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Abstract 28 

Error growth is investigated based on convection-allowing ensemble forecasts starting from 29 

0000 UTC for 14 active convection events over central to eastern U.S. regions from spring 2018. 30 

The analysis domain is divided into the NW, NE, SE and SW quadrants (subregions). Total difference 31 

energy and its decompositions are used to measure and analyze error growth at and across scales. 32 

Special attention is paid to the dominant types of convection with respect to their forcing 33 

mechanisms in the four subregions and the associated difference in precipitation diurnal cycles. 34 

The discussions on the average behaviors of error growth in each region are supplemented by 4 35 

representative cases. Results show that the meso-γ-scale error growth is directly linked to 36 

precipitation diurnal cycle while meso--scale error growth has strong link to large scale forcing. 37 

Upscale error growth is evident in all regions/cases but up-amplitude growth within own scale 38 

plays different roles in different regions/cases.  39 

When large-scale flow is important (as in the NE region), precipitation is strongly modulated 40 

by the large-scale forcing and becomes more organized with time, and upscale transfer of forecast 41 

error is stronger. On the other hand, when local instability plays more dominant roles (as in the SE 42 

region), precipitation is overall least organized and has the weakest diurnal variations. Its 43 

associated errors at the  and -scale can reach their peaks sooner and meso--scale error tends 44 

to rely more on growth of error with its own scale. Small-scale forecast errors are directly impacted 45 

by convective activities and have short response time to convection while increasingly larger scale 46 

errors have longer response times and delayed phase within the diurnal cycle. 47 
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1. Introduction 48 

Convective events frequently occur over central U.S. in the spring season and the associated 49 

flooding can produce significant threats to life and properties (Ashley and Ashley 2008). Recent 50 

studies revealed that convection-allowing numerical prediction models have advantages over 51 

coarser-resolution models in representing convective modes and diurnal cycle of precipitation (e.g. 52 

Clark et al. 2007), but the forecast skill does not always improve as model resolution increases (Lean 53 

et al. 2008; Mass et al. 2002; Walser et al. 2004). On the other hand, forecast skill often decreases 54 

fast with forecast range due to rapid forecast error growth (Kain et al. 2010; Surcel et al. 2015). These 55 

issues speak to the need for better understanding the predictability of convective events, and 56 

associated error growth across scales (Sun and Zhang 2016; Zhuang et al. 2020). 57 

Understanding forecast error growth is a fundamental issue within the realm of predictability 58 

(Fritsch and Carbone 2004; Hohenegger and Schar 2007; Johnson et al. 2013; Kong et al. 2006), and 59 

related research issues include the growth of errors at different scales and their interactions 60 

(Bachmann et al. 2019; Bierdel et al. 2017), and the predictability limitation estimation (Judt et al. 61 

2016; Walser et al. 2004). Through the study of error growth dynamics within a highly idealized model, 62 

Lorenz (1969) revealed important scale interactions pertaining to atmospheric predictability. Studies 63 

in more realistic settings have shown that very small amplitude and small-scale initial errors can grow 64 

upscale and contaminate mesoscale and large-scale processes (Hohenegger et al. 2006; Tan et al. 65 

2004; Zhang et al. 2003). Zhang et al. (2007) proposed a three-stage error growth conceptual model 66 

using an idealized baroclinic wave model. This conceptual model suggests that the intrinsic 67 

predictability at larger scales is limited by upscale transfer of smaller scale errors: Stage 1 68 

encompasses fast increase and an early saturation of small-scale errors that are confined to 69 

precipitation regions in presence of convective instability and latent heat release; Stage 2 70 

corresponds to the transition stage when small-scale errors begin to spread from the precipitation 71 

regions and project to balanced motions through geostrophic adjustment processes (Bierdel et al. 72 
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2017). After that, errors continue to grow through background baroclinic instability at a slower rate 73 

in Stage 3. The model has been subsequently applied to investigating and explaining error growth 74 

dynamics in both idealized and more realistic modeling studies (Selz and Craig 2015; Sun and Zhang 75 

2016; Zhang 2019). On the contrary, initial errors at larger scales have been reported by other authors 76 

to account for much of the error growth and for controlling forecast accuracy regardless of the 77 

presence of small scale errors (Durran and Gingrich 2014; Durran and Weyn 2015; Weyn and Durran 78 

2017, 2018, 2019). 79 

Another important question concerning error growth is what mechanism determines the diurnal 80 

aspect of error growth (Keil et al. 2014; Klasa et al. 2018; Nielsen and Schumacher 2016; Wu et al. 81 

2020; Zhang et al. 2007). In general, the baroclinic instability associated with horizontal temperature 82 

gradients and the convective instability associated with unstable vertical profiles for moist convection 83 

are considered as the two main driving mechanisms for forecast error growth at the large and small 84 

scales, respectively (Bei and Zhang 2014; Nielsen and Schumacher 2016; Zhang et al. 2007). Zhang et 85 

al. (2007) found that moist convection is not only important in initiating error, but also in maintaining 86 

subsequent error growth at small scales. Weyn and Durran (2017) showed that the forecast error also 87 

exhibits up-amplitude growth in addition to upscale growth. Nielsen and Schumacher (2016) 88 

concluded that the forecast error evolution can be decomposed into a steadily growing mode that 89 

determines the amplitude increase, and a superimposed mode dominated by strong moist 90 

convection activities (e.g., those associated with solar-forced diurnal precipitation peak) that 91 

determine the “shape” of error growth curve. However, since convective events are inherently scale 92 

sensitive, it is important to understand characteristics of error growth across scales. 93 

Previous studies also reported that the predictability of convective events depends on the impact 94 

of large-scale forcing on convection, and the convective events are often categorized into different 95 

regimes, namely, those that are strongly forced and weakly forced. As reported by Keil et al. (2014), 96 

in case of strongly forced convection, large-scale flow dominates error growth, while for weakly 97 



3 

forced convection controlled by local instabilities the contributions from both sources are 98 

approximately equal. Nielsen and Schumacher (2016) also found that in a case with strong convective 99 

to synoptic-scale interactions the forecast error can continuously increase. By investigating error 100 

evolution under different convective regimes, Klasa et al. (2019) also indicated through case studies 101 

that large-scale flow and diurnal solar forcing together determine the overall evolution of error 102 

growth. 103 

During the spring of the central U.S. regions, convective systems are often active with multiscale 104 

interactions (Carbone and Tuttle 2008; Carbone et al. 2002b; Dai et al. 1999; Knievel et al. 2004; 105 

Surcel et al. 2010; Trier et al. 2006); it is common for initially more isolated storm cells to organize 106 

into mesoscale convective systems (MCSs) in the region. In this study, we investigate scale-dependent 107 

error growth for 13 convective events during May 2018 with convection-allowing model (CAM) 108 

ensemble forecasts at 3 km grid spacing covering the contiguous United States (CONUS). The large 109 

convection-allowing grid allows for the representation of scales from meso- through meso- scales. 110 

We will focus on the forecast error analyses in a domain that covers the central Plains east of the 111 

Rockies through the mid-west and much of the southeast regions, sampling convection of different 112 

types. The study period spans early spring (when large-scale forcing is more prevalent) to late spring 113 

(when locally forced convection is more prevalent) (Surcel et al. 2015; Surcel et al. 2017), allowing for 114 

a diverse collection of different convection types and forcing mechanisms that regulate error growth 115 

dynamics within CAM forecasts. We use the total difference energy within the forecast ensemble and 116 

the scale decompositions of the difference energy as the proxy to measure error growth at and across 117 

scales. So far, studies examining growth of errors across scales and within their scales with large 118 

continent-sized CAM models, and how the error growth depends on the type of convection and the 119 

degree of synoptic scale forcing are few and limited (e.g., Surcel et al. 2015; Surcel et al. 2017), and 120 

some of the existing studies are based on individual case studies (e.g., Flack et al. 2017; Wapler et al. 121 

2015). More studies on these issues are needed. 122 
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As the main goals, this study is to answer the following questions: 1) What are the general 123 

characteristics of precipitation and associated error growth with respect to different convection types 124 

and forcing mechanisms; 2) What are the characteristics of error growth in terms of different spatial 125 

scales and in regions dominated by different convection types; 3) What mechanisms dominate the 126 

diurnal evolution of forecast error. These goals provide insights into the predictability of convective 127 

events across the central U.S. regions within CAM forecasts, and potentially aid the optimal design of 128 

CAM ensemble forecast systems and provide guidance to ensemble data assimilation and forecast 129 

model improvement. For example, a better understanding of the relative impact of initial 130 

condition perturbations at different scales on ensemble variances across the scales within the 131 

forecasts of different ranges, and how the impact depends on weather regimes can provide 132 

guidance on where attention should be focused when creating initial condition perturbations for 133 

CAM ensemble forecasting systems of limited size and the best method to use for creating such 134 

perturbations 135 

The rest of this study is organized as follows. The datasets employed in this study are introduced 136 

in section 2. Section 3 to section 5 discuss the general characteristics of precipitation systems and 137 

error growth, and the error growth mechanisms, and section 6 discusses four specific cases in more 138 

detail. Conclusions and further discussions are given in section 7. 139 

2. Data and methods 140 

a. Forecasts from the CAPS HWT Spring Forecast Experiment Ensemble 141 

The Spring Forecast Experiments have been organized by the NOAA Hazardous Weather Testbed 142 

(HWT, http://hwt.nssl.noaa.gov/spring_experiment) every spring since 2007, and the Center for the 143 

Analysis and Prediction of Storms (CAPS) has been contributing the largest number of CAM ensemble 144 

forecasts every year until recently (e.g., Clark et al. 2009; Clark et al. 2018; Xue et al. 2007). In 2018, 145 

most ensemble forecasts produced by CAPS used the Advanced Weather Research and Forecasting 146 

(WRF-ARW) Model (Skamarock et al. 2008). Similar to experiments described in Clark et al. (2018) for 147 
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2016 Forecast Experiments, the CAPS CAM ensemble forecasts of 2018 included several sets, one 148 

included initial condition (IC)/lateral boundary condition (LBC) perturbations as well as different 149 

physics parameterizations, and one included IC and LBC perturbations only (i.e., all members used 150 

the same physics). The third set used stochastic perturbations based on a single suite of physics 151 

instead of multiple physics. In this study, the set using the same physics is used given our focus on IC 152 

error growth. The physics package includes the Thompson microphysics (Thompson et al. 2008), 153 

Noah land surface model (Mitchell 2005), and MYJ planetary boundary layer (Janić 2001) scheme. 154 

The Stage-IV precipitation product (Lin and Mitchell 2005) is employed as the observed precipitation 155 

data for verification purpose and we focus on the first 24 hours of forecast. 156 

The IC of the control member of ensemble was produced by assimilating radar (reflectivity and 157 

velocity) and conventional (surface observations and radiosondes) data using the ARPS 3DVar data 158 

assimilation system (Xue et al. 2003) together with its cloud analysis package (Hu et al. 2006a; Hu et 159 

al. 2006b), using the 0000 UTC 12-km North American Mesoscale Forecast System (NAM) model 160 

analysis at the background. The 3 hourly NAM forecasts are used as the LBCs. The perturbed ICs and 161 

LBCs for other ensemble members are generated by adding perturbations derived from the 2100 UTC 162 

cycle forecasts of the operational short-range ensemble forecast (SREF) system of NCEP (Du et al. 163 

2009) to the IC and LBC of the control member. All forecasts are initialized at 0000 UTC (1800 CST) on 164 

weekdays with a forecast range to 60 h, on the 3-km grid spacing CONUS grid (see Fig. 1). Previous 165 

studies on similarly configured forecasts produced by CAPS have reported that diurnal cycles of 166 

precipitation over central U.S. regions can be reasonably reproduced by the forecasts (Berenguer et 167 

al. 2012; Surcel et al. 2010; Surcel et al. 2015; Surcel et al. 2017). The radar data assimilation 168 

significantly alleviates the precipitation spinup problem (Kain et al. 2010; Skinner et al. 2020). Twenty-169 

four-hour forecasts from 14 days of the CAPS ensemble forecasts from May 2018 that have active 170 

convection starting at the initial condition time (0000 UTC) are chosen to analyze IC error growth in 171 

this study. 172 
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b. Representation of forecast error  173 

Following Nielsen and Schumacher (2016), the Root Mean Difference Total Energy (RMDTE) is 174 

used to represent forecast error, in which the horizontal DTE (Zhang et al. 2003) as a function of the 175 

grid point and time can be defined as 176 

DTE(𝜆)𝑖,𝑗,𝑡 =
1

𝑁
∑ ∑

𝑝(𝑘+1)−𝑝(𝑘)
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𝑘=0

1

2
[𝑢(𝜆)𝑖,𝑗,𝑘,𝑡,𝑛

′ 2
+ 𝑣(𝜆)𝑖,𝑗,𝑘,𝑡,𝑛

′ 2
+

𝐶𝑝

𝑇𝑟
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′ )
2

]𝑁
𝑛=1   ,        (1) 177 

where 𝑢′ ,  𝑣′ , and 𝑇′  are respectively the differences of zonal wind, meridional wind, and 178 

temperature from the ensemble mean. 𝐶𝑝 = 1004.9 J kg−1K−1  is the heat capacity of dry air at 179 

constant pressure and 𝑇𝑟 = 270 K  is a reference temperature. 𝑁  is the number of ensemble 180 

members, the subscripts i, j, k, t, n, and λ represent the grid indices in x, y, and vertical directions, 181 

forecast time level, ensemble member, and spatial scale, respectively. The 𝑘  index covers vertical 182 

layers from 925 to 500 hPa where most precipitation systems occur. p denotes the pressure of each 183 

vertical layer. 184 

Since RMDTE values vary significantly across the convective events, we use the normalized 185 

RMDTE (NRMDTE) to reduce variations across convective events following Nielsen and Schumacher 186 

(2016). The NRMDTE is defined as the ratio of RMDTE to total mean kinetic energy (TMKE), and TMKE 187 

is given as 188 

𝑇𝑀𝐾𝐸𝑖,𝑗,𝑡 = ∑
𝑝(𝑘+1)−𝑝(𝑘)

𝑝(0)
𝐾
𝑘=0 (

1

𝑁
∑

1

2
[�̅�𝑖,𝑗,𝑘,𝑡,𝑛

2 + �̅�𝑖,𝑗,𝑘,𝑡,𝑛
2 ]𝑁

𝑛=1 ),                  (2) 189 

where overbar denotes ensemble mean. Then NRMDTE can be computed 190 

𝑁𝑅𝑀𝐷𝑇𝐸(𝜆)𝑖,𝑗,𝑡 = √
𝐷𝑇𝐸(𝜆)𝑖,𝑗,𝑡

𝑇𝑀𝐾𝐸𝑖,𝑗,𝑡
.                                                   (3) 191 

In Eq. (2), the temperature term is excluded from Eq. (1) to allow the TMKE to dominantly vary with 192 

the convective situation in question rather than with latitudinal variation in temperature (Nielsen and 193 

Schumacher 2016). Based on the above, the evolution of forecast error (as measured in a form of 194 

ensemble perturbations) can be quantitatively assessed by calculating NRMDTE over time, which can 195 

also be used to measure practical predictability. In general, the predictability within ensemble 196 
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forecasts for a convective case is destroyed when there is large increase in NRMDTE (Judt et al. 2016). 197 

In summary, RMDTE provides a measure of the magnitude of forecast errors and is applicable to 198 

individual cases while NRMDTE does not measure the absolute magnitude but assesses the mean 199 

behaviors of forecast error growth for a group of cases and informs predictability. In section 3, we 200 

employ NRMDTE to understand the mean error growth dynamics over all 14 cases, while in sections 201 

5 and 6, RMDTE is used for correlation analysis and case studies. 202 

c. Analysis domain and case selection 203 

The analyses of the CAM forecasts and observations are carried out over the central U.S. region 204 

with four subregions as illustrated in Fig. 1. The overall analysis region is between the Rocky 205 

Mountains and Appalachian Mountains, which is further divided into four quadrants with equal size 206 

to allow for examination of precipitation diversity in the NW, NE, SE, and SW regions. Twenty-four-207 

hour forecasts from 13 days of May 2018 that have active convection at the IC time are chosen from 208 

the CAPS ensemble forecasts to analyze IC error growth in this study (see Fig. 2 for a list of dates). All 209 

forecasts start at 0000 UTC. With radar data assimilated into the ICs containing active convection, 210 

errors at all scales are expected to grow from the beginning. 211 

3. The general characteristics of precipitation systems in the forecasts  212 

a. Mean synoptic overview 213 

Figure 2 gives the temporal evolution of convective available potential energy (CAPE) computed 214 

from the control forecast averaged over the entire analysis domain for each of the 14 cases. The CAPE 215 

values show clear diurnal cycles with steep increases after 12 h (0600 CST) due to daytime solar 216 

heating and they reach maximum at around 20 h (1400 LST). Specifically, cases during late May show 217 

more pronounced diurnal variations and higher CAPE values than early May cases. This is consistent 218 

with previous studies (Dai et al. 1999; Surcel et al. 2015), in which early spring CAPE is affected more 219 

by large scale circulations while late spring CAPE is more controlled by diurnal cycle due to solar 220 

heating. In the horizontal plane view (Fig. 3), the CAPE averaged over all cases is mainly concentrated 221 
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in the southern part of the analysis domain that is associated with a strong mean 925-hPa low-level 222 

jet (LLJ) originated from the Gulf coast. Diurnal characteristics consistent with the boundary layer LLJs 223 

predicted by the inertial oscillation theory of Blackadar (1957) are found with the LLJ; it strengthens 224 

during the nocturnal time (Fig. 3a-d) and weakens during the day with the development of boundary 225 

layer vertical mixing (Fig. 3e-h). The enhanced nocturnal LLJ transports more moisture into the central 226 

Great Plains and also produces low-level convergence at its northern terminus that promotes 227 

organized convection (Carbone and Tuttle 2008; Trier et al. 2017).  228 

b. Classification of precipitation types 229 

Figure 4 displays the spatial distributions of total frequency (number of times across the 14 days) 230 

of 1-h precipitation exceeding 0.5 mm h-1 with different ending times. In general, there are four 231 

primary modes of precipitation that are linked to different forcing mechanisms over the analysis 232 

domain. The main precipitation in the NW quadrant is found near the western boundary of the region 233 

at 0300 and 0600 UTC (Fig. 4a,b), which is mostly from convective systems that originated in the 234 

afternoon over the Rocky Range in central Colorado and moved eastward into the region (Carbone 235 

et al. 2002a; Sun et al. 2016; Surcel et al. 2010). By 0900 and 1200 UTC (Fig. 4c, d), the precipitation 236 

is mainly found in central and eastern Nebraska, along a zone that extends eastward into the NE 237 

quadrant. This zone is associated with a quasi-stationary front that forms between the generally 238 

southerly flows from the Gulf and the higher latitude air mass (see Fig. 3). The zone is also the 239 

northern terminus of the boundary layer LLJ where low level convergence is strong and prone to 240 

trigger night time convection when the LLJ jet is enhanced (Savijarvi 1991; Trier et al. 2017). The 241 

precipitation in Nebraska between 0600 and 1200 UTC should be the combined result of eastward 242 

propagation of afternoon convection from the Rockies and those that develop at the northern 243 

terminus of the nocturnal LLJ. The convection in the northern part of the NE quadrant is mainly found 244 

at the quasi-stationary front, and it weakens by 1500 UTC (Fig. 4e) and mostly disappears by 1800 245 

UTC or close to noon local time. The latter should be related to the weakening of the southerly flows 246 
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associated with the boundary layer LLJ as daytime boundary layer mixing slows down the flows 247 

(Blackadar 1957; Xue et al. 2018). The quasi-stationary front is in a sense analogous to the Mei-yu 248 

front found over eastern Asia in late spring to early summer (Chen et al. 2018). 249 

In the southern quadrants, the direct effects of the diurnal changes in solar heating is strong, 250 

and convection tends to be strongest in the afternoon into early evening. In the SW quadrant (Fig. 251 

4e), precipitation is most prominent in the Texas panhandle region in a north-south zone that is 252 

associated with a quasi-stationary dryline that frequently triggers convection in the late afternoon in 253 

the spring (Liu and Xue 2008; Schaefer 1986; Xue and Martin 2006). The convective storms initiated 254 

along the dryline often move eastward across the southern Great Plains and organize into quasi-255 

linear convective systems or squall lines in the process. In the SE quadrant, we observe mostly small-256 

scale and scattered popcorn-type convection in the daytime, especially in the afternoon and early 257 

evening (Figs. 4a, g, h), some along the Gulf Coast. These cells form due to solar heating and 258 

associated land/see-breeze circulations (Berenguer et al. 2012; Surcel et al. 2010). Given that the 259 

precipitation in the four quadrants or sub-regions appears to be dominated by convective systems of 260 

mostly different origins and forcing mechanisms, many of our subsequent discussions will be focused 261 

on the four subregions, and we will investigate and contrast the precipitation diurnal cycles and 262 

associated characteristics of error growth for the respective regions.  263 

c. Mean diurnal cycles of precipitation 264 

Figure 5 shows the subdomain-averaged hourly precipitation over 24 hours for the 14 forecasts 265 

and their mean, and the corresponding observations. The observed precipitation rates show different 266 

diurnal features for different subregions. As discussed earlier, the NW region that is mainly affected 267 

by propagating convective systems coming from the Rockies and somewhat by convection forced by 268 

nocturnal LLJ, the peak precipitation is found around 0000 UTC (1800 CST, Fig. 5a). The rate decreases 269 

steadily into the evening and reaches minimum at around 1600 UTC (1000 CST). The precipitation 270 

starts to pick up significantly in early afternoon (~2000 UTC or 1400 CST) and increase to the second 271 
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day peak at 0000 UTC. In the NE region (Fig. 5b), the precipitation peaks at 0600 UTC or around mid-272 

night, consistent with the fact that nocturnal LLJ forcing plays the largest role in that region in this 273 

season (Dai et al. 1999). The minimum is around 1700 UTC. For the SW region, precipitation mostly 274 

occurs in the local afternoon after 1700 UTC (noon EST) and before 0200 UTC, and the maximum 275 

occurs at around 2100 UTC, due to the predominant effect of solar heating (Fig. 5d). For the SW 276 

region, precipitation peaks around 0000 UTC or 1800 CST, due to frequent initiation of convection 277 

along the dryline in western Texas in late afternoon, and subsequent eastward propagation. These 278 

observed diurnal characteristics are reasonably well reproduced by the model (cf. black dashed and 279 

solid lines in Fig. 5) although there are magnitude errors. For the individual cases, several of them 280 

had rather weak precipitation throughout the 24 hours. For those that have significant amount of 281 

precipitation, the general diurnal trends mostly match the mean observation. The cases with more 282 

precipitation are often associated with favorable synoptic scale flow patterns and related forcing.  283 

Overall, the northern regions tend to be more affected by synoptic scale circulations (cyclones) 284 

in May (especially for the NE region), and at the low levels by convergence induced by nighttime LLJ. 285 

For the southern regions, synoptic scale forcing tends to be weaker, and boundary layer thermal 286 

forcing dominates, especially in the SE region. In the SW region, dryline dynamics play additional 287 

roles. The fact that the mean precipitation diurnal cycles are reproduced reasonably well in the model 288 

suggest that the forecasts can be used to investigate diurnal cycle-dependent forecast error growth. 289 

It is noted that the time-averaged forecast precipitation rates in the subdomains all show significant 290 

precipitation (NW: 0.23, NE: 0.25, SW: 0.15, SE: 0.21 mm h-1). 291 

4. Characteristics of error growth in forecasts 292 

a. Spatiotemporal characteristics of total error growth 293 

Previous studies have revealed a strong relationship between error (energy) growth and 294 

precipitation (Flack et al. 2017; Johnson et al. 2013; Nielsen and Schumacher 2016; Wu et al. 2020). 295 

Given the strong zonal propagation of convection (Surcel et al. 2010 and Fig. 4), we first analyze the 296 
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mean error growth and associated precipitation rate in time-longitude coordinates in terms of 297 

Hovmoller diagrams (for the northern and southern half of the domain with averaging over the 298 

latitudinal range of the half domains). Figure 6 shows the time-longitude Hovmoller diagrams of the 299 

total NRMDTE and corresponding precipitation rates averaged over all 14 cases, plotted for the 300 

northern (Fig. 6a) and southern half of the overall domain (Fig. 6b). 301 

In the northern half domain (combination of NW and NE subdomains), the total NRMDTE 302 

corresponds well with the two progressive precipitation systems (Fig. 6a): the orographically forced 303 

precipitation systems coming out the Rockies in the afternoon propagating through the NW region 304 

(indicated by the long gray arrow labeled NW) and the nocturnally forced precipitation systems 305 

forming in the north-central part along the quasi-stationary front that propagate eastward and 306 

dissipate in the morning hours in the NE subdomain (the gray arrow labeled NE, and see also Fig. 4a-307 

d). West of 100° W, the NRMDTE grows quickly, reaching over 0.3 after ~3 h (Fig. 6a), the region of 308 

large NRMDTE spreads downstream in a fan pattern, with the largest values more or less tracking the 309 

maximum precipitation ‘ridge’ in the Hovmoller diagram while lagging in time in terms of the ‘ridge 310 

line’ by a couple of hours. Corresponding to the precipitation initiated along the quasi-stationary 311 

front near and east of 96° W and sustaining through the night while propagating eastward (along the 312 

arrow labeled NE), errors develop more or less following the precipitation track in the Hovmoller 313 

diagram and expand in east-west extent. The two regions of NRMDTE > 0.31 (red shadings) merge 314 

together after 10 h, and occupy the zone between 88° and 104° W through 24 hours, with the 315 

expanding region of high NRMDTE (gray color) being mostly associated with western propagating 316 

band of precipitation. These results clearly show that the NRMDTE growth is strongly tied to the 317 

development and decay, and propagation of convective systems which exhibit clear diurnal cycles. 318 

For the eastern band, NRMDTE decreases after 16 h when the precipitation intensity decreases in the 319 

late morning hours. The western band has larger NRMDTE values, indicating greater uncertainties 320 

and lower predictability with these precipitation systems in the NW domain. 321 
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For the southern part of the overall domain (Fig. 6b), there are clearly two branches of larger 322 

NRMDTE values, corresponding to the eastward propagating dryline-initiated precipitation systems 323 

in the SW region and the local thermally forced precipitation systems in the SE region. The NRMDTE 324 

associated with the thermally forced convection in SE clearly develops much faster and the gray color 325 

fills much of the domain after 10 hours, indicating low predictability with such often-disorganized 326 

thermal convection that is mainly active in the afternoon through mid-night hours. The error remains 327 

larger in the morning hours though, indicating the effects of widespread afternoon convection that 328 

also cause upscale error growth (Hohenegger et al. 2006). In comparison, errors associated with the 329 

convection in the SW region grow much slower and gain lower values; this may be partly because the 330 

dryline-initiated convection tends to become organized when they propagate through the southern 331 

Great Plains, where the boundary layer tends to be capped by an inversion layer to prevent 332 

widespread convection. The decay of convection from late morning also limited further error growth 333 

(Fig. 6b).   334 

The above results indicate that forecast error growth within a CAM ensemble often closely 335 

follows the precipitation systems and the errors tend to grow upscale from the precipitation regions, 336 

and the behaviors of error growth are highly dependent on the characteristics of the precipitation 337 

systems, including their primary forcing mechanism, propagation and organization. 338 

Figure 7a shows the temporal evolution of total NRMDTE averaged over all 14 cases for the entire 339 

analysis domain and each of the subdomains, respectively. Diurnal variations in the NRMDTE over 340 

the entire domain (black dashed curve) similar to that found in Nielsen and Schumacher (2016) are 341 

observed, with growth mainly found in the first ~12 h and last ~5 h of the 24 h forecasts, 342 

corresponding to the evening through early morning hours, and the afternoon hours. NRMDTE 343 

remains level after sunrise through noon due to suppression of much of the convection. The total 344 

NRMDTEs for different subregions exhibit different magnitudes and trends. The NRMDTE for the SE 345 

region is the largest from the beginning (indicating larger uncertainties in its IC) and continues to 346 
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grow throughout the 24 hours, and grows the fastest in the afternoon and early evening, not 347 

surprisingly. The NRMDTE in the NW region is the second largest, and goes through growth, decay 348 

and growth cycles, with the decay between 1000 and 1400 CST being the most evident. Given the 349 

faster error growth, the predictability of convection in these two regions is lower (Judt et al. 2016; 350 

Nielsen and Schumacher 2016). In comparison, convective systems in the SW and NE regions have 351 

lower errors and generally similar diurnal variations. These systems have higher predictability due to 352 

stronger control of synoptic and mesoscale environments that are associated with dryline and quasi-353 

stationary frontal circulations, respectively.  354 

b. Spatiotemporal characteristics of error growth at different scales 355 

To further understand the error growth dynamics, the NRMDTEs at and across different scales 356 

are assessed. The discrete cosine transform (DCT) (Denis et al. 2002; Surcel et al. 2014; Zhuang et al. 357 

2020) is employed to decompose the dynamic variables into three scales, i.e., the meso-γ, meso- 358 

meso- scales (the longest resolved wavelength for the analysis domain is 3720 km or twice the east-359 

west width of the domain), with the dividing wavelengths being 20 and 200 km between them. In 360 

this paper, we refer to these scales as convective scale, mesoscale and synoptic or large-scale, or as 361 

γ,  and  scales for brevity. NRMDTEs are then calculated for these three scales.  362 

As shown in Figs. 7b-7d, the scale-dependent error growth for each subregion exhibits a 363 

“stepwise” feature, i.e., the NRMDTEs increase with increasing spatial scales at lagging times, 364 

reaching their peaks at successively later hours as the scale increases, indicative of upscale transfer 365 

of errors (Selz and Craig 2015; Zhang et al. 2007). At the first stage, the γ-scale NRMDTEs rapidly 366 

increase in the precipitation regions and reach peak between 2 (SE) and 5 h (NW) (Fig. 7b and Figs. 367 

8a, d). The γ-scale errors at the initial time are very low because convection was introduced into the 368 

IC using the deterministic cloud analysis of radar observations (without convective scale 369 

perturbations) while the SREF-derived IC perturbations span only mesoscales and up (Johnson et al. 370 

2013).   371 



14 

The errors at the β-scale increase rapidly in the first ~3 hours, then continue to grow through ~8 372 

hours and spread beyond the precipitation regions (Fig. 7c and Figs. 8b, 8e); this may be partly 373 

attributed to the slower error growth at longer wavelengths (Lorenz 1969) and partly to the upscale 374 

transfer of errors from γ scale (Selz and Craig 2015; Sun and Zhang 2016). After the peak error is 375 

reached, the error decreases noticeably in most of the subregions (Fig. 7c), and such decreases 376 

correspond closely to the weakening of precipitation as shown in the Hovmoller diagrams (Fig. 8b, e). 377 

The growth picks up again (Fig. 7c) when precipitation redevelops after 18 h (Fig. 8b, e), indicating 378 

the direct contribution of moist convection to mesoscale error growth, as emphasized by Zhang et al. 379 

(2007).  380 

At the α scale, the NRMDTE starts at relatively high levels, which comes from the initial 381 

perturbations derived from SREF 3-hour forecasts. The NRMDTE at initial time is the highest in the SE 382 

subdomain mainly because the ensemble mean total energy used to do normalization is lower in this 383 

weakly forced region (see Fig. 14a later for an individual case for the region). Compared to other 384 

regions, the diurnal variations of precipitation in SE region are weaker and there is much less east-385 

west propagation (Fig. 8f), and its NRMDTE is able to grow monotonically throughout the 24 hours 386 

(green curve in Fig. 7d). 387 

The α-scale NRMDTE in other three subregions grows slowly in the first 3-4 h (Fig. 7d), then goes 388 

into a stage of fast growth before levelling off at 10-12 h. The NRMDTE decreases somewhat 389 

afterwards then starts to grow again at 20 h (Fig. 7d) when precipitation redevelops again in the 390 

afternoon (Figs. 8f). The apparent connection of α-scale NRMDTE to the diurnal cycles of precipitation, 391 

and the delayed phase of error growth compared to those at γ and β scales clearly indicates significant 392 

upscale error growth feeding off moist convection in these regions. 393 

Overall, similar to the precipitation rate (Fig. 5), errors in the γ scales (Fig. 7b) exhibit pronounced 394 

diurnal cycles given their direct link and fast response to convective activities. The errors at these 395 

scales usually decay when convection die out. For errors at the β and α scales, the diurnal responses 396 
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are weaker and the peaks are delayed, due to their slower growth. Given the clear importance of 397 

precipitation or moist convection, and based on the sequence of error growth in terms of the timing 398 

of peak error, as well as the time evolution of the spatial scales of errors in the Hovmoller diagrams, 399 

we think there is clearly upscale error growth from the convective (γ) scale through the mesoscale (β 400 

scale) and synoptic (α) scale. At the same time, because of the presence of significant large scale 401 

errors in the IC, effects of large scale errors on the smaller scales are also at work (Durran and Gingrich 402 

2014; Weyn and Durran 2019); in fact, the storms initialized from radar data are the same within the 403 

ICs of all ensemble members (c.f., curves in Fig. 7b). Therefore, the error growth model in our 404 

situation appears to be: IC errors at the mesoscale and synoptic scale grow in the ensemble and 405 

create errors at the convective scale that grow the fastest. The fast-growing convective scale errors 406 

then propagate upscale. The precipitation activities strongly modulate error growth at all scales, 407 

resulting in significant diurnal cycles of error dynamics, which are also affected by the precipitation 408 

regimes (Durran and Gingrich 2014; Weyn and Durran 2019). The upscale error propagation is the 409 

weakest in weakly forced situations. These are discussed further in the next section. 410 

5. Effects of convection intensity and large-scale forcing on forecast error 411 

Since error growth within CAM forecasts depends on the type of convective system or 412 

precipitation type (Keil et al. 2014; Klasa et al. 2018; Nielsen and Schumacher 2016), in this section, 413 

we evaluate the impact of precipitation type on error growth with respect to the spatial scale and 414 

forecast range via a correlation analysis. 415 

a. Relation between moist convection intensity and forecast error  416 

The intensity of moist convection has been reported to dominate error growth at small scales 417 

during first few forecast hours in precipitation regions (Fig. 7b, Fig. 8a, d) (Hohenegger et al. 2006; 418 

Selz and Craig 2015; Zhang et al. 2007; Zhang 2019). However, the impact of moist convection 419 

intensity on error growth at longer forecast ranges, especially with different precipitation diurnal 420 

cycles, is less clear. In this subsection, the area-average precipitation rate exceeding 0.5 mm h-1 is 421 
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used as an indicator of the intensity of moist convection, RMDTE is used to represent error growth, 422 

and their relationship is evaluated with a linear regression method.  423 

Figure 9 shows the scatterplots between RMDTE and moist convection intensity (both variables 424 

are normalized prior to calculating the regression coefficient (Reynolds et al. 2002)) at different scales 425 

and over different subregions. Different colors are used to represent different forecast periods based 426 

on consideration of the stages of error growth and the diurnal variability of precipitation and errors 427 

at different scales: 1) the black dots represent period 1 (0-9 h, 1800-0300 LST), encompassing the fast 428 

increase of γ-scale errors and their associated saturation; 2) the cold color dots indicate period 2 (10-429 

15 h, 0400-0900 LST), containing the increase and saturation of β-scale and α-scale errors; 3) the 430 

warm color dots indicate period 3 (16-24 h, 1000-1800 LST) in which secondary error growth occurs 431 

in the second day. Different cases are characterized by different markers. Lines in different colors 432 

represent the fitting lines for different periods using linear regression.  433 

Overall, the correlation between forecast error magnitude and moist convection intensity 434 

increases with decreasing scales, strong positive correlations between them can be found at the γ 435 

scale in all three periods (Figs. 9a1-a4). In some regions (e.g., SW), the positive relationship is even 436 

stronger in period 3 (Figs. 9a4) when afternoon thermal convection is active (c.f., Fig. 7b, Fig. 8d). In 437 

comparison, weak positive correlations or even negative correlations are observed at the β scale (Figs. 438 

9b1-b4) and α scale at shorter forecast ranges (Figs. 9c1-c4). The correlation coefficients are generally 439 

larger during periods 2 and 3 than that of period 1, even for γ scale. This result implies that the impact 440 

of moist convection on error growth increases with forecast time, apparently due to the accumulative 441 

effects of moist convection on forecast error. 442 

Specifically, for the NW, NE, and SW regions where mesoscale to large-scale forcing linked to the 443 

nocturnally strengthened LLJ during period 1 plays significant roles, the RMDTEs can be negatively 444 

correlated to the strength of moist convection at the larger scales (Figs. 9b1-b3, c1-c3), and the 445 

negative trend is stronger for the  scale. Weaker negative correlations are also found for the SE 446 



17 

region (Figs. b4, c4). Such negative correlation appears to be due to the delayed response of larger 447 

scale errors to moist convection so that the error growth is out of phase with the convection intensity 448 

time evolution. If we consider the -scale error shown in Fig. 7b as a proxy of moist convection 449 

intensity (because of the fast response to -scale error to moist convection), we can see that the 450 

scale (Fig. 7c) and scale (Fig. 7d) errors are increasing throughout period 1 while the -scale 451 

errors are decreasing after 2-4 h (Fig. 7b). Such out-of-phase evolution is also evident in Fig. 8 when 452 

comparing the precipitation intensity and error growth in the first 9 hours for the two larger scales.  453 

In summary, moist convection impacts forecast error growth during the whole 24-h forecast 454 

range. The correlation between error growth and moist convection decreases with increasing spatial 455 

scale because of the increasing error response time to convection. The correlation increases with 456 

forecast hours due, we believe, to the accumulative effects of convection. For the initial 8 hours of 457 

forecast, the correlation is actually negative for forecast errors at the  and  scales; this is believed 458 

to be related to the phase difference between the errors at these scales and smaller scale convection.  459 

b. Relationship between large-scale forcing and forecast error  460 

The impact of large-scale forcing on convection is often objectively assessed by the rate at which 461 

instability is removed by convection (Keil et al. 2014). Following Done et al. (2012; 2006) and Surcel 462 

et al. (2015), the convective adjustment time scale (τc) is introduced  463 

τ𝑐 =
1

2

𝐶𝑝𝜌0𝑇0

𝐿𝑣𝑔

𝐶𝐴𝑃𝐸

𝑝𝑟𝑎𝑡𝑒
 ,                                                                             (4) 464 

where 𝐶𝑝 is the specific heat capacity of air at constant pressure, 𝜌0 and 𝑇0 are the reference density 465 

and temperature, 𝐿𝑣 is the latent heat of vaporization, g is the acceleration of gravity, and 𝑝𝑟𝑎𝑡𝑒 is the 466 

precipitation rate. Prior to calculation, both CAPE and 𝑝𝑟𝑎𝑡𝑒 are spatially smoothed using a Gaussian 467 

method with a radius of 20 km and masked with a threshold of 0.5 mm h−1 to avoid dry events. Lower 468 

τc indicates a stronger degree of large-scale forcing and vice versa. In general, a threshold at the lower 469 

bounds of the 3-12 hour range for τc could be used to distinguish strongly forced events and weakly 470 

forced events (Zimmer et al. 2011), and in this study a threshold of 3 h is chosen (Keil et al. 2014). In 471 
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reality, as discussed in Surcel et al. (2017), there can be events in which large areas of instability are 472 

consumed by convection that was initialized at the small scale and the errors grow upscale through 473 

e.g., organization of small storms into larger mesoscale systems. The readers should be aware of such 474 

caveats. 475 

        As shown in Fig. 10, τc has a similar diurnal cycle as CAPE with lower nighttime value (stronger 476 

large-scale forcing) and higher daytime value (weaker large-scale forcing). Despite the typical use of 477 

τc to distinguish precipitation situations, Keil et al. (2014) also suggested that τc could be an indicator 478 

of forecast uncertainty. However, the relationship between τc and forecast error across and at 479 

different spatial scales is still not clear.  480 

Figure 11 shows the scatterplots between RMDTE and τc at different scales and different 481 

subregions during different forecast periods. In general, the correlation coefficient is clearly 482 

dependent on the forecast period. For all regions, with the initial weakening of large-scale forcing 483 

(Fig. 10) with time (from nighttime to daytime), the correlation decreases correspondingly. 484 

Specifically, during period 1 which is from early evening through early morning, CAPE is relatively low, 485 

so that convection is more of forced type or large-scale forcing is relatively strong, we see clear 486 

negative correlation between error and τc, especially at the two larger scales (Fig. 11b1-4, 11c1-4). 487 

The correlation at the -scale is much weaker though still negative (Fig. 11a1-4). These results indicate 488 

that the presence of larger-scale forcing is favorable for the organization of convective cells into larger 489 

MCSs and for growth of errors at the two larger scales. They also suggest that the large-scale flows 490 

have more control on error growth at larger scales, consistent with expectation. 491 

For the longer forecast ranges in periods 2 and 3, the relationship between forecast error and 492 

forcing is less clear.  For the two smaller scales, the correlation for period 2 is mostly negative or close 493 

to zero (for SW region), but is positive for  scale for all except NW region. This is the morning period 494 

when precipitation is weakest. In period 3 when convection becomes active again, the correlation 495 

becomes negative again for the two larger scales in all 4 regions (Fig. 11b1-4, 11c1-4). Therefore, the 496 
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relationship between large-scale forcing and forecast error growth has diurnal variations, with 497 

connection to the precipitation diurnal cycle.  498 

6. Case studies 499 

In this section, four representative convective cases (A-D) primarily from the four subregions 500 

with different dominant types are selected to present the forecast error growth in a more intuitive 501 

manner. To simplify the description, the division of forecast range in section 5 is retained in this 502 

section. 503 

a. Case A: 18 May 2018 504 

In the afternoon of 17 May 2018, convective storms formed over the Rocky Mountains in central 505 

Colorado and propagated eastward into western Nebraska and South Dakota by early evening (0200 506 

UTC, 18 May, Fig. 12a) and moved into central Nebraska by early morning (Fig. 12c). The associated 507 

area-averaged precipitation in the NW region (black stars in Fig. 13) presents persistent decrease 508 

after 4 h (2200 CST) until 17 h (1100 CST) and a subsequent daytime increase due to solar heating 509 

(Fig. 12d), conforming to the mean diurnal cycle in the NW region presented in Fig. 5. These features 510 

indicate that Case A is under the influence of multi-scale system interactions. The corresponding total 511 

RMDTE exhibits a clear diurnal cycle with a maximum occurring at ~7 h (0100 CST) and a minimum at 512 

21 h (1500 CST). At the γ scale, with the influence of strong moist convection, the RMDTE depicts 513 

pronounced up-amplitude growth during the first 1 h and a slower but still significant growth until 3 514 

h. The rapid growth in the first hour is partly due to the essential absence of γ-scale perturbations in 515 

the ensemble ICs as mentioned earlier; the ensemble dispersion increases rapidly in response to 516 

initial mesoscale and synoptic-scale perturbations derived from SREF. The RMDTE remains flat 517 

between 3 and 5 h then decreases with weakening moist convection continually until 18 h (1200 CST) 518 

when the error starts to increase rapidly again with the development of thermally forced afternoon 519 

convection within a weak forcing environment. The β- and α-scale RMDTEs depict similar diurnal 520 

cycles but with phase lag, with the peaks being reached about 4 and 9 hours later, respectively, due 521 



20 

to delayed response of larger-scale errors to convection. The results also indicate significant upscale 522 

transfer of convective scale error. 523 

b. Case B: 4 May 2018 524 

Case B is a synoptically forced convective event with a surface low pressure center moving 525 

towards northeastern U.S., producing intense precipitation in the NE subregion (black stars in Figs. 526 

12e-h). Strong southerly low-level flows in the form of synoptic LLJ coming from the Gulf of Mexico 527 

exist around the western peripheral of the westward extending subtropical high, bringing rich 528 

moisture and energy into the mid-west region to support and maintain convection. The southerly 529 

low-level flows are further enhanced at night due to boundary layer inertial oscillation (Blackadar 530 

1957) (Fig. 12f). It is clear that Case B is characterized by strong large-scale forcing with a pronounced 531 

lower τc (Fig. 13). Different from Case A in the NW region, the total RMDTE in Case B does not have 532 

the typical diurnal feature of decreased values in the morning, but shows instead double peaks at 8 533 

h (0300 EST) and 18 h (1300 EST) (Fig. 13a); this is mostly due to the large contribution of -scale 534 

error during the day time, which peaks at around 18 h (1300 EST). Specifically, being more of a forced 535 

type, the γ-scale RMDTE (Fig. 14b) of Case B has a slower growth rate than that of Case A and reaches 536 

peak at 5 h. Interestingly, the -scale RMDTE reaches peak at a similar time (Fig. 13c), suggesting that 537 

organized convection dominates. During period 3, there is no secondary peak in the γ or -scale 538 

RMDTE; this is so even though there is a significant increase in precipitation in this period. The large 539 

increase in RMDTE at the α scale in period 3 is linked to the strengthening of the low pressure system 540 

and the corresponding increase in organized frontal precipitation (Fig. 12h). As a short summary, both 541 

precipitation and error growth are dominated by evident large scale forcing in Case B, and the 542 

forecast error fits more closely to the three-stage error growth model (Zhang et al. 2007), indicative 543 

of much more prominent upscale growth of forecast error. 544 

c. Case C: 15 May 2018 545 

In Case C the ensemble mean fields show an eastward propagating shallow trough at the 500 546 
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hPa (not shown) through Texas as the convective event unfolds in the SW region (Fig. 14a-d). There 547 

are moderately strong southerly to southeasterly low-level flows from the Gulf into south-central and 548 

western Texas, which together with a jet aloft form strong deep-layer shear. Discrete supercells form 549 

along a north-south dryline located in eastern Texas panhandle into western Oklahoma (Fig. 14a) and 550 

move eastward (Figs. 14b-c) under the influence of large scale upper-level flows. The precipitation 551 

diurnal cycle is broadly similar to that of Case A, in that daily precipitation maximum occurs around 552 

0000 UTC (1800 CST), and the precipitation minimum occurs at around 1700 UTC (1100 CST). The 553 

main difference is that Case C precipitation has a secondary maximum in the early morning (0900 554 

UTC), and the precipitation throughout the morning is larger than Case A. Such early morning 555 

maximum should be related to enhancement of nocturnal LLJ due to boundary layer inertial 556 

oscillations, which also cause clockwise rotation of boundary layer winds (Figs. 14a, 14b) (Blackadar 557 

1957; Xue et al. 2018). By the afternoon of the second day, the low-level flow is restored to the 558 

southeasterly towards the panhandle areas (Fig. 14d), producing new convection along the dryline 559 

(near the western edge of subregion SW, Fig. 14d).  560 

The total RMDTE in Case C (red curve in Fig. 13a) has similar, strong diurnal evolution as in Case 561 

A, although its peak is reached at around 9 h, 2-3 h later than in Case A (Fig. 13a). This delay is mainly 562 

due to the delay in -scale RMDTE (Fig. 13d) while the peaks of  and -scale RMDTE are reached at 563 

essentially the same times as in Case A (Figs.13b and 13c). This is consistent with the fact that the 564 

secondary precipitation peak at 0900 UTC is mainly due to forced convection at night (by nocturnal 565 

LLJ-induced convergence), which have large scales and act to mainly cause growth of larger-scale 566 

error that reaches its peak at ~1100 UTC. After reaching their minimum at ~1800 and ~2000 UTC, 567 

respectively, the smaller-scale RMDTEs increase rapidly again as new convection develops in the 568 

afternoon (Figs. 13b, 13c) but the -scale RMDTE does not start to grow until 2200 UTC, and at a 569 

slower rate. In Case C, large-scale forcing is weak in the afternoon and early evening hours (marked 570 

by red circles in Fig. 13), so that the precipitation is of convective nature. The phase relations between 571 
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precipitation intensity and RMDTEs at different scales again show significant roles of upscale error 572 

propagation. 573 

d. Case D: 16 May 2018 574 

In Case D, the precipitation is mainly in the SE region, which is located in a zone of weak 575 

convergent flows between northerly flows from the north, and southwesterly flows on the north side 576 

of a high-pressure system over the Gulf (Figs. 14e-14h). Precipitation is from scattered convective 577 

cells that are heavier in the afternoon (16-24h) and evening hours (0-6 h) when CAPE is higher (Figs. 578 

14h, 14e); the precipitation diurnal cycle is weaker than Cases A-C mainly because the morning 579 

precipitation minimum is at a higher level. Clearly, the precipitation in the SE region in this case is 580 

mainly associated with local thermal instability under generally favorable thermodynamic conditions 581 

with weak large-scale forcing (high τc; Fig. 13). Like the average NRMDTEs for all cases in the SE region 582 

(Figs. 7a, 7d), the total RMDTE and that for the  scale of Case D show almost monotonic increase 583 

throughout the 24 hours (Figs. 13a, 13d), mainly due to the monotonic increase of the  scale RMDTE. 584 

The RMDTEs for the  and -scales show similar diurnal variations as those for Cases C and B, except 585 

that the maximum and minimum are reached faster (Figs. 13b, 13c), suggesting less organization of 586 

scattered convective cells into mesoscale convective systems that can sustain smaller scale error 587 

growth for longer; this is consistent with the weaker large-scale forcing in this region. This behavior 588 

leads to earlier saturation of smaller scale errors and smaller amplitudes reached. The more 589 

persistent precipitation throughout the 24 hours and the weaker large-scale forcing appear to work 590 

together to produce relatively slow, but steady and monotonic growth in large-scale error in Case D 591 

(Fig. 13d).  592 

Among the 4 cases, Cases B and D can be considered two extremes; Case B has the strongest 593 

large-scale forcing (having the least number of circles in Fig. 13), and the error growth in second half 594 

of the 24 hours is mainly dominated by large-scale flow dynamics, while Case D is dominated by 595 

disorganized thermal convection with the weakest large scale forcing (most number of green circles 596 
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in Fig. 13). In Case B, the total RMDTE continues to increase through 18 hours of forecast, in the first 597 

half mainly through rapid growth of small-scale errors and upscale transfer, and in the second half as 598 

a result of both upscale transfer and large-scale error growth in association with the large-scale 599 

dynamic system. For Case D, because of the general lack of organization of scattered convective cells 600 

into larger mesoscale convective systems, the upscale transfer of - and -scale errors to -scale is 601 

less, not enough to create a significant peak in the early morning as in other cases; the -scale error 602 

increases mainly as a result of steady and generic growth of -scale error itself, resulting in a 603 

monotonic curve that is less dependent on the precipitation diurnal cycle as in other cases.  604 

7. Summary and conclusions 605 

This study investigates the error growth dynamics of convective events over the central U.S. 606 

regions using 3-km grid spacing CAM ensemble forecasts for 14 active convection days of May 2018. 607 

The ensemble uses the same forecast model configuration among its members, and the ensemble 608 

dispersion arises purely from the IC (at 0000 UTC or 1800 CST and 1900 EST) and LBC perturbations 609 

derived from a mesoscale ensemble forecasting system. Given that the model domain covers the full 610 

CONUS, and our analysis domain is east of the Rocky Mountains and only forecasts in the first 24 611 

hours are evaluated; since it takes some time for the upstream boundary condition to influence 612 

forecasts in the analysis domain, the IC perturbations play the primary role in ensemble dispersion 613 

(e.g., Johnson et al. 2011). In the ensemble ICs, convective-scale or -scale information is introduced 614 

through radar data assimilation without any perturbation. The forecast error is quantitatively 615 

characterized in terms of the (normalized) root mean difference total energy (N)RMDTE, which is 616 

used as a proxy of forecast error following earlier studies (e.g. Klasa et al. 2018; Melhauser; Zhang 617 

2012; Nielsen; Schumacher 2016).  618 

The analysis domain between the Rockies and the Appalachian Mountains is equally divided into 619 

the NW, NE, SE and SW subregions, and during May each subregion has its own dominant 620 

precipitation type with respect to the initiation and forcing mechanisms of convection, and hence 621 
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different precipitation diurnal cycles. The discussions on the average behaviors over the 14 cases in 622 

each region are supplemented by 4 cases representative of precipitation in each region. 623 

It is shown that when large-scale flow (synoptic scale system) is important (e.g., in the NE region), 624 

the region-average precipitation is strongly modulated by the large-scale forcing, while in the SE 625 

region, local thermal instability dominates and precipitation arises mostly from less organized 626 

convection. Within the 24 h, the total forecast error growth approximately follows the precipitation 627 

systems within Hovmoller diagrams, revealing a strong relationship between forecast error growth 628 

and precipitation. Specifically, the temporal evolutions of total NRMTE for each subregion are clearly 629 

linked to the precipitation diurnal cycles and convective system propagation.  630 

Analyses on scale-dependent error growth show evident upscale error growth (Hohenegger and 631 

Schär 2007; Selz and Craig 2015; Zhang et al. 2007) in all four regions/cases while up-amplitude 632 

growth within own scale plays different roles in different regions/cases. The meso-γ-scale error 633 

growth is most directly linked to precipitation diurnal cycles while meso--scale error growth has 634 

strong link to large scale forcing. With the specific setup of the ensemble, γ-scale errors grow very 635 

rapidly in the first few hours as a result of IC perturbations at  and  scales and the presence of 636 

moist convection in the IC, and the first peak of γ-scale NRMDTE is reached in 2 (in SE region) to 5 (in 637 

NE region) hours. The -scale NRMDTE grows slower and reaches the first peak in 6 to 9 hours. The 638 

NRMDTE at both scales decreases significantly after the first peak through early afternoon due to 639 

decay/suppression of precipitation but increases rapidly again in the afternoon after the onset of new 640 

afternoon convection. The -scale NRMDTE generally follows a similar trend, but the first peak is 641 

reached much later in 11 to 18 hours, clearly an indication of successively upscale transfer of errors 642 

from smaller scales. In the specific example of NE precipitation case, the -scale NRMDTE continues 643 

to amplify until 18 h to a much higher level than in other cases due to the presence of an evolving 644 

low-pressure system and the associated differences in strong synoptic-scale forcing. In a specific case 645 

in the SE region when large systems are much less dynamic, the precipitation is least organized and 646 
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has weaker diurnal variations. As such, the  and -scale NRMDTE peaks are reached sooner, and 647 

the -scale NRMDTE continues monotonic increase throughout the 24 hours. These results suggest 648 

that for regions where large-scale forcing is weak and when convection is mostly disorganized, 649 

upscale transfer of forecast error tends to be more limited and up-amplitude growth of the large-650 

scale error can be as important. For the two  cases producing precipitation mainly in the SW and NW 651 

regions, the convective cells tend to undergo organization into MCSs while moving eastward and 652 

experiencing night-time boundary layer convergence forcing, the NRMDTEs of all three scales 653 

experience growth, decay and growth cycles within the 24 h forecasts, with successive delay in the 654 

phase of error evolution, indicating clear upscale error growth feeding off diurnally varying 655 

convection.  656 

The relationships between RMDTE and intensity of moist convection or large-scale forcing are 657 

investigated based on correlation analyses for different scales and regions for different forecast 658 

periods. In particular, the correlation between forecast error magnitude and moist convection 659 

intensity increases with forecast hours with the forecast range due to accumulative effects of 660 

convection but decreases with increasing spatial scale. At the convective scales, the correlation is 661 

positive throughout the forecast period while for the  and  scales the correlation is often negative 662 

during the initial period of forecast due to the delayed response of larger-scale errors to small-scale 663 

convection and the resulting phase differences.  664 

The effect of large-scale forcing on forecast error is also examined in terms of the correlation 665 

between RMDTE and convective adjustment time scale τc; the forcing is considered stronger for 666 

smaller τc. The correlation is strong and negative (positive correlation with forcing) during first 9 h at 667 

the  and  scales and but much weaker at the  scale. This implies that at a short forecast range, 668 

large-scale forcing has direct positive impact on larger-scale forecast errors, while convective-scale 669 

errors are controlled much less by forcing but more by thermodynamic instability. During the forecast 670 

periods between 10 and 15 h, and beyond 16 h, the correlation between forecast error and forcing 671 
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strength is much weaker, and fluctuates around zero. This may be partly due to the specific definition 672 

of the forcing degree used because convective adjustment time is usually no more than several hours. 673 

For the specific case in the NE region (Case B), strong synoptic scale forcing in the second day 674 

afternoon does cause large increase in large scale error.  675 

Overall, the error growth dynamics on CAM forecasts in the presence of significant moist 676 

convection are strongly dependent on the intensity, type and organization of precipitation, the 677 

forecast period with respect to the time of day and forecast range, and the spatial scale of the error. 678 

Small-scale forecast errors are directly impacted by convective activities and have short response 679 

time to convection while increasingly larger scale errors have longer response times and delayed 680 

phase. Within the 24 h forecasts, forecast errors generally experience growth, decay, and growth 681 

cycles following the precipitation diurnal cycle. Upscale transfer of forecast error is stronger when 682 

convective cells can become more organized with time which usually occur under stronger large scale 683 

forcing. 684 

The results of this study shed light on the predictability of spring time convective weather in 685 

different regions of the U.S. and may be applicable to other parts of the world with similar flow and 686 

precipitation regimes. The understanding of error growth dynamics can help guide the optimal design 687 

of CAM ensemble forecasting systems. In future studies, the inclusion of meso--scale perturbations 688 

in the IC should also be considered and their impacts examined.  689 
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 858 

Fig. 1. The forecast model domain with terrain height in shading. The red 859 
rectangle corresponds to the analysis domain that is divided into four 860 
equal-sized quadrants or subregions used in our analyses. 861 

 862 

 863 

 864 

Fig. 2. The convective available potential energy (CAPE) averaged over 865 
the entire analysis domain with rainfall higher than 0.5 mm h-1 as a 866 
function of forecast lead time for each case indicated in the legend. 867 
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 868 

Fig. 3. Ensemble mean CAPE (shaded) and 925-hPa horizontal wind 869 
vectors, from (a) 0000 UTC (h) through 2100 UTC (h), every 3 h averaged 870 
over all 14 cases. 871 

 872 

 873 

Fig. 4. Spatial distribution of 3 h accumulated precipitation frequency  874 
maps with precipitation rate exceeding 0.5 mm h-1 at different ending 875 
times: (a) 0300 UTC, (b) 0600 UTC, (c) 0900 UTC, (d) 1200 UTC, (e) 1500 876 
UTC, (f) 1800 UTC, (g) 2100 UTC, (h) 2400 UTC. 877 
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 878 

Fig. 5. Time evolution of region-averaged forecast and observed precipitation for 879 
the (a) NW, (b) NE, (c) SW, (d) SE subregions. The color solid lines are for the 880 
individual cases for each subregion (with the color legend shown in Fig. 2), and 881 
black dashed line for the average of all cases and solid line is for observation. 882 

  883 
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 884 

Fig. 6. Hovmoller diagrams (latitudinal averaged, time-longitude) for NRMDTE 885 
(shaded) and precipitation (contours) for (a) the northern subdomains and (b) 886 
southern subdomains, averaged over all 14 cases. 887 
 888 

 889 

Fig. 7. Time evolution of NRMDTE at different scales: (a) Total, (b) Meso-γ, (c) 890 
Meso-β, and (d) Meso-α, for the entire (black) and 4 subregions (color lines).  891 
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 892 

 893 

Fig. 8. Hovmoller diagrams (latitudinal averaged, time-longitude) for the 894 
case-averaged NRMDTE (color) at different scales and precipitation 895 
(contours), (a, d) Meso-γ; (b, e) Meso-β; (c, f) Meso-α for the northern 896 
(upper row) and southern regions (lower row). The ordinate indicates the 897 
forecast hour starting from 0000 UTC. 898 
 899 

 900 

Fig. 9. Scatterplots of the normalized RMDTE at different scales (a) Meso-901 
γ, (b) Meso-β, (c) Meso-α vs normalized precipitation (>0.5 mm /h-1) at 902 
different lead times (see legend for corresponding colors).  903 
 904 
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 905 

Fig. 10. The convective adjustment time scale (τc) averaged over the 906 
entire analysis domain with rainfall higher than 0.5 mm h-1 as a function 907 
of forecast lead time for each case indicated in the legend. 908 
 909 

 910 

 911 

Fig. 11. Same as Fig. 9, but for normalized RMDTE vs normalized 912 
convective adjustment timescale (τc). 913 
 914 
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 915 

Fig. 12. Ensemble mean most unstable CAPE (MUCAPE, shaded), 925-hPa 916 
horizontal wind vectors and precipitation rate (dotted shading) for Case A 917 
(top row) and Case B (bottom row) at different valid times: (a, e) 0200 918 
UTC, (b, f) 0600 UTC, (c, e) 1200UTC, (d, h) 2000 UTC. 919 
 920 

 921 

Fig. 13. Time evolution of RMDTEs (solid curves) for four selected cases averaged 922 
in the corresponding regions at different scales: (a) Total, (b) Meso-γ, (c) Meso-β, 923 
(d) Meso-α, the stars indicate area-averaged precipitation exceeding 0.5 mm h-1, 924 
and the circles are indicators of weakly forcing (defined in section 5b) at certain 925 
times. The cases are color coded. 926 

 927 

 928 
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 929 

Fig. 14. Ensemble mean most unstable CAPE (MUCAPE, shaded), 925-hPa 930 
horizontal wind vectors and precipitation rate (dotted shading) for Case C 931 
(top row) and Case D (bottom row) at different valid times: (a, e) 0200 932 
UTC, (b, f) 0600 UTC, (c, e) 1200UTC, (d, h) 2000 UTC. 933 
 934 
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