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Chapter Two. Finite Difference Methods 
 

2.1. Introduction 

2.1.1. The Concept of Finite Difference Method 
 
In FDM, we represent continuous fluid flow problems in a discrete manner, when the fluid continuum is replaced 
by a mesh of discrete points. The same is true for the time variable. 
 
FDM are the simplest of all approximations, and involve a mapping: 
 

DiscretizationPDE    System of algebraic equtions  

 
Calculus     algebra 
 
Derivative  difference 

 
 
We focus on the following: 
 

- Properties of FDM 
- Derivation via several methods 
- Physical interpretation in terms of characteristics 
- Application to selected problems 

 
First, we lay down a convention for notion: 
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Time level  - superscript n -  ρn  ~ ρ at time level n 
 

Δt = time interval = tn+1 – tn.  
 

Most times, we use constant Δt. Occasionally, Δt changes with time. 
 

n-1  ~ past 
n     ~ present 
n+1 ~ future 

 
t = n Δt  where n = number of time steps = 0, 1, 2, 3, ….., N 
T = N Δt  = final time. 
 
 
Spatial Location – subscript i, j, k, for x, y, and z. 

 
Δx – constant grid interval  
xi = i Δx 
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Note: Discretization   information loss – the greater the number of points, the more accurate will be the 
representation. See Figure. 
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2.1.2. Quantitative Properties of Numerical Algorithms 
 
The governing equations (PDE's) have certain properties, and their computational counterparts should also do so. 
 
1)  Conservation – Typically the governing equations are written as conservation laws (which means that the 

integral properties over a closed volume don't change with time).  
 
E.g., the mass conservation equation 
 

( )V
t
ρ ρ∂

= −∇ ⋅
∂

. 

 
If we integrate this over a closed box 
 

( ) 0dV V dv
t

ρ ρ
Ω Ω

∂
= − ∇ ⋅ =

∂ ∫ ∫  

 
Mathematically, we can also write this as  
 

V V
t
ρ ρ ρ∂

= − ∇ ⋅ − ⋅∇
∂

 

 
Will the numerical solution obey these rules? Not necessarily. 
 
Consider the situation where ρ and V are defined at separate points, … this is how the continuity equation is really 
derived: 
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The mass within the zone changes due the mass fluxes through the sides. To get ρV  at a ρ point in this case (we 
are using a staggered grid), we have to average V  to ρ point, which smears out gradients!  
 
Consider an alternative structure: 

 
To calculate the fluxes through the sides of the grid cells shown above (which is a non-staggered Arakawa A-grid, 
by the way – we will come to it later), we have to perform different averaging, which result in different 
conservation properties of the numerical scheme. 
 
For numerical solution to obey conservation, you must be very careful how you set up the grid, formulate the terms 
in the FD form, and solve the equations!! 
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2)  Positivity – Physically positive quantities (mass, energy, water vapor) cannot become negative. This is not 
guaranteed with numerical solutions, however. Care must be taken to prevent negative values from being 
generated. Schemes that do so are called positive-definite schemes. A more general type is the monotonic 
schemes that also ensure positive definiteness, because they cannot generate new extrema that are not found in 
the original field. 

 
3). Reversibility – Says that the equations are invariant under the transform t  - t. This is important for pure 

transport problems, but clearly not appropriate for diffusion problems. Reversibility is actually hard to achieve 
even for simple advection/transportation due to unavoidable numerical errors. 

 
4). Accuracy – Accuracy generally involves Computer precision, Spatial or temporal resolution, and algorithm 

robustness, etc.  
 
Some of the most accurate schemes don't satisfy the above properties!!  
 


