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1. Introduction 
 

Currently, the data analysis system (ADAS, 
Brewster 1996) of the Advanced Regional Prediction 
System (ARPS, Xue et al. 2001; Xue et al. 1995) of 
CAPS employs the Bratseth (1986) interpolation scheme 
based on successive corrections.  The system has been 
successfully used in research and operational meso- 
and storm-scale simulations and forecasting, and is 
flexible in dealing with data of varying spatial densities. 
It is also computationally very efficient. A drawback of 
such schemes, including the until-recent-years rather 
popular optimal interpolation (OI) schemes (Bratseth 
scheme actually converges to OI), is that observations 
that differ from the analysis variables cannot be directly 
analyzed. Examples include the precipitable water from 
GPS, satellite radiances, radar radial velocity and 
reflectivity. Variational methods have the advantages of 
being able to directly use the observations in a cost 
function, and through the minimization of this function 
the desired analysis variables that give a best fit to the 
data, subjecting to background and other dynamical 
constraints, can be obtained. 

While four-dimensional variational (4DVAR) data 
assimilation is generally considered superior, a 3D 
variational (3DVAR) assimilation system is the 
necessary first, and also computationally more efficient, 
step towards that goal. 3DVAR systems have been 
developed and operationally implemented for large-
scale NWP at several operational centers in recent 
years (e.g., Parrish and Derber 1992; Courtier 1998) and 
progresses are also being made in developing systems 
for mesoscale mo dels (e.g., Wu et al, 2001). 
 In this paper , an incremental 3DVAR system 
developed recently for the ARPS is described. In the 
system, the background error covariance matrix is 
modeled using a recursive filter (Hayden and Purser 
1995) and the square root of the matrix is used for 
preconditioning. Some initial numerical experiments 
have been conducted based on this scheme and the 
results are compared with that from ADAS.  

 
2. 3DVAR formulation 
 

The basic cost function J, may be written as the 
sum of two quadratic terms:  
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The first term measures the departure of the analysis vector, 
x from the background xb, which is weighted by the inverse 
of the background error covariance matrix 1B− ; the second 
term measures the departure of the projection of analysis to 
the observation space, H(x), from the observations 
themselves (yo), which is weighted by the inverse of the 
combined observation and observation-operator error 
covariance matrix, R-1. In our scheme, the background field 
can be provided by a single sounding, a previous ARPS 
forecast, or another operational forecast model. Observations 
currently tested include: single-level surface data (including 
Oklahoma Mesonet), multiple-level or upper-air observations 
(such as rawinsondes and wind profilers), as well as Doppler 
radar observations.  

The analysis is to find model state ax  for which J is at a 
minimum. At the minimum, the derivative of J vanishes. The 
Hessian of J(x) is:  

2 1 1( ) TJ x B H R H− −∇ = + .  (2) 

If  2 ( )J x∇ is positive definite, then there is a unique ax  that 

minimizes the cost function ( )J x .  

By defining 1 1( )bv B x x C xδ− −= − = ,  (3) 
and letting , 

( ) ( ) ( )b bH x H x x H x xδ δ= + + H; , (4)  
we obtain a new representation of the incremental cost 
function: 
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The Hessian of Jinc is  
 2 1T T

incJ C R C−∇ = +I H H , (6) 
where I stands for the identity matrix. Comparing  (6) with  (2), 
we see that the smallest eigenvalue of Hessian matrix from (6) 
will be at least larger than one, so that the condition number 
will not become infinite (Lakshimivaranhan, 1999). This new 
Hessian matrix is much better conditioned than the Hessian 
matrix of original problem (1). 

The matrix C defined in (5) is realized as, 
C=DF, (7) 

where D is a diagonal matrix of standard deviation of the 
background error. For simplicity, we assume that D has 
diagonal elements specified by the error estimation of 
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numerical experimentations. F is a recursive filter 
(Hayden and Purser 1995, Lorenc 1992) defined by 
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where, Xi is the initial value at grid point i, Yi is the value 
after filtering for i=1 to n,  Zi is the initial value after one 
pass of the filter in each direction and α  is the filter 
coefficient. This is a first-order recursive filter, applied 
in both directions to ensure zero phase change. Multi-
pass filters are built up by repeated application of (8). 
This filter is applied in all three directions.  

We also assume that the observation errors are 
independent, that is, the observation error covariance 
matrix R is also a diagonal matrix with constant diagonal 
elements given by estimated error of each type of 
observation.   

 
Fig 1:  The scaled cost function 0( / )J J (solid line), 

and scaled gradient norm ( 0/g g ) (dashed line) 

as a function of the number of iterations.  
 

3. Test results 
          

As a preliminary example, the case of June 8, 1995 
is used to test the 3DVAR scheme. It was a major day 
during the 1995 Verification on Onset of Rotation in 
Tornadoes Experiment (VORTEX 95) as several dam-
aging tornadoes were produced by storms in the 
eastern Texas Panhandle. In the experiment, the first 
guesses before minimization are zero. 

Figure 1 shows that the cost function starts to 
level off after 20 iterations in the control experiment. 
After 20 iterations, the curve of the cost function 
becomes essentially horizontal, although the norm of 
the gradient is still decreasing.  

The quality of variational analysis can be ascer-
tained by comparing the analysis fields with the ADAS 
analysis. In Fig 2, we show the contours of u-compo-
nent of wind field. Comparing the 3DVAR with the 
ADAS, we can conclude that the quality of the analysis 
is reasonable although more careful evaluations, espe-
cially numerical forecast experiments, are needed to 
justify the result of analysis.   

In another experiment, a single wind profile is used 
in the middle of analysis domain. It is found that the 
isotropic spread of the observation information when 

using a single pass of the filter agrees with our expectation 
(figure not shown). The influence area of this single 
observation depends on the number of passes used and the 
correlation scale. More detailed results will be presented at 
the conference.  

 

4. Conclusion 

In this paper, we described an incremental 3DVAR 
system for the ARPS model. The system is preconditioned by 
the background error covariance matrix, which is based on a 
recursive filter. Numerical experiments show that a reasonable 
reduction in the cost function is achieved in the minimization 
process and the quality of the analysis  is reasonable. The 
single-observation experiment shows that the recursive filter 
performs adquately in spreading the observational 
information. New data types will be added to this assimilation 
scheme and numerical forecast experiments will be performed 
to further test the quality of this system in the future. 
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Fig. 2. Comparison of 3DVAR analysis and ADAS 
analysis of east-west velocity (u) field at the 
surface, for 18 Z, June 8, 1995. (a) the 3DVAR 
analysis,  (b) the ADAS analysis, (c) the 3DVAR 
analysis increment, (d) the ADAS analysis 
increment, and (e) the analysis background. 
Close to this time, tornadic supercell storms 
occurred in the Texas Panhandle area.  

 


