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Chapter 4. Nonlinear Hyperbolic Problems 
 

4.4 System of Hyperbolic Equations – Shallow Water Equation model 
 
Ref: Chapter IV of Mesinger and Arakawa (1976) GARP Report 
 

4.4.1. Introduction 
 
It is assumed that you are familiar with the shallow water equations and associated theories. If not, consult Holton 
or Haltiner and Williams book. 
 
The following is a set of linear 1D shallow water equations: 
 

' ' ' 0u uu
t x x

  
  

  
       (21a) 

' ' ' 0uu
t x x
   

  
  

       (21b) 

 
u   = constant base state flow 
 = gH = g × mean depth of the water = constant 
u  u'  = perturbation velocity 
gh'  = perturbation geopotential height 

 
Issues to consider with respect to numerical solution 
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1) More than 1 variable 
2) Equations coupled 
3) Can support multiple physical modes 
4) There are more possibilities of grid layout (see figure below) 
 

 
 

4.4.2. The differential solution 
 
Performing standard analysis by assuming  
 

exp[ ( )]i kx t          (22) 
 
gives   ( )k u           (23) 
 
which is called the dispersion relation. 
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From (23)  
 

  c u
k


    . 

 
In the phase speed, there are slow mode represented by u  (advection) and fast mode given by   (surface gravity 
waves). Since c is constant, the waves are non-dispersive. 
 
Group velocity  
 

  gc u
k


   


   

 
represents the speed of wave energy propagation. 
 
 
What about the characteristics (we have seen this before – see example problem given at the end of Chapter 1).  
Make use of the auxiliary equations, we have the following equations in matrix form: 
 
 

 

1 0 1 0
0 1 0

0 0
0 0

t

x

t

x

uu
uu

dt dx du
dt dx d


 

    
          
    
          

      (24) 

 
Setting the determinant of the coefficient matrix to zero gives 
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2

22 ( ) 0dx dxu u
dt dt

      
 

 

  

  dx u
dt

    

 
which are the characteristics equations.  
 
The compatibility equations can be found to be  
 

  constantu 
 


 along  dx u

dt
   .    (25) 

 
Eq. (25) can be rewritten as 
 

  0u u
t x
  
 

           
     (26a) 

  0u u
t x
  
 

           
     (26b) 

 
which are two decoupled equations describing wave disturbances 'advected' by the respective propagation speeds.  

/u    are known as the Riemann invariants, as said before. 
 
Equations (26) can also be obtained using matrix method (see Chapter 1). 
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4.4.3. Discretization for the Shallow Water Equations 
 

4.4.3.1. Forward-backward scheme 
 
We know that FTCS is unstable for pure advection equations, and this is also true to the shallow water equations.  
 
But, we can obtain a stable scheme if we use backward scheme for the second equation. Let's look at the simper 
case of u =0, i.e., there is not mean flow: 
 

  2
1

2

0

0

n
t x

n
t x

u

u

  

  





 

 
       (27) 

 
Since forward scheme is used for the first equation and backward scheme used for the second, the overall scheme 
is called forward-backward scheme. We can show that it is conditionally stable. 
 
 
Stability Analysis 
 
Assume that 
 

exp( )

exp( )

n n
j j

n n
j j

u A ikx

B ikx



 




        (28) 

 
Note here A and B could be complex so as to allow possible phase difference between u and . 
 
Plug (28) into (27)  
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1

1 1

( ) ( ) 0
2

( ) ( ) 0
2

n n n ik x ik x

n n n ik x ik x

tA B e e
x

tB A e e
x

  

  

   

    


   




   


    (29) 

 
or 

( 1) sin( ) 0

( 1) sin( ) 0

tA iB k x
x

tB i A k x
x



 


   




    


     (30) 

 
or 

01 sin( )

sin( ) 1 0

t Ai k x
x

ti k x B
x



 

                         

   (30') 

 
(30') is a simultaneous linear system of equations for A and B. It has non-trivial solutions if and only if the 
determinant of the coefficient matrix equals to zero.  
 
  2 2[2 ] 1 0a      [where / sin( )a t x k x    ] 
 

2 2 22 (2 ) 4
2

a a


    
      (31) 

If the radical is negative, then| | 1  . I.e., if 
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2 2(2 ) 4a   

 
2| 2 | 2a   

 
22 2 2a     

 
22 2a   is always satisfied, in addition, 

 
2 4a     

 
2
sin( )

xt
k x


 

 
 , for it to be valid for all k, we require  

 
2 xt 

 


   or  2t
x

  
 


        (32) 

 
which is the stability condition!  Here   is the disturbance propagation speed in the absence of base-state 
advective flow.  
 
When the mean flow is non-zero, and when the advection terms are treated using the upstream-in-space, forward-
in-time scheme, the condition should be 
 

| | / 2
xt

u


 
 

. 
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Note the factor of 2 in the condition – the use of forward-backward scheme actually allows a Courant number of 2 
relatively to the gravity wave to be used! This is due to the fact the backward scheme is actually kind of 'implicit' 
scheme. 

4.4.3.2. Centered-in-time (leapfrog) Center-in-Space (CTCS)  scheme 
 

2 2 2

2 2 2

0
0

t x x

t x x

u u u
u u

   
    

  
  

 

 
(here we assume a non-staggered grid) 
 
Similar stability analysis leads to: 
 

| |
xt

u


 
 

       (33) 

 
which is twice as restrictive as that for forward-backward scheme. Also it contains a computational mode. 
 
 
Grid Splitting 
 
The above CTCS scheme used non-staggered grid.  
 
When using non-staggered grid for the above equations, we can run into the grid-splitting problem. We discussed 
this issue in the past. 
 
One way of avoiding grid splitting is to use staggered grid – in which different variables are located at different 
points of a grid mesh. 
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Let's stagger u and  (h in the figure) in the following way: 
 

 
 

Our FD equation using CTCS scheme is then 
 
 

2 2

2 2

0 at u point
0 at  point

t x x

t x x

u u u
u u

   
     

  
  

    (34) 

 
Note the key difference in the third term of each equation from the previous non-staggered CTCS scheme. Also the 
equations are solved at different grid point. 
 
Stability analysis will show that the stability condition is  
 

| | 2
xt

u


 
 

 

 
which, for zero mean flow case, is twice as restrictive as the non-staggered version (because of the factor of 2 in 
front of phase speed  ). 
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However, since the pressure gradient force and velocity divergence terms are differenced over one x interval 
instead of over 2x, and these are terms responsible for the gravity wave propagation, the solution should be more 
accurate, since the effective grid spacing is half as large. 
 

4.4.3.3. Treatment of insignificant fast modes 
 
(Reading: Durran Chapter 7 – Physically insignificant fast waves) 
 
We obtained earlier the phase speed of shallow water waves: 
 
  c u gH   
 
it contains two modes. The slower advective mode and the faster gravity wave (GW) mode: 
 

~ 10 /u m s  
 

~ 10 10000 ~ 200 /gH m s for external gravity waves 
 
| |u gH  for many problems. 

 
Gravity waves are not important in global coarse-resolution (effective grid spacing > 100 km) NWP models in 
which the resolutions are usually too coarse to resolve them adequately anyway. 
 
GWs are often important for mesoscale (~100 km in scale) atmospheric flows. For mesoscale NWP models, often, 
compressible equations are used which support fast sound waves – so sound wave play a similar role as the gravity 
waves in large scale model in limiting the time step size (when using explicit schemes). 
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When the fast mode is not important, we don’t want it to be the one that limits the time step size. 
 
There are in general two ways to deal with this problem – one is to treat the terms responsible for the fast modes 
implicitly, and the other uses different time step sizes for fast and slow modes  and the method is called mode 
splitting method. ARPS, MM5 and WRF models use the latter to deal with fast sound waves (hence the large and 
small time steps, dtbig and dtsml you find in arps.input).  
 

4.4.4.4. Semi-implicit method  
 
Since the PGF term in u equation and the velocity divergence term in  equation are responsible for gravity waves, 
we can treat them implicitly, so that hopefully the gravity wave mode no longer limit the time step size.  
 
Again we look at the non-staggered case: 
 

2

2 2 2
2

2 2 2

0

0

t

t x x
t

t x x

u u u

u u

   

    

  

  
       (35)

 
The time averages makes the scheme implicit. Since only some of the terms are treated implicitly, the scheme is 
called semi-implicit. 
 
Stability of the system – only the advective velocity u  appears in the stability condition therefore much larger time 
step can be used (see Durran 7.2.3; Mesinger and Arakawa Chapter 4 section 6). 
 
Analysis shows that the fast mode in the numerical solution is actually slowed down – i.e., there is a lagging phase 
error with this mode – it is okay if this mode is consider unimportant, like the sound waves in the atmosphere or 
the gravity waves in large-scale models. 
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Solution procedure for (35) 
 
1)  Computer n+1 for all j by eliminating un+1 from the 2nd equation using the first: 
 

2
1 1 1 1

2 22 2
4

n n n n
j j j j

t f
x

      
 

      
, 

 
with the right hand side being known. 

 
2)  Two effectively decoupled tridiagonal systems of equations (for 1D problems) have to be solved, one for even j 

and one for odd j (can lead to grid splitting). 
 
3). Once n+1 is known, we can plug it into u equation to obtain un+1. 
 
4)  If a staggered grid is used, then only one tridiagonal system of equations has to be solved. The total amount of 

calculation is about the same as the non-staggered case because twice any many grid points are now involved. 
 
5)  For 2D or 3D problems, the semi-implicit scheme results in a Helmholtz equation that can't be as easily solved 

as the 1D tridiagonal equation.  
 

Tapp and White is one of the first to use semi-implicit method in a compressible mesoscale model of the UK 
Met Office (Tapp and White 1976 QJRMS). 
 

 
Derivation of f in the above equation: 
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2 2 2 2 2 2
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u u tu u t
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2

2 2 2 0
t
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2 2 2 2
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2
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2 2 2

21 1 1
2 2 2 2 2 2 2

2 ( ) ( )

2 2 ( ) 2 ( ) ( )
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x x x
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x x x x x x x
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1 2 1

2 2

1 1 1
2 2 2 2 2 2

( ) ( )

2 2 2 ( ) ( )

n n
x x

n n n
x x x x x x

t

tu t u tu u t

   

        

 

  

  

           
 

 
1 2 1

2 2

1 1 2 1
2 2 2 2 2 2

( ) ( )

2 ( ) 2 ( ) ( )

n n
x x

n n n
x x x x x x

t

t u u t u u

   

        

 

  

  

            
 

 
1 1 2 1

2 2 2 2 2 22 ( ) 2 ( ) ( )n n n
x x x x x xf t u u t u u                        in the above. 

 

Note that 2 2
2 2 2

2
( )

(2 )
j j j

x x x
  

     



 and terms without superscript are evaluated at time level n. 
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4.4.4.5. Mode-splitting Method 
 
Another way of dealing with fast modes in a modeling system is to use the ‘mode-splitting’ method. Klemp and 
Wilhemson (1978) were the first to apply such a method to a full atmospheric model, a 3D compressible cloud 
model. In the following, we look at (2D) equations for a compressible atmospheric that are more like those used in 
the Advanced Regional Prediction System (Xue et al. 2000 MAP): 
 

1 '
u

u u u pu w D
t x z x

   
    

   
   

1 ' ' '
w

w w w p gpu w g D
t x z z p


  

   
      

   
   

2' ' ' 0s
p p p u wu w gw c
t x z x z

                 
  

' ' 'u w w S
t x z z
      

   
   

  

 
They are, of course, the horizontal and vertical momentum equations, the pressure equation and potential 
temperature equations. The pressure equation is derived from mass continuity equation for density employing the 
equation of state. Direct adiabatic equation on pressure is neglected. The base state variables (with overbar) are 
assumed to be horizontally homogeneous and hydrostatic.  
 
The above equations are be re-written as the follow, where UADV, WADV, PADV and TADV represent the 
advection terms for u, w, p and potential temperature, respectively. 
 

1 '
u u u

u p UADV D F D
t x
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1 ' ' '
w w w

w p gp WADV g D F D
t z p


  

 
       

 
   

2'
s p

p u wgw c PADV F
t x z

             
  

' TADV S D F D
t   


     


  

 
In the above equations, all terms related to the fast acoustic modes are placed on the left hand side of the equations, 
while not connected with the acoustic modes, i.e., those corresponding to the ‘slow’ modes in the system are placed 
on the right hand side and denoted F. 
 
Leapfrog scheme is used for the large time step ( t  ) terms. Forward-backward scheme is used for the horizontal 
acoustic waves (the horizontal divergence term in p' equation) in the small time step (  ) integration. Vertical 
acoustic waves are treated implicitly, by calculating the vertical pressure gradient term and vertical divergence 
term in w and p equations, respectively, as their average between the current ( ) and future time (   ) levels. 
 
Here 2 t m    , m is an integer larger or equal to 1. In some situations (e.g., when large w prevents the use of 
large t  while   is not subject to the small dz limitation due to the use of implicit scheme in the vertical), we 
might be allowed to use 2 t   , that is, the ‘small’ time step is larger than the ‘larger’ time step. 
 

1 ' t t t
x u u

u u p F D
  


 




   


, 

 
1 '0.5 ' 0.5 ' t t t

z z w w
w w gpp p F D

p

   
   

  


         

, 
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2' ' 0.5 0.5 t
s x z z p

p p gw c u w w F
  

         



         

, 

 
' ' t t tF D
  

 
 






 


, 

 
where the small time steps start at t t   and end at t t  .  The diffusion terms D are evaluated at the past time 
level to make the large time step integration ‘forward’ relative to these terms for conditionally stability. Actually, 
in the ARPS, the vertical diffusion terms are treated implicitly also to avoid strong limitation on t  when vertical 
diffusion is very strong in convectively unstable boundary layer (where and when the vertical mixing coefficient is 
large from the PBL scheme). 
 
 
Skamarock and Klemp (1992) discuss that stability issues associated with the mode-splitting methods as applied to 
compressible system of equations.  See also Klemp and Wilhemson (1978). 
 
References: 
 
Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. 
Atmos. Sci., 35, 1070-1096. 
 
Skamarock, W. C., and J. B. Klemp, 1992: The stability of time-split numerical methods for the hydrostatic and 
nonhydrostatic elastic equations. Mon. Wea. Rev., 120, 2109-2127. 
 
Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS) - A 

multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I:  Model dynamics and 
verification. Meteor.  Atmos. Phy., 75, 161-193. 
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4.4.4. The Arakawa Grids  
 
(p.47 in Mesinger and Arakawa 1976) 
 
Arakawa (Arakawa and Lamb 1977) introduced a variety of staggered grids when trying to find the most accurate 
method for handling geostrophic adjustment process, which we know relies on inertia gravity waves. Inertia 
gravity waves are dispersive, they disperse ageostrophic energy. 
 
To describe inertia GW, we need to include rotational effect into the shallow water equations: 
 

0u hg fv
t x

 
  

 
 

0v hg fu
t y

 
  

 
 

0h u vH
t x y

   
      

 

 

For 1-D version of this problem, i.e. for 0
y




 case, the dispersion equation for the exact solution is 

 
2 2 1/ 2( )f k gH   . 

 
Arakawa defined 5 different grids, all of which has the same number of dependent variables per unit area – so that 
the computational time is about the same. 
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For each of the above grid, the finite difference equation can be written as  
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We want to find the numerical dispersion relations and compare them with the exact solution.  For 1-D problem, 
the dispersion relations are (note  here is our ,  d = x, the time derivative terms are not differenced, i.e., remain 
in their continuous form): 


 
 
They are plotted in the following figure: 
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The phase speed and group velocities for each of these grids can be plotted together with the exact solution: 
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We can see that for the 1-D problem, B and C grid perform the best. 
 
A and D are not good at all. Energy of waves shorter than 4x propagates in the wrong direction. 
 
E is reasonable good. 
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For 2-D problem, the /f is plotted in the following:
 
 
  Exact  Solution            B grid           C grid 
 

 
  
 
 
We can see C grid is closest to the exact solution given in (A), and B grid is not as good in 2-D, especially along 
the diagonal direction in the plot. 


