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2.3. Quantitative Properties of Finite Difference Schemes 

2.3.1. Consistency, Convergence and Stability of F.D. schemes 
 
Reading: Tannehill et al. Sections 3.3.3 and 3.3.4. 
 
Three important properties of F.D. schemes: 
 
Consistency – An F.D. representation of a PDE is consistent if the difference between  PDE and FDE, i.e., the 

truncation error, vanishes as the grid interval and time step size approach zero, 
 

i.e.,  when . 

 
Comment: 
 

• Consistency deals with how well the FDE approximates the PDE. 
 
Stability –  For a stable numerical scheme, the errors from any source will not grow unboundedly with time. 
 
Comments: 
 

• A concept that is applicable only to marching (time-integration) problems. 
• Generally we are much more concerned with stability than consistency. 
• Some hard work is often needed to establish analytically the stability of a scheme. 

 
Convergence – It means that the solution to a FDE approaches the true solution to the PDE as both grid interval 

and time step size are reduced. 
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Lax's Equivalence Theorem 
 

For a well-posed, linear initial value problem, the necessary and sufficient condition for convergence is that 
the FDE is stable and consistent. 
 
The theorem has been proved for initial value problems governed by linear PDE's (Richtmyer and Morton 
1967). 

 
We will discuss the three concepts one by one. 
 

2.3.2. Consistency 
 
Consistency means   when Dxà 0 and Dtà 0. 
 
Clearly consistency is the necessary condition for convergence. 
 
Example: 
 
Consider a 1-D diffusion equation: 
 

 

 
We use the forward-in-time and centered-in-space (FTCS) scheme: 
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To show consistency, we need to determine the truncation error t. 
 
Using Taylor series expansion method,  
 

 

 

 
Substituting into the FDE, we have  
 

 

 
therefore  
 

. 

 
t à 0 when Dxà 0 and Dt à 0 => the scheme is consistent. 

 
 
A counter example: The Dufort-Frankel method for the same diffusion equations: 
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. 

 
It's a centered-in-time scheme that is 2nd-order accurate in both space and time. 
 
We can find again the truncation error (do it yourself!) 
 

 

 
We can see that  except for the second term. 

 

If  then the scheme is consistent  therefore Dt must approaches zero faster then Dx. 

 

If they approaches zero at the same rate, then , then 

 

,  

 
our equation becomes 
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Thus, we are solving the wrong equation. In fact this equation is hyperbolic instead of parabolic. 
 

Note that if  you might see spurious waves in your solution, due to the hyperbolic nature of the "new" PDE. 

 

2.3.3. Convergence 
 
General Discussion 
 
Definition is given earlier. Symbolically, it is  
 

. 

 
Convergence is generally hard to prove, especially for nonlinear problems. The Lax's Theorem we presented earlier 
is very helpful in understanding the convergence for linear systems, and is often extended to nonlinear systems. 
 
We will also discuss numerical convergence and methods for measuring solution accuracy later. 
 
We will first show a convergence proof for a diffusion problem. Certain concept introduced will be useful later. 
 
Convergence proof for a 1-D diffusion problem 
 
Consider 
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for  

 
which has an initial condition: 
 

. 

 
The B.C. is  
 
 . 
 
This is a well-posed, linear initial value problem (notice the I.C. satisfies the B.C. as well). 
 
First, let's find the analytical solution to the PDE. 
 
Because the problem in linear, we need only to examine the solution for a single wavenumber k, and can assume a 
solution of the form: 
 

 

 
Here Ak is the amplitude and sin gives the spatial structure and the final solution should be the sum of all wave 
components. Note that this solution satisfies the boundary conditions. 
 
Substituting the solution into the PDE, we obtain an ODE for the amplitude Ak: 
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à   

 
à . 

 
It says that the amplitude of the solutions for all wave numbers decreases with time. 
 
From the I.C., Ak(0) = ak, so we have 
 

 

 
and  
   

 
which is the analytical solution to the original diffusion equation.  
 
A numerical approximation to the diffusion equation should converge to this solution as Dx, Dt à 0. 
 
 
Consider the forward-in-time centered-in-space (FTCS) scheme we derived earlier. 
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Goal: Show that  uit à u(x,t) as Dx, Dt à 0. 
 
First, find the numerical solution.  
 
This time, we use the FDE and substitute a discrete Fourier series into the equation. 
 
Let the I.C. be given by  
 

 for i= 0, 1, 2, ….., J 

 
where J+1 = total number of grid points used to represent the initial condition. 
 
The coefficient  is given by a discrete Fourier transform: 
 

 for k=0, 1, 2, …., J. 

 
Note 1: L = JDx. As Dx à 0, Jà ¥, the discrete Fourier series becomes continuous and . 
 
Note 2: The number of harmonics or Fourier wave components that can be represented is a function of the number 
of grid points (J+1), which is the number of degrees of freedom. Spectral methods represent fields in terms of 
spectral components, whose amplitudes are solved for.  
 

The wavenumber for the wave components is  in the above equations. 

Recall that wavelength  
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where k is the number (index) of wave components. 
 
Longest wavelength = ¥ , corresponding to wavenumber zero (k=0). 
 
Next longest wave =  2L (k =1 ) 
 

. 

. 

. 
 
Shortest wave = 2L/J = 2JDx/J = 2Dx. 
 
Comments: 
 

A 2Dx wave is the shortest wave that can be resolved on any grid and it takes at least 3 points to represent a 
wave. 
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2Dx waves often have some special properties. They are also represented most poorly by numerical methods – 
recall that smooth fields are more accurately represented by a finite number of grid points. 

 
As in the continuous case, we examine only one wavenumber k (the solution is the sum of all waves), so for our 
discrete problem, assume a solution of the form  
 

 

 
(It satisfies B.C.) and n is the time level. 
 
We also have from I.C.  
 

  
 
Substituting this into the FDE  
 

, 

 
and letting  
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,  

 
we have  
 

. 

 
Since xi = i Dx, xi+1 = (i+1) Dx therefore 
 

. 

 
Using standard trigonometric identities, we can write the above in the form of a recursion relation: 
 

                           

 

where .  

 

If we let M(k) º , then we have 
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Write it out for n =0, 1, 2, …., n: 
 
 

 
 

. 

. 

. 
 

 
we therefore have the solution of u for wave mode k: 
 

. 

 
Definition: M(k) is known as the amplification factor, and if | M(k) | £ 1, the solution will not grow in time as n à 
¥.  This had better to be the case because the amplitude of the analytical solution is supposed to always decrease 
with time. 
 
For our problem we can see that | M(k) | £ 1 means  
 

. 

 
If we take the maximum possible value of sin2( ) = 1, à 
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à µ £ 1/2. 

 
This condition needs to be met for all k to prevent solution growth. Based on the definition of µ, the condition 
becomes 
 

. 

 
This imposes an upper bound on the Dt that can be used for a given value of Dx, and such a condition is known as 
the Stability Constraint. 
 
Now we have our solution, let's check convergence for single mode k. 
 
By definition of convergence, we take 
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It can be shown that if f(x) is a complex-valued function of a real argument, say Dx, such that  
 

, then, 

 
    (we will show this later). 

 
 

We know that , therefore  

 

 

 
Also , therefore 

 

. 

 
Interestingly, this solution is identical to our analytical solution derived earlier! Therefore the numerical solution 
converges to the PDE solution when Dx, Dt à 0. 
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Finally, we show here (noting that nDt = t) 
 

 

 

2.3.4. Numerical Convergence 
 
Reading: Fletcher (handout), Sections 4.1.2, 4.2.1, 4.4.1. 
 
Numerical Convergence 
 
Convergence is often hard to demonstrate theoretically.  
True analytical solution is hard or even impossible to find is one of the reasons. 
 
We can, however, find out the convergence of a given scheme numerically. 
 
We compute solutions at successively higher resolutions and see how the error changes with the resolution. 
 

Does t à 0 when Dx à 0? 
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 And how fast t decreases? 
 
The procedure can be very expensive (remember the cost factor increase as D doubles). 
 
A typical measure of error is the L2 norm or RMS error: 
 

 

 
where u is a true solution or a 'converged' numerical solution when exact solution is not available. 
 
Example: 1-D diffusion equation using FTCS scheme: 
 

 

 
Making use of  
 

. 

 

we have   . 

 

where   

2[ ]2 i x iu uL
n

D -
= å

2 2 4

2 4
( ) ....

2 12
t u x uK
t x

t D ¶ D ¶
= - +

¶ ¶

2 2 2 2 4
2

2 2 2 2 4
u u u u u uK K K K
t x t t x x t x

æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶æ ö= Þ = = =ç ÷ ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶è øè ø

2 4
4 2

4
( ) 1 ( )
2 6

K x us O x t
x

t D ¶æ ö= - + D + Dç ÷ ¶è ø

2( )
K ts
x
D

=
D



 17 

 
 
Table 4.1 (from Fletcher) shows the error reduction with Dx for two 
values of s. 

 

 
 The above figure shows plots of log10(err) as a function 

of log10(Dx). 
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Recall that  
 

t = A (Dx)n   à  
 

log t = log A + n log Dx. 
 
This is a straight line in log-log diagram with a slope of n and intercept A.  
 
Thus the slope of the line gives the rate of convergence. 
 
In the above figure, we see that when s = 1/6, the error line has a steeper slope and the error is smaller for all Dx. 
This is because for this value of s, the first term in t drops out and the scheme because 4th-order accurate. The 
scheme is second-order accurate for all other values of s. 
 
Note that you can choose Dx and Dt such that s=1/6 only when K is constant in the entire domain. 
 
In cases where no exact solutions is available, a so-called 'grid-convergence' or reference solution is often sought 
and this solution can be used in the place of true solution in the estimating the solution error. 
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An example from Straka et al (1993).  

  
 
It shows a reference solution obtained at Dx=25 m, for a density current resulting from a dropping cold bubble. 
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Figure (from Straka et al 1993). Graph of q' L2 norms (°C) from self-convergence tests with the compressible 
reference model (REFC). The bold solid line labeled with 'self-convergence solutions' represents the L2 norms for 
spatial truncation errors of solutions made with Dt = constant and varying grid spacings. The L2 norms were 
computed against a 25.0 m reference solution. The bold dashed lines labeled with, for example, '200.0 m solutions' 
represent L2 norms for temporal truncation errors of solutions made with Dx =constant (e.g. 200.0 m) and varying 
time steps. The reference solutions for these computations were made using a time step consistent with Dt = 12.5 s 
times a constant in each of the cases. The solid fines labeled O(l) and O(2) represent first- and second-order 
convergence, respectively. 
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Richardson Extrapolation 
 
As the grid becomes very fine, the error behaves much like that predicted from the leading terms in t. Further 
refinements are expensive, so we use another technique to improve the solution – Richardson Extrapolation. 
 
Consider two numerical solutions obtained at Dxa and Dxb.  
 
With FTCS scheme (assuming s ¹ 1/6),  
 

 

 

 

 
Find a linear combination of the two solutions, ua and ub 
 

uc  = a ua + b ub 
 
where a + b =1 and a and b are chosen so that the leading terms in ta and tb cancel and the scheme becomes 4th-
order accurate (Of course this assumes that  is the same in both case, which is reasonably assumption only 
at relatively high resolutions when the solution is well resolved). 
 
If Dxb = Dxa/2, then  4a + b = 0 
 
with a + b = 1 à  a = -1/3, b = 4/3  and uc  = -1/3 ua + 4/3 ub. 
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2.3.5. Stability Analysis 
 
Reading:  Tannehill et al. Section 3.6. 

 
 
Stability –  For a stable numerical scheme, the errors in the initial condition will not grow unboundedly with 

time. 
 
In this section, we discuss the methods for determining the stability of F.D. schemes. This is very important when 

designing a F.D. scheme and for understanding its behavior. 
 
There are several methods: 
 

• Energy method 
• von Neumann method 
• Matrix method (for systems of equations) 
• Discrete perturbation method (will not discuss) 

 
Note:  Stability refers to the F.D. 
 Does not involve B.C. or I.C. 
 Refers to time-matching problems only 
 
 
The energy method 
 
Read Durran Section 2.2 (handout, see web link) 
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This method is used much less often than the von Neumann method. 
 
It's attractive because it works for nonlinear problem and problems without periodic B.C. 
 
The key is to show that a positive definite quantity like  is bounded for all n. 

 

We illustrate this method using the upstream-forward scheme for wave (advection) equation : 

 

 

 
Let µ = cDt/Dx  à 
 

 
 
Squaring both sides and summing over all grid points: 
 

  (1) 

 
Assuming periodic B.C. à 
 

 

 
and using the Schwarz inequality (which says that for two vectors U and V, ), 
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. 

 
If , all coefficients of RHS terms in (1) are positive and we have 
 

, 

 
i.e., the L2 norm at n+1 is no greater than that at n, therefore the scheme is stable! 
 
The condition  gives 
 
  µ = c Dt/Dx  £ 1 
 
which is the stability condition for this scheme. As we discussed earlier, it says that waves cannot propagate more 
than one grid interval during one Dt in order to maintain stability. 
 
von Neumann method 
 
Read Tannehill et al, Section 3.6.1. 
 
In a sense, we have already used this method to find stability of the 1-D diffusion equation – when we were 
proving the convergence of the solution using FTCS scheme. 
 
We found then 
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where M(t) = amplification factor.  
 
If  M(t) £ 1 by some measure (M can be a matrix or a complex number), then un+1 £ un and the solution cannot 
grow in time – the scheme is stable. 
 
Essentially, von Neumann method expands the F.D.E. in a Fourier series, finds the amplification factor and 
determines under what condition the factor is less than or equal to 1 for stability. 
 
Assumptions: 
 
1. The equation has to be Linear with constant coefficients. 
2. It is assumed that the solution is periodic. 
 
With this method, the dependent variable is decomposed into a complex (or a real) Fourier series: 
 

   (2) 

 
where U is the complex amplitude and w = wR + i wI is the complex frequency. 
 
In fact wR gives the wave propagation speed and wI gives the growth and decaying rate. 
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If wI >0, the solution will grow exponentially in time. 
 
 
Example 1: 1-D diffusion equation with FTCS scheme. 
 

      (3) 
 

where . 

 
Let's examine a single wave k: 
 

 
 
 

 
 
Substitute the above into (3) à 
 

à 
 

à 
 

 
 
For non-trivial solution, we require  
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  à 

 
 

 
Here,  is actually the amplification factor, the same as the M discussed earlier. 
 

=  un+1/un  - the amplification factor. 
 
For stability we require  
 
 | l | £ 1 à 
 

à 
 
µ £ 1/2 as before! 

 
In practice, when µ=1/2, the solution (amplification factor) switches between –1 and +1 for 2Dx waves 
( ) very other step, which is unrealistic. The standard requirement is therefore 
 

µ £ 1/4. 
 
Therefore, do not naively think diffusion terms in a numerical model does not cause numerical instability! 
When integrated stably, the diffusion term in CFD models tends to stabilize the solution by killing off/damping 
small scale waves, but when stability condition is not met, it tem itself will cause problem! 
 
Read Pielke (1984) section 10.1.2 (handout, see web link). 
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Shorthand notations for discrete/finite difference operators and discretization identities 
 
Notations: 
 

  

  

  

  

 
Identities: 
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2.3.6. Implicit Methods 
 
Read Tannehill et al, second part of section 3.4.1. 
 
So far, we have dealt with only explicit schemes which have the form of 
 

. 
 
With these schemes, the future state at each grid point is only dependent on the current and past time levels, 
therefore the solution can be obtained directly or explicitly. c.f., explicit functions such as y = x2. 
 
Implicit scheme involves variables of the future time level at more than one grid point (often resulting from finite 
difference of variable(s) at the future time level). Mathematically it can be expressed as  
 

. 
 
This is analogous to implicit functions such as x = sin(x). As one can imagine, implicit schemes are more difficult 
to solve. Usually matrix inversion is involved. 
 
We will first look at the stability property of an implicit scheme. 
 
 
Example. Consider the 1-D diffusion equation ut = K uxx again. 
 
It is approximated by the following F.D. scheme: 
 

     (4) 
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(Note: shorthand notations for F.D. are used. See Appendix. e.g., ). 
 

• When a = 0, the scheme is explicit, and is the FTCS scheme discussed earlier. 
• When a = 1/2, it is implicit and is called Crank-Nicolson scheme. 
• For other values of a, it is a general implicit scheme. 

 
We can show that  
 

 

 
(show if for yourself!). 
 
We can see that when a = 1/2, it is 2nd-order accurate in time and space. Otherwise, it's first-order in time – which 
is expected for un-centered time-differencing scheme (when a=1/2, the right hand side is an averaged between the 
current and future time levels valid at n+1/2. Relative to this RHS, the LHS time difference becomes centered in 
time. We know that the simplest centered difference scheme is second-order accurate). 
 
When [ ] = 0, the scheme becomes fourth-order in space. 

 
Let's perform stability analysis on (4) using von Neumann method. 
 

    (5) 
 
Here . Note that we are now using j as the grid point index. 
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Substitute (5) into (4) à 
 

à 
 

Dividing  on both sides, and rearranging à 
 

 
 

 

 
Look at several cases: 
 
Case I: a = 0, à µ £ 1/2 as before. The scheme is conditionally stable. 
 
Case II: a = 1/2 (Crank-Nicolson) 
 

  for all values of µ,   

 
therefore the scheme is absolutely or unconditionally stable. 
 
Case III: a =1, the time difference is backward, relative to the RHS terms. 
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, again for all values of µ,  

 
therefore the scheme is also absolutely stable. However, this scheme is only first-order accurate in time, as 
discussed earlier (consistent with the time difference scheme being un-centered). 
 
In general, when 0 £ a  < 1/2, it is required that µ £ 1/(2 - 4a ), therefore the scheme is conditionally stable. When 
1/2 £ a  £ 1, the scheme is unconditionally stable (it is sometimes referred to as the forward-biased scheme). 
 
 
 
In the ARPS, the implicit diffusion scheme is an option for treating the vertical turbulent mixing terms. This 
treatment is necessary in order to remove the severe stability constraint from these terms when vertical mixing is 
strong inside the planetary boundary layer (PBL). The latter occurs when the PBL is convectively unstably and the 
non-local PBL mixing is invoked with the Sun and Chang (1986) parameterization. Parameter alfcoef in arps.input 
corresponds to 1-a here (see handout). 
 
Finally, we note that for multi-time level schemes, there is usually multiple solutions for the amplification factor l. 
some of them might represent spurious computational modes due to the use of extra (artificial) initial conditions.  
 
The expression of l can be too complicated so that a graphic plotting is needed to understand its dependency on 
wave number k. |l| has to be no greater than 1 for all possible waves. The shortest wave resolvable on a grid has a 
wavelength of 2 D, and the longest is 2L, where L is the domain width. 
 
 

2
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µ
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Tridiagonal Solver 
 
1-D implicit method often leads to tridiagonal systems of linear algebraic equations. 
 
(In the ARPS, this appears twice – once when sound waves are treated implicitly in the vertical direction and once 
when the vertical turbulence mixing is treated implicitly). 
 
For example, Eq. (4) can be rewritten as  
 

à    (6) 

 
It can be rearranged into 

 

 à  

 

. 

 

where .  

 

Let , , we then have 

 
,           (7) 
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for i = 1, 2, …, N-1, assuming the boundaries are at i =0 and N. 
 
If we have Dirichlet boundary conditions, i.e., u at i=0 and N are known, then for i =1, the equation becomes  
 

      (8) 
 
and for i = N, the equation is  
 

.     (9) 
 
For i = 2, 3, …., N-2, the equation remains of the form in Eq.(7).  
 
If we write the equations (7-9) in a matrix form, we have  
 

  (10) 

 
where 
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   for i=2, …, N-2, 
 , 
 . 
 
If we have Neumann boundary conditions, i.e., we know the gradient of u at the boundaries which in discretized 
form are   and . Plug these relations into Eq.(7) for i=1 and i=N-1, we obtain equations 
similar to (8) and (9): 
 

      (11)   
.    (12) 

 
In this case, the final coefficients in (10) are different for the first and last equation. 
 
Since in each except for the first and last row of the coefficient matrix, only three elements are non-zero and the 
non-zero elements of the matrix are aligned along the diagonal axis, this system is called tridiagonal system of 
equations. It can be solved efficiently using Thomas Algorithm. 
 
The procedure consists of two parts. First, Eq. (10) is manipulated into the following form: 
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  (13) 

 
in which the sub-diagonal coefficients A are eliminated and the diagonal coefficients are normalized. For the first 
equation 
 

.       (14a) 

 
For the general equations: 
 

   for i=2, …, N-1.  (14b) 

 
Equations in (14) represent a forward sweep step (see figure below). It is followed by a backward substitution step 
that finds solution ui from (13). The solution is: 
 

     (15) 
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Note both (14) and (15) involve reduction, the algorithm is inherently non-parallelizable. Fortunately, for multi-
dimensional problems, multiple systems of equations often need to be solved, and one can exploit parallelism along 
other dimensions (e.g., j instead of i direction). 
 
Read Section 4.3.3 of Tannehill et al and Appendix A. 
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2.3.7. Stability Analysis for Systems of Equations 
 
When we are dealing with a system of equations, we can also apply the von Neumann method to find the stability 
property of a given F.D. scheme. 
 
As with single equations, von Neumann can only be used for linear systems of equations. For nonlinear systems, 
linearization has to be performed first. 
 
Without going into details, we point out that a system of linear equations can be expressed in a matrix form like 
 

       (16) 

 
The equation is first discretized using certain F.D. scheme, u can be written in terms of a discrete Fourier series 
and the wave component is then substituted into the discrete equation to obtain something like: 
 

      (17) 
 
where  is the amplitude vector for wave k at time level n, and M is called the amplification matrix.  
 
The scheme is stable when the maximum absolute eigenvalue of M is no greater than 1. 
 
Why the maximum absolute eigenvalue? 
 
Because as you saw earlier (in Chapter 1) that a system of equation like (17) can be transformed into a system of 
decoupled equations, and the eigenvalues of M become the amplification factors for each of the new dependent 
variables, vi  (the element of vector V),  i.e., we can obtain from (17) 
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, 

 
where N is a diagonal matrix with the eigenvalues of M as its diagonal elements.  
 

T-1 M T = N  
 

 
 
Let  ,  we  have 
 

 . 
 
 
Therefore  where  are the eigenvalues. 
 
Since the system is stable only when all dependent variables remain bounded, the absolute value of the maximum 
eigenvalue has to be no greater than 1. 
 
Read section 3.6.2 of Tannehill et al. 
 
 
 

1n n
k k
+ =V N V

1 1 1 1n n
k k

- + - -=T U T MTT U

1n n
k k

-=V T U

1n n
k k
+ =V NV

1( ) ( )n n
i k i i kv vl+ = il


