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3.3. Phase and Amplitude Errors of 1-D Advection Equation 
 
Reading: Duran section 2.4.2. Tannehill et al section 4.1.2. 
 
The following example F.D. solutions of a 1D advection equation show errors in both the wave amplitude and 
phase. 
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In this section, we will examine the truncation errors and try to understand their behaviors. 
 

3.3.1. Modified equation  
 
The 1D advection equation is  
 

.       (5) 

 
Upwind or Donor-Cell Approximation 
 
We have discussed earlier the stability of the forward-in-time upstream-in-space approximation to the 1D 
advection equation, using the energy method. The FDE is 
 

      (6) 

 
Here we assume c>0, therefore the scheme is upstream in space.  
 
We can find from (6) that  
 

 (7) 

 
and the right hand side is the truncation error. The scripts x and t denote partial derivative. 
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An analysis of t can reveal a lot about the expected behavior of the numerical solution, and to investigate, we 
develop what is known as the Modified Equation. In this method, we rewrite t so as to illustrate the anticipated 
error types. 
 
 
Dispersion Error – occurs when the leading terms in t have odd-order derivatives. They are characterized by 

oscillations or small wiggles in the solution, mostly in the form of moving waves. 
 
 
 
 
 
 
 
 
 
In the above example, the thick line is the true solution and thin line is the numerical solution. 
 
It's called dispersion error because waves of different wavelengths propagate at different speed (i.e., wave speed = 
a function of k) in the numerical solution due to numerical approximations – causing dispersion of waves. For the 
PDE, all Fourier components described by Eq.(5) should move at the same speed, c. 
 
 
Dissipation Error – occurs when the leading terms in t have even-order derivatives. They are characterized by a 

loss of wave amplitude. The effect is also called artificial viscosity , which is implicit in the 
numerical solution. 
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The combined effect of dissipation and dispersion is often called diffusion. 
 
 
To isolate these errors, we derive the Modified Equation, which is the PDE that is actually solved when a FD 
scheme is applied to the PDE. 
 
 
The modified equation is obtained by replacing time derivatives in the truncation error by the spatial derivatives.   
 
Let's do this for Eq.(7).  
 
To replace utt  in right hand side of (7), we take ( Eq.(7)  )t  [note here we use the FDE not the PDE] à 
 

   (8) 

 
and  – c ( Eq(7) )x 
 

 (9) 
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then add (8) and (9) à 
 

. (10) 

 
Similarly, we can obtain other time derivatives, uttt  found in (7) and (10) and uttx and uxxt found in (10). They are 
(see Table 4.1 of Dannehill et al): 
 

, 
,        (11) 
. 

 
Combining (7), (10) and (11) à 
 

 (12) 

 

where . 

 
Eq.(12) is the modified equation, which shows the error terms relative to the original PDE. 
 

Note that the leading term has as form of  which, for 1- µ > 0, represent the dissipation process and therefore 

the dominant error is of a dissipation nature. 
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Note that if we had used CTCS scheme d2t + c d2xu = 0, then the leading error term in the modified equation would 
be  
 

.      (12) 

 
It contains the third (odd) order derivative, and the dominant error is of the dispersive nature. 
 
 
Returning to the upstream scheme, we find that when µ = c Dt/Dx = 1, the scheme is exact!! The coefficient of the 

leading error term, , is called the artificial viscosity, and when µ ¹ 1, causes severe damping of the 

computational solution (see figure shown earlier).  In fact, the Doner-Cell is well known for its strong damping. 
 
Read Tannehill et al, Section 4.1.2. 
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3.3.2. Quantitative Estimate of Phase and Amplitude Errors 
 
Reading: Sections 4.1.2 – 4.1.12 of Tannehill et al.  
               Sections 2.5.1 and 2.5.2 of Durran. 
 
By examining the leading order error in the modified equation, we can find the basic nature of the error. To 
estimate the error quantitatively, we use either analytical (as part of the stability analysis) or numerical method. We 
will first look at the former. 
 
 
With the stability analysis, we were already examining the amplitude of waves in the numerical solution. For a 
linear advection equation, we want the amplification factor to be 1, so that the wave does not grow or decay in 
time. The von Neumann stability analysis actually also provides the information about propagation (phase) speed 
of the waves. Any difference between the numerical phase speed and true phase speed is the phase error. 
 
Going back to the figure we showed at the beginning of this section (section 3.3) and reproduced in the following, 
we can see that the first-order FTUS scheme has strong amplitude error but little phase error, while the 2nd-order 
CTCS scheme has large phase error but small amplitude error. The 4th-order CTCS scheme has a smaller phase 
error than its 2nd-order counterpart. 
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Amplitude Error 
 
Recall that in the Neumann stability analysis, the frequency w can be complex, and if it is, the waves will either 
decay or grow in amplitude – which is entirely computational for a pure advection problem. This is so because 
 
if w is real,  
 

=1   à no change in amplitude. 
 

| | |exp( ) | |cos( ) sin( ) |i t t i tl w w w= - D = D + D
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if w is complex, i.e., w = wR + i wI , 
 

. 
 
When wI  > 0, | l | > 1, the wave grows and when wI  < 0, | l | < 1 the wave decays (is damped). | l | is the 
amplitude change per time step and | l |N   is the total amplitude change after N steps.  
 
If, e.g., | l | = 0.95, then after 100 steps, the amplitude becomes 5.92 x 10-3! 
 
Remember for PDE  ux + c ux = 0, the frequency w is always real. Assuming wave solution u = U exp[ i (kx - wt) ], 
you can find w = kc, which is called the dispersion relation in wave dynamics. For the current problem the phase 
speed of waves is w/k = c which is the same for all wave components. Therefore the analytic waves are non-
dispersive.  
 
Phase Error 
 
For convenience, let's define  
 

wa  = frequency of the analytical solution (PDE) 
wd = frequency of discrete solution (FDE) 

 
then  

 
 
 
Recall that if  z = x + i y  ( ), we can use the polar form and write  
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 z = | z | exp( i q )  or  z = | z | (cosq + i sinq )   
 
where | z | = ( x2  + y2 )1/2 is called the modulus of z. 
 
Thus,  
 

la = | la | exp( i qa ) = exp( i qa )   ( because | la | = 1 for advection problem). 
 
We define   qa = the phase change per time step of the analytic solution 
 
  = - wa Dt   ~ frequency ´ time step size 
 
 
For the finite difference solution, w will, in general, be complex, i.e., w has an imaginary part: 
 

wd = (wd)R + i (wd)I 
 
\ ld = exp[ (wd)I Dt ]  exp[ -i (wd)R Dt ] = | ld | exp( i qd )à   (13) 
 
qd º - (wd)R Dt  is the phase change per time step associated with the F.D. scheme.  
|ld| is not necessarily 1 here. 
 

From (13), we can see that .      (14) 
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for the same wave number, and the ratio tells us about the relative phase error. 
 
If cd / ca < 1, the F.D. solution lags the analytic solution (moves slower) 
If cd / ca > 1, the F.D. solution leads the analytic solution (moves faster) 
If cd / ca = 1, the F.D. solution has no phase error 
 

a) First-order upwind scheme 
 
Let's now apply these notations of phase and amplitude error to the first-order upwind (donor-cell) scheme. 
 

       (15) 

 
Using Neumann method, assume that , you can show for yourself that 
 

ld = 1 - µ + µ cos(kDx) – i µ sin(kDx )     (16) 
 
where µ = cDt/Dx is the Courant number. 
 

| ld |2 = 1 + 2µ (µ - 1) [1- cos(kDx) ] 
 

since 1- cos(kDx) ³ 0,  
 

| ld | £ 1 when  0£ µ £ 1.    When  c<0, µ<0, | ld |2 = 1 + 2µ (µ - 1) [1- cos(kDx) ] > 1, the scheme is unstable. 
 
Look at the 2Dx wave, kDx = (2p/w.l.)  Dx = 2p/(2Dx) Dx = p 
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| ld |2 = 1 + 2µ (µ - 1) [1+1] = 1 + 4µ ( µ - 1).   (17) 

 
When µ = 1, | ld | = 1, there is no amplitude error. 
 
When µ = 0.5, | ld | = 0, the 2 Dx wave is completed damped in one time step!!  
 
For a 4Dx wave and when µ = 0.5, | ld | = 0.5 à 4Dx waves are damped by half in one time step! 
 
Therefore, the upwind advection scheme is strongly damping. It should not be used except for some special reason. 
 
The following figure shows the amplification modulus for the upwind scheme plotted for different values of  µ 
(u in the figure), the Courant number.  
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b in the figure is our kDx, and pDx/L £ kDx £ p. The lower and upper limits of kDx correspond to 2L and 2Dx 
waves, respectively. L is the length of the computational domain. 
 
This is so because the shortest wave supported is 2Dx in wavelength, à 
 

kDx = 2p / (2Dx) Dx = p 
 
The longest wave supported by a domain of length L is 2L in wavelength à  
 

kDx = 2p/(2L) Dx = pDx/L  
 
kDx à 0 when L à ¥. 
 
For example, for a 4Dx wave, kDx = p/2 
 
From the figure, we see that:  
 
When µ = 1, the amplification factor is 1, there is no amplitude error for all values of kDx ( b ), i.e., for all waves. 
 
When µ > 1, the amplification factor is > 1 for all kDx except for wave number zero. The amplification factor is the 
largest for the shortest wave (kDx = p), implying that the 2Dx wave will grow the fastest when µ >1, in another 
word, the 2Dx wave is most unstable. 
 
This is why we see grid-scale noises when the solution blows up! 
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When µ < 1, all waves are stable but are significantly damped. Again, the amplitude error is larger for shorter 
waves (larger kDx). For Courant number of 0.75, the amplitude of the 2Dx wave is reduced by half after one single 
time step. The error is even bigger when µ = 0.5.  
 
 
From the above, we can see that the numerical solution is poorest for the shortest waves, and as the wavelength 
increases, the solution becomes increasingly accurate. This is so because longer waves are sampled by a large 
number of grid points and are, therefore, well resolved. 
 
2Dx wave is special in that it is often the most unstable when stability criterion is violated, and when the solution is 
stable it tends to be most inaccurate. 
 
For general cases, it is impossible to ensure µ =1 everywhere unless the advection speed is constant. Therefore, 
strong damping is inevitable with the upwind scheme. You will see severely smoothed solution when using this 
scheme. 
 
The damping behavior of the upwind scheme can also be understood from the modified equation (13) discussed 

earlier. The leading error term is of the form  which represents dissipation/diffusion. 

 
 
Now, let's examine the dispersion (phase) error of the upwind scheme. 
 
According to earlier definitions and (16) 
 

qa = - wa Dt   = - c kDt = - µ kDx 
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From the above, the ratio of the numerical to analytic phase speed, , can be calculated. 

 
 
In the following figure this ratio is plotted as a function of b (kDx) for Courant number µ (u in the figure) = 0.25, 
0.5 and 0.75. 
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We can see that there is no phase error (corresponding to the unit circle) when µ =0.5. 
 
All waves are slowed down when µ < 0.5. All waves are accelerated when 0.5 < µ < 1.0.  
 
Again the phase error is larger for short waves (larger b, i.e., kDx). The error is greatest for the 2Dx wave. 
 
For µ=0.25, qd à 0 when kDx à p, i.e., 2Dx wave does not move at all! 
 
Because the F.D. phase speed is dependent on wavenumber k, the numerical solution is dispersive, whereas the 
analytical solution is not. 
 
From the above discussions, we see that when using the upwind scheme the waves that move too slow are also 
strongly damped. 
 
The upwind advection scheme is actually a monotonic scheme – it does not generate new extrema (minimum or 
maximum) that are not already in the field. For a positive field such as density, it will not generate negative values. 
We will discuss more about the monotonicity of numerical schemes later. 
 
 
Note that for practical problems, c can change sign in a computational domain. In that case, which point (on the 
right or left) to use in the spatial difference depends on the local sign of c:   
 

   when c>0 

  when c<0     (18) 
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Using the following definitions: 
 

c+= ( c + |c| )/2, c- = ( c - |c| )/2,  
 
the upwind scheme in (19) can be written into a single expression 
 

    (19) 

 
Substituting c+ and c- into (18) yields 
 

.  (20) 

 
One can see that the 2nd term on RHS is the advection term in centered difference form and the 3rd term has a 
form of diffusion. If one uses forward-in-time centered-in-space scheme to discretize equation (5), one will get a 
FDE like (20) except for the 3rd term on RHS. The scheme is known as the Euler explicit scheme, and the stability 
analysis tells us that it is absolutely unstable. So it should never be used. Apparently, the 'diffusion term' included 
in the upwind scheme stabilizes the upwind scheme – it is achieved by damping the otherwise growing short 
waves. 
 
The included 'diffusion term' also introduces excessively damping to the short waves, as seen earlier. One possible 
remedy is to attempt to remove this excessive diffusion through one or several corrective steps. This is exactly 
what is done in Smolarkiewicz (1983, 1984) scheme, which is rather popular in the field of meteorology. 
 
Because Smolarkiewicz scheme is based on the upwind scheme, it maintains the positive definiteness of the 
advected fields therefore is a good choice for advecting mass and water variables. 
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References: 
 
Smolarkiewicz, P. K., 1983: A simple positive definite advection scheme with small implicit diffusion. Mon. Wea. 
Rev., 111, 479-486. 
 
Smolarkiewicz, P. K., 1984: A fully multidimensional positive definite advection transport algorithm with small 
implicit diffusion. J. Comput. Phys., 54, 325-362. 
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b). Leapfrog scheme for advection 
 
In this section, we examine a perhaps most commonly used scheme in atmospheric models – the leapfrog centered 
advection scheme. 
 
Here leapfrog refers to finite difference in time – the frog leaps over time level n from n-1 to n+1 – it is a name for 
the second-order centered difference in time. 
 
Leapfrog scheme is usually used together with centered difference in space – and the latter can be of 2nd or higher 
order. 
 
The leapfrog scheme gives us second order accuracy in time. 
 
The PDE is 
 

      (21) 

 
 

 
 and (show it yourself) 
 

    (22) 
 
If ³ 0, then  and there is no amplitude error for all waves. This is the most attractive 
property of the leapfrog scheme. 
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In (22), we see that there are two roots for l - one of them is actually non-physical and is known as the 
computational mode. 
 
Which one is computational and how does it behave? 
 
Let's look at the positive root l+ first: 
 

l+ = | l+ | exp( -i b+ )   
 
where b+ = - qd    (qd is the phase change in one time step for the discretized scheme, as defined earlier). 
 
If  µ £ 1, | l+ | = 1. 
 
 

 
 
where a = , therefore 
 
 . 
 
Now consider the negative root l- : 
 

l- = | l- | exp( - i b- )   
 
If  µ £ 1, | l- | = 1. 
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with the aid of the following schematics, we can see that  
 

  à     .  
 
 

 
 
 
 
 
We see that the phase of the negative root is the same as that of the positive root shifted by p then multiplied by –1. 
 

b b p- ++ = - b p b- +- = +
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What does all this mean then? 
 
For a single wave k, we can write the solution as a linear combination of these two modes (since both modes are 
present): 
 

      (23) 

 
where A and B are the amplitude of these two modes at time 0. 
 
Which root corresponds to the computational mode then? The negative one, the one that give rises to the second 
term in (23), because of the following observations: 
 
(1) The computational mode changes sign every time step. The period of oscillation is 2Dt.  
 
(2) It has a phase opposite to the physical mode, therefore it propagates in the opposite direction from the physical 

mode. 
 
(3) Because of the 2Dt period, the computational mode can be damped effectively using a time filter, which will be 

discussed in next section. 
 
(4) The presence of the computational mode is due to the use of three time levels, which requires two initial 

conditions instead of one – the first and second time step integrations start from time level –1 and 0 
respectively, which are two different initial conditions.  
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In practice, we usually have only one initial condition – we often start the time integration by using forward-in-
time scheme for the first step, i.e., for the first step, we do 

 

 

 
 and for the second, we do 
 

. 

 

An additional note:  when  is used to integrate the advection equation, we can 

experience the grid separation problem, as show schematically below: 
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Due to the layout of the computational stencil, the solution at cross points never knows what's going on at the dot 
points. As the solution march forward in time, the solutions at neighboring points can split away from each other. 
This problem is also related to the use of three time levels, and can be alleviated by the use of Asselin time filter. 
An artificial spatial smoothing term of the form of K¶2u/¶x2 will also help. In practice, other forcing terms in the 
equation can also couple the solutions together. 
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c) Asselin Time Filter 
 
The Asselin (also called Robert-Asselin) time filter (Robert 1966; Asselin 1972) is designed to re-couple of the 
splitting solutions in time and damp the computational mode found with the leapfrog scheme and others. 
 
It is a two-step process: 
 
(1) u is integrated to time level n + 1 using the regular leapfrog scheme, 
 

     (24) 
 
where * indicates values that have not been 'smoothed'. 
 
(2) a filter is then applied to three time levels of data 
 
 .    (25) 
 
Note that the term in second term in (15) is a finite difference version of ¶2u/¶t2 - the diffusion in time which tends 
to damp high-frequency oscillations. 
 
 
If we use (25) in (24), we can do a stability analysis and examine the impact of the time filter on solution accuracy: 
 

     (26) 
 
where a =  and b = (1- e)2  [compare (22) with (26)].  
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If b – a2 ³ 0 (note that this stability condition has also changed), we have  
 
 | l |2  = (e2 + b) ± 2e ( b – a2)1/2. 
 
We can plot this to determine its effect on the solution. 
 
 
We will find that: 
 
(1) amplitude error is introduced by the time filter; 
(2) the time filter reduces the time integration scheme from second-order accurate to first-order accuracy only 
(3) the filter makes the stability condition more restrictive (can use smaller Dt now). 
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We want to use as small a e as possible. Typically e = 0.05 to 0.1. 
 
The leapfrog (2nd or 4th-order) centered difference scheme combined with the Asselin filter is used in the ARPS 
for the advective process (more complex monotonic advection schemes are also available for scalar advection). 
 
Reference: 
 
Robert, A. J., 1966: The integration of a low order spectral form of the primitive meteorological equations. J. 
Meteor. Soc. Japan, 44, 237-245. 
 
Asselin, R., 1972: Frequency filter for time integration. Monthly Weather Review, 100, 487-490. 
 
Reading: Durran Section 2.3.5. 
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d) Adam-Bashforth schemes 
 
Second-order Adam-Bashforth Scheme 
 

 

 
• The RHS is a linear extrapolation of d2xu from n-1 and n to n+1/2, so that the scheme is "centered" in time at 

n+1/2. 
• Second order in time and space 
• Stability analysis shows that  

 

 

 
where . 
 
Note that this scheme is also a 3 time level scheme and 3 time level schemes always have two modes – one 

physical and one computational. We can see that for the physical mode (+ case), l à 1 as s à 0, and for the 
computational mode (minus sign case), l à 0 as s à 0. 

 
If s << 1, we can show that  
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| l- | » 0.5 s (1 + s2 )1/2 
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(You can show it by performing binomial expansion). 

 
Clearly | l+ | > 1 for s ¹ 0 therefore the scheme is absolutely unstable. 
 
However, for small enough values of s (i.e., Courant number), because s is raised to the 4th power, | l+ | can be 

close enough to 1 so that the growth rate is small enough for the scheme to be still usable (especially computational 
diffusion is added to the equation). 

 
One can estimate the growth rate in terms of e-folding time – i.e., the time taken for a wave to growth by a 

factor of e. 
 
However, it is the higher-order Adam-Bashforth (AB) schemes that we are more interested in. The higher-order 

AB scheme can be obtained by extrapolating the right hand side of the equation (i.e., F in ut = F) to time level 
n+1/2, as we do for the 2nd-order AB scheme, but using high-order (e.g., 2nd-order) polynomials, which will also 
involve more time levels. 
 
Third-order Adam-Bashforth Scheme 
 
The 3rd-order AB scheme thus obtained has the form of 
 

 

 
• It involves data at four time levels – require more storage space. 
 
• And it has two computational modes and one physical mode. 
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• The computational modes are strongly damped, however, unlike the leapfrog scheme, so there is no need for 
time filtering. 
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• Most accurate results are obtained for µ near stability limit. This is not true for the leapfrog 4th-order 
centered in space scheme. That solution is more accurate for µ < 0.5 where certain cancellation between time 
and space truncation errors occurs. 
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• Durran (1991 MWR) shows that 3rd-order AB time difference combined with 4th-order spatial difference is 
a good choice – it is in general more accurate than the commonly used leapfrog 4th-order centered-in-space 
scheme. 
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e) Other schemes 
 
There are many other schemes for solving the advection equation. In the following are some of them, given 
together with brief discussions on their important properties. 
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Euler downstream explicit (Euler refers to forward in time) 
 

  - forward-in-time, downstream in space 

 
, 

 
 

 
 

 
 Since , or µ > 0 ,  for at least some wavenumbers. It is absolutely unstable. 

 
Euler-centered explicit (Euler refers to forward in time) 

 

 - forward-in-time, centered in space 
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, 

 
, therefore the scheme is absolutely unstable. 

 
• Both schemes are absolutely unstable. You can show it for yourself.  
• They are of no use. 

 
Lax Method 
 

 

 
• 1st-order in time, 2nd-order in space.  
• Stable when |µ| £ 1. 
• Large dissipation error. 
• Significant leading phase error - waves propagate faster.  

2Dx waves twice as fast when µ=0.2. 
 
Lax-Wendroff 
 

 

 
• Effectively an Euler explicit (FTCS) scheme plus a diffusion term. 
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Its derivation is interesting – it's based the Taylor series expansion in time first: 
 

 

 
and use ut = - c ux  and utt = c2 uxx to rewrite it as  
 

.  

 
It is then discretized in space. 
 

• Stable when |µ| £ 1 
• Amplitude (dissipation) error for short waves 
• Mostly lagging phase error, for short waves. Leading phase error for shortest waves when µ is near 0.75. 

 
We have actually obtained this scheme before based on characteristics and second order interpolation. See Section 
2.3. 
 
MacCormack (an example of two-step predictor-corrector method) 
 

Predictor:   

 

Corrector:  
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• Combination of upwind and downwind steps 
• Intermediate prediction is used in the second corrector step 
• In the corrector step, the time difference is 'backward in time' 
• For linear advection equation, this scheme is equivalent to (you can show this by substituting the 1st eq. into 

the 2nd), therefore its properties are the same as, the Lax-Wendroff scheme. 
 
 
Euler Implicit (Euler refers to forward in time) 
 

 

 

, 

 

, 

 
, 

 

, 

 

, therefore the scheme is absolutely/unconditionally stable. 
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Phase change ratio: . 

 
• 1st-order in time and 2nd-order in space. 
• Unconditionally stable. 
• Relatively small dissipation error, only for intermediate wave lengths.  

No dissipation error for longest and shortest waves. 
• Significant lagging phase error for short waves. 
• Need to solve a coupled system of equations.  

Tridiagonal in 1-D. Block trigiagonal in 2-D. 
 
Time-centered Implicit (Trapezoidal) 
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,   always. Unconditionally stable. 

 
 

 

 

 

 
qa = - µ kDx 

 

Phase change ratio: . 

 
 

• 2nd-order in both time and space. 
• Absolutely stable. 
• No dissipation error for all waves (similar to leapfrog scheme  

which is also 2nd-order accurate in time) 
• Significant lagging phase error for short waves, similar to Euler implicit. 
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Matsuno (forward-backward two-step) Scheme 
 

 

 

 
• 1st-order in time, second order in space 
• Stable when µ  £ 1. 
• Relatively large dissipation and phase error 

 
Leapfrog Fourth-order Centered-in-Space Scheme 
 

 

 
Let's examine a single wave k: 
 

 

 
Substitute the above into the finite difference equation à 
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  à 

 

 à 

 

 à 

 

 

 

. 

 

, , the scheme is stable. 
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Find the maximum value of  within the permissible range of . The maximum 

turns out to be 1.374. Therefore the stability condition is . 
 

 

 
qa = - µ kDx =  - µ b 

 

Phase change ratio: . 

 
 

• 2nd-order in time and 4th-order in space 
• Stable for µ £ 0.728 (more restrictive than 2nd-order) 
• No dissipation error without time filter 
• Also contains computational mode, as all three-time level schemes do 
• Smaller phase error than 2nd-order centered-in-space counterpart 
• Leapfrog scheme can be combined with centered spatial  

difference schemes of even higher order 
 
 

Second and third-order Rouge-Kutta Scheme 
 
One possible form (there is more than one form that is second-order accurate) of 2nd-order Rouge-Kutta scheme 
with centered spatial difference is 
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This scheme is absolutely unstable although the instability is weak. It can be combined with upwind biased 
advection to yield a stable time integration scheme, however. Wicker and Skamarock (1998) discusses applying 
such a scheme to solve a compressible system of equations. 
 
One possible form of 3rd-order Rouge-Kutta scheme with centered spatial difference is 
 

 

  

  

 
The scheme involves three steps, therefore three evaluations of the advection term. The increased cost is somewhat 
offset by its better stability property. As discussed by Durran (page 68-69), for oscillation equations, it is stable for 
kDt < 1.73 while the leapfrog scheme requires kDt < 1 therefore the time step size can be 1.73 times larger. Perhaps 
more attractively, when the 3rd-order Rouge-Kutta scheme is combined with high-order spatial difference for the 
advection term, the maximum stable Courant number is not as much reduced as in the leapfrog case. The following 
table is from Wicker and Skamarock (2002). 
 
The WRF model uses third-order Rouge-Kutta scheme in time combined with upstream-biased 3rd-order or 5th-
order spatial difference for advection. 
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The ability for the scheme to be combined with high odd order spatial difference and be used in split-explicit time 
integration for compressible system of equation, and allowing relatively large time step size is attractive. Third-
order Rouge-Kutta scheme is used in the Advanced Research version of Weather Research and Forecast model 
(WRF-ARW, http://wrf-model.org) . See Durran Section 2.3.6, and Wicker and Skamarock (1998, 2002). 
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3.3.3. Practical Measures of Dissipation and Dispersion Errors 
 
Takacs (1985 Mon. Wea. Rev.) proposed a practical measure for estimating dissipation and dispersion errors based 
on numerical solutions. The methods divide the total mean square error into two parts, one indicative of dissipation 
error and one the dispersion error. 
 
The total mean square error is given as 
 

.       (27) 

 
ua is the analytical solution and ud  the numerical (discrete) solution. 
 
It can be rewritten as (show it yourself): 
 

   (28) 
 

where  are the variance of the ua and ud, respectively. 

 is the covariance between ua and ud and  is the corresponding 

correlation coefficient. 
 
 
Eq. (28) can be rewritten as  
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  (29) 

 
Takacs definite the first two terms of the RHS of (29) as the dissipation error and the third term as the dispersion 
error, i.e.,  
 

     (30a) 
 

      (30b) 
 
We can see that when two wave patterns differ only in amplitude but not in phase, their correlation coefficient r 
should be 1. According to (30a), tDISP = 0. That's a reasonable result. 
 
For your homework No. 5, you will be asked to calculate practical dissipation and dispersion errors based on the 
above formula for advection solutions. 
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2(1 ) ( ) ( )DISP a du ut r s s= -


