2.16a, both the fourth- and the sixth-order filters remove much of the disper-
sive train of short waves that were previously present behind the isolated spike in
the unfiltered solution. Those waves that remain behind the spike in the smoothed
solutions have wavelengths near 4Ax. Since y4 and y¢ have been chosen to damp
2Ax waves at the same rate, the 4Ax waves in the dispersive train are not damped
as rapidly by the sixth-order smoother, and as is evident in Fig. 2.16a, the sixth-
order smoother leaves more amplitude in the wave train behind the spike. Al-
though the scale selectivity of the sixth-order smoother interferes with the damp-
ing of the dispersive wave train behind the spike, it significantly improves the
simulation of the moderately resolved waves shown in Fig. 2.16b. The solution
obtained using the sixth-order filter is almost perfect, whereas the fourth-order
filter generates significant damping. In fact, the general character of the solu-
tion obtained with the fourth-order filter is reminiscent of that obtained with the
third-order one-sided finite-difference approximation. This similarity is not co-
incidental; the phase-speed errors produced by the third- and fourth-order finite
differences are identical, and the leading-order numerical dissipation in the third-
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FIGURE 2.16. Exact solution and differential-difference solutions for (a) advection of a
spike over a distance of five grid points, and (b) advection of the sum of equal-amplitude
7.5Ax and 10Ax sine waves over a distance of twelve grid points. Exact solution
(dot-dashed), and fourth-order centered difference solutions in combination with a
fourth-derivative filter (solid) or a sixth-derivative filler (dashed).

order difference, which is proportional to the fourth derivative, has the same scale
selectivity as the fourth-order smoother,

Indeed, the proper choice of y4 will produce an exact equivalence between
the solution obtained with the third-order scheme and the result produced by the
combination of a fourth-order centered difference and a fourth-order smoother.
The third-order differentialdifference equation (2.69) can be expressed in a form
that remains upstream independent of the sign of ¢ as

d¢j ¢
di 12Ax

(—pje2 + 81 — ¢j-1) + dj2)

]

=~ aa; ($e2 = 4841 +66; - 4, 1+ 6;0).  (278)

which is the combination of a fourth-order centered spatial difference and a fourth-
order filter with a filter coefficient y4 = |c{/{12Ax). Note that the value of the
fourth-derivative filter in the preceding is an inverse function of Ax. The implicit
Ax-dependence of the filtering coefficient in (2.78) makes the scheme O [(Ax)?],
whereas the dissipation introduced by the explicit fourth-order filter (2.75) is
0 [(ax)*).

In practical applications, the time derivatives in (2.73) and {2.75) are replaced
by finite differences, and the maximum values for 3 and y4 will be determined
by stability considerations. If the differencing is forward in time, the maximum
useful smoothing coefficients are determined by the relations 32 At < 0.25 and
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valt < 0.0625. When At = 0.25 (or val = 0.0625) any 2Ax wave will be
completely removed by a single application of the second-order (or fourth-order)
filter.

2.44 Compact Differencing

Further improvements in the filtered solutions shown in Fig. 2.16 can be obtained
by using more accurate finite-difference schemes. Simply switching to a higher-
order explicit scheme, such as the centered sixth-order difference
% = %Szxf - %fo + ]iééﬁxf +0 [(Ax)ﬁ] 279

(where the operator 8, is defined by (2.7)), provides only marginal improvement.
More significant improvements can be obtained using compact differencing, in
which the desired derivative is given implicitly by a matrix equation. Our atten-
tion will be restricted to compact schemes in which this implicit coupling leads
to tridiagonal matrices, since tridiagonal systems can be evaluated with modest
computational effort (see Appendix),

The simplest compact scheme is obtained by rewriting the expression for the
truncation error in the centered second-order difference (2.8) in the form

B (Ax? L\ df a
bonf = (1 T 5x) Z 4o [ax?] (2.80)

Expanding the finite-difference operators in the preceding expression yields the
following O [(Ax)*] accurate expression for the derivative:

S = fim L4 a\ (4
2Ax B 6 [(dx)j+1 +4(dx)j + (dx)j_l] . (281)

This scheme allows fourth-order-accurate detivatives to be calculated on a three-
point stencil. At intermediate numerical resolution, the fourth-order compact
scheme is typically more accurate than the sixth-order explicit difference (2.79).

If one is going to the trouble to solve a tridiagonal matrix, it can be advanta-
geous to do a little extra work and use the sixth-order tridiagonal scheme. The
formula for the sixth-order tridiagonal compact scheme may be derived by first
noting that the truncation error in the fourth-order explicit scheme (2.9) is

_(ax)?
(-0

and the truncation error in the fourth-order compact scheme (2.80) is

) df _@otds L, [(Ax)ﬁ].

(Ax)2 52
dx 180 dx3

6 X

59_xf=(1+
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Eliminating the O [(Ax)*] term between these two expressions, onc obtains

(Ax)? , (Ax)? ,\ df
1 = ) 6
( + 30 5,() Sac f (1 = e ot 0 [(Ax) ]

Expanding the operators in the preceding yields the following O [(Ax)®]-accurate
wridiagonal system for d f/dx:

! | y=11(Y ady (Y
15 (1402 /) + 8ax f)) = ¢ [(dx)w +3(dx)l + (E;)H] (2.82)

When compact schemes are used to approximaie partial derivatives in compiex
equations in which one must compute several different spatial derivatives, such
as the multidimensional advection equation, it is simplest to solve either (2.81) or
(2.82) as a separate tridiagonal system for each derivative. However, in very sim-
ple problems, such as the one-dimensional advection equation (2.59), the spatial
derivatives in the compact formulac may be replaced directly by —(1/¢)dy/31.
Thus, in order to analyze the phase-speed crror associated with compact spatial
differencing, the fourth-order compact approximation to the advection equation
may be written

et 2[(3),, (3, (2
2Ax —66[ a1 j+1+4 o1 }.+ az)j,' 283

Substitution of a wave solution of the form (2.61) into the preceding yiclds the
following expression for the phase speed of the differential-difference solution:

o = Wi 3¢ sinkAx 284
“T kT 2+coskAx \ kax )T (2.84)

The phase speeds for the sixth-order compact scheme,

Cec

_ c sinkAx + sin2kAx
T 3(3+2coskAx) kAx 2kAx J°

may be obtained through a similar derivation. These phase speeds are plotied as
a function of kAx, together with the curves for second-, fourth-, and sixth-order
explicit centered differences, in Fig. 2,17. It is apparent that the compact schemes
are superior to the explicit schemes. In particular, the phase speeds associated with
the sixth-order compact differencing are almost perfect for wavelengths as short
as 4Ax. Note that although the order of accuracy of a scheme determines the rate
at which the phase-speed curves in Fig, 2.17 asymptotically approach the correct
value as kAx — 0, the order of accuracy does not reliably predict a scheme’s
ability to represent the poorly resolved waves. Lele (1992) observed that a better
treatment of the shorter waves can be obtained by perturbing the coefficients in
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FIGURE 2.17. Phase speed as a function of numerical resolution for the analytic solu-
tion of the advection equation (dotted line) and for corresponding differentialdifference
approximations using second-, fourth-, and sixth-order explicit differences (dashed lines),
fourth- and sixth-order compact differences (solid lines), and the low-phase-speed error
fourth-order compact scheme of Lele (solid line labeled “LC™).

the sixth-order compact scheme to create the fourth-order method

| )= L[s( L) +s(2
1—2(1152xfj+54xfj) Y [5 (dX)j+1 + 14(dx)j +5(d1)jl:|.
(2.85)

The phase speeds associated with this differencing scheme are plotied as the solid
curve labeled “LC”in Fig. 2.17. Observe that Lele’s compact scheme produces
phase-speed errors in a2 3Ax wave that are comparable to the errors introduced in
a 6Ax wave by explicit fourth-order differences.

The performance of Lele's compact scheme on the test problems considered
previously in connection with Figs. 2.13, 2.14, and 2,16 is illustrated in Fig. 2.18.
Since they accurately capture the frequency of very short waves while still failing
to detect any oscillations at 2Ax, compaci schemes propagate the energy in the
2Ax wave backwards at very large group velocities (i.e., —dw/dk is large near
k = 2Ax). The preceding compact schemes are also nondamping because they
are centered in space. It is therefore necessary 1o use a spatial filter in conjunction
with these schemes when modeling problems with significant short-wavelength
features. In these tests, a sixth-order flter (2.76) was used in combination with
both the compact scheme (2.85) and the fourth-order explicit method. In all cases
¥ = 0.05, which is the same value used in the computations shown in Fig. 2.16.
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FIGURE 2.18. Exact solution and differential-difference solutions for (a) advection of a
spike over a distance of five grid points, and (b) advection of the sum of equal-amplitude
7.56x and 10Ax sine waves over a distance of twelve grid points. Exact solution
{dot-dashed), third-order one-sided solution (solid), fourth-order centered explicit solu-
tion (long dashed), and the solution obtained using Leie’s low phase-speed-crror compact
scheme (short dashed). A sixth-order smoother, with yg = .05 was used in combination
with the fourth- and sixth-order differences.

In fact, the fourth-order solutions shown in these tests are identical to those shown
previously in Fig. 2.16. Also plotted in Fig. 2.18 are the exact solution and the
third-order one-sided solution {(previously plotted in Fig. 2.14). As evident in
Fig. 2.18a, the smoothed sixth-order compact scheme exhibits less of a 4Ax dis-
persive trail than either the third- or fourth-order scheme. Since the dissipation ap-
plied to the compact solution is identical to that used with the fourth-order scheme
(and less than that inherent in the third-order method), the relative absence of dis-
persive ripples in compact solution indicates a relative lack of dispersive error at
the 4Ax wavelength. This, of course, is completely consistent with the theoreti-
cal phase speed analysis shown in Fig. 2.17. The compact scheme also performs
best on the two-wave test, Fig. 2.18b. Although the filtered compact scheme is the
best-performing method considered in this section, it is also the most computa-
tionally burdensome. Other approaches to the problem of creating methods that
can adequately represent short-wavelength features without sacrificing accuracy
in smoother parts of the flow will be discussed in connection with the concept of
flux-corrected transport in Chapter 5.

2.5 Combined Time- and Space-Differencing

The error introduced by time-differencing in ordinary differential equations was
examined in Section 2.3. In Section 2.4, the error generated by spatial differencing
was isolated and investigated through the use of differential-difference equations.
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We now consider finite-difference approximations to the complete partial differ-
cntial equation and analyze the total error that arises from the combined effects of
both temporal and spatial differencing.

In some instances, the fundamental behavior of a scheme can be deduced from
the charactenstics of its constituent spatial and temporal differences. For example,
suppose that the advection equation

ay Y

Y +c oy 0 (2.86)
is approximated using forward time-differencing in combination with centered
spatial differencing. The result should be amplifying becausc forward time-diffcr-
encing is amplifying and centered spatial differencing is neutral. Their combined
effect will therefore produce amplification. On the other hand, it might be possibte
to combine forward time-differencing with one-sided space-differencing because
the one-sided spatial difference is damping—provided that it is computed using
“upstream” data. !f this damping dominates the amplification gencrated by the
forward time difference, it will stabilize the scheme. Further analysis would be
required to determine the actual stability condition and the phasc-speed error.

As another example, consider the use of leapfrog time-differencing and cen-
tered spatial differencing to approximate the advection equation. Since both dif-
ferences are neutral, it seems likely that such a scheme would be conditionally sta-
ble. Once again, further analysis is required to determine the exact stability con-
dition and the phase-speed error. In the absence of such analysis, the sign of the
phase-speed error is in doubt, since the leapfrog scheme is accelerating, whereas
centered spatial differencing is decelerating. Finally, suppose that leapfrog dif-
ferencing is combined with one-sided spatial differences. The result should be
unstable because the leapfrog solution consists of two modes (the physical and
computaticnal modes) each propagating in the opposite direction. If the one-sided
difference is “upstream” with respect to one mode, it will be “downstream” with
respect to the second mode, thereby amplifying the second mode.

Although as just noted, the forward-time and centered-space scheme

+1 n n n
o= -
J J_I_C H+ J -0

2.87
At 2Ax (2.87)

will produce a nonphysical amplification of the approximate solution to the advec-
tion problem, one might wonder whether this amplification is sufficiently weak
that the scheme nevertheless satisfics the more general Von Neumann stability
condition

Akl = 1 + yAr, (2.88)

where y is a constant independent of k, At, and Ax. If so, then (2.87) will still
generate convergent approximations to the correct solution in the limit Ax — 0,
At — 0, because it is a consistent approximation to the advection equation. Re-
call that as discussed in Section 2.3.2, forward differencing produces amplifying
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solutions that nevertheless converge to the correct solution of the oscillation equa-
tion as At — 0. The amplification factor arising from a Von Neumann stability
analysis of (2.87) satisfies

ol A 2
A2 =1+ (Lfs'";k x)) (A,

X

Here, in contrast to the results obtained if ordinary differential equations are ap-
proximated with a forward difference, the coefficient of At includes a factor of
(Ax)~? that cannot be bounded by a constant independent of Ax as Ax — 0. As
a consequence, the forward-time centered-space scheme does not satisfy the Von
Neumann condition (2.88) and is both unstable in the sense that it generates grow-
ing solutions lo a problem where the true solution is bounded, and unstable in the
more gencral sense that it does not produce convergent solutions as Ax — 0 and
At — 0. Note in particular that after N time steps the amplitude of a 4Ax wave
increases by a factor of (1 + u?)¥/% (where & = cAt/Ax). Thus, if a serics of
intcgrations are performed in which the space—time grid is refined while holding
(4 constant, the cumulative amplification of the 4Ax wave occurring over a fixed
interval of physical time increases as Ax — 0 and At — 0.

2.5.1 The Discrete-Dispersion Relation

Although the preceding discussion suggests that useful deductions can be made
by examining temporal and spatial differences independently, that discussion also
reveals the need to rigorously analyze the combined effects of all finite differences
in a specific formula in order to determine the complete behavior of the numerical
solution. A useful tool in the analysis of errors in wave propagation problems is
the discrete-dispersion relation, which is just the finite-difference analogue to the
dispersion relation associated with the original continuous problem. The discrete-
dispersion relation is obtained by substituting a traveling wave solution of the
form

¢;l — ei(ijx —wnit) (289)

into the finite-difference formula and solving for w. If the frequency is separated
into its real and imaginary parts (e + fw;), (2.89) becomes

¢;t . erumAlet(ijx—wrnA:) — iA'ner(kJAx—w,nm}. (2.90)

The determination of the imaginary part of e is tantamount to a Von Neumann
stability analysis, since «j; determines the amplification factor and governs the rate
of numerical dissipation. Information about the phase-speed error can be obtained
from .
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Suppose that the advection equation is approximated with leapfrog-time and
second-order centered-space differencing such that

n+ 1 n—1 n n
o %

2A1 2Ax

= 0. (2.91)

Substitution of (2.89) into this finite-difference scheme gives

e*iwﬂr . eiu:AJ ¢n (eikdx _ e—ik.ﬁx ¢n
- - Tl [ S— r
2AL ! 248x !

or, equivalently,
sinwAr = psinkAx, (2.92)

where u = cAr/Ax. Inspection of (2.92) demonstrates that if |¢| < 1, w will be
real and the scheme will be neutral. The scheme also appears to be neutral when
|} = 1, but this is a special case. When ¢ = 1, (2.92) reduces to

_Ax
TOAr

* —

L]

showing that the numerical solution propagates at the correct phase speed. Al-
though there are no phase-speed errors when (i| = 1, the two roots of (2.92)
become identical if kAx = /2, and as a consequence of this double root, the
scheme admits a weakly unstable 4Ax wave. When 4 = 1, the weakly growing
mode has the form

¢7 =ncos[x(j - n)/2]. (2.93)

The distinction between the sufficient condition for stability || < 1 and the more
easily derived necessary condition |i| < 1 is, however, of little practical signifi-
cance because uncertaintics about the magnitudes of the spatially and temporally
varying velocities in real-world applications usually make it impossible to choose
a time step such that |¢| = 1.

The frequencies resolvable in the discretized time domain lie in the interval
0 < w, < w/At. Except for the special case just considered when |p] = 1 and
kAx = m/2, there are two resolvable frequencies that satisfy (2.92). Dividing
these frequencies by k gives the phase speed of the physical and computational
modes

" mph)s l . A
ohys raialye arcsin(u sink Ax)

(o]
il

and
* wcomp

1
Coomp P = A [mr — arcsin{u sinkAx)].

As in the differential-difference problem, the 2Ax physical mode does not prop-
agate. The 2Ax computational mode flips sign each time step, or equivalently, it
moves at the speed Ax/At. In the limit of good spatial resolution (kAx — 0),
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the Taylor series approximations

Sinx =2 x — é.r} and arcsinx = x + %x3

can be used to obtain

k2 Ax?
C:hys a (1 - 3 (1 - Mz)) . (294)

If the time step is chosen to ensure stability, then w? < 1,)c*| < lc|, and the decel-
erating effect of centered spatial differencing dominates the accelerating effects
of leapfrog-time differencing. As suggested by (2.94), in practical computations
the most accurate results are obtained using a time step such that the maximum
value of |j¢| is slightly less than one.

Now consider the forward-time one-sided space scheme

ot ey W -9
+c
At Ax

=10, (2.935)

sometimes referred to as the donor-cell scheme. Substitution of (2.89) into (2.95)
gives

e =y (e—””“ - 1). (2.96)

It follows that the exact dispersion relation and the exact solution are obtained in
the special case when u = 1. Further analysis is facilitated by separating (2.96)
into its real and imaginary parts

|Ajcos Al — 1 = pu(coskAx — 1) 2.97)

and
|A]sinw At = pwsinkAx, (2.98)

where, w = @, + iw;, and |[A] = e is the modulus of the amplification factor.
Squaring both sides of (2.97) and (2.98) and adding yields
[A? =1 = 2u(1 — w)(1 — coskAx),

which implies that the donor-cell scheme is stable and damping for 0 < pu < 1,
and that the maximum damping per time step occurs at &t = %.3

The discrete dispersion relation
1 usinkAx )
wy = — arctan
Ar 1+ plcoskAx — 1)

8This stability condition is identical to that obtained via the standard Von Neumann stability anal-
ysis in Section 2,3.3.
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may be obtained after dividing (2.98) by (2.97). The function arctanayA! is
single-valued over the range of resolvable frequencies 0 < ax < /A, 50 as
expected for a two-time-level scheme, there is no computational mode. In the
limit of good numerical resolution,

2
ct = % %C|:| — (kAGX) (1 - )l “'211)] ,

showing that phase-speed error is minimized by choosing cither £ = 1 or u = %

The donor cell scheme is decelerating for 0 < p < % and accelerating for

12 < p < 1. The phase-speed error in the donor-cell scheme may be mini-

mized by choosing a time step such that payp = % Under such circumstances, the
donor-cell method will generate less phase-speed error than the leapfrog centered-
space scheme. Unfortunately, the good phase-speed characteristics of the donor-
cell methed are overshadowed by its large dissipation.

It is somewhat surprising that there are values of g for which the donor cell
scheme is accelerating, since forward time-differencing is decelerating and onc-
sided spatial differencing reduces the phase speed of solutions to the differential-
difference advection equation. This example illustrates the danger of relying too
heavily on results obtained through the independent analysis of space- and time-
truncation error.

2.5.2 The Modified Equation

As an alternative to the discrete dispersion equation, numerical dissipation and
dispersion can be analyzed by examining a “modified” partial differential equa-
tion whose selution satisfies the finite-difference equation to a higher order of ac-
curacy than the solution to the original partial differential equation. This technique
is similar to that described in Section 2.4.2 except that since the truncation error
includes derivatives with respect to both space and time, all the time derivatives
must be expressed as spatial derivatives in order to isolate those terms responsi-
ble for numerical dissipation and dispersion. As an example, consider (2.95), the
upstream approximation to the constant-wind-speed advection equation, which is
a third-order accurate approximation to the modified equation

By By chAx 2y c(ax)? ¥y
Stege =m0 w) -w -2m55. Q99

dx? 6
Examination of this equation shows that upstrecam differencing generates numer-
ical dissipation of O [(Ax)?] and numerical dispersion of O [(Ax)*]. Both the
dissipation and dispersion are minimized as i —» 1, and the dispersion is also
eliminated when gt = %

In deriving the modified equation, the original partial differential equation can-
not be used to express all the higher-order time derivatives as spatial derivalives
because the finite-difference scheme must approximate the modified equation
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more accurately than the original partial differential equation (Warming and Hyett
1974). The upstream method (2.99) provides a first-order approximation to the
advection cquation (2.86), a sccond-order approximation to

y By ALY Ax Y

=—Cc—— = 5 o5 2.100)
o - ax 2 a2 2 ay? (
and a third-order approximation to
2 2 43 ) 2 43
W _ ﬂ_ﬂﬂgﬂﬂ Cfﬂwcmx) i_"g {2.101)
at ax 2 8 6 ar 2 ax? 6 ox*

The third-order accurate modified equation (2.99) is obtained by repeatedly sub-
stituting derivatives of (2.100) into (2.101) uniil all the first-order terms involving
time derivatives are eliminated. The time detivatives in the remaining second-
order terms can then be eliminated using the first-order-accurate relation (2.86).

2.5.3 The Lax-Wendroff Method

None of the schemes considered previously achieves O [(Af)?] accuracy without
multistage computation or implicitness or the use of data from two or more previ-
ous time levels. Lax and Wendroff (1960) proposed a general method for creating
0 [(A1)?] schemes in which the time derivative is approximated by forward dif-
ferencing and the O(At) truncation error generated by that forward difference
is canceled by terms involving finite-difference approximations to spatial deriva-
tives. Needless Lo say, it is impossible to analyze the behavior of a Lax~Wendroff
method properly without considering the combined effects of space- and time-
differencing.

One important example of a Lax-Wendroff scheme is the following approxi-
mation to the advection equation (2.86):

/BN T S W 97, — 25+ ]
At 2Ax 2 (Ax)?

) . (2.102)

The Jowest-order truncation error in the first term of (2.102), the forward time
difference, is

At 3ty

2
However, since i is the exact solution to the continuous problem (2.86),

At 3y A:a( gg)_clmaz_w

Tl T 2\ “ox 2 ax?’

The term on the right side of (2.102) will therefore cancel the O{At) truncation er-
ror in the forward time difference to within O [A¢ (Ax)?], and as a consequence,
the entire scheme is O [(An?] + O [(Ax)?] accurate.
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The second-order nature of (2.102) may aiso be demonstrated by expressing it
as a two-step formula in which each individual step is centered in space and time,
In the first step, intermediate values staggered in space and time are calculated
from the relations

I’I+j i
o1 -4 (en+9) " g
: »” =—c —H—/_\—J , (2.103)
= Al X
2
"+% L r n
9 2(¢';‘+¢’j~i) ¢ — o7,
r = —c| L), (2.104)
3
In the second step, qb}“ is computed from
+1 i
St —gn ¢ -0
/ I IS B 1 (2.105)
At Ax ) )

The single-step formula (2.102) may be recovered by using (2.103) and (2.104) to

eliminate ¢"+% and ¢""l‘ from (2.105). One advantage of the two-step formula-
tion is that its extension to more complex problems can be immediately apparent.
For example, if the wind speed is a function of the spatial coordinate, c is replaced
by CiasCinls and c; in (2.103), (2.104), and (2.105), respectively. In contrast,
the equivalent modification of the single-step formula (see (2.107)) is slightly less
obvious.

The amplitude and phase-speed errors of the Lax—Wendroff approximation to
the constant-wind-speed advection equation may be examined by substituting a
solution of the form (2.90) into (2.102), which yields

|Al(coswr Al — i sinawy Aty = 1 + p(coskAx — 1) — ipsinkAx.  (2.106)

Equating the real and imaginary parts of the preceding equation, and then elimi-
nating | A, one obtains the discrete-dispersion relation

1 usinkAx
wr = — arcian .
At 1+ ulicoskAx — 1)

In the limit kAx <« 1, wy/k reduces lo (2.94), showing that for well-resolved
waves, the phase-speed error of the Lax—-Wendroff method is identical to that of
the leapfrog centered-space scheme. Eliminating ey from the real and imaginary
parts of (2.106), one obtains

AP =1 — p2(1 — p5){(1 — coskAx)?,
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FIGURE 2.19. Leapfrog, second-order space (solid). Lax-Wendroff (dashed}, and cxact
solution (dot-dashed) for the advection of the sum ol equal-amplitude 7.5Ax and 10Ax
sine waves over a distance of twelve grid points using a Courant number of (a) 0.1, and (b)
0.75.

from which it follows that the Lax-Wendroff scheme is stable for u? < 1. Short
wavelengths arc damped most rapidly; the 2Ax wave is completely eliminated in
a single time step if (| = 1/+/2. Since the shortest wavelengths are seriously in
error-—once again the phase speed of the 2Ax wave is zero—this scale-selective
damping can be advantageous. Indeed, the scale-sclectivity of the dissipation in
the Lax-Wendroff scheme is the same as that of a fourth-order spatial filter. Un-
fortunaiely, the numerical analyst has little control over the actual magnitude of
the dissipation because it is a function of the Courant number, and in most practi-
cal problems, ¢ will vary throughout the computational domain. The dependence
of the damping on the Courant number is illustrated in Fig. 2.19, which compares
solutions generated by the Lax—Wendroff method and the ieapfrog scheme (2.91)
using Courant numbers of 0.75 and 0.}. When p = 0.1, the leapfrog and Lax—
Wendroff schemes give essentially the same result, but when wu is increased 10
0.75, the damping of the Lax—Wendroff solution relative to the leapfrog scheme
is clearly evident. Fig. 2.19 also demonstrates how the phase-speed error in both
numerical solutions is reduced as the Courant number increases toward unity.

The term that cancels the O(Ar) truncation error in a Lax—Wendroff scheme
must be specifically reformulated for each new problem. The following three ex-
amples illustrate the general approach. If the flow velocity in {2.102) is a function
of x, then

2y Ca Ay
TV _ L)Y,
a2 ar \ ax
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and the right side of (2.102) becomes

¢, A1 (6‘;-4(‘3’?”_“’?)‘%%(¢74¢7“)\ (2.107)

2 (Ax)? A
If the flow is two-dimensional, the advection problem becomes

AL

u v =0,
ot dx dy
and if ¥ and v are constant,
')2 82 82 82
;—ﬁi:u ¢+U*’—u}*+2ul}‘—‘:¢{"!
ar ax? Ay? dxady

which must be approximated by a second-order spatial difference. Finally, con-
sider a general system of “conservation laws”™ of the form

dav a
X ZFRw =0,
TR TR

where v and F are column vectors, Then

3tv 8 [_oF
= — (1=, 2.
arl ~ Bx (Jax) (2.108)

where J is the Jacobian matrix whose i jth element is 8F; /dv;. Once again, this
matrix operator must be approximated by second-order spatial differences.

In many applications the Lax—Wendroff method can be implemented more eas-
ily and more efficiently using the two-step method (2.103)—(2.105), or the follow-
ing variant of the two-step method suggested by MacCormack (1969):

i A
V= V'} — _Aé [F(V;) —F(V;,”] f
- - At N -
Vj = VJ,' — KX'[F(V_H.I) —F(VJ)]I
1/ =
7146 r)

These two-step methods generate numerical approximations to the higher-order
spatial derivatives required to cancel the O(Af) truncation error in the forward
time difference without requiring the user to explicitly evaluate complex expres-
sions like (2.108). The MacCormack method is particularly useful, since it easily
generalizes to problems in two or more spatial dimensions.

In the classical Lax-Wendroff method, the spatial derivatives are approximated
using centered differences, but other approximations are also possible. If the spa-
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tial dependence of ¥ is not discretized, the Lax—-Wendroff approximation to the
advection cquation (2.102) may be writien
¢n+l _‘¢'n d¢" CZAf a¢n
e = —— — 5.
At ox 2 gx?
Warming and Beam (1976) proposed the following upwind approximation to the
preceding:

o7 = o) (o] - 00) - 50 (0] 265 v e ). @109

which is O [(Ar)z] + O [(Ax)?] accurate and is stable for 0 < p < 2.

2.6 Summary Discussion of Elementary Methods

In this chapter we have investigated the performance of schemes for approxi-
mating the constant-wind-speed advection equation. Let us now recapitulate the
better methods discussed in this chapter and briefly summarize the conditions
under which they might be expected to yield good results in more complicated
problems. Further analysis of the performance of these schemes in more complex
situations will be presented in the following chapters of this book.

First consider the relatively atypical class of problems in which the solution
is sufficiently smooth that it can always be properly resolved on the numerical
mesh.? Under these circumstances any stable method can be expected to converge
to the correct result as the space—time grid is refined. Higher-order schemes will
converge o smooth solutions more rapidly than low-order methods as the mesh
size is decreased. Thus, even though higher-order methods require more computa-
tions per grid point per time step, genuinely high accuracy (i.e., several significant
digits) can usually be achieved more efficiently by using a high-order scheme on
a relatively coarse mesh than by using a Jow-order scheme on a finer mesh. Suit-
able high-order time differences include the third-order Adams—Bashforth method
ang the third- and fourth-order Runge-Kutta methods. Spatial differences might
be computed using either explicit or compact fourth- or sixth-order differences;
however, spectral methods, which will be discussed in Chapter 4, can be a better
choice when very high accuracy is desired.

Most low-viscosity flows do not remain completely smooth. Instead, they de-
velop at least some features with spatial scales shorter than or equal to that of
an individual grid cell. Such small-scale features cannot be accurately captured
by any numerical scheme, and the unavoidable errors in these small scales can
feed back on the larger-scale flow and thereby exert a significant influence on
the overall solution. In such circumstances there is no hope of computing an ap-
proximation to the correct solution that is accurate to several significant digits.

%An example of this type is provided by the barotropic vorticity equation, which will be discussed
in Sectien 3.6.2.
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Although the larger-scale features may be approximated with considerable quan-
titative accuracy, generally one must gither be content with a qualitatively correct
representation of the shortest-scale features or must remove these features with
some type of numerical smoothing. Since it is not realistic to expect convergence
1o the correct solution in such problems, it is not particularly important to use
high-order methods. Instead, one generally employs the finest possible numerical
grid, selects a method that captures the behavior of moderately resolved waves
with reasonable fidelity, and ensures that any spurious poorly resolved waves
are eliminated by either explicit or implicit numerical dissipation. The numerical
dissipation associated with all the schemes considered in this chapter is applied
througheut the entire numerical domain. An alternative approach will be consid-
ered in Chapter 5, in which the implicit dissipation is primarily imited to those
regions where the approximate solution is discontinuous or very poorly resolved,

Given that some degree of dissipation must generally be included to general-
ize the methods described in this chapter 1o practical problems involving low-
viscosity flow, the neutral amplification factors associated with leapfrog time
differencing and centered spatial differences are less advantageous than they may
first appear. The difficulties associated with time splitting that can arise in nonlin-
ear problems make the leapfrog scheme relatively unattractive in comparison with
the third-order Adams-Bashforth or third- or fourth-order Runge-Kutta methods.
The advantages of these relatively high-order methods are not primarily asso-
ciated with their small truncation error (since some features will be poorly re-
solved) but arise from their stability and relative efficiency. The second-order
Magazenkov and leapfrog-trapezoidal methods are also possible alternatives to
the leapfrog scheme. Even forward differencing is a possibility, provided that it
is used in a Lax-Wendroff method and that the implicit diffusion in the Lax~
Wendroff scheme is limited by using a sufficiently small time step.

Now consider the choice of spatial difference approximations. Approximations
based on centered spatial differences typically require the use of an explicit fourth-
or sixth-derivative dissipative filter and are therefore less efficient than a third-
order upstream approximation. This lack of efficiency is compensated by two
practical advantages, First, it is not necessary to determine the upstream direction
at each grid point when formulating the computer algorithm 1o evaluate a centered
spatial difference. The determination of the upstream direction is not particularly
difficult in advection problems where all signal propagation is directed along a
clearly defined flow, but it can be far more difficult in problems admitting wave
solutions that propagate both to the right and to the left. The second advantage of
a centered difference used in conjunction with a spatial filter is that one can ex-
plicitly control the magnitude of the artificial dissipation, whereas the magnitude
of the numerical dissipation associated with an upstream difference is implicitly
determined by the local wind speed. The compact schemes appear to provide par-
ticularly good formulae for the evaluation of centered spatial differences because
they remain accurate at relatively short wavelengths (3Ax or 4Ax) and use infor-
mation at a minimum number of spatial grid points, which reduces the amount of
special coding required near the boundaries of the spatial domain.
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