702

MONTHLY WEATHER REVIEW

The Third-Order Adams-Bashforth Method: An Attractive Alternative
to Leapfrog Time Differencing

DALE R. DURRAN
Department of Atmospheric Sciences, University of Washington, Seattle, Washington
(Manuscript received 21 February 1990, in final form 21 September 1990)

ABSTRACT

The third-order Adams-Bashforth method is compared with the leapfrog scheme. Like the leapfrog scheme,
the third-order Adams-Bashforth method is an explicit technique that requires just one function evaluation per
time step. Yet the third-order Adams~Bashforth method is not subject to time splitting instability and it is more
accurate than the leapfrog scheme. In particular, the O[(At)*] amplitude error of the third-order Adams-
Bashforth method can be a marked improvement over the O[( Ar)*} amplitude error generated by the Asselin-
filtered leapfrog scheme—even when the filter factor is very small. The O[(At)*] phase-speed errors associated
with third-order Adams-Bashforth time differencing can also be significantly less than the O[(At)?] errors
produced by the leapfrog method. The third-order Adams-Bashforth method does use more storage than the
leapfrog method, but its storage requirements are not particularly burdensome. Several numerical examples are
provided illustrating the superiority of third-order Adams-Bashforth time differencing. Other higher-order al-
ternatives to the Adams-Bashforth method are also surveyed. A discussion is presented describing the general
relationship between the truncation error of an ordinary differential solver and the amplitude and phase-speed
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errors that develop when the scheme is used to integrate oscillatory systems.

1. Introduction

Leapfrog time differencing is widely used to numer-
ically simulate advective processes in low-viscosity
fluids. The leapfrog scheme is an efficient method that
achieves second-order accuracy with just one function
evaluation per time step. Leapfrog time differencing
does not artificially damp linear oscillatory motion nor
does it produce instability by amplifying the oscilla-
tions. These advantages are somewhat diminished by
the large phase-speed error of the leapfrog scheme, and
the unsuitability of leapfrog differencing for the rep-
resentation of diffusive and Rayleigh damping pro-
cesses. However, the most serious problem associated
with the leapfrog scheme is the “time splitting” insta-
bility that develops when the method is used to model
nonlinear fluid dynamics. This time splitting instability
is associated with the leapfrog scheme’s undamped
computational mode. Time splitting can be controlled
through the use of an Asselin-Robert time filter (As-
selin 1972; Robert 1966) or by periodically discarding
the data at the oldest time level and reinitializing the
leapfrog solution through a single integration step with
a two-level scheme. Atmospheric modelers commonly
follow the first strategy representing time derivatives
with the Asselin-filtered leapfrog scheme. Asselin fil-
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tering does, nevertheless, degrade the accuracy of the
calculations—reducing the O[(At)?] truncation error
of the unfiltered leapfrog scheme to O[ At].

One can obviously avoid the problems with the
leapfrog scheme’s computational mode by using a dif-
ferent time differencing scheme. The purpose of this
paper is to examine alternatives to leapfrog differencing;
the primary emphasis will be on one particular alter-
native: the third-order Adams-Bashforth method.
There is no lack of possible substitutes for leapfrog dif-
ferencing. Any ordinary differential equation (ODE)
solver is a potential time differencing scheme. In ad-
dition to the general ODE solvers, special differencing
schemes that produce a beneficial cancellation between
the temporal and spatial truncation error can be con-
structed for particular systems of partial differential
equations, e.g., the Lax-Wendroff method for the ad-
vection equation. This second approach, in which time
and space differencing formulas are developed simul-
taneously, will not be considered further in this paper
because the results are inherently specific to the system
of equations for which the scheme was constructed.

One class of ODE solvers that might serve as sub-
stitutes for the leapfrog scheme is the family of two
time-level differencing methods, which have no com-
putational mode. In order to achieve second-order ac-
curacy, however, a two-level scheme must either be
implicit (e.g., the trapezoidal method) or iterative. As
a consequence, two-level schemes require more com-
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putational effort to achieve the same accuracy as the
leapfrog scheme. In addition, most low-order two-level
iterative schemes produce undesirable amplitude errors
when applied to oscillatory problems. The first-order
Matsuno scheme (Matsuno 1966) requires two func-
tion evaluations per time step and heavily damps the
solution. Second-order Runge-Kutta methods (in-
cluding the “Huen” method, Mesinger and Arakawa
1976) require two function evaluations per time step
and generate unstable, amplifying oscillations. Young’s
method A (Young 1968), which is second order, re-
quires three function evaluations per time step and is
also unstable. The instabilities in these second-order
methods are relatively slow growing and can sometimes
be tolerated if one uses a sufficiently small time step
and integrates for a limited time. Previous researchers
(e.g., Young 1968) have also considered the stable and
highly accurate fourth-order Runge-Kutta method.
Unfortunately, the fourth-order Runge-Kutta scheme
requires four function evaluations per time step and
considerably more storage than the lower-order two
time-level schemes.

A second class of potential replacements for leapfrog
differencing are the multistep ordinary differential
equation solvers with damped computational modes.
The only member of this class that seems to have un-
dergone much scrutiny is the second-order Adams—
Bashforth method (Lilly 1965). Like leapfrog differ-
encing, the second-order Adams-Bashforth method is
a three-level scheme that requires only one function
evaluation per time step. Unlike the leapfrog scheme,
it is not subject to time-splitting instability and it can
be used to model diffusive and Rayleigh damping pro-
cesses. The disadvantage of the second-order Adams-
Bashforth method is that when it is used to model os-
cillatory phenomena, the physical mode is subject to
the same instability as the second-order Runge-Kutta
method; i.e., the oscillation amplifies with time but the
instability can be tolerated if short time steps are used
and the total length of the integration is limited. An-
other disadvantage of the second-order Adams-Bash-
forth method is its large phase-speed error, which is
21> times that of the leapfrog scheme (Mesinger and
Arakawa 1976). Nevertheless, a minority of atmo-
spheric modelers have preferred the weak amplification
of the second-order Adams-Bashforth scheme to the
time splitting problems of the leapfrog method and
have employed the Adams-Bashforth scheme in their
numerical models (e.g., Moeng 1984).

The third-order Adams-Bashforth method appears
to be an even more attractive alternative. Like its sec-
ond-order cousin, the third-order Adams-Bashforth
method is an explicit scheme requiring one function
evaluation per time step. The third-order Adams-
Bashforth method is not subject to time splitting; its
maximum stable time step is similar to the maximum
stable time step permitted by the Asselin-filtered leap-
frog scheme; and it allows a stable and accurate rep-
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resentation of diffusive and Rayleigh damping pro-
cesses. The only potential drawback of the third-order
Adams-Bashforth method is its storage requirement.

Concern about storage seems to be the main reason
that higher-order multistep methods have not received
more attention. The practical considerations that led
to this preference for very low-storage algorithms have,
however, changed over the last several years as the in-
core memory in many computer systems has increased
much more rapidly than CPU power. As an example,
the original Cray 1 had one million words of memory
and one processer with a 12-ns clock time. At present,
the most powerful Cray has 128 million words of
memory and eight processors, each operating with a
6-ns clock time. Total processing capacity has thus in-
creased by a factor of 16 while storage capacity has
increased by a factor of 128. As a consequence, most
modest-sized atmospheric models are not limited by
lack of memory, and they can easily accommodate the
storage needs of the third-order Adams-Bashforth
method. Nevertheless, suppose that memory truly is
the limiting factor in a particular three-dimensional
simulation. If the memory-limited model currently
employs leapfrog time differencing and the code is op-
timized to minimize memory requirements, storage
must be allocated for the complete set of prognostic
variables at two different time levels plus a smaller
temporary storage array. Switching to an efficiently
coded third-order Adams-Bashforth method will in-
crease the necessary storage by a factor of 3/2. This
extra storage can be created by reducing the number
of gridpoints in each of the three spatial dimensions
by a factor of (2/3)!/3, or equivalently by a 12% re-
duction in the spatial resolution. In some applications,
the loss of accuracy associated with a 12% reduction
in spatial resolution can easily be offset by the im-
provements associated with third-order time differ-
encing,.

The remainder of this paper is organized as follows.
The third-order Adams—-Bashforth method is described
and analyzed in section 2, where its theoretical prop-
erties are compared with those of the Asselin-filtered
leapfrog scheme. Section 3 contains a discussion of the
relationship between time differencing error and the
errors introduced by spatial differencing in wave-prop-
agation problems. Several numerical tests, which con-
trast the performance of Adams-Bashforth and time-
filtered leapfrog differencing, are presented in section
4. A brief survey of other higher-order time differencing
schemes appears in section 5 together with a description
of the general relationship between the truncation error
of a finite-difference scheme and the amplitude and
phase errors that occur when the scheme is applied to
oscillatory problems. Section 6 contains a discussion
of the difficulties that arise if the third-order Adams-
Bashforth method is substituted for leapfrog differenc-
ing in semi-implicit models. The conclusions appear
in section 7.
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2. Comparative analysis of the third-order Adams-
Bashforth method and the Asselin-filtered leapfrog
scheme

The general Nth-order Adams—Bashforth approxi-
mation to the ordinary differential equation

has the form

¢n+1 . ¢n

Ar (2)

N—1
= 2 aGF ("),
j=0
where ¢” is the numerical approximation to ¥(nAt)
(Gear 1971). The coefficients a; may be determined
by substituting the Taylor series expansions for ¢ and
F(y) into (2) and choosing the a; to cancel all terms
less than order (Af)”. An alternative derivation of the
coeflicients can be obtained by writing (1) as the
equivalent integral equation
(n+1)At

Yl(n + 1)A1] = Y(nAr) + f Fy(e)]dt.

nat

(3)

The Adams-Bashforth scheme approximates the pre-
ceding integral as
N-1

(n+1)at ' _
f,, FLuD)ldi = At 'S aF(e™).

At j=0

(4)

The coefficients a; can be evaluated by requiring (4)
to be exact for all polynomials less than order V.
The first-order Adams—Bashforth method, in which
ao = 1, is the familiar Euler (or forward) difference.
The second-order case, in which ap = 3, a, = -1 is
discussed by Lilly (1965) and Mesinger and Arakawa
(1976). The third-order Adams-Bashforth scheme is

' At
¢"" — ¢" =5 [23F(¢") — 16F (")

+5F(¢" 1. (5)

The family of Adams—Bashforth schemes are part of
the classical literature. Numerical values for the coef-
ficients of all Adams~Bashforth methods through order
6 are listed in Gear (1971, p. 109). Although it is a
classical scheme, the third-order Adams-Bashforth
method does not appear to have been widely employed
in numerical models for the solution of partial differ-
ential equations.

The phase-speed and amplitude errors introduced
by time differences in the numerical representation of
nondissipative wave phenomena may be examined by
analyzing solutions to the “oscillation equation™

dy/dt = iwy. (6)

Assuming  is a real constant, numerical solutions to
(6) can be obtained from finite-difference approxi-
mations of the form (2) such that
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F1G. 1. Magnitude of the amplification factor for the third-order
Adams-Bashforth scheme plotted as a function of wA¢. Solid line is
the physical mode; dashed curves are the two computational modes.

o™ = Alg", (7)

where A is the (complex valued) “amplification factor.”
The amplification factor associated with the exact so-
lution to (6) is A, = e’“**. Thus, following Mesinger
and Arakawa 1976, the relative amplitude error in the
numerical solution may be defined as | 4|/| 4.| = | 4],
and the relative phase error as

(8)

The amplification factor for the third-order Adams—
Bashforth solution to the oscillation equation (6) sat-
isfies the cubic equation

3_ 23 24,4, _ 3 iwAf =
A (l+121wAt)A +3lwAtA 12lwAt 0. (9)

Figure 1 shows | 4|, plotted as a function of wAt, for
each of the three roots of (9). Unlike its first- and sec-
ond-order cousins, the third-order Adams-Bashforth
scheme dampens the physical mode. One computa-
tional mode becomes unstable for wAz > 0.724. (Note
also that the damping rate of the physical mode exceeds
the damping rate of one computational mode for wAt
> 0.676.) In the limit of wAf¢ < 1, both computational
modes are strongly damped and the amplification fac-
tor for the physical mode is’

| Alphys = 1 — % (0A)* + O[(wA2)®].  (10)

In the limit of wAt < 1, the phase-speed error of the
physical mode is

Ronys = 1+ 252 (@A1)* + O[(wh0)°].

20 (D

! The asymptotic results in (10), (11), and ( 17)-(19) were obtained
using the symbolic manipulation capabilities of Mathematica (Wol-
fram 1988).
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In agreement with the general proposition stated in
section 5, the amplitude and phase-speed errors gen-
erated by the third-order Adams-Bashforth method are
both fourth order.

Let us compare the amplitude and phase errors in
(10)and (11) with the equivalent values for the Asselin-
filtered leapfrog scheme:

@™t = ¢ + 2A1F($7), (12)
"= "+ (PN — 29" + 9™, (13)

In the preceding, an overbar denotes a time-filtered
value. Observe that the filtering coefficient v is equiv-
alent to »/2 in Asselin’s (1972) notation. A value of
v = 0.06 is typically used in the NCAR community
climate model (Williamson 1983). Values of v = 0.2
are common in mesoscale convective models; indeed
Schlesinger et al. (1983) recommend a value of v in
the range 0.25-0.3 for general advection-diffusion
modeling. (Schlesinger et al. do not recommend leap-
frog differencing for the diffusion terms.)

Suppose that (12) and (13) are used to obtain an
approximate solution to the oscillation equation, and
solutions are sought in the form (7). Under the as-
sumption that (4¢") = A(¢"), one obtains Asselin’s
expression for the amplification factor

A=~ + iwAt £ [(1 —v2) — (wA)?]V2.  (14)

Is the assumption (A¢") = 4 (Qb-") justified? In practice,
the initial condition is not time filtered; one simply
defines ¢° = ¢°. Thus,

(A¢®) — A(¢%) = ¢' — ¢!

=v(¢° —2¢' + $?) #0. (15)
However, (13) may be rewritten
(A6™*T) — A(¢™ ") = y[(49") — A(¢"))
=y —9'l.  (16)

In all cases of practical interest # > 1 and y < 1; there-
fore (16) implies that 4 may be factored out of the
filtering operation with negligible error. Having justified
the derivation of (14), an analysis of the amplitude
and phase-speed errors of the Asselin-filtered leapfrog
solution may be performed in the usual manner.

In the limit of wA¢ < 1, the modulus of the ampli-
fication factor for the Asselin-filtered leapfrog scheme
may be approximated as

a Y(wAD)?  y(1+ v — y*)(wAr)*
|A|phys =1 -

S 2(1-7) 8(1—v)>
+ O[(wAr)’], (17)
L T(wAt)?
IAlcomp_(l 27)+2"6’Y+4’YZ

+ Of(wAr)3].  (18)
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In the limit ¥ = 0, both modes are neutral and the
standard leapfrog result is recovered. As might be ex-
pected from the structure of (13), Asselin—-Robert time
filtering introduces a second-order error in the ampli-
tude of the physical mode. Obviously, the amplitude
error can be reduced by choosing a small value for v.
However, since the damping term in the third-order
Adams-Bashforth method is fourth-order, it damps
low-frequency oscillations much less than the second-
order diffusion in the Asselin-filtered leapfrog method.
If ¥ = 0.2 (the typical value for mesoscale convective
models) all oscillations with periods greater than 1 1At
are damped more heavily by the Asselin-filtered leap-
frog method. If ~ is reduced to 0.06 (the typical value
in the community climate model) the Asselin-filtered
leapfrog method produces more damping than the
third-order Adams—Bashforth method whenever the
period of the oscillation exceeds 22 At.

In the limit of wAr < 1, the phase speed of the As-
selin-filtered physical mode becomes

I+ 2y
6(1 —v)

As is the case for the standard leapfrog scheme, the
phase speed is second-order accurate. Asselin-Robert
filtering increases the phase-speed error doubling it
when v is 0.25. Once again, the third-order Adams-
Bashforth scheme will follow the phase of low-fre-
quency oscillations much more accurately than the
Asselin-filtered leapfrog scheme. Even with v = 0, the
third-order Adams-Bashforth method is more accurate
for all oscillations with periods greater than 10Az.
The amplification factors for all physical and com-
putational modes of the Asselin-filtered leapfrog
scheme and the third-order Adams-Bashforth method
are plotted as a function of wAt in Fig. 2. Figure 2a
shows the amplification factor for the true solution to
(6), for wAr = 0.1, 0.2, - - -, 0.9. All values of 4, lie
on the unit circle in the complex plane. The corre-
sponding amplification factors for the third-order
Adams-Bashforth scheme are plotted in Fig. 2b. The
Adams-Bashforth scheme has two computational
modes, both of which are strongly damped when wA?
is small. The computational mode that becomes un-
stable for wA? > 0.724 has an approximate period of
4At. Amplification factors for the Asselin-filtered leap-
frog scheme are plotted in Fig. 2¢ for the case v = 0.2.
Note how the damping introduced into the computa-
tional mode by Asselin filtering is relatively indepen-
dent of the time step. In the case v = 0.2, stability
requires wAt < 0.816, which is almost as stringent as
the third-order Adams-Bashforth stability condition.
As in the third-order Adams~-Bashforth scheme, the
period of unstable oscillations is approximately 4A¢.
This study will now turn from the problem of mod-
eling inviscid oscillatory systems to that of simulating
dissipative processes. A prototype equation for the time

Ronys = 1 + (wAL)2. (19)
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FI1G. 2. Amplification factor plotted in the complex plane for the exact solution, the third-order Adams~Bashforth solution, and the
Asselin-filtered leapfrog solution with vy = 0.2. Individual points associated with all physical and computational modes are plotted for wAt
=0.1,0.2, - - -, 0.9. Points corresponding to a physica! (computational ) mode and a value of wAt = 0.1 are labeled “P1” (“C1” or “C1”").
Points obtained with wAt = 0.9 are also labeled. The unit circle is graphed as a reference.

evolution of a dissipative process is the so-called “fric-

tion equation” (again following the terminology of Ar-

akawa and Mesinger 1976):
ay/dt = —«xy, (20)

where « is a nonnegative real constant. The leapfrog
technique cannot be used to integrate (20) without a
transformation of variables because the resulting dif-
ference equations are unstable (Lilly 1965; Kreiss and
Oliger 1973). Thus, if diffusion is included in models
with leapfrog time differencing and if the diffusion
terms are evaluated using an explicit scheme, those
terms are generally lagged in time and integrated with
a first-order Euler scheme (e.g., Durran and Klemp
1983). If the lagged Euler approach is used to difference
(20), the result is

¢n+1 — ¢n—1 _ ZA[K(bn—l. (21)

The stability criteria necessary to guarantee decaying,
nonoscillatory solutions to (21) is kAz < 0.5.

All Adams-Bashforth methods may be applied to
(20) without encountering the instability generated by
the leapfrog scheme. The third-order Adams-Bashforth
method will produce stable nonoscillatory solutions to
(20) whenever kAt < 0.545. (One computational mode
is stable, but less strongly damped than the physical
mode for 0.359 < kAt < 0.545.) Thus, the third-order
Adams-Bashforth method permits the explicit inte-
gration of diffusion terms with a slightly larger stable
time step than that allowed by the time-lagged Euler
method. The third-order Adams-Bashforth solution
should also be far more accurate than one produced
by the first-order lagged Euler method because it would

be obtained using a higher-order scheme and a smaller
time step.

3. The interaction between time-differencing error and
errors in spatial differencing

The relative importance of temporal and spatial dif-
ferencing error in the numerical representation of a
traveling sinusoidal wave is largely determined by the
absolute value of the Courant number,

cAt IcklAt= At/ T
Ax |klaAx Ax/L’

Here k is the wavenumber, L is the wavelength, ¢ is
the phase speed, and T = 2« /(kc) is the period of the
wave. According to (22), the Courant number may be
interpreted as the ratio of the temporal resolution to
the spatial resolution in a wave propagating at phase
speed c¢. The familiar Courant-Fredricks-Lewy (CFL)
stability condition requires |u| < O(1) for any explicit
difference scheme. In some atmospheric models, the
most stringent CFL time step restrictions are imposed
by fast-moving waves that have little meteorological
significance (i.e., gravity waves in a global primitive
equation model). Then, the Courant number asso-
ciated with the slower-moving, meteorologically im-
portant modes can be very small and the effect of time
truncation error on the accuracy of the important
modes will be negligible. If, however, the stability con-
straints imposed by the fastest moving waves are elim-
inated by the use of filtered equations or by numerical
techniques like the semi-implicit method (Kwizak and
Robert 1971) or the two time-step method (Klemp

(22)
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and Wilhelmson 1978), the Courant number asso-
ciated with the features of interest may approach unity
and time-truncation errors may become significant.
Consider, therefore, the importance of time-trun-
cation error in simulations performed with Courant
numbers near the stability limit. Some basic techniques
for solving the one-dimensional advection equation,
i +c ¥ _ 0,
ot ox
are exact when u = 1. Examples of this type include
upstream differencing, the Lax-Wendroff method, and
the leapfrog scheme with centered second-order spatial
differencing. Computations utilizing these schemes are
most accurate when performed with the largest stable
time step. Unfortunately, when choosing the optimum
time step for the widely used leapfrog-time fourth-order
space approximation to (23),

" —¢"! 4 (ol — )y
- o + —_ = " J -
201 ‘13 2ax

1 (¢,"’+2 - ¢}'—2)] -0

(23)

3 4Ax (24)

one must strike a compromise between efficiency and
accuracy since the largest stable time step does not give
the most accurate result. The dependence of solutions
to (24) on the Courant number is illustrated in Fig. 3.
In this example, the initial condition is

{64[(x — 1/2)* — 1/641}2,
if 3/8<x<5/8

0, otherwise,

¢%(x) = (25)

the horizontal mesh size Ax = 1/32, and ¢ is periodic
over the interval 0 < x < 1. The advection velocity ¢
is one-fourth. The results in Fig. 3 are for a nondi-
mensional time of 3, where one unit of nondimensional
time is the time required for the flow to complete one
circuit around the periodic domain. As indicated in
Fig. 3a, very poor accuracy is obtained using u
=0.7272, a Courant number just below the stability
limit. Much better results are produced when u = 0.5
(Fig. 3b); although the phase speed of the spike is over-
estimated, the amplitude of the spike is nearly correct,
and the dispersive ripples are small. When u = 0.3
(Fig. 3c), the leading phase-speed error of the leapfrog
time difference no longer dominates the lagging phase-
speed error of the spatial difference and the spike trails
the true solution. A further increase in the phase lag
and the amplitude of the dispersive ripples is evident
in Fig. 3d, which shows the case x = 0.1. Continued
reductions in u produce results very similar to Fig. 3d.
In Fig. 3a, the numerical error is dominated by time
differencing; in Fig. 3d the dominant error is produced
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by spatial differencing. Some beneficial cancellation
between the temporal- and spatial-differencing error is
evident in Figs. 3b,c.

The dependence of the phase-speed error on g can
easily be understood by evaluating the discrete disper-
sion relation satisfied by traveling wave solutions to
(24) (Haltiner and Williams 1980). For reasonably
resolved waves kAx < 1, ckAt < 1, and the leading
terms in the phase-speed error are

kK2Ax? [ k*Ax?
041f=0[1“ - ( -~ wz)]. (26)

In contrast to the more familiar example where leapfrog
differencing is combined with centered second-order
spatial differences (Haltiner and Williams 1980), the
value of p that minimizes the phase-speed error is de-
pendent on the wavenumber. In order to minimize the
phase-speed error for an 8Ax wave, At should be just
21% of the maximum stable time step. The optimal
value of u decreases linearly with decreasing wave-
number. As a result, very small time steps are required
to minimize the phase-speed error of long, well-resolved
waves. In practice, the phase-speed error of well-re-
solved waves will be small, but it will be dominated by
the effects of time differencing.

One can obtain phase-speed errors that are truly
fourth-order by combining third-order Adams-Bash-
forth time differencing with centered fourth-order spa-
tial differences. The leading-order terms in the resulting
discrete dispersion relation are

k*Ax* 289y*
- — 7
30 (1 24 )] (27)

where it is again assumed that kAx < 1, ckAt < 1.
According to (27), the optimal value of 4 is indepen-
dent of k and the fourth-order phase-speed error is
eliminated when u = 0.537. This value is slightly larger
than the maximum stable time step of 0.527. Thus,
when third-order Adams-Bashforth time differencing
is used in conjunction with centered fourth-order spa-
tial differences, the total phase-speed error is always
dominated by spatial differencing, and the minimum
phase-speed error is achieved by taking the largest stable
time step.

The amplitude of a traveling wave is also influenced
by the Courant number. As previously discussed in
section 2, the third-order Adams-Bashforth method
damps the solution at a rate proportional to (wAz)*,
whereas Asselin time filtering introduces an O[(wAt)?]
dissipation. Since wAf = ukA x, the dissipation of trav-
eling waves generated by temporal filtering is equivalent
to damping from a spatial filter, and Asselin time fil-
tering effectively introduces a second-order spatial filter
on all propagating features. Many numerical models
employ fourth-order spatial filters to selectively damp
the shortest wavelengths. Some of this scale selectivity
will be lost if the same model uses Asselin time filtering,

Cagh3 = C[l
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F1G. 3. Effect of leapfrog stepsize on the accuracy of fourth-order centered-difference solution to the advection equation. Shown are the
exact and numerical solutions computed using Courant numbers of (a) 0.7272, (b) 0.5, (¢) 0.3, and (d) 0.1. All results are for a nondimensional

time of 3.

since the dissipation acting on the longest waves will
be dominated by the second-order time filter. This
problem can be avoided with third-order Adams-
Bashforth time differencing because the dissipation in
that scheme is equivalent to a fourth-order spatial filter.

4. Comparative tests of the third-order Adams~Bash-
forth method and the Asselin-filtered leapfrog
scheme

In this section, several numerical tests will be pre-
sented in order to illustrate the improvements that can

accompany the replacement of leapfrog time differ-
ences by the third-order Adams-Bashforth method.

a. Linear advection

The first numerical comparison will be for simula-
tions of conservative-tracer transport by a constant-
velocity flow. As in section 3, solutions to (23) are
computed on the periodic domain 0 < x < 1 using a
wind speed ¢ = Y, and the initial distribution given by
(25). The behavior of third-order Adams-Bashforth
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FIG. 4. Comparison of an exact solution to the advection equation with results obtained using leapfrog, Adams-Bashforth, and Asselin-
filtered leapfrog time differencing in a spectral model: (a) for nondimensional time #,; = 20 and Courant number ¢ = 0.2, and (b) for #,4

= 40 and g = 0.08.

and leapfrog time differencing will be compared in two
different models: a spectral model and a fourth-order
finite-difference model. In the following tests, the leap-
frog solution was started by taking-a single forward
time step; the Adams-Bashforth solution was started
by taking a forward time step, followed by a second-
order Adams-Bashforth step.

Figure 4 shows the numerical solutions computed
using a 32-wavenumber spectral representation of the
spatial derivatives. The four curves represent the exact
solution and results obtained using the third-order
Adams-Bashforth method, the unfiltered leapfrog
method, and the leapfrog method with Asselin-filtering
coefficient v = 0.06. The value v = 0.06 was selected
because it is typical of the filtering employed in global
spectral models. The solutions plotted in Fig. 4a were
calculated using a Courant number of 0.2, which im-
plies the time step is 63% of the maximum permitted
by the stability requirements of the unfiltered leapfrog
scheme. Figure 4a, which shows results at a nondi-
mensional time of 20, indicates that even weak time
filtering strongly damps the solution. The unfiltered
leapfrog solution retains more amplitude, but the large,
frequency-dependent phase-speed error of the leapfrog
scheme disperses the solution, creating substantial
negative concentrations ahead of the main spike. The
third-order Adams-Bashforth scheme exhibits negli-
gible phase-speed error; its amplitude error is slightly
less than the error in the unfiltered leapfrog solution.
Although the unfiltered leapfrog scheme is nominally

free from “amplitude” error, the dispersion generated
by leapfrog differencing reduces the maxima in Fig. 4
faster than the O[(wAt)*] damping produced by the
third-order Adams-Bashforth method.

Figure 4b shows results obtained with the time step
reduced so that g = 0.08. Although the simulations in
Fig. 4b have been run out to a nondimensional time
of 40 (twice the time interval over which the integra-
tions were performed in Fig. 4a), the errors in Fig. 4b
are considerably smaller than those in Fig. 4a. Nev-
ertheless, the relative performance of the three schemes
is unchanged. Asselin filtering with v = 0.06 still pro-
duces heavy damping. Significant phase-speed errors
and negative concentrations are produced by the leap-
frog scheme. The third-order Adams—Bashforth scheme
produces the smallest amplitude and phase-speed er-
rors; indeed the Adams-Bashforth solution looks nearly
perfect.

The spectral method is essentially an infinite-order
finite-difference scheme. How do the preceding results
change if the accuracy of the spatial differences are
reduced to fourth-order? The answer appears in Figs.
5 and 6. Figure 5 shows computations performed using
centered fourth-order differences [ see (24)] with a spa-
tial mesh size of Y,. The exact, third-order Adams-
Bashforth, and two Asselin-filtered leapfrog solutions
are shown at a nondimensional time of 3. The filtering
coeflicients are 0.06 and 0.2; the case v = 0.06 may be
compared with the preceding results; the value v = 0.2
is typical of the filtering used in finite-difference me-
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F1G. 5. Comparison of an exact solution to the advection equation
leapfrog time differencing in a fourth-order finite-difference model

soscale models. The calculations shown in Fig. 5a were
performed with a Courant number of 0.5, implying
that the time step was 68%, the maximum allowed by
the unfiltered leapfrog scheme. (This time step is also
84% of the maximum allowed by the filtered leapfrog
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with results obtained using Adams—-Bashforth and Asselin-filtered
at a nondimensional time of 3, for (a) 4 = 0.5 and (b) u = 0.2.

scheme when v = 0.2, and 95% of the maximum al-
lowed by the third-order Adams-Bashforth method.)
As per the discussion in section 4, when the time step
is close to the stability limit, the phase-speed error in-
troduced by fourth-order spatial differencing almost
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FIG. 6. As in Fig. 5, except that the spatial resolution has been doubled.
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cancels that generated by the third-order Adams-
Bashforth method. As a consequence, the phase error
of the Adams-Bashforth solution in Fig. 5a is very
small. On the other hand, when x = 0.5, the leading
phase-speed error of the leapfrog method dominates
the smaller, lagging phase-speed error produced by
fourth-order differencing, and both leapfrog solutions
move too fast. In addition, the Asselin time filter damps
both leapfrog solutions more rapidly than the Adams~
Bashforth solution; the damping is particularly severe
when v = 0.2.

Figure 5b indicates that when the Courant number
is reduced to 0.2, the amplitude error in all solutions
is reduced significantly. The third-order Adams—Bash-
forth scheme continues to produce the least dissipation.
Asselin filtering with v = 0.2 generates heavy damping,.
In contrast to Fig. 5a, all three numerical solutions lag
the exact solution. The leading phase-speed error in-
troduced by all three time differencing schemes is re-
duced as p is decreased, and as a result the lagging
phase-speed error generated by the fourth-order spatial
difference dominates the total phase error. The phase
error in the Adams-Bashforth solution is slightly worse
than that in either leapfrog solution because, at the
relatively short wavelengths that dominate this test
problem, the larger phase-speed errors introduced by
leapfrog time differencing are better able to compensate
the error introduced by spatial differencing.

As expected, the finite-difference results are less ac-
curate than those obtained with the spectral method.
A considerable increase in the quality of the finite-dif-
ference solution can be achieved by doubling the hor-
izontal resolution. The degree of improvement may be
assessed by comparing Fig. 5 with Fig. 6. The simu-
lations plotted in Fig. 6 are identical to those in Fig.
5, except that the horizontal mesh spacing and the time
step were halved. As in Fig. 5, the third-order Adams—
Bashforth method produces less amplitude error than
the Asselin-filtered leapfrog scheme. The phase error
in the Adams-Bashforth solution is better than that of
the leapfrog method in Fig. 6a and slightly worse in
Fig. 6b. In all cases, the improvement in the solution
accompanying the increase in resolution is significantly
greater for the third-order Adams-Bashforth method.
This last result is not surprising; the Adams—Bashforth
solution should show greater improvement because it
is a higher-order method.

b. Nonlinear convection

Now consider a situation in which the leapfrog so-
lution must be filtered in order to avoid spurious am-
plification of the computational mode. Lorenz (1963)
has shown that the equations governing two-dimen-
sional Rayleigh convection can be truncated to three
components whose amplitudes are governed by the
system of equations
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X =0Y—-[6X], (28)
Y=-XZ+rX—-[Y], (29)
Z=XY-[bZ] (30)

where the dot represents differentiation with respect to
a nondimensional time, and the square brackets are
used to indicate the diffusion terms. The behavior of
this system will be examined for the case ¢ = 12, r
= 12, b = 6, and initial conditions ( Xy, Yy, Z) = (—10,
—10, 25). From the standpoint of predictability, this
is an uninteresting case—the solution decays with time;
there is no sensitive dependence on the initial condi-
tions. Chaotic solutions to (28)—-(30) are inappropriate
for these tests because they would exaggerate the dif-
ference between the various numerical schemes. The
goal is to examine a nonchaotic solution illustrating
the susceptibility of leapfrog time differencing to in-
stability.

Equations (28)-(30) were integrated using a fourth-
order Runge-Kutta scheme (see Table 1), the third-
order Adams-Bashforth scheme, and the Asselin-fil-
tered leapfrog method. The application of the first two
schemes to these equations is straightforward. The
leapfrog scheme, however, is not suitable for the direct
integration of (28)-(30). Following the practice in
most mesoscale convective models, the diffusion terms,
enclosed by the square brackets in (28)—(30), were
integrated using lagged forward differences [as per
(21)]. The remaining terms in (28)-(30) represent
advection and buoyancy forces and, again following
the practice in most mesoscale models, these were dif-
ferenced using the leapfrog scheme. The Asselin time
filter was set to v = 0.2.

The numerical solution for X is plotted in Fig. 7.
The results in Fig. 7a were obtained using a time step
of 0.03; a 0.015 time step was used in Fig. 7b. The
fourth-order Runge-Kutta solution is essentially iden-
tical in both Figs. 7a,b, suggesting that the Runge-
Kutta scheme has converged to the exact solution.
Thus, the Runge-Kutta solution provides a reference
against which the other methods may be compared.
The error in the third-order Adams-Bashforth solution
is much smaller than the error in the Asselin-filtered
leapfrog solution; and as might be expected from a
higher-order scheme, the error in the Adams-Bashforth
result decreases more rapidly than that in the Asselin-
filtered leapfrog solution as the time step is halved. The
least accurate solutions are those produced by unfiltered
leapfrog differencing, which rapidly generates a 2A¢
computational mode. In these simulations the com-
putational mode does not grow without bound; it re-
mains at a steady amplitude as the low-frequency os-
cillation in the physical mode decays. It is easy to find
other values of (o, 7, b) and other initial conditions
that generate significant 2Az noise in the leapfrog so-
lution. Examples that produce catastrophic instability
are, however, rare. (The solution will “blow up” if o
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FIG. 7. Numerical approximations to a nonchaotic solution of the Lorenz system. The variable plotted is
X; the time step is (a) 0.03 and (b) 0.015.

and r are changed to 10, and At = 0.03.) Practical ex-
perience with less highly truncated convective models
suggests that time splitting instabilities will inevitably
arise in leapfrog integrations. The highly truncated na-
ture of Lorenz’s model apparently prevents the addi-
tional interactions responsible for the continued am-
plification of the computational mode.

The initial development of the computational mode
in Fig. 7 is dependent on nonlinear processes. The im-
portance of nonlinearity is demonstrated by Fig. 8,
which shows an integration equivalent to that in Fig.
7a, except that the Lorenz equations were linearized
about (Xp, Yy, Zp). The qualitative character of the
linear solution is similar to the nonlinear solution in
that both are damped oscillations, yet the unfiltered
leapfrog solution does not develop a computational
mode. Other larger-amplitude linear solutions also
failed to generate a discernable computational mode.
Although there is no time splitting in the linearized
problem, the leapfrog solution is, once again, less ac-
curate than that obtained with the third-order Adams~
Bashforth method.

5. Other time differencing schemes

Are there other high-order time differencing schemes
that might be even more attractive than the third-order
Adams-Bashforth method? Are there second-order
schemes that provide a better way to control time split-
ting than Asselin—Robert time filtering? A partial an-
swer to these questions can be provided by a brief sur-

vey of other ordinary-differential-equation solvers. In
order to organize the survey in a systematic manner,
it is helpful to describe the relationship between the
overall truncation error of an ODE solver and the am-
plitude and phase-speed errors introduced by that soi-
ver when it is used to model nondissipative oscillatory
phenomena.

N R e e e e o o o o S —
4th-ORDER RUNGE-KUTTA
=—-——- LEAPFROG
-2t — — —— 3RD ORDER ADAMS-BASHFORTH |

X

t (time steps)

FiG. 8. As in Fig. 7a, except that the governing equations
have been linearized.
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Proposition: if the oscillation Eq. (6) is integrated
using a linear finite-difference scheme and if the trun-
cation error of the resulting finite-difference approxi-
mation to the oscillation equation is order r, then as
wAt — 0 the amplitude error in the numerical solution
is

n=r+1, ifrisodd,
1 + O[(wA?)"], where .
n=r+2, ifriseven;
(31)
and the phase-speed error is
m=r+1, ifrisodd;
1 + O[(wA?)™], where L
m=r, if r is even.
(32)

The proof of this proposition, which was partially
anticipated by Takacs (1985), appears in the Appendix.
It follows that second-order time differencing produces
second-order phase-speed error and fourth-order (or
better) amplitude error. Switching to a third-order
scheme will not improve the fourth-order amplitude
error, but will reduce the phase error to fourth order
or better.

A summary of the properties of several elementary
methods appears in Table 1. Note that for each entry,
the relationship between the total truncation error and
the phase speed and amplitude error is consistent with
the preceding proposition. In Table 1, the column la-
beled “efficiency factor” lists the maximum stable time
step with which the oscillation equation can be inte-
grated, divided by the number of function evaluations
per time step.” The column labeled “storage factor”
indicates the number of full arrays that must be allo-
cated for each unknown variable in order to implement
each scheme. The storage factor for implicit methods
can vary from problem to problem, depending on the
algorithm used to solve the implicit system. Therefore,
storage factors are not provided for the implicit meth-
ods in Table 1.

The storage factors given in Table 1 are upper limits
that allow each method to be programmed in a
straightforward manner. In many instances, it is pos-
sible to utilize less memory than that suggested by the
storage factor if newly computed quantities are initially
placed in a small, temporary storage array. As an ex-
ample, consider the third-order Adams-Bashforth
method. When integrating partial differential equa-
tions, it is not generally possible to write the newly

% The definition of the efficiency factor is based on the assumption
that the bulk of the computational effort is associated with the eval-
uation of the function that determines the time derivative. This as-
sumption is appropriate when integrating all but the simplest partial
difference equations.
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computed ¢;"*" directly into the storage occupied by
¢;", because ¢;” may be required for the computation
of ¢/!. However, at some point in the integration
cycle ¢;” will no longer be needed and at that stage it
may be overwritten by ¢,”*!. During the interim be-
tween the calculation of ¢;"*! and the last use of ¢,”,
#;"*! may be held in a temporary storage array. In
many applications, the temporary storage array is much
smaller than the full array required to hold a complete
set of ¢”. This procedure may be used to reduce the
storage requirement of the third-order Adams-Bash-
forth method from four full arrays to three full arrays
and a smaller, temporary storage array.

A survey of Table 1 reveals that, whereas the first-
and second-order Adams—-Bashforth and Runge-Kutta
techniques® are unstable, the third- and fourth-order
versions of these schemes are stable. Conversely, the
implicit Adams-Moulton schemes are stable at the first
and second orders (the backward and trapezoidal
methods), but unstable at the third and fourth orders.
Table 1 also indicates that, among the explicit methods,
the efficiency factor of the third-order Adams-Bash-
forth scheme is second only to the leapfrog scheme and
its Asselin-filtered variant. This high efficiency factor
implies that, with the exception of the leapfrog scheme,
the third-order Adams-Bashforth method is capable
of producing a stable solution with less computational
effort than any other explicit scheme listed in Table 1.
One would not, however, select the third-order Adams-
Bashforth method solely on the basis of its high effi-
ciency factor. If the efficiency factor was all that mat-
tered, one would use backward differencing or the
trapezoidal method and a very large time step. The
other important consideration is accuracy and as de-
fined in this study the efficiency factor only indicates
the minimum work required to advance the solution
in a stable manner; it does not measure the work re-
quired to achieve a given accuracy.

The preceding sections of this paper have demon-
strated that the third-order Adams-Bashforth method
can be significantly more accurate than the Asselin-
filtered leapfrog scheme. Most of the following discus-
sion will be devoted to other higher-order methods,
but first consider the stable explicit second-order
methods listed in Table 1. Some improvement relative
to Asselin-filtered leapfrog differencing might be ob-
tained from the leapfrog-trapezoidal method (Kurihara
1965) or the Magazenkov scheme because they both
damp the computational mode without the loss of
O[(At)*) accuracy introduced by the Asselin filter. The
leapfrog-trapezoidal scheme is an iterative method
however, and if a given numerical application will ac-
commodate an iterative method, the (low storage)
fourth-order Runge-Kutta scheme might be an even

? The first-order Adams-Bashforth and Runge-Kutta schemes are
both equivalent to forward differencing.
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TABLE 1. (Continued)

Maximum

Efficiency

Storage
factor

Phase error wAl

Amplitude error

factor

Formula

Order

Method

0.72

7207

72

[23F(¢™) — 16F(¢™") + 5F(¢" )]

*
12

o = ¢n +

Adams-Bashforth

4
1—lp20 282

6
2
144

.70

3*

= hF(¢")
hF(¢" + ko/2)
hE(¢" + Ki/2)
ks = hF(¢" + k5)

ko
ky
ks

Runge-Kutta
(Classical)

(ko + 2k + 2k + ky)

!
6

& = ¢ +

[23F(¢") ~ 16F(¢"") + SF(¢" )]

1.18

.59

L
12

¢t ="+

ABM predictor-
corrector

3h
8

[F(¢% ~ 3F(¢") + 3F(¢"") — F(¢"2)

¢ = o* +

DALE R. DURRAN 715

Implicit

[9F(6™") + 19F(¢") — SF(¢"") + F(¢" )]

LA
24

¢n+l = ¢n +

Adams-Moulton

43

251
7207

43

[55F(¢") — S9F(¢"") + 3TF(¢"%) — 9F(¢" )]

K
2

" = o +

Adams-Bashforth

*Storage factor of three is achieved following the algorithm of Blum (1962).

better choice since it is higher order and has a similar
efficiency factor. Magazenkov’s method is possibly the
most attractive second-order alternative to Asselin-fil-
tered leapfrog time differencing. Magazenkov (1980)
suggested alternating each leapfrog step with a second-
order Adams—-Bashforth step; the result is a fully ex-
plicit, stable, second-order scheme with a damped
computational mode. Note, however, that neither of
these second-order schemes achieve quite the same ef-
ficiency factor as the third-order Adams-Bashforth
method. The remainder of this section will, therefore,
be devoted to the consideration of other higher-order
schemes.

The third-order Runge-Kutta scheme is stable and
has less amplitude and phase-speed error than the
Adams-Bashforth method. However, since the Runge-
Kutta scheme requires three function evaluations per
time step, it may best be compared with the Adams~
Bashforth method by assuming the Adams—Bashforth
integration proceeds with one-third the time step of
the Runge-Kutta scheme. The adjective “equal work™
will be used to describe this type of comparison in
which the time step used with each method is adjusted
to hold constant the ratio of the step size to the number
of function evaluations per step. When the two schemes
are compared on this equal-work basis, the amplitude
and phase-speed errors of the third-order Adams-
Bashforth method are much less than those of the
Runge-Kutta method. This accuracy comparison is
based solely on the truncation error however, so it
only applies to well-resolved solutions. In order to assess
the relative accuracy of the two methods when poorly
resolved high-frequency modes are present, the spec-
tral-model advection test presented in Fig. 4 was re-
peated using a third-order Runge—Kutta integrator with
u = Y%, and the third-order Adams-Bashforth method
with u set to the equal-work value of %. The Courant
number of %2 is near the maximum stable time step
permitted by the third-order Runge-Kutta scheme. The
two solutions are compared at a nondimensional time
of 20 in Fig. 9, which demonstrates that the Adams-
Bashforth method produces a significantly better equal-
work solution.

Although the third-order Runge-Kutta method is
less efficient and less accurate than the third-order
Adams-Bashforth method, it is noteworthy because of
its low storage requirements, which are actually smaller
than those of the Asselin-filtered leapfrog scheme. The
third-order Runge-Kutta method presented in Table
1 is just one member of a large family of possible
Runge-Kutta schemes. All third-order Runge-Kutta
schemes produce the same truncation error if they are
used to integrate the simple oscillation equation. Dif-
ferent Runge-Kutta formulae do produce different
truncation errors in more complex nonlinear problems
and most third-order formulae have a storage factor of
3. Willimson (1980) discovered a small class of low-
storage third-order Runge-Kutta methods and rec-



716

ommended the particular scheme shown in Table 1.
The Williamson-Runge-Kutta method appears to be
distinctly superior to two other time differencing tech-
niques that have appeared in the meteorological lit-
erature—Young’s method A (Young 1968) and the
Lorenz three-cycle method (Lorenz 1971). All three
methods are iterative schemes requiring three function
evaluations per time step. The Williamson-Runge—
Kutta method is preferred over Young’s method A be-
cause the latter is unstable, lower order, and seems to
require more storage. The amplification factors for the
third-order Runge-Kutta method and Young’s method
A are compared in Fig. 10. The Williamson-Runge-
Kutta method is similar to the Lorenz three-cycle
method in that both require the same storage and, when
used to integrate the oscillation equation, both generate
the same truncation error. However, the Williamson—
Runge-Kutta method is truly third order, whereas the
three-cycle method is just second order. The three-cycle
method achieves third-order accuracy only in the spe-
cial case where the governing differential equation is
linear (Lorenz 1971).

The other stable third-order method appearing in
Table 1 is the Adams-Bashforth-Moulton predictor
corrector. It is curious that two unstable schemes (sec-
ond-order Adams-Bashforth and third-order Adams-~
Moulton) combine to yield a stable predictor-corrector
formula. As was the case with the third-order Runge-
Kutta scheme, the Adams—Bashforth-Moulton pre-
dictor corrector is inferior to the Adams-Bashforth
method in equal-work comparisons. Moreover, the
Adams-Bashforth—-Moulton predictor corrector re-
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FI1G. 9. Equal-work comparison of a third-order Runge-Kutta so-
lution (short-dashed line) computed using u = Y2, with a third-order
Adams-~Bashforth solution (long-dashed lined) calculated using g
=Y. Otherwise identical to Fig. 4a. .
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F1G. 10. Magnitude of the amplification factor plotted as a function
of wAt, for the third-order Runge-Kutta scheme (solid line), the
fourth-order Runge-Kutta scheme (long-dashed line), Young’s
method A (short-dashed line), and the exact solution (dash-dotted
line). ‘

quires the same storage as the third-order Adams-
Bashforth method.

Turning to the fourth-order methods, inspection of
Table 1 shows that the fourth-order Runge-Kutta
method has the lowest storage factor* and the highest
efficiency factor of all listed fourth-order schemes.
Being fourth order, it will produce O[(wA?)®] ampli-
tude errors, which will be smaller than the O[(wA?)*]
amplitude errors produced by the third-order Adams~
Bashforth method whenever wA¢ is sufficiently small.
This improvement in amplitude error may be lost
however, if the method is used in combination with
the fourth-order spatial filters commonly employed to
control short-wavelength noise in atmospheric models.
At a fixed value of wA¢, the phase-speed error of the
fourth-order Runge-Kutta scheme is less than that of
the third-order Adams-Bashforth method; however, if
the comparison is made on an equal-work basis (four
Adams-Bashforth steps per each Runge-Kutta step),
the phase-speed error of the Runge-Kutta scheme is
five times worse that the error in the Adams-Bashforth
scheme. In addition, the lagging phase-speed error of
the fourth-order Runge-Kutta scheme will reinforce
the lagging phase-speed error introduced by any spatial
differencing. The preceding discussion applies only to
the errors in well-resolved solutions. Some idea of the
quality of a poorly resolved solution, obtained using
time steps near the stability limit, is provided by the
plot of amplification factor versus wA¢ in Fig. 10. The
fourth-order Runge-Kutta method strongly damps the
poorly resolved modes; its region of high accuracy is
similar to the region in which the third-order Runge~
Kutta scheme is both accurate and stable. Thus, if one

4 A storage factor of three is achieved using the algorithm of Blum
(1962). In order to save space, the classical fourth-order Runge~
Kutta method is listed in Table 1.
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wishes to accurately represent the highest frequencies,
the maximum step selected for a fourth-order Runge-
Kutta integration should be similar to the maximum
step used in the third-order Runge-Kutta scheme.
Nevertheless, in some situations one might welcome
the opportunity to damp the highest-frequency oscil-
lations and in those circumstances, one could take full
advantage of the large stable time step permitted by
the fourth-order Runge-Kutta method. An additional
assessment of the relative accuracy of the fourth-order
Runge-Kutta and third-order Adams-Bashforth
methods is provided by the equal-work advection test
shown in Fig. 11. Like Figs. 4 and 9, Fig. 11 shows
results obtained by integrating a spectral advection
model to a nondimensional time of 20. The fourth-
order Runge-Kutta solution was computed using u
= (0.8, and, in this equal-work test, the third-order
Adams-Bashforth solution was calculated using u
= (0.2. The fourth-order Runge-Kutta solution retains
slightly more amplitude, but exhibits larger dispersion
and phase-speed errors than the third-order Adams-
Bashforth result. On balance, the third-order Adams—
Bashforth solution looks the best.

One other scheme worthy of discussion is the Lorenz
four-cycle method (Lorenz 1971). Like the previously
mentioned three-cycle scheme, the four-cycle scheme
was designed to achieve high accuracy for linear dif-
ferential equations while conserving storage. When ap-
plied to the oscillation equation, the four-cycle scheme
produces truncation errors identical to those of a
fourth-order Runge-Kutta method. Yet when applied
to nonlinear differential equations, the four-cycle

14 L E e e ey s e e g g e e B e B S B s B i e

EXACT

12— 3RD - ORDER ADAMS - BASHFORTH |
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0.6
(x)

04+

02

021 -

[ 3 ). N SO A T

U O S | T T TRPYNE N S T U S S A

PR
16 24 32
x (grid points)

FiG. 11. Equal-work comparison of a fourth-order Runge-Kutta
solution (short-dashed line) computed using x = 0.8, with a third-
order Adams~Bashforth solution (long-dashed line) calculated using
u = 0.2. Otherwise identical to Figs. 4a and 9.
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scheme is second-order. The advantage of the four-
cycle scheme is that its storage factor is only two. Al-
though the four-cycle scheme will perform very well
on the linear test problem, because of its relatively lower
order it is unlikely to be a better general purpose scheme
that the low-storage, higher-order Runge-Kutta for-
mulae and the third-order Adams-Bashforth method.

In summary, the third-order Adams-Bashforth
method can produce a stable solution to the oscillation
equation with fewer function evaluations than any of
the other third- or fourth-order methods listed in Table
1. The third-order Adams-Bashforth method is also
more accurate than the other third-order methods when
compared on an equal work basis. The most attractive
fourth-order method appears to be the (low storage)
Runge-Kutta scheme. Being fourth order, this scheme
will exhibit less overall truncation error than the third-
order Adams-Bashforth method as At = 0. When ap-
plied to the oscillation equation, the fourth-order ac-
curacy of the Runge-Kutta method manifests itself as
a reduction in amplitude error. The phase-speed error
of the fourth-order Runge-Kutta method is actually
larger than that of the third-order Adams-Bashforth
method when the two are compared on an equal-work
basis.

6. Use of the Adams—Bashforth method in
semi-implicit schemes

Many large meteorological models employ semi-
implicit time differencing, in which the Asselin-filtered
leapfrog scheme is used to represent the advection
terms while the pressure gradient and divergence terms
are integrated using the trapezoidal method. The basic
properties of this technique may be illustrated by the
following semi-implicit approximation to the oscilla-
tion Eq. (6):

¢n+l — ¢n—l
2A¢

n+l+ n—1
"’—24’—). (33)

Here w = w, + w;, and the Asselin filter is neglected.
Kwizak and Robert (1971) have shown that (33) will
be stable whenever

w?A? < 1 + A1, (34)

A sufficient condition for the satisfaction of (34) is
|wyi | <|w,|.In atmospheric applications, w, is identified
with those frequencies characteristic of advection, w,
is identified with the frequencies characteristic of grav-
ity wave propagation, and the condition |w;|<|w,| is
almost always satisfied. Since the accurate simulation
of high-speed gravity waves is thought to be unneces-
sary in large-scale atmospheric models, use of the semi-
implicit scheme allows such models to be efficiently
integrated with a large time step that would violate the
CFL condition for gravity waves (| w,Af| < 1) and lead
to instability in a fully explicit scheme.

= jw,¢" + iwz(
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One might expect to obtain a more accurate semi-
implicit scheme by replacing the leapfrog difference in
(33) with a third-order Adams-Bashforth formula; in
which case

n+l _ n ;
Lz_;i = %(23¢n _ 16¢n-1 + 5¢n—2)
+ 2@+ gm). (35)

This modification not only reduces the truncation error
in the w; component of the solution, it also improves
the accuracy of the w, component by halving the step-
size of the trapezoidal integration. Unfortunately, the
robust stability of the original semi-implicit scheme is
not shared by the Adams-Bashforth trapezoidal for-
mula (35). The amplification factor for (35) satisfies

_iszt 3 23iw At | iwaAF\
(1 (1 Bt s,
4iw|At 5iw1At
+ - = 0.
3 B 0. (36)

The magnitude of the three roots of (36) are plotted
in Fig. 12 as a function of w, At for the case w,Af = 2.0.
Note that the physical mode is always unstable. Stable
integrations can be achieved by reducing w,Af, but
there is little point in using a semi-implicit scheme
unless the high-frequency modes can be stably inte-
grated at Courant numbers (w,A7) much greater than
unity.

7. Conclusions

An analysis of the third-order Adams-Bashforth
method has been presented, together with a detailed
comparison of the third-order Adams-Bashforth
method with the widely used Asselin-filtered leapfrog
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FiG. 12. Magnitude of the amplification factor for the Adams~
Bashforth trapezoidal semi-implicit scheme (36), as a function of
w, At for the case w,Af = 2.0. Solid line is the physical mode; dashed
curves are computational modes.
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scheme. Not surprinsingly, the third-order Adams-
Bashforth method is more accurate than the leapfrog
method: phase-speed errors are smaller and amplitude
errors are considerably less than those generated by
Asselin time filtering. The third-order Adams-Bash-
forth method is also superior to the leapfrog scheme
in that it can be easily used to integrate diffusive and
Rayleigh damping processes. The preceding comments
notwithstanding, the greatest advantage of the third-
order Adams—~Bashforth method may simply be that
it is a simple, efficient way to avoid leapfrog time-split-
ting instability.

As an alternative to Asselin time filtering, one might
attempt to control leapfrog time splitting by periodi-
cally discarding data from the oldest time level, and
restarting the integration using a two time-level
method. The simple Euler or forward-difference
method is commonly used to reinitialize leapfrog in-
tegrations. This scheme is easy to implement, but like
Asselin filtering, it degrades the second-order accuracy
of the unadulterated leapfrog method. In addition, for-
ward differencing is unstable and tends to amplify the
high-frequency components of the solution. Restarting
with a second-order scheme, such as the second-order
Runge-Kutta method, would preserve the second-or-
der accuracy of the overall integration, but the imple-
mentation of such a scheme is more complex, and most
explicit second-order schemes are also subject to slowly
growing instability. Both Asselin time filtering and the
periodic reinitialization of the leapfrog solution involve
arbitrary parameters: the filtering coefficient and the
number of time steps between restarts. The influence
of these parameter values on the numerical solution
can be rather obscure. Use of the third-order Adams-
Bashforth method eliminates the computational mode
without the introduction of arbitrary parameters that
need to be engineered for each application.

Other accurate time-integration techniques have also
been surveyed. In connection with this survey, it has
been demonstrated that if the truncation error of a
difference scheme is order r and the scheme is applied
to the oscillation equation, the amplitude error will be
order r + 1 and the phase-speed error will be order r
+ 1, or better, provided that r is odd.> If r is even, the
amplitude error will be order r + 2, or better, and the
phase-speed error will be order r. Among the more
attractive schemes revealed by the survey are the Ma-
gazenkov method and the low-storage third- and
fourth-order Runge-Kutta methods. The Magazenkov
method is an explicit, noniterative method that damps
the computational mode while retaining second-order

5 Note that the local truncation error of an O(r) approximation
to a differential equation is O(r + 1) as per (A2). Thus, even though
the local amplitude and phase-speed errors of an odd-order scheme
might both be O(r + 1), the scheme itself will be accurate only to
o(r).
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accuracy. The storage requirements of the Magazenkov
method are similar to those of the Asselin-filtered leap-
frog scheme. If the numerical application will accom-
modate an iterative method and storage is critical, one
might utilize the Williamson-Runge-Kutta scheme,
which is both higher order and requires less storage
than the Magazenkov and Asselin-filtered leapfrog
schemes. The most accurate and most efficient iterative
technique examined in this survey would appear to be
the low-storage fourth-order Runge-Kutta scheme. The
third-order Adams-Bashforth scheme is, however,
more efficient than any of these schemes in that it re-
quires the fewest function evaluations to stably inte-
grate the solution over a given time interval. When it
is compared on an equal-work basis (in which the ratio
of the step size to the number of function evaluations
per step is held constant by adjusting the time step
used with each method), the third-order Adams-
Bashforth method is more accurate than all the pre-
ceding schemes, except the fourth-order Runge-Kutta
method. In addition, the third-order Adams-Bashforth
method has a number of practical advantages that make
it particularly suitable as a direct substitute for the
leapfrog scheme. Unlike the Magazenkov method, the
same algorithm is executed every time step. Unlike the
Runge-Kutta schemes, there is no need to iterate,
which can simplify the coding in complex modeling
applications. It does appear, however, that the third-
order Adams-Bashforth method is not a suitable sub-
stitute for leapfrog differencing in semi-implicit models.
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APPENDIX
Proof of Proposition

Suppose that approximate solutions to the oscillation
Eq. (6) are computed by the numerical scheme

o™+ L(¢) =0, (A1)

where ¢” is the numerical approximation to y(nAt),
and L(¢) is a linear function of ¢ at previous times.
Substitution of ¥ into (A1) yields an expression of the
form

"+ L(y) = Ol(an™'], (A2)

where the right-hand side of (A2) is the local truncation
error and r is the order of accuracy of the numerical
scheme. It is assumed that w is constant in (6 ) and that
the coefficients of L are therefore independent of the
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time step, in which case solutions may be sought in
the form (7). In order to prove the proposition, it is
useful to first establish that for an rth order scheme

A = e + g, (IwAl) ™ + e,42(iwAl) ™+
+ 0[(wAt)’+3], (A3)

where e, and e, are real coefficients. The derivation
of (A3)is particularly easy for single-step methods and
proceeds as follows. The truncation error, obtained by
substituting Taylor series expansions for y into (A1),
has the form

d’y

dr’ (an’

VLYY = 2 g

Jj=r+l1

9" 3 cliwary,

j=r+l

(A4)

where the c; are determined by the finite-difference for-
mula. Since ¥ is the exact solution to the oscillation
equation Y"*' = 24", Furthermore, in the case of
a two-level scheme, AyY" = — L(y") by the definition
of the amplification factor. Using these relations, (A4)
reduces to an expression of the form (A3) with e,
= — ¢,y and e,42 = — 4. If the scheme is a multistep
method, (A3) applies to the “principle root” (or the
physical mode), and the derivation follows Gear
(1971). The details of Gear’s proof, which must be
extended to O[(wAt)"**], are somewhat tedious and
will not be repeated here.

The important difference between even- and odd-
order schemes lies in the position of the imaginary fac-
tor i in the truncation error. The amplification factor
for odd-order schemes can be expressed in the form

A ="M + Ci(wAt) ™ + iCy(wAl)? »
+ O[(wA?1)™?], (AS5)

and the amplification factor for even-order methods
can be written

A = ™ + iCi(wAt) ! + Cy{wAt)*?
+ O[(wAf)™*%], (A6)

where C; and C, are real constants. Evaluating
(AA*)'/2 it follows that, for odd-order schemes

|A| =1 + C(wAt)™ + O[(wA?)™*?],
whereas for even-order schemes
[A] =14 (C; + C)(wA1) 2 + O[(wAt) 3]. (A8)

(A7)

This proves the first part of the proposition. Note that
the amplitude error associated with odd-order methods
must always be order r + 1, but that cancellation can
reduce the amplitude error of even-order schemes be-
yond order r + 2. The leapfrog scheme, Milne’s method
(Gear 1971), the trapezoidal method, and Young’s
method A (Young 1968) are examples of even-order
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schemes with amplitude errors smaller than order r
+ 2.

The phase-speed error may be obtained by observing
that, for r odd,

%—3—} = tanwAt + (C, — Cy)(wAt)™?
+ O[(wA)"™]; (A9)
and for r even,
;{j} = tanwAt + C(wA1)™*! + O[(wA?)™+?].
(A1Q)
Using the relation
tana + Ca” = tan(a + Ca’) + O[a"?], (All)

which holds whenever a, Ca” < 1, one may show that
for r odd

R =1+ (C, — C)(wAt)™ + O[(wAl)"™?]; (A12)
whereas for r even
R =1+ C(wAt)" + O[(wAD)™"]. (A13)

This concludes the proof. Note that reductions in the
phase-speed error of odd-order schemes are possible
through cancellation, but all even rth-order schemes
have order-r phase-speed errors. These results notwith-
standing, the author is not aware of an odd rth-order
scheme that achieves better than order r + 1 phase-
speed error.
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