Chapter 3. Finite Difference Methods for Hyperbolic
Equations
3.1. Introduction

Most hyperbolic problems involve the transport of fluid properties. In the equations of
motion, the term describing the transport process is often called convectionor advection

E.g., the 1-D equation of motion is

%:ﬂ_u+uﬂz_im+vﬂzu_ (1)
d 9t X r x
Here the advection term u% term is nonlinear.
X -

We will focusfirst on linear advection problem, and move to nonlinear problems later.

From (1), we can see the transport process can be expressed in the Lagrangian form (in
which the change of momentum u along a particle, du/dt, is used) and the Eulerianform.
With the former, advection term does not explicitly appear. Later in this course, we will
also discuss semi-Lagrangian method for solving the transport problems. In this chapter,
we discuss only the Eulerian advection equation.

3.2. Linear convection — 1-D wave equation

3.2.1. The wave equations
The classical 2nd-order hyperbolic wave equation is

Tu _ L Tu
—=C"—. 2
T 0" )
The equation describes wave propagation at a speed of ¢ in two directions.

The 1st-order equation that has properties similar to (2) is

Tu,Ju =0, c>0. ©)

qt X

Note that Eq.(2) can be obtained from Eq.(3), by taking atime derivative of (3) and
resubstituting (3) into the new equation.
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For apureinitial value problem with initial condition
ux, 0) =F(x), - ¥<x<¥,
the exact solution to (3) is u(x,t) = F(xct), which we have obtained earlier using the

method of characteristics. We know that the solution represents a signal propagating at
Speed .

3.2.2. Centered in time and space (CTCS) FD scheme for 1-D wave
equation

We apply the centered in time and space (CTCS) schemeto Eq.(2):

i i Uy - 207 + U0

Dt? Dx? =0. @

We find for this scheme,
t =O(Dt* + Dx).

Performing von Neumann stability analysis, we can obtain a quadratic equation for
amplification factor | :

1/2

. D( akDx gé aekao
|, =1- 2p®sin? +2pSne——=-ap’sin® g— -
x p 8 > p 8 ep 8

where

oo oDt
Dx

which is the fraction of zone distance moved in Dt at speed c.

Let g = psingi%g, we have

|, =1- 27 £ 29092 4.

We want to see under what condition, if any, |l , [E 1.
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We consider two possible cases.

Casel:If g£1,then| iscomplex:
|, =1- 2°£ix[L- 97
> I1.1°=@1- 21°)"+49°[1-q°] =1

Therefore, when g £ 1, the amplification factor is aways 1, which is what we want to
pure advection!

qEL1> prsinZEDX0
€2 5

Wn(g want the above to be true for all k, therefore p? £ 1 has to be satisfied for all value of
sin().

2 cDt
£1 > p=—7-~£1,
p P Dx

which is the same as the condition we obtained earlier using energy method for FTUS
scheme.

Cazll:

Ifgs 1,1 isred:
l.=1-2°x2q*- 1" >
1. 1°=@1- 29° £ [q* - "),

you can show for yourself that || , [>1 therefore the scheme is unstable.
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3.2.3. Courant-Friedrichs-Lewy (CFL) Stability Criterion

Let’s consider the stability condition obtained above using the concept of domain of
dependence.

Recall from earlier discussion, the solution at (x, t1) depends on data in the interval [x —
at1, X1 + at1], and the D.O.D. is the area enclosed by the two characteristics lines.
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Based on the following discretization stencil,
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we can construct a numerical domain of dependence below:
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Casel: When the numerical DOD is smaller than the PDE's DOD (which usually
happens when Dt is large), the numerical solution cannot be expected to converge to the
true solution, because the numerical solution is not using part of the initial condition, e.g.,
theinitial valuesin the intervals of A and B. The true solution, however, is definitely
dependent on the initial values in these intervals. Different initial values there will result
in different true solutions, while the numerical solution remains unaffected by their
values. We therefore cannot expect the solutions to match.

The numerical solution must then be unstable. Otherwise, the Lax's Equivalence theorem
is violated.

The above situation occurs when Dt / Dx > 1/ ¢ - unstable solution. This agrees with the
result of our stability analysis.

Casell: When Dt/ Dx = 1/c, the PDE DOD coincides with the numerical DOD, the
scheme is stable.

Caselll: When Dt/ Dx < 1/c, the PDE DOD is contained within the numerical DOD:

t A
Cxt /'t\)

N\

\

% / \ */—.,A‘L/égy/nnmaﬁcck
g N

/

s = \\ S84

the numerical solution now fully depends on the initial condition. It is possible for the
scheme to be stable. In the case of CTCS scheme, it isindeed stable.

Definition: % =s = Courant number

The conditionthat s £ 1 for stability is known as the Courant-Friedrichs-Lewy (CFL)
stability criterion.

The CFL condition requires that the numerical domain of dependence of afinite
difference scheme include the domain of dependence of the associated partial differential

equation.
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Satisfaction of the CFL condition is a necessary, not a sufficient condition for stability.

E.g., the second-order centered- in-time and fourth-order centered-in-space scheme for a
1-D advection equation requires s £ 0.728 for stability whereas the D.O.D condition
requiresthat s £ 2.

Example 2: The forward-in-time, centered-in-space scheme is absolutely unstable, even if
the CFL condition is satisfied.

The DOD concept explains why implicit schemes can be unconditionally stable — it is
because their numerical DOD aways contains the PDE's DOD

e.g., the second-order in time and space implicit scheme for wave equation (2):

2

d,u" :%[d U™+ 2d Ut +d U™,

XX

isstablefor dl s.

The numerica DOD is:

3
»
L)

1

-t —

The numerical DOD covers the PDE's DOD.

Read Durran sections 2.2.2 and 2.2.3, which discuss the CFL criterion using the forward-
in-time upstream-in-space (also called upwind) scheme.
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3.3. Phase and Amplitude Errors of 1-D Advection
Equation

Reading: Duran section 2.4.2. Tannehill et al section 4.1.2.

The following example F.D. solutions of a 1D advection equation show errors in both the
wave amplitude and phase.
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FIGURE 2.13. Exact solution and differential-difference solutions for (a) advection of a
spike over a distance of five grid points, and (b) advection of the sum of equal-amplitude
7.5Ax and 10Ax sine waves over a distance of twelve grid points. Exact solution
(dot-dashed), one-sided first-order (short-dashed), centered second-order (long-dashed),
and centered fourth-order (solid). The distribution is translating to the right. Grid-point
locations are indicated by the tick marks at the top and bottom of the plot.

In this section, we will examine the truncation errors and try to understand their
behaviors.

3.3.1. Modified equation

The 1D advection equation is

Wrclloo. ®



Upwind or Donor-Cell Approximation

We have discussed earlier the stability of the forward- in-time upstream in-space
approximation to the 1D advection equation, using the energy method. The FDE is

n+l n -1
ui u| q ul-l — 0 (6)

Dt Dx

Here we assume c>0, therefore the scheme is upstream in space.

We can find from (6) that

2 2
ﬂ_u+0£:'2uu+CD(uxx' () Uy - ()
it x 2 2 6

u, +O(DxX’ +Dx®) (7)

and the right hand side is the truncation error.

Ananaysisof t can reveal alot about the expected behavior of the numerical solution,
and to investigate, we develop what is known as the Modified Equation In this method,
wewritet so asto illustrate the anticipated error types.

Dispersion Error — occurs when the leading terms in t have odd-order derivatives. They
are characterized by oscillations or small wiggles in the solution,

mostly in the form of moving waves.

It's called dispersion error because waves of different wavelengths propagate at different
speed (i.e., wave speed = a function of k) due to numerical approximations — causing
dispersion of waves. For the PDE, all Fourier components described by Eq.(5) should
move at the same speed, c.

Dissipation Error — occurs when the leading terms int have evenorder derivatives.
They are characterized by aloss of wave amplitude. The effect is
also called artificial viscosity and is implicit in the numerical
solution.
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The combined effect of dissipation and dispersion is often called diffusion.

To isolate these errors, we derive the Modified Eqution, which is the PDE that is actualy
solved when a FD schemeis applied to the PDE.

The modified equation is obtained by replacing time derivatives in the truncation error by
the spatial derivatives.

Let's do this for Eq.(7).

To replace u; in right hand side of (7), we take ( Eq.(7) ) [note here we use the FDE not
the PDE]>

cx Dt)? c(Dx)?
2 U - ( 6) Uyt - (6) uxxxt+"' (8)

_ Dt
Uy +Cuxt - ?um +

and —c (Eq(7) )x

2 2 2 2
2y _thu (:Dxu +c(Dt) 4 +(:(Dx) U

- Cutx - XX 2 ttx 2 XXX 6 tttx 6 XXXX

+... 9

then add (8) and (9) >

2 s
Cu_+o9e. (0
2 2

— 2 ®&U, C 0 (e
u, =cu, +Dt +—U,, +O(Dt) =+ DX¢c—U,, -
tt 8 2 5t 5 gz ot

Similarly, we can obtain other time derivatives, uy; found in (7) and (10) and Ui and Uyxt
found in (10). They are (see Table 4.1 of Dannehill et a):

u, =-cu, +O(Dx+Dt)
uttx :Czuxxx+O(DX+ Dt) (11)
u,, =-cu,, +O(Dx+Dt)

Combining (7), (10) and (11) -
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2
- ) (2n? - 3m+1)u,, +O(DX, DxDt, D °Ix, DX°)  (12)

U, +cu, :%(1- m) U,

cDt
where m=—.
Dx

Eq.(12) is the modified eguation which shows the error terms relative to the origina
PDE.

2
Note that the leading term has as form of K 111—2 which, for 1- m> O, represent the
X
dissipation (or diffusion as we often call it) process and therefore the dominant error is of

adissipation nature.

Note that if we had used CTCS scheme dy + cdxu = 0, then the leading error term in the
modified equation would be
C(D()2 é:z (Dt)2 l;l‘ﬂ3u
6 §O uW

(12)

It contains the third (odd) order derivative, and the dominant error is of the dispersive
nature.

Returning to the upstream scheme, we find that when m= ¢ Dt/Dx = 1, the schemeis
exact!! The coefficient of the leading error term, %(1 m), is called the artificial

viscosity, and when m? 1, causes server damping of the computational solution (see
figure shown earlier). In fact, the Doner-Cell iswell known for its strong damping.

Read Tannehill et al, Section 4.1.2.
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3.3.2. Quantitative Estimate of Phase and Amplitude Errors

Reading: Sections4.1.2 — 4.1.12 of Tannehill et a.
Sections 2.5.1 and 2.5.2 of Durran.

By examining the leading order error in the modified equation, we can find the basic
nature of the error. To estimate the error quantitatively, we use either analytical (as part
of the stability analysis) or numerical method. We will first look at the former.

With the stability analysis, we were already examining the amplitude of waves in the
numerical solution. For alinear advection equation, we want the amplification factor to
be 1, so that the wave does not grow or decay in time. The von Neumann stability
analysis actually also provides the information about propagation (phase) speed of the
waves. Any difference between the numerical phase speed and true phase speed is the

phase error.

Going back to the figure we showed at the beginning of this section (section 3.3) and
reproduced in the following, we can see thet the first-order FTUS scheme has strong
amplitude error but little phase error, while the 2nd-order CTCS scheme has large phase
error but small amplitude error. The 4th-order CTCS scheme has a smaller phase error
than its 2nd-order counterpart.
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FIGURE 2.13. Exact solution and differential-difference solutions for (a) advection of a
spike over a distance of five grid points, and (b) advection of the sum of equal-amplitude
7.5Ax and 10Ax sine waves over a distance of twelve grid points. Exact solution
(dot-dashed), onc-sided first-order (short-dashed), centered second-order (long-dashed),
and centered fourth-order (solid). The distribution is translating to the right. Grid-point
locations are indicated by the tick marks at the top and bottom of the plot.
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Amplitude Error

Recall that in the Neumann stability analysis, the frequency w can be complex, and if it
is, there will be either decay or growthin amplitude — which is entirely computational for
a pure advection problem. Thisis so because

if wisred,

[l | =|exp(- iwDt) |=|cos(wDt) +i sin(wDt) |=1 -> no change in amplitude.
if wiscomplex, i.e,w=wgr+iw,

|l | =lexp(- wLt) |=|exp(- iwg Dt)exp(w, Dt) |=|lexp(w, Dt) |* 1 most of the time.
Whenw, >0, || |> 1, thewave growsand when w; <0, || |<1thewave decays (is
damped). || | is the amplitude change per time step and | | [N isthe total amplitude
change after N steps.
If, eg., || |=0.95, then after 100 steps, the amplitude becomes 5.92 x 10!
Remember for PDE u, + ¢ u = 0, the frequency w is always real. Assuming wave
solution u = U exp[ i(kx-wt) ], you can find w = kc, which is called the dispersion relation

in wave dynamics. For the current problem the phase speed of wavesisw/k = c which is
the same for all wave components. Therefore the analytic waves are nondispersive.

Phase Error
For convenience, let's define

W, = frequency of the analytical solution (PDE)
wy = frequency of discrete solution (FDE)

then
|, © exp(-iw, Dt), I ,° exp(-iw, Dt).

Recdl thatif z=x+iy (i=\/-_1),wecan use the polar form and write
z=|z|exp(iq) or z=|z]|(cosq+isinqg)
where |z | = (» +y?)"2 is caled the modulus of z.

Thus,
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la=[lalexp(i ga) =exp(iga) (because|la|=1).

We define g, = the phase change per time step of the analytic solution

=-w,Dt ~frequency ~ time step size
For the finite difference solution, w will, in general, be complex, i.e., w has an imaginary
part:
Wy = (Wo)r + 1 (Wa)i
\ | 4= exp[ (wWq) Dt] exp[ -i Wa)rDt]=]1q]exp(i ga)> (13)

0a° - (Wg)r Dt isthe phase change per time step associated with the F.D. scheme.
[l 4] is not necessarily 1 here.

From (13), we can seethat g, = atanM . 19
Re{l ;}

Taking the radio, dd - Y dIRT - -

for the same wave number, and the ratio tells us about the rel ative phase error.

If cg/ ca< 1, theF.D. solution lags the analytic solution (moves slower)
If cg/ ca> 1, the F.D. solution |eads the analytic solution (moves faster)
If cg/ ca =1, the F.D. solution has no phase error

a) First-order upwind scheme

Let's now apply these notations of phase and amplitude error to the first-order upwind
(donor-cell) scheme.

1-0 (15)

Using Neumann method, assume that u® =Ul €, you can show for yourself that
| 4= 1- m+ mcos( kDx) —i msin( kDx ) (16)

where m= cDt/Dx is the Courant number.
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|1 ¢P=1+2nmm- 1) [1- cos( kDx) ]
since 1-cos( kDx) 2 0,
[14|£1when mE 1.
Look at the 2Dx wave, kDx = 2p/L Dx = 2p/(2Dx) Dx =p
[l ¢P=1+2mm- 1) [1+1] = 1 + 4n( m- 1). (17)
Whenm=1, || 4| =1, thereis no amplitude error.
When m=0.5, || 4|=0, the 2 Dx wave is completed damped in one time step!!

For a4Dx wave and when m=0.5, || 4 |= 0.5 > 4Dx waves are damped by half in one
time step!

Therefore, the upwind advection scheme is strongly damping. It should not be used
except for some special reason.

The following figure shows the amplification modulus for the upwind scheme plotted for
different values of m(u in the figure), the Courant number.

UNIT CIRCLE

ve=1.25

I
1.50 1.00 0.50 0.00 0.50 1.00
(6]

Figure 4.2 Amplification factor modulus for upstream differencing scheme.
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b in the figure is our kDx, and pDx/L £ kDx £ p. The lower and upper limits of kDx
correspond to 2L and 2Dx waves, respectively. L is the length of the computational
domain.
This is so because the shortest wave supported is 2Dx in wavelength, >
kDx =2p / (2Dx) Dx =p
The longest wave supported by a domain of length L is 2L in wavelength >
kDx = 2p/(2L) Dx = pDx/L
kDx > OwhenL - ¥.
For example, for a4Dx wave, kDx = p/2

From the figure, we see that:

When m= 1, the amplification factor is 1, there is no amplitude error for al values of kDx
(b), i.e, for all waves.

When m> 1, the amplification factor is > 1 for all kDx except for wave number zero. The
amplification factor is the largest for the shortest wave (kDx = p), implying that the 2Dx
wave will grow the fastest when m>1, in another word, the 2Dx wave is most unstable.

Thisis why we see grid-scale noises when the solution blows up!

When m< 1, all waves are stable but are significantly damped. Again, the anplitude error
islarger for shorter waves (larger kDx). For Courant number of 0.75, the amplitude of the
2Dx wave is reduced by half after one single time step. The error is even bigger when m=
0.5.

From the above, we can see that the numerical solution is poorest for the shortest waves,
and as the wavelength increases, the solution becomes increasingly accurate. Thisis so
because longer waves are sampled by a large number of grid points and are, therefore,
well resolved.

2Dx wave is specidl in that it is often the most unstable when stability criterion is
violated, and when the solution is stable it tends to be most inaccurate.

For general cases, it isimpossible to ensure m=1 everywhere unless the advection speed

is constant. Therefore, strong damping is inevitable with the upwind scheme. Y ou will
see severely smoothed solution when using this scheme.
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The damping behavior of the upwind scheme can aso be understood from the modified

2
equation (13) discussed earlier. The leading error term is of the form K 1111—2 which
X

represents diffusion.

Now, let's examine the dispersion (phase) error of the upwind scheme.
According to earlier definitions and (16)

OJa=- Wy Dt =-ckDt=- mkDx

q :atanlm{ld}:atan - msin(kDx)
‘ Re{l ,} 1- m+mcos(kDx)

From the above, the ratio of the numerical to analytic phase speed, e , can be calculated.

a

In the following figure this ratio is plotted as a function of b (kDx) for m(u in the figure)
=0.25,0.5and 0.75.

UNIT CIRCLE

1.50

Figure 4.3 Relative phase error of upstream differencing scheme.
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We can see that there is no phase error (corresponding to the unit circle) when m=0.5.
All waves are dowed down when m< 0.5. All waves are accelerated when 0.5 < m< 1.0.

Again the phase error is larger for short waves (larger b, i.e., kDx). The error is greatest
for the 2Dx wave.

For m=0.25, g > O when kDx - p, i.e., 2Dx does not move at al!

Because the F.D. phase speed is dependent on wavenumber k, the numerical solution is
dispersive, whereas the analytical solution is not.

From the above discussions, we see that when using the upwind scheme the waves that
move too slow are aso strongly damped.

The upwind advection scheme is actually a monotonic scheme — it does not generate new
extrema (minimum or maximum) that are not aready in the field. For a positive field
such as density, it will not generate negative values. We will discuss more about the
monotonicity of numerical schemes later.

Note that for practical problems, ¢ can change sign in a computational domain. In that
case, which point (on the right or left) to use in the spatial difference depends on the local
sign of c:

ul ui +C L\ ui-l o 0 C>0
Dt Dx
n+l _ n TLETL
Ui Y +c Wa-Y =0 c<0 (18)
Dt Dx

Using the following definitions:
c’=(c+]c|)2,c=(c-|c|)2,

the upwind scheme in (19) can be written into a single expression
n+1l n Dt A~ n n - n ny Ky
U =4 +&8C (u'-ul))+c (Ui, - u')y (19

Substituting ¢ and ¢ into (18) yields

u_n+1 =u"+Dt C(uirll - Uirjl) + DtDx |C | (uirll 3 2uin - uirj 1) )

2Dx 2 Dx? (20)

3-17



One can see that the 2nd term on RHS is the advection term in centered difference form
and the 3rd term has aform of diffusion. If one uses forward- in-time centered- in-space
scheme to discretize equation (5), one will get a FDE like (2) except for the 3rd term on
RHS. The scheme is known as the Euler explicit scheme, and the stability analysistells
us that it is absolutely unstable. So it should never be used. Apparently, the 'diffusion
term’ included in the upwind scheme stabilizes the upwind scheme — it is achieved by
damping the otherwise growing short waves.

The included 'diffusion term’ also introduces excessively damping to the short waves, as
seen earlier. One possible remedy is to attempt to remove this excessive diffusion through
one or severa corrective steps. Thisis exactly what is done in the Smolarkiewicz (1983,
1984) scheme, which is rather popular in the field of meteorology.

Because Smolarkiewicz scheme is based on the upwind scheme, it maintains the positive
definiteness of the advected fields therefore is a good choice for advecting mass and
water variables.

References:

Smolarkiewicz, P. K., 1983: A simple positive definite advection scheme with small
implicit diffusion. Mon. Wea. Rev., 111, 479-486.

Smolarkiewicz, P. K., 1984: A fully multidimensiona positive definite advection
trangport algorithm with small implicit diffusion. J. Comput. Phys., 54, 325-362.
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b). Leapfrog scheme for advection

In this section, we examine a perhaps most commonly used scheme in atmospheric
models — the leapfrog centered advection scheme.

Here leapfrog refers to finite difference in time — the frog leaps over time level n from n
1tontl —itisaname for the second-order centered difference in time.

Leapfrog scheme is usualy used together with centered difference in space — and the
latter can be of 2nd or higher order.

The leapfrog scheme gives us second order accuracy in time.

The PDE is

n+d o0l no_ "
ui q +C u|+1 u|-1 — O (21)
2Dt 2Dx

t =O(Dx*,Dt?)
and (show it yourself)
|, =-imsin(kDx) £[1- n? sin® (kDx)]"? (22

If 1- nfsin*(kDx)2 0,then |I, | ° 1 and there is no amplitude error for al waves. Thisis
the most attractive property of the leapfrog scheme.

In (22), we see that there are two roots for | - one of them is actually non-physical and is
known as the computational mode.

Which one is computational and how does it behave?
Let'slook at the positive root | + first:
l+=]1+|exp(-ib+)

whereb: =-qq (gqisthe phase change in one time step for the discretized scheme, as
defined earlier).

If mEL|14]=1.
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|, =cos(b,)-isin(b,)=-ia+[1- a’]"?
wherea= msin(kDx) , therefore
b, =sin"*[msin(kDx)] .
Now consider the negativeroot| . :
[.=]I.]exp(-ib.)
f me1,|l.|=1
| =cos(b.)-isin(b.)=-ia- [1- a’]*?
with the aid of the following schematics, we can see that

b +b,=-p 2> -b.=p+b,.

We see that the phase of the negative root is the same as that of the positive root shifted
by p then multiplied by —1.
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What does all this mean then?

For asingle wave k, we can write the solution as a linear combination of these two modes
(since both modes are present):

u"=(A 1 +Bl M
=[ Ag "o+ + BN +b-) 1l (23)
:[Ae- inb+ 4 B(- 1)neinb+]eik>g
where A and B are the amplitude of these two modes at time 0.

Which root corresponds to the computational mode then? The negative one, the one that
give rises to the second term in (23), because of the following observations:

(1) The computational mode changes sign every time step. The period of oscillation is
2Dt.

(2) It has a phase opposite to the physical mode, therefore it propagates in the opposite
direction from the physical mode.

(3) Because of the 2Dt period, the computational mode can be damped effectively using a
time filter, which will be discussed in rext section.

(4) The presence of the computational mode is due to the use of three time levels, which
requires two initial conditions instead of one — the first and second time step
integrations start from time level —1 and O respectively, which are two different initial
conditions.

In practice, we usually have only one initial condition —we often start the time
integration by using forward-in-time scheme for the first step, i.e., for the first step,
we do

1_ .0 0 0
U - U :_Cui+1' Uy

Dt 2Dx

and for the second, we do

0 1 1

ui2 - U Uy - Uy _
+C =
2Dt 2Dx
An additional note: when u™* =u"*- CD—Dt(ui“+1 - u",) isused to integrate the advection
X

eguation, we can experience the grid separation problem, as show schematically below:
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a-~1 . A~

Due to the layout of the computatioral stencil, the solution at cross points never know
what's going on at the dot points. As the solution march forward in time, the solutions at
neighboring points can split away from each other. This problem is aso related to the use
of three time levels, and can be alleviated by the use of Assdlin timefilter. An artificial
spatial smoothing term of the form of KT2u/fx® will also help. In practice, other forcing
terms in the equation can aso couple the solutions together.

v <1
vs=1.0
0.5
1 1
1!00 0!00 1300 1.00 0.00 1.00
16] ¢/4,
(a) (b)

Figure 4.7 Leap frog method. (a) Amplification factor modulus. (b) Relative phase error.
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c) Asselin Time Filter

The Asselin (also called Robert-Asselin) time filter (Robert 1966; Asselin 1972) is
designed to re-couple of the splitting solutions in time and damp the computational mode
found with the leapfrog scheme and others.
It is a two-step process:
(1) uisintegrated to time level n+1 using the regular leapfrog scheme,
*ntl _ ,,n-1 *n *n

u-—=u-- m(ui+1 - ui-l) (24)
where * indicates values that have not been ‘smoothed'.
(2) afilter is then applied to three time levels of data

U =U e (g 20 . (25)

Note that the term in second term in (15) is a finite difference version of f°u/ft? - the
diffusion in time which tends to damp high-frequency oscillations.

If we use (25) in (24), we can do a stability analysis and examine the impact of the time
filter on solution accuracy:

|, =-ia+e Hb- a’]"? (26)
where a= msin(kDx) and b = (1-e)? [compare (22) with (16)].
If b—a? 3 0 (note that this stability condition has also changed), we have
[1 P =(@€®+b)+ 2 (b-a)2

We can plot this to determine its effect on the solution.

We will find that:

(1) amplitude error is introduced by the time filter;

(2) the time filter reduces the time integration scheme from second-order accurate to first-
order accuracy only

(3) the filter makes the stability condition more restrictive (can use smaller Dt now).
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We want to use as small ae aspossible. Typically e =0.05t0 0.1.

The leapfrog (2nd or 4th-order) centered difference scheme combined with the Asselin
filter is used in the ARPS for the advective process (more complex monotonic advection
schemes are also available for scalar advection).

Reference:

Robert, A. J,, 1966: The integration of alow order spectral form of the primitive
meteorological equations. J. Meteor. Soc. Japan, 44, 237-245.

Assdin, R., 1972: Frequency filter for time integration. Mon. Wea Rev., 100, 487-490.

Reading: Durran Section 2.3.5.
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d) Adam-Bashforth schemes

Second-order Adam-Bashforth Scheme

uin+l' u’ - é3 Ui - Uy - lqn;l‘ Uirjlll;'
Dt & 2Dx 2 2Dx g

The RHS is a linear extrapolationof doyxu from -1 and n to n+1/2, so that the
scheme is "centered” in time at n+1/2.

Second order in time and space

Stability analysis shows that

where s=msin(kDx).

Note that this scheme is also a 3 time level scheme and 3 time level schemes always
have two modes — one physical and one computational. We can see that for the physical
mode (+ case), | ->1ass-> 0, and for the computational mode (minus sign case),

| ->0ass->0.
If s<< 1, we can show that
|14 ]» (1+sY4)Y2
[1.|» 0551+ )
(You can show it by performing binomial expansion).
Clearly || + | > 1for st 0 therefore the scheme is absolutely unstable.

However, for small enough values of s (i.e., Courant number), because sis raised to

the 4th power, || + | can be close enough to 1 so that the growth rate is small enough for
the scheme to be still usable (especially computational diffusion is added to the equation).

One can estimate the growth rate in terms of e-folding time — i.e., the time taken for a
wave to growth by afactor of e.

However, it is the higher-order Adam-Bashforth (AB) schemes that we are more

interested in. The higher-order AB scheme can be obtained by extrapolating the right
hand side of the equation (i.e., F in u = F) to time level n+1/2, as we do for the 2nd-order
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AB scheme, but using high+order (e.g., 2nd-order) polynomials, which will aso involve
more time levels.

Third-order Adam-Bashforth Scheme

The 3rd-order AB scheme thus obtained has the form of

_n+1_ qn C
= A, 16d,,u™* +5d,,u™?]

u

It involves data at four time levels — require more storage space.

And it has two computational modes and one physical mode.

The computational modes are strongly damped, however, unlike the leapfrog
scheme, so there is no need for time filtering.

1.4}

121

IA]
081t

0.6t

0.4+

0.2¢

- 4

02 0.4 06 08
WAt

F1G. 1. Magnitude of the amplification factor for the third-order
Adams-Bashforth scheme plotted as a function of wAt. Solid line is
the physical mode; dashed curves are the two computational modes.
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Most accurate results are obtained for mnear stability limit. Thisis not true for the
leapfrog 4th-order centered in space scheme. That solution is more accurate for m
< 0.5 where certain cancellation between time and space truncation errors occur.

EXACT 1 D
12r —-— LEAPFROG 1 | J

4(x)

b(x)

"0 8 16 24 32 0 8 16 24 32
x {grid points) X (grid points)

FiG. 3. Effect of leapfrog stepsize on the accuracy of fourth-order centered-difference solution to the advection equation. Shown are the
exact and numerical solutions computed using Courant numbers of (2)0.7272, (b) 0.5, (¢) 0.3, and (d) 0.1. All results are for a nondimensional
time of 3,
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Durran (1991 MWR) shows that 3rd-order AB time difference combined with
4th-order spatial difference is a good choice— it is in general more accurate than
the commonly used leapfrog 4th-order centered-in-space scheme.

1.4 T T T T T T T T | [T T T T

EXACT
12k —-—- ASSELIN LEAPFROG, Y= .06
: — ——— 3RD- ORDER ADAMS - BASHFORTH
-------- ASSELIN LEAPFROG, y= .20

o(x)

04000 v v e SN VUV SN SO AR N S VU S UUUUNS S S GO S BTN S T T

0 8 16 24 32 0 8 16 24 32

x (grid points) x (grid points)

F1G. 5. Comparison of an exact solution to the advection equation with results obtained using Adams-Bashforth and Asselin-filtered
leapfrog time differencing in a fourth-order finite-difference model at a nondimensional time of 3, for (a) u = 0.5 and (b) = 0.2.

3-29



1.4Wmmmﬁ*mmﬂvw [T T T T e T, T
EXACT
121 —~~——=- ASSELIN LEAPFROG, y=.06 i

— — —— 3RD- ORDER ADAMS - BASHFORTH
-------- ASSELIN LEAPFROG, v=.20

1.0 4 F

o(x)

02} 1+ .
E ¥ T TR S TN FNNTE PRV PEREE A TR R UNE AUUTE UUTC PUTNE FUUTU RN ITTTI FUUTE FERET FUUTE FRUTE FUTTE FUUTE FRUEY STUTE FUUTE FUUTY FEUTE PRI
0 10 20 30 40 50 60 0 10 20 30 40 50 60

x (grid points) x {grid points)

FIG. 6. As in Fig. S, except that the spatial resolution has been doubled.

e) Other schemes

There are many other schemes for solving the advection equation. In the following are
some of them, given together with brief discussions on their important properties.

Euler explicit (Euler refers to forward in time)

n+l n n n
Y LS el 0, ¢c>0 - forward-in-time, downstream in space
Dt Dx
n+l _ .I"I .I"I _ .n
U UpcdinYiog  forward-indi me, centered in space
Dt 2Dx

Both schemes are absolutely unstable. Y ou can show it for yourself.
They are of no use.

Lax Method

1
uin+ - (uin+1+uirjl)/2+CuiI1rl_ uin—l
Dt 2Dx

=0

1st-order in time, 2nd-order in space.

Stable when |mj £ 1.

Large dissipation error.

Significant leading phase error - waves propagate faster.
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2Dx waves twice as fast when n¥0.2.

L ax-Wendr of f

u

Dt 2Dx 2 (Dx)?

n+l n n n 2 n n n
P U __Cq+1' ui—l+c Dt u’y- 24" +ur,

Effectively an Euler explicit (FTCS) scheme plus a diffusion term.

Its derivation is interesting — it's based the Taylor series expansion in time first:
" n 1

u™ =u" +Dtu, +§(Dt)2utt +0O(Dt*)

and use i = -c U and U = C° Uk to rewrite it as

u™ =u"- cDtu, +%c2 (Dt)’u, +O(DX°).
It is then discretized in space.

Stablewhen M £ 1

Amplitude (dissipation) error for short waves

Mostly lagging phase error, for short waves. Leading phase error for shortest
waves when mis near 0.75.

We have actually obtained this scheme before based on characteristics and second order
interpolation. See Section 2.3.

MacCormack (an example of two-step predictor-corrector method)

Predictor: U™y =u - cptde Y
Dx

+ 1é n A u_n+l * u_n+1 * u
Corrector: u” - —au'+ (U- 1) - cDt ( i ) ( i-1 ) ’
! 25" i 1]

€ Dx U

Combination of upwind and downwind steps

Intermediate prediction is used in the second corrector step

In the corrector step, the time difference is 'backward in time'

For linear advection equation, this scheme is equivalent to (you can show this by
substituting the 1st eg. into the 2nd), therefore its properties are the same as, the
L ax-Wendroff scheme.
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Euler Implicit (Euler refers to forward in time)

n+l n+l

n+l n
U - 4 +Cui+1 “ Uiy =0
2Dx

1st-order in time and 2nd-order in space.

Unconditionally stable.

Relatively small dissipation error, only for intermediate wave lengths.
No dissipation error for longest and shortest waves.

Significant lagging phase error for short waves.

Need to solve a coupled system of equations.

Tridiagona in 1-D. Block trigiagonal in 2-D.

Time-centered Implicit (Trapezoidal)
n+l n Ap N+l il n n pn
u -y +E§Ui+1 Ty Uit U, U

0
€
Dt 2§ 2Dx DX ¢

2nd-order in both time and space.

Absolutely stable.

No dissipation error for al waves (similar to leapfrog scheme

which is aso 2nd-order accurate in time)

Significant lagging phase error for short waves, similar to Euler implicit.

M atsuno (forwar d-backward two-step) Scheme

n

n+ly* n n
(ui ) - y +Cl4+1' ui-1=o

2Dx
n+l n n+ly* n+1y*
U - U +C(ui+1 _(q-l) =0
Dt 2Dx

1st-order in time, second order in space

Stablewhen m £ 1.
Relatively large dissipation and phase error

L eapfrog Fourth-order Centered-in-Space Scheme

u' - qn_l é4 Ul- Ul lul,-ul, l]
tCey "2 U=
2Dt & 2x 3 4Dx

2nd-order in time and 4th-order in space
Stable for m£ 0.728 (more restrictive than 2nd-order)
No dissipation error without time filter
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Also contains computational mode, as al three-time level schemes do
Smaller phase error than 2nd-order centered-in-space counterpart

L eapfrog scheme can be combined with centered spatial

difference schemes of even higher order
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List of commonly used time difference schemes and their basic properties (from Durran):

Method Order Formula

Forward 1 "t = ¢n + hF(¢™)
Backward 1 ¢"+1 =¢" + hF(¢n+1)

Asselin : o™ = g1+ 20F (¢™)

Leapfrog P = " + y(p"—! — 29" + ¢ty
Leapfrog 2 ¢t = ¢n~1 4 2nF (")
Adams— ntl _ on i n nel
Bashforth o =97+ 2 [3F @M - Fom D]

Trapezoidal 2 "t =" + g [F(d:""") + F(¢ﬂ)]

q1 = hF ("), o1 =9¢"+q

Runge-Kutta 2
8 @ =hF@) —q1. ¢""' =¢| +q2/2

¢" = ¢" "2 4 2hF ("))

M k 2
agazenkov ¢n+1 =¢" + g [3F(¢") = F(¢n_l)]

Leapfrog— ) ¢ = ¢! i 2hF (¢")
TrﬂpeZOIda] ¢n+! — ¢n + _i [F(¢|) + F((bn)]
Adams- n+l __ h ny _ n—1 n—2
Battonn 3 0" = 9"+ = [23F M - 16F @) + 5F (0" D)]
Adams- +1 h n+1 n rn—1
Monltor 3 #" = g" 1 = [SF@) + 8P - Fo" )
n h n -1
ABM Predictor- 3 ¢r ="+ 2 [3F(¢ )= F@") ]
h
Corrector ¢n+] — ¢n + ﬁ [5F(¢1) +8F(¢") _ F(¢n_l)]
g1 = hF(¢™), o= ¢"+q/3
Runge—Kutta 3 g2 = hF(¢1) — 591/9, & = ¢1 + 159, /16
93 = hF(¢) — 153q,/128, ¢"+! = ¢ +843/15
q1 = hF ("), q2 =hF (9" +q,/2)
RungeKutta 4 g3 = hF (9" + q2/2), qa= hF(¢" +g3)

¢" ! = ¢" + (g1 + 295 + 293 + q4)/6

TABLE 2.1. Summary of methods for the solution of ordinary differential equations. The

earnnd. and third_nrdsar Runaca W ntta mathade ara law otasncn sneinméns L Ao
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Method Storage  Efficiency  Amplification Phase Max s
Factor Factor Factor Error
52 s?
0 1+ = 1- — 0
Forward 2 -+ D) 3
52 52
Backward L 00 1- — 1—— 00
ackwart 2 s
Asselin ysz a4+ Z}J)s2
3 <1 1- 1 <1
Leapfrog 2(1 —y) 6(1-y)
s2
Leapfrog 2 1 1 1+ 3 1
Adams- 3 0 s 1+ —s2 0
Bashforth-2 4 12
2
Trapezoidal e 00 1 1-— 2 00
s4 52
Runge—Kutta-2 2 0 1+ N 14 3 0
s4 52
Magazenkov 3 0.67 1-— y 1+ 3 0.67
Leapfrog— s* s?
Trapezoidal 3 0.71 1 7 1 P 1.41
Adams- 3 4 289 4,
Bashforth—3 4 0.72 1-— §S 1+ %S 0.72
Adams— st 1§
%* P —_—_—
Moulton-3 0 Y 720° 0
ABM Predictor— 19 4 1243 4
Corrector-3 4 0.60 T 144’ . 8640° 1.20
s4 st
Runge-Kutta-3 2 0.58 11— — 1+ — 1.73
B 24 HET
. §6 4
RungeKutta-4 4 0,70 1- — 1—-— 2.82
unge—u 144 120

A storage factor of 3 may be achieved following the algorithm of Blum (1962).

.BLE 2.2. Characteristics of the schemes listed in Table 2.1. The amplification fac
1 relative phase change are for well-resolved solutions to the oscillation equation,
= k At. “Max s” is the maximum value of x At for which the solution is nonamplifyii
e storage and efficiency factors are defined in the text. No storage factor is given
plicit schemes.
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3.3.3. Practical Measures of Dissipation and Dispersion Errors

Takacs (1985 MWR) proposed a practical measure for estimating dissipation and
dispersion errors based on numerical solutions. The methods divide the total mean square
error into two parts, one indicative of dissipation error and one the dispersion error.

The total mean square error is given as
19 2
:Wa_(ua' Ug)” - (27)

W, IS the analytical solution and wy the numerical (discrete) solution.

It can be rewritten as (show it yourself):

t =s 2(ua) +S 2(ud) - 2r S (ua)s (ud) +(Ua - Ud)2 (28)

N N
where s *(u,) :%é (U, - T@,)°, s *(uy) =%é (u, - Ty)? arethe variance of the u, and

N
Uy, respectively. cov(u, ,uy) :%é (u, - T,)(u4- Ty) isthe co-variance between u, and

_ cov(u, ,uy)
S (U)s Uy)

Uand r is the correlation coefficient.

(28) can be rewritten as
t=[s U.)-s (U)I* + (T, - 0y)° +21- r)s (U,)s (Uy) (29)

Takacs definite the first two terms of the RHS of (29) as the dissipation error and the
third term as the dispersion error, i.e.,

tos =[5 U,)-s (U +(T, - T,)° (309)

toe =2(1-1)s U Uy) (30b)

We can see that when two wave patterns differ only in amplitude but not in phase, their
correlation coefficient r should be 1. According to (30a), t pise = 0. That's a reasonable
resullt.
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