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3.4. Monotonicity of Advection Schemes 
3.4.1. Concept of Monotonicity 
 
When numerical schemes are used to advect a monotonic function, e.g., a monotonically decreasing function of x, 
the numerical solutions do not necessarily preserve the mononotic property – in fact, most of the time they do not, 
and the errors tend to be large near sharp gradient. This is illustrated in the following: 
 

 
 
A few example solutions are given below: 



3-2 

 



3-3 

 
Monotonic numerical schemes are ones which, given an initial distribution which is monotonic before advection, 
produce a monotonic distribution after advection. 
 
A consequence of this property is that monotonic schemes neither create new extrema in the solution nor amplify 
existing extrema. 
 
S.K. Godunov (1959) showed that no schemes having greater than first-order accuracy in space can be monotonic 
by construction (i.e., without using some artificial modification to ensure monotonicity). The highly dissipative 
upstream scheme is the classic example of a monotonic scheme.  
 
Monotonic schemes are widely used in computational fluid dynamics because they do not allow the Gibbs 
Phenomenon to occur. This phenomenon results from attempting to represent a sharp gradient or discontinuity by a 
truncated number of waves, and always produces "undershoots and overshoots" relative to the amplitude of the 
initial distribution.  
 

• These oscillations typically appear in the "wake" of a traveling wave which exhibits a sharp gradient, but do 
not necessarily grow in time.  

• They are short waves that become noises in the solution – the damping of them results in smoothing of 
numerical solution.  

• The oscillations can cause positive-definite fields, such as mass and water, to turn negative. 
 
The Gibbs phenomenon is illustrated in the figure below, which shows how a square wave is represented by 
various numbers of waves in a Fourier expansion. Even if 100 terms are retained in the expansion, small over- and 
under-shoots remain. Monotonic schemes do not allow such oscillations to occur, i.e., one can think of the 
oscillations being removed by very selective damping. 
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Spectral methods use truncated spectral series to represent variable fields – they are particularly suspect to the 
Gibbs errors. 
 

 
 
Monotonic schemes are often constructed by examining local features of the advected field, and adjust the 
advective fluxes of certain high-order schemes explicitly so that no new extrema is created in the solution.  
 

3.4.2. Two basic classes of monotonic schemes 
 
One is called the Flux-corrected transport (FCT) scheme, original proposed by Boris and Book (1973) and 
extended to multiple dimensions by Zalesak (1979).   
 
With this scheme, the advective fluxes are essentially a weighted average of a lower-order monotonic scheme 
(usually 1st-order upwind) and a higher-order non-monotonic scheme. The idea is to use the high-order scheme as 
much as one can without violating the monotonicity condition. Details can also be found in Section 5.4 of Durran's 
book. In the ARPS, the FCT scheme is available as an option for scalar advection – it is three to four times as 
expensive as a regular 1st or second advection, however. 
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The other class is the so-called flux limiter method. With this method, the advective fluxes of a high-order scheme 
is directly modified (limited by a limiter) and the goal is that the total variation of the solution does not increase in 
time and this property is usually referred to as total variation diminishing (TVD).  
 
The total variation of a function f is defined as  
 

 

 
A TVD scheme ensures that  TV(fn+1) £ TV(fn ).  
 
Sweby (1984) presented a systematic derivation of the flux limiter for this class (see also Durran Section 5.5.1). 
 
With both methods, the flux correction or limiting is done grid point by grid point – in effect, the coefficients of the 
finite difference schemes are solution dependent therefore they are often called non-linear schemes. 
 
Recommended Reading: Sections 5.2.1, 5.2.2., 5.3-5.5 of Durran. 
 
Summarizing comments: 
 
By now, you should have realized that no scheme is perfect, although some is better than the others. When we 
design or choose a scheme, we need to look at a number of properties, including accuracy (in terms of amplitude 
and phase), stability (implicit schemes tends to be more stable), computational complexity (implicit schemes cost 
more to solve per step), monotonicity (can we tolerate negative water generation?), and conservation properties etc. 
You need also consider the problem at hand – e.g., does it contain sharp gradient that is important to your solution? 
What is your target computer?  
The computational and storage requirement are other factors to consider. 
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3.5. Multi-Dimensional Advection 
 
Reading: Durran section 3.2.1. Smolarkievicz (1982 MWR). 
 
Similar to the diffusion or heat transfer equations, there are three general approaches for solving multi-dimensional 
advection equations, namely: 

 
1) Fully multi-dimensional methods 
2) Direct extensions of 1-D schemes 
3) Directional splitting methods 

 
We will look at each in the following. 
 

3.5.1. Direct Extension 
 
Many 1-D advection schemes can be directly extended to multiple dimensions. 
 
Multi-dimensional extension of 1-D explicit schemes often has a more restrictive stability condition.  
 
We will look at the 2-D leapfrog centered scheme first.  
 
For equation 
 

,       (31) 

 
the leapfrog centered discretization is 
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   (32) 

 
 

 
Let the individual wave component be  
 

       (33) 
 
where k and l are wave number in x and y directions, respectively. 
 
Substituting (33) into (32) and solve for l, you can obtain (do it yourself): 
 

 (34) 

 
Similar to the 1-D case, if  
 

³ 0,      (35) 

 
then , the scheme is stable (and has no amplitude error). 
 
Inequality (35) is satisfied when  
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.      (36) 

 
Let's consider the simpler case of Dx = Dy = d, and  rewrite  
 

cx = us cos(q), cy = us sin(q),  
 
where us is the flow speed, (36) then becomes 
 

 .     (37) 

 
Since we want (37) to be satisfied for all possible waves, we choose the most stringent case of sin (kDx) = 1 and 
sin(lDy) = 1, (37) the becomes 
 

. 

 
The maximum value of  is  which occurs when q = p/4, the result is the stability condition for 2-
D advection equation in the case of Dx = Dy: 
 

   or        (38) 

 
i.e., the Courant number has to be less than 0.707, instead of 1 as we get for 1-D case. 
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P.S. To find the max value of , set  à  à 

  à . The maximum value occurs when . 

 
 
The reason that Dt has to be about 30% smaller is explained by the following diagram: 
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As seen from the figure, for a wave propagating from SW to NE, the effective distance between two grid points is 
d/  instead of d.  A wave signal cannot propagate more than one (effective) grid interval with this explicit 
second-order leapfrog-centered scheme for stability. 
 
Similar reduction of time step size occurs for most other explicit schemes, including the upwind scheme. 
 
 
Note: For the three dimensional case, with the same FTCS scheme, the stability requirement is 
 

. 

 
For the Dx = Dy = Dz =d case, let 
 

 
 

where q  and f are, respectively, the azimuth and elevation angles of the velocity vector having speed us. 
 

. 

 
Since we want the above satisfied for all possible waves, we choose the most stringent case of sin (kDx) = 1 and 
sin(lDy) = 1 and sin(mDz) = 1, then the above condition becomes 
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The maximum possible value of  is  which occurs when  

 
when q = p/4 and f=p/6. 
 
P.S. To find the max value of , set  
 

  

 
or  
 

 
 

 

They are satisfied when  and  and the maximum value is  

 

.  

 
Such a situation occurs when the wind vector points from near lower left corner of a cube to the far upper right 
corner of the cube. The effective grid spacing is the distance from the near lower left corner at (0, 0, 0) to a plane 
cutting through (1, 0, 0), (0, 1, 0) and (0, 0, 1).  
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3.5.2. Fully Multi-Dimensional Method 
 
Not all direct extensions of 1-D schemes are stable, unfortunately. 
 
Consider the Lax-Wendroff (also called Crowley) scheme we derived earlier using both second-order interpolation 
method (section 2.2.3 of Chapter 2): 
 
1-D Lax-Wendroff or Crowley scheme: 
 

    (39) 

 
The scheme is stable when |µ| £ 1. 
 
Using the notation of finite-difference operators, (39) becomes  
 

.      (40) 

 
Direct extension of (40) into 2-D is: 
 

.  (41) 

 
It turns out that (41) is absolutely unstable.  This is because the cross-derivative terms are neglected! 
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To see it, we need to go back to original derivation of the Lax-Wendroff scheme: 
 

      (42) 

 
Use    ut = -cx ux - cy uy     
 
and  utt = -cx utx - cy uty = cx2 uxx + cy2 uyy + 2cxcy uxy , 
 
and replace the spatial derivatives with the corresponding finite differences, (42) becomes  
 

 (43) 

 
Clearly, the last term on the RHS is additional, compared to (41). 
 
Note that we can also obtain (43) using the characteristics method plus quadratic interpolation, as long as all terms 
in the second-order 2-D polynomial are retained. 
 
Equation (43) is an example of fully multidimensional scheme, which is different from the direct extension of 1-D 
counterpart.  
 
Smolarkiewicz (1982 MWR) discuss the MD Crowley scheme in details (handout). 
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3.5.3. Directional Splitting 
 
It turned out that by using directional splitting method (i.e., applying 1-D scheme in one direction at a time), the 
effect of cross-derivative terms can also be retained and a stable scheme result, with the Lax-Wendroff scheme. 
 
The algorithms is  
 

     (44a) 

    (44b) 

 
In this case, we preserve the stability of each step and l = lx ly.  
 
 
With the above scheme, we have  
 
Advantages: 
 
1.  1-D advection is straightforward – properties of schemes are well understood. 
2.  The time step constraint is not as severe as for true multi-dimensional problems.  
 
Disadvantages: 
 
1.  We implicitly assume that features move obliquely to the grid may be represented as a series of orthogonal steps 

in the coordinate directions: 
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In an implicit scheme, where the time step can be large, these errors can be substantial.  
 
 


