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Abstract 

After decades of research and development, the WSR-88D (NEXRAD) network in the 

United States had been upgraded with dual-polarization capability, providing polarimetric radar 

data (PRD) that has the potential to improve weather observations, quantification, forecasting, and 

warnings. The weather radar networks in China (CINRAD) and other countries are also being 

upgraded with the dual-polarization capability. Now, with radar polarimetry technology matured 

and polarimetric radar data (PRD) available both nationally and globally, it is important to 

understand current status and future challenges and opportunities. The potential impact of PRD 

has been limited by their oftentimes subjective and empirical use. More importantly, the 

community has not begun to regularly derive from PRD the state parameters, such as water mixing 

ratios and number concentrations, used in numerical weather prediction (NWP) models. 

In this review, we summarize the current status of weather radar polarimetry, discuss the 

issues and limitations of PRD usage, and explore potential approaches to more efficiently use PRD 

for quantitative precipitation estimation (QPE) and forecast (QPF) based on statistical retrieval 

with physical constraints where prior information is used and observation error is included. This 

approach aligns the observation-based retrievals favored by the radar meteorology community 

with the model-based analysis of the NWP community. We will also examine the challenges and 

opportunities of polarimetric phased array radar research and development for future weather 
observation. 

 

Key words: Weather radar polarimetry, radar meteorology, numerical weather prediction, data 

assimilation, microphysics parameterization, forward operator  
 
Article Highlights: 

 Review the current status/limitations and future challenges/opportunities of weather radar 

polarimetry. 

 Reveal the gap between radar meteorology/hydrology/engineering and NWP communities  

and discuss possible approaches to bridge them. 

 Explore new methods and technology to advance weather radar polarimetry to meet future 
needs. 
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1. Introduction and motivation  

Radar is a very important tool in weather observations and forecasts, and there is an increasing 

need for faster data updates and more informative measurements to advance atmospheric sciences 

as stated by Bluestein et al. (2014). While the faster data updates can be realized with phased array 

radar technology, multi-parameter weather measurements can be made by radar polarimetry. 

Weather radar polarimetry aims to obtain more detailed weather information from radars with 

polarization diversity (Doviak and Zrnic 1993; Bringi and Chandrasekar 2001; Zhang 2016). 

Through decades of research and development, radar polarimetry had been matured and 

implemented on the network of Weather Surveillance Radars – 1988 Doppler in the United States 

(WSR-88D), also called Next-Generation Radar (NEXRAD; Doviak et al. 2000). Doppler weather 

radars in China (CINRAD) and other countries have also been or are being upgraded with the dual-

polarization capability. Polarimetric radar data (PRD) are now available nationally and globally. 

The dual-polarization upgrade is an important and imperative milestone in weather radar 

technology because the additional information it provides about the shape, composition, and phase 

of hydrometeors is much needed for further understanding, quantifying, and predicting weather.  

 A single polarization Doppler radar can only measure the reflectivity factor (also called 

reflectivity: Z or ZH), radial velocity (vr), and spectrum width (σv or SW). The Doppler 

measurements vr and σv respectively represent the dynamic motion: the mean and standard 

deviation (including shear) of the radial velocity of scatterers. Only the reflectivity directly 

provides microphysics information, but this one measurement is obviously not sufficient to fully 

characterize the complex cloud and precipitation microphysics. For example, cloud microphysics 

is normally represented in convective scale numerical weather prediction (NWP) models not by 

the one observed parameter, Z, but by several to over a dozen state variables used in microphysics 

parameterization schemes. These variables include the water mixing ratios and number 

concentrations for the five or six hydrometeor species (cloud water, cloud ice, rain, snow, and 

hail/graupel) used in many double-moment or multi-moment schemes (e.g., Milbrandt and Yau 

2005a, b; Morrison et al. 2005, 2009). There can be ten times more unknowns if spectrum bin 

microphysics is used (Khain et al. 2015).  

 Because reflectivity only cannot fully characterize cloud microphysics, efforts and attempts 

have been made to increase the number of independent radar measurements to better understand 

and characterize weather conditions through frequency/wavelength and/or polarization diversities. 

For example, the Global Precipitation Measurement (GPM) core observatory carries the space-

borne Ku/Ka-band Dual-frequency Precipitation Radar (DPR) (https://pmm.nasa.gov/GPM/flight-

project/DPR), which was advanced from the Tropical Rain Measurement Mission (TRMM) single 

frequency precipitation radar (PR) (Huffman et al. 2007). While a multi-frequency radar can 

provide more information, it is essentially multiple radars and therefore expensive to build (Eccles 

and Atlas 1973; Gossett and Sauvageot 1992). The data from a multi-frequency radar are also 

complicated to analyze. For ground-based remote sensing, radar polarimetry is both cost-effective 

and efficient in providing more microphysical information (Seliga and Bringi 1976; Seliga et al. 

1979; Zrnic and Aydin 1992).  

In addition to the single polarization radar measurements of Z, vr, and σv, a polarimetric 

radar can produce differential reflectivity (ZDR) – the ratio of reflectivity between the horizontally 

and vertically polarized waves; co-polar correlation coefficient (ρhv); differential phase (ΦDP) 

and/or its range derivative – specific differential phase (KDP); linear depolarization ratio (LDR); 

and correlation coefficients between co-polar and cross-polar signals (ρxh and ρxv).  Radar 

polarimetry is normally implemented in one of two modes: i) dual-polarization (simultaneous 

https://pmm.nasa.gov/resources/glossary#Ka-band
https://pmm.nasa.gov/GPM/flight-project/DPR
https://pmm.nasa.gov/GPM/flight-project/DPR
https://pmm.nasa.gov/GPM/flight-project/DPR
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transmission and simultaneous reception: STSR) mode, and ii) full polarization (alternate 

transmission and simultaneous reception: ATSR) mode. For practical reasons as stated in Section 

4 of Doviak et al. (2000), most operational weather radars, including the WSR-88D, use dual-

polarization STSR mode and produce polarimetric radar data (PRD) of Z, vr, σv, ZDR, ρhv, and 

ΦDP/KDP. Nevertheless, these PRD contain information about hydrometeor size, shape, orientation, 

and phase/composition, allowing for better characterization of cloud and precipitation 

microphysics (e.g., Zrnic and Ryzhkov 1999). PRD have enormous, but as yet not fully tapped, 

potential to improve severe weather detection and warnings, and quantitative precipitation 

estimation (QPE) and forecast (QPF).  

 Currently, we use PRD in severe weather observation and detection, hydrometeor 

classification, winter precipitation applications, and QPE. In observational studies, certain 

polarimetric radar signatures such as the ZDR arc, ρhv ring, and KDP foot are identified and 

connected to certain microphysical processes (Kumjian and Ryzhkov 2008; Romine et al. 2008). 

In hydrometeor classification (HC), a set of PRD are used in a fuzzy logic classification algorithm 

whereby the membership function of a radar variable for a species is established based on 

experience, and then the membership values are combined to make a decision as to which class 

the set of PRD represents (Vivekanandan et al. 1999; Park et al. 2009; Straka et al. 2000; 

Chandrasekar 2013; Dolan et al. 2013). The classification results are used to detect severe weather 

and to select radar estimators to improve QPE (Giangrande and Ryzhkov 2008). These uses of 

PRD in severe weather observations and detection have utility in the weather forecasting 

community. For example, the Warning Decision Training Division (WDTD) of the U.S. National 

Weather Service (NWS) offers a Radar and Applications Course (RAC) as the initial training on 

the use of the WSR-88D for severe weather operations 

(http://training.weather.gov/wdtd/courses/rac/). The application of PRD is a fundamental part of 

the course due to the recent upgrade of the WSR-88D network to dual-polarization. The course 

includes training on following topics: base PRD, HC, the melting layer algorithm, QPE rainfall 

products, severe hail detection, supercell morphology, and the tornado debris signature (TDS) as 

well as winter weather applications.  

The use of PRD can provide vital real-time information to forecasters, which help to 

improve severe weather detection and warnings, but many of the methods are oftentimes subjective 

and empirical, and have limitations in realizing the full potential of PRD. In QPE, deterministic 

power-law relations are used for rain estimation from PRD (Zhang et al. 2016; Chen et al. 2017), 

which may not be optimal. Also, uncertainties of radar-derived products have not been accurately 

quantified and provided together with the products. More importantly, the community has not 

begun to regularly derive from PRD the state parameters used in convective scale high-resolution 

NWP models, such as water mixing ratios and number concentration.  The question is: How should 

we efficiently utilize PRD to improve severe weather detection, aviation weather services, QPE, 

and QPF?  

 Ideally, PRD should be used to determine cloud and precipitation physics state variables 

and to improve microphysical parameterization in NWP models, which in turn are expected to 

improve the accuracy of weather quantification and to shorten the spin-up time of the NWP model 

forecast. Unfortunately, this cannot be done easily for several reasons: i) the number of 

independent pieces of information from PRD is limited and is usually less than the number of state 

variables that are used in NWP models in the case of multi-moment and/or multi-species 

microphysics, resulting in underdetermined problems; ii) relationships between state variables and 

polarimetric radar variables are not linear, and sometimes they are not entirely known, especially 
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for ice phase and mixed phase species; iii) there are errors in radar measurements of PRD and in 

the forward operators which connect model state variables to the radar variables; iv) there are large 

errors and uncertainty in convective scale NWP model physics and parameterization when NWP 

model constraints are used in retrieval through data assimilation – these prevent the PRD from 

substantially contributing to the model initialization and prediction; and v) there is a disconnect 

between the radar meteorology and NWP communities in their use of PRD. 

 Although it is difficult and challenging, the efficient use of PRD and advancing radar 

technology for severe weather detection & warnings, QPE, and QPF are still our goals, which 

motivate us to write this article. We discuss and explore the following issues:  

 Limitation of current usage of PRD 

 Gap between radar meteorology/hydrology and NWP communities 

 Difficulty in assimilating PRD into NWP models 

 Development status of new radar technology, phased array radar polarimetry, to meet 
future needs  

Only once these shortcomings are realized and these challenges tackled can the optimal usage 

of PRD and efficient advancement of radar technology be achieved. The rest of this paper is 

organized as follows. Section 2 shows examples of PRD and PRD usages/products from WSR-

88D. The issues and limitations of current PRD usage and the gap between the radar meteorology 

and the NWP communities are discussed in Section 3. Section 4 suggests a unified statistical 

approach of using PRD. An example of an NWP model-based analysis of PRD is shown in Section 

5. Section 6 discusses the status and challenges of research and development of polarimetric 
phased array radar polarimetry.  Section 7 ends with a summary.  

 

2. Current Status of Using Polarimetric Radar Data  

After the dual-polarization upgrade completed in 2013, archived PRD from WSR-88D became 

available at NOAA’s National Centers for Environmental Information (NCEI) 

(https://www.ncdc.noaa.gov/nexradinv/index.jsp) in level II and level III format, which is 

summarized in Fig. 1. Level II data (left column) are base data estimated from pulsed radar signals, 

from which level III data/products are derived. The dashed boxes are the single polarization radar 

data and their derived products, and the solid boxes are for dual-polarization data and PRD-derived 

products. Compared with that over a dozen of single polarization products (middle column), the 

PRD-derived products (right) are still very limited – only three, indicating future challenges exist 

and opportunities are to be explored. In this section, we’ll discuss the current usage of PRD for 

weather observation, hydrometeor classification, and QPE. 

2.1 Polarimetric radar data (PRD) for weather observation and forecast 

As shown in left column of Fig. 1, WSR-88D level II data contain six variables, consisting 

of three existing single polarization variables (Z, vr, σv) and three added dual-polarization variables 

(ZDR, ρhv, and ΦDP), which contain a wealth of information about cloud and precipitation 
microphysics. 

Each dual-polarization variable has specific properties/characteristics with regard to 

different weather or non-weather radar echoes, and, together with Z, they reveal the microphysical 

properties of clouds and precipitation. ZDR is a measure of the reflectivity weighted shape of the 

scatterers and tends to increase for more oblate scatterers (within the Rayleigh regime). ρhv 

represents the similarity between the horizontal and vertical polarization signals, and it is reduced 

when there is increased randomness and diversity between the horizontally and vertically polarized 

https://www.ncdc.noaa.gov/nexradinv/index.jsp


 6 

backscattered waves, especially for non-Rayleigh scattering. Finally, ΦDP is the difference in phase 

shift between horizontally and vertically polarized waves, including both differential scattering 

phase (δ) and differential propagation phase (ϕDP).  ϕDP increases rapidly for heavy rain because 

the horizontally polarized wave propagates more slowly than the vertically polarized wave as its 

polarization is in the direction of the larger dimension of oblate particles.  

When used in conjunction with ground-based observations and storm reports (when 

available), their understanding of the storm morphology, and the near-storm environment (i.e., 

mesoanalysis), meteorologists who serve as warning forecasters at the U.S. NWS use radar data to 

make warning decisions on whether a thunderstorm is capable of producing severe weather (≥26 

m/s winds and/or ≥2.54 cm hail) and/or a tornado. If a forecaster has enough confidence for severe 

weather and/or a tornado, the forecaster can issue a severe thunderstorm warning or tornado 

warning with the potential hazards (i.e., estimated maximum hail size, estimated maximum wind 

speed, and tornado damage threat). The addition of PRD gives forecasters additional information 

on the storm morphology, which can assist in warning-decision making.   

An example from a warm-season event is used to demonstrate the PRD and its utility in 

weather observations and warnings. Figure 2 shows the plan position indicator (PPI) images of 

these data at an elevation of 1.3 degrees for a tornadic supercell event observed by the S-band 

polarimetric WSR-88D (KFDR) radar in southwest Oklahoma at 22:43 UTC on 16 May 2015. Six 

PPI images represent the polarimetric Doppler weather radar measurements of reflectivity (Z) (Fig. 

2a), radial velocity (vr) (Fig. 2b), and spectrum width (σv) (Fig. 2c), as well as the added dual-

polarization measurements of differential reflectivity (ZDR) (Fig. 2d), copolar correlation 

coefficient (ρhv) (Fig. 2e), and differential phase (ΦDP) (Fig. 2f). The red polygon is a tornado 

warning that was issued by NWS Norman, Oklahoma, Weather Forecast Office (WFO).  

The storm is a classic supercell with a hook echo. At the tip of the hook (on the southwest 

flank of the storm), a mesocyclone is sampled by the radar, as indicated by a cyclonic velocity 

couplet. On the forward flank of the supercell, along with the reflectivity gradient on the southern 

edge, there is an increase in ZDR. This feature is known as a ZDR arc, which occurs due to size-

sorting in a supercell that occurs because of vertical wind shear (Kumjian and Ryzhkov 2008). 

Northwest of the ZDR arc, ΦDP increases markedly with range. This is due to very heavy rainfall in 

the forward flank downdraft (FFD) of the supercell. Immediately to the west-northwest of the 

hook, there is a reduction in ZDR and ρhv within an area of high reflectivity. These measurements 

are likely due to the presence of hail mixing with rain. The final signature to note is a local 

minimum in the ρhv and ZDR at the center of the velocity couplet, which is coincident with 

reflectivity >40 dBZ. The low ρhv and ZDR indicates the presence of non-meteorological targets. 

This signature, known as a TDS, exists due to debris being lofted by a tornado (Ryzhkov et al. 

2005; Kumjian and Ryzhkov 2008; Kumjian 2013; Van Den Broeke and Jauemic 2014). In this 

event, the presence of a TDS resulted in the NWS Norman WFO issuing a severe weather 

statement (i.e., updated tornado warning) where the hazard in the warning became “damaging 

tornado” and the source for the warning became “radar confirmed tornado.” In this example, the 

PRD had an important role in warning decision-making by providing information that heightened 
the wording of the warning statement.  

Though the previous example is a warm-season event, PRD have applications in the cold 

season too (Zhang et al. 2011; Andrić et al. 2013), including melting-layer detection and 

precipitation type transition zones (Brandes and Ikeda 2004; Giangrande et al. 2008; Bukovčić et 

al. 2017), and in the study of ice microphysical processes (Griffin et al. 2018). Polarimetric radars 
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have also been successfully used in the study of tropical meteorology (Rauber et al. 2007; May et 

al. 2008; Brown et al. 2016; Wang et al. 2016; Didlake et al. 2017). 

2.2 PRD products 

2.2.1 Hydrometeor Classification (HC) 

While it is informative to look at the individual polarimetric variable images, it is more 

scientific, rigorous, and efficient to systematically and automatically use the PRD for accurate 

weather measurement and forecast (Straka and Zrnic 1993; Straka 1996). The first such use was 

in hydrometeor (or echo) classification based on a fuzzy logic algorithm (Vivekanandan et al. 

1999; Liu and Chandrasekar 2000). An updated version of the hydrometeor classification 

algorithm (HCA) described by Park et al. (2009) is implemented on the WSR-88D. Its input 

parameters are Z, ZDR, ρhv, logarithm of KDP, standard deviation of reflectivity std(Z), and standard 

deviation of differential phase std(ΦDP). Its output is ten classes of radar returns: light/moderate 

rain, heavy rain, rain/hail mix, big drops, dry snow, wet snow, crystals, graupel, biological, ground 

clutter; the hybrid version of twelve classes (with no echo and unknown added) are available as 

part of the WSR-88D level III data. Recent modifications to the HCA include a hail size 

discrimination for the rain/hail mix category (Ryzhkov et al. 2013a,b; Ortega et al. 2016). Using 

the graupel classification from the HCA as a primary input, the WSR-88D algorithm suite now 

also includes an icing hazard level (IHL) product that is used by the Federal Aviation 
Administration to detect regions of icing aloft. 

Figure 3a shows the HCA output from the KFDR radar for the event depicted in Fig. 2. 

Although it is not easy to verify the HCA output by comparisons with in-situ measurements, the 

results of the classification in Fig. 3a fit the accepted microphysical understanding of a severe 

super-cell storm. As expected, the area of high reflectivity with reduced ZDR and ρhv is classified 

as rain and hail (HA: red). Heavy rain (HR: dark green) is identified in the FFD region, consistent 

with the rapid increase in ΦDP noted in the previous subsection. Light and moderate rain (RA: light 

green) are identified at the south-west edge of the storm.  The leading side of the storm is classified 

as big drops (BD: brown), which is reasonable due to size sorting. It is also reasonable to see 

biological scatterers (BI: light gray) identified ahead of the storm near the radar where insects 

normally appear.  

However, a couple of issues presently exist and are being addressed:  the tornado debris 

signature is not detected as a class of the HCA output, and the melting layer with high reflectivity 

has been misclassified as graupel and big drops.  Efforts are underway to accurately classify 

hydrometeors in the melting layer as wet snow.  Also, notice that the transition between liquid and 

frozen hydrometeors is flat.  This is an outcome of the assumption that the 0º-isotherm is assumed 

to be at a constant altitude.  While this approximation may be safe for warm-season precipitation, 

it is known to cause some issues for the cold season (Reeves et al. 2014).  An improved melting 

layer detection algorithm that allows for variations in the height of the melting layer is under 

development (Reeves 2016).  A recent advancement in HCA with PRD is to use an objective 

approach to derive statistical relations based on cluster analysis (Wen et al. 2015, 2016).   

2.2.2 Quantitative Precipitation Estimation (QPE) 

Whereas HCA is very successful in systematically utilizing PRD for revealing cloud and 

precipitation microphysics, it is qualitative and empirical rather than quantitative. One of the main 

motivations to develop weather radar polarimetry was to improve QPE with polarimetric 

measurements, such as ZDR (Seliga and Bringi 1976; Seliga et al. 1979; Ulbrich and Atlas 1984) 

and KDP (Sachidananda and Zrnic 1987; Ryzhkov and Zrnic 1996), because polarimetric 
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measurements depend on the shape of hydrometeors, and rain drop shape is monotonically related 

to the drop size. Hence, radar rain estimators with different combinations of Z, ZDR, and KDP were 

developed using simulated or measured rain DSDs and electromagnetic scattering models 

(Jameson 1991; Vivekanandan et al. 1991; Ryzhkov and Zrnic 1995). The improvement of QPE 

with PRD has been demonstrated with real data in a subtropical environment (Brandes et al. 2002), 

in the Southern Great Plains region (Giangrande  and Ryzhkov 2008), and in a tropical region 

(May et al. 1999; Chang et al. 2009) as well as in Europe (Figueras i Ventura and Tabary 2013). 

It is generally accepted that the estimation error decreases from 30-40% uncertainty for a single 

polarization reflectivity to about 15% error for polarimetric measurements (Brandes et al. 2002). 

A synthetic polarimetric radar rain estimator that combines different estimators based on 

HCA results was initially adapted by dual-pol WSR-88D to produce level III QPE products 

(Giangrande and Ryzhkov 2008).  The dual-polarization QPE products are currently generated 
based on the three primary rain estimators: 

            
𝑅(𝑍) = 0.017𝑍0.714 ↔ 𝑍 = 300𝑅1.4                                (1)  
𝑅(𝐾𝐷𝑃) = 44|𝐾𝐷𝑃|

0.822𝑠𝑖𝑔𝑛(𝐾𝐷𝑃)                                     (2) 

𝑅(𝑍, 𝑍𝑑𝑟) = 0.0142𝑍0.77𝑍𝑑𝑟
−1.67

                                      (3) 

where 𝑠𝑖𝑔𝑛(𝐾𝐷𝑃) allows for negative 𝐾𝐷𝑃  values and both “Z” and “𝑍𝑑𝑟” are in linear units 

instead of logarithmic values for Z/ZH and ZDR. The three rain estimators are used/chosen based 

on HCA results. For example, if the echo is classified as light to moderate rain, Eq. (3) of R(Z, Zdr) 

is used to estimate rain rate; if the echo is classified as hail rain mixture, Eq. (2) of R(KDP) is used 

to mitigate hail contamination.  Figure 3b shows the dual-polarization radar-based QPE result that 

has much less contamination from anomalous propagation clutter and biological scatterers. The 

dual-polarization QPE, based on Z, Zdr, and KDP, provided improved precipitation estimates over 

the previous single polarization QPE in warm season events where the freezing level was high.  

However, it has relatively large random errors due to its sensitivity to errors in Zdr, which are 

significant at times.  The dual-polarization QPE also suffers from discontinuities and some biases 

near the melting layer. The R(KDP) estimator can produce a negative rain rate, which is physically 

impossible, if KDP is estimated from ΦDP using a least-squares fit as is currently used for WSR-

88D. A recent advancement is to improve KDP estimation for better QPE by using a hybrid method 

of combining linear programming (also called linear optimization) and physical constraints 

(Giangrande et al. 2013, Huang et al. 2017), which yields the best match with observed ΦDP while 

ensuring positive KDP estimates.  The latest developments also include the use of specific 

attenuation (A) for rainfall estimation (Ryzhkov et al. 2014; Zhang et al. 2017).  There is also 

interest in using X-band polarimetric radar networks to improve QPE and low-level coverage 

(Chen and Chandrasekar 2015). 

 

3. Issues with Current PRD Usage 

As discussed in last section, it is informative and intuitive to observe polarimetric radar 

signatures for detection and warning of severe storms and aviation hazards, exciting to see PRD 

HC results reveal cloud and precipitation microphysics, and satisfactory to improve QPE with 

PRD.  PRD can serve the community better and its potential can be better realized if the issues and 

limitations of the current usage of PRD are acknowledged and resolved. These issues are described 
as follows: 
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As noted in the introduction, the independent information of PRD is still limited, and the 

relative errors of polarimetric measurements can be large. The number of independent pieces of 

information varies depending on the hydrometeor species: ~1 for drizzle or dry snow, 3~4 for 

melting snow or hail. The relative error of ZDR and KDP can be 100% for light rain due to the small 

intrinsic values. Furthermore, system uncertainty and bias affect the accuracy of polarimetric 

measurements (Zrnic et al. 2006). Even with a well-calibrated radar system, the overall uncertainty 

of the bias/error has historically been greater than the required tolerance (e.g., 0.1 dB bias for ZDR), 

limiting the quantitative usage of PRD (Ice et al. 2014). 

Severe weather (such as hail and tornado) related observation studies with PRD have been 

highly subjective and empirical. It is difficult to automatically use and expand the subjectively 

decided polarimetric signatures/knowledge for operational usage in severe weather detection, 

prediction, and warning. It would be beneficial to warning forecasters if there are products that 

utilize PRD to better quantify potential hazards, such as maximum hail size or tornado damage 

threat. As shown in Fig. 1, there is no severe weather detection product that has been generated in 

WSR-88D level-III PRD products (with the exception of hail size discriminator in the latest HCA), 

compared with many reflectivity-derived velocity-derived products.  This is because not all the 

weather science has been fully understood, and rigorous relations between weather states and PRD 

have not been fully established. Therefore, further research and development need to be done.  

Hydrometeor classifications have been successful, but are still qualitative, and some severe 

weather conditions (e.g., TDS) are not in the HCA output. Also, a dominant contributor to PRD 

may not necessarily be the main contributor to microphysics states/processes. For example, a 

hydrometeor class determined from PRD may not necessarily have the highest water mixing ratio 

or evaporation rate if other classes exist in the radar resolution volume. This is because radar 

measurements are mainly determined by higher DSD moments (e.g., approximately 6th moment 

for reflectivity) dominated by a few large particles rather than the large number of small drops 

which have important effects on microphysical processes, thermodynamics, and storm 

development.  

Power-law type polarimetric radar rain estimators (e.g., Eqs. (1-3)) may not be optimal, 

because it is difficult to use prior information and measurement errors in rain estimation once a 

power-law estimator is chosen. True relations (if they exist at all) between rain rate and radar 

variables may not necessarily be in power-law form. For example, if rain DSDs are exponentially 

or gamma distributed, the analytically derived R(Z, Zdr) is not in power-law form (See Eq. (6.26) 

of Zhang 2016). The power-law form was used for simplicity because it becomes a linear function 

after taking the logarithm of both sides; this makes for an easy fit to data. Even if the functional 

form is acceptable, the least square fitting with a constant weight for all data points is optimal only 

if the errors are Gaussian distributed in the logarithm domain. Otherwise, least square fitting does 

not yield the minimal error. Furthermore, a minimal error in the logarithm domain does not 

necessarily yield a minimal error in the linear domain for rain estimation. Also, the HC-based QPE 

can cause discontinuity in rain estimation because the chosen estimator switches relations 

discretely according to subjectively determined conditions, even though the underlying 

microphysical condition has evolved only continuously. Furthermore, model errors, measurement 

errors of the involved radar variables and rain rate, and data sampling/collection issues are not 
considered in the formulating and fitting procedure, yielding uncertainty in QPE results. 

Another issue – likely the most important – is the difficulty involved in using the current 

PRD or PRD products to improve NWP. The difficulty comes from i) large variety/uncertainty in 

storm-scale NWP models and model parameterization (will be discussed further is section 5) and  
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ii) a disconnect between model basic state variables (e.g., water mixing ratio and number 

concentration) and polarimetric variables. Efforts have been made to develop PRD simulators (i.e., 

forward operators) to connect model variables with PRD variables through cloud/precipitation 

microphysics (MP) rooted in drop/particle size distribution (DSD/PSD), N(D), and other physical 

and statistical properties such as shape, orientation, and composition reflected in scattering matrix 

elements (shh, svv), as in section 8.5.2.2 of Doviak and Zrnic (1993), section 3.10.1 of Bringi and 

Chandrasekar (2001) and section 4.2.6 of Zhang (2016).  Based on scattering calculations with the 

T-matrix method (Waterman 1965; Vivekanandan et al. 1991), Jung et al. (2008a, 2010), Pfeifer 

et al. (2008), Ryzhkov et al. (2011) all developed different forward operators, and were able to 

simulate realistic PRD signatures from NWP model output.  The computer code in Fortran 

language for PRD operators is posted on the University of Oklahoma website 

(http://arps.ou.edu/downloadpyDualPol.html). There is also a freely available Cloud Resolving 

Model Radar Simulator (CR-SIM) (http://radarscience.weebly.com/radar-simulators.html) 

developed by a group of scientists from Stony Brook University and Brookhaven National 

Laboratory.   Colorado State University (CSU) and NASA Gaddard Space Flight Center also 

developed the POLArimetric Radar Retrieval and Instrument Simulator (POLARRIS) 

(https://cloud.gsfc.nasa.gov/POLARRIS/). Still, efficient and accurate PRD operators, like the one 

in Mahale et al. (2019) for rain, are still lacking and in need for ice and mixed phase species to 

make PRD assimilation more feasible and efficient.  

The current status of using polarimetric radar data is due to the fact the PRD and products 

thereof are generated from radar engineering and meteorology point of view, with little influence 

from the NWP community thus far. Rigorous retrieval methods developed from the information 

theory and NWP communities have not been successfully adapted. Radar meteorology and NWP 

fields developed and evolved from their communities independently from each other. Radar 

meteorology was developed based on the theory/model of electromagnetic (EM) wave scattering 

by hydrometeors, and by observing and relating radar measurements for understanding and 

estimating weather with empirical relations.  NWP, on the other hand, is formulated from a set of 

physical, dynamic and thermodynamic conservation equations. There has not been enough 

connection between the two research areas. This disconnect is reflected in the different variables 

commonly used to represent the weather state (e.g., water mixing ratio (q) in NWP models; rain 

rate (R) in radar meteorology), the difference of unit usage between NWP state and radar variables, 

and the different values used to characterize PRD errors for two different realities in the two 

communities. For example, it is generally accepted by the radar meteorology community that the 

measurement error for Z is about 1.0 dB, which is usually ignored in direct observation retrieval; 

however, 2.0 to 5.0 dB error is usually used in NWP community.  The gap between radar 

meteorology and NWP needs to be bridged, and the approaches adapted to use PRD need to be 
aligned for optimal results. 

 

4. A Unified Statistical Approach  

Since the purpose of both radar meteorology and NWP is to understand and predict weather, 

one way to advance the usage of PRD is to improve model parameterizations and initialization for 

more accurate weather forecasts and warnings. Considering that radar measurements contain 

errors, weather states vary, observational information are not enough and not uniformly available 

across the atmosphere, and physical constraints and prior information are needed to facilitate 

retrieval, a statistical approach is warranted.  In this framework, both state variables and radar 

http://arps.ou.edu/downloadpyDualPol.html
http://radarscience.weebly.com/radar-simulators.html
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measurements are treated as random variables, and both the prior background and observations are 
used.   

As shown in Fig. 4, let x be the state vector; y the measureable vector; and they are related by 

the forward operator as: y=H(x).  An optimal retrieval is to find the state vector x that has the best 

match with a given prior background, xb, and a set of observation,yo, while accounting for their 

given uncertainties. This is equivalent to minimizing the cost function J 

𝐽 = [𝐱 − 𝐱b]
𝑡𝐁−1[𝐱 − 𝐱b] + [𝐲o −𝐻(𝐱)]𝑡𝐑−1[𝐲o − 𝐻(𝐱)]

.
   (4) 

where B and R represent the background error covariance and observation error covariance, 

respectively, and H(…) is a forward observation operator.  This serves as the basis for variational 

(VAR) analysis and the ensemble Kalman filter (EnKF) analysis (Lorenc 1986). The VAR 

approach has been used in improving QPE and microphysics retrieval with PRD in Hogan (2007), 

Cao et al. (2010,2013), Yoshikawa et al. (2014) and Chang et al. (2016), in which the background 

information is obtained from previous measurements/knowledge. In EnKF analysis, the forward 

operator is assumed to be linear, the flow-dependent covariance B is estimated from a limited 

number of ensemble forecasts, and the analyzed state vector is solved from (4) iteratively, whose 
application in data assimilation (DA) with PRD is presented in Section 5.  

 The procedure to derive Z-R relations is a special case of the variational approach, in which 

background information is lacking (the first term in (4) is ignored), only the Z observations are 

used, and each data point is normally equally weighted to fit with a power-law relation (Z = aRb) 

in the logarithm domain to determine the coefficients a and b. Hence the Z-R relation highly 

depends on data collection/selection, filtering, and the weighting and fitting procedure used, which 

is obviously not optimal because the data quality and weighting issues cannot be taken into account 

in rain estimation once a Z-R relation is chosen. Therefore, the statistical approach represented by 

Eq. (4) is more fundamental and complete in formulating PRD-based retrieval, and has the 

potential to achieve optimal usage because the prior background information can be used and 

measurement error effects are included. Since it is already in use in the NWP community for radar 

data assimilation, the statistical approach is one way to align the radar meteorology/hydrology with 

the NWP community, and applicable to both observation-based and DA-based retrievals. 

While the statistical retrieval approach has been formulated and successfully used in the 

data assimilation community (Rodgers 2000; Kalnay 2003), it has seen little success in the optimal 

usage of PRD due to its complexity. The reason for this is that there are many issues in optimally 

utilizing PRD for improving QPE and QPF, as discussed in last section (Section 3). Importantly, 

there are large uncertainties in storm scale NWP models and model microphysics parameterization 

(will be further discussed in section 5).  These large errors in NWP that DA depends on as 

background information (first term of Eq. (4)), and large uncertainty and non-linearity in PRD 

operators prevent the substantial positive impact of limited information from PRD (2nd term of Eq. 

(4)).   

Considering all aforementioned issues, the vision for optimal utilization of PRD with 

different components is modified from Fig. 7.14 of Zhang (2016) and shown in Fig. 5.  As sketched 

in the top row (red) of the figure, observation-based studies and retrievals are normally conducted 

in radar meteorology, which deals with in-situ measurements and processing, PRD observation, 

hydrometeor classification and precipitation estimation through empirical relations, and PRD 

quality control (QC) and error characterization to determine observation error covariance (R). The 

direct and empirical methods have been used in observation-based studies, but the error covariance 

and prior information are usually ignored in the retrieval. As shown in the bottom row (blue) of 
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Fig. 5, DA-based retrieval/analysis is used by the NWP community. It involves selection and 

improvement of microphysical parameterization schemes and NWP models, as well as estimation 

of background error covariance (B).  The stochastic nature of microphysics variety contributes 

significantly, which is ignored in most current model parameterizations, and should be included in 

future improvement (Finlon et al. 2016). As sketched in the middle row (brown), the forward  

operators, which result from MP modeling and EM modeling, and statistical retrieval algorithms 

are required for both observation-based and DA-based retrievals. Each of the retrievals needs to 

have compatible microphysics models such as DSD/PSD models and shape/density relations, 

electromagnetic modeling and calculations, etc., as well as statistical retrieval algorithms that can 

handle measurement error and background information and covariance, such as the one presented 

earlier in this section. To achieve best possible results, all the components need to be accurately 

determined and selected, and used in conjunction and cross-verified with each other in the 

statistical retrieval algorithms as depicted in the figure.  

The statistical retrieval allows observation errors and prior information to be characterized 

and included, and it reduces to the direct retrieval when the observation errors are zero and the 

prior information is absent. The optimal usage of PRD is to find the balance between the 

measurements used and the prior information obtained for a specific application as well as errors 

in the measurements and information used and characterized. Since observation errors are 

included, the contribution from each measurement is automatically weighted differently based on 

its relative information compared with the error to produce optimal estimates as done in Mahale 

et al. (2019) for rain microphysics retrieval, without having to empirically changing one estimator 

to another as in Eqs. (1-3). To include flow-dependent background information in the retrieval, 
assimilating PRD into a NWP model is needed, which is discussed next. 

 

5. An Example of DA Analysis with PRD 

It is accepted that one of the main uses of radar observations, including PRD, is the 

assimilation of these observations into a convective scale NWP model. It was realized that the 

assimilation of reflectivity data helps reduce the spin-up problem (Sun and Crook 1997, 1998; Hu 

et al. 2006, b; Gao and Stensrud 2012), and a variety of real case studies have shown these data 

help improve QPF (Jung et al. 2012; Ge et al. 2013; Yussouf et al. 2013; Putnam et al. 2014; 

Wheatley et al. 2014; Yussouf et al. 2015; Snook et al. 2016; Putnam et al. 2017a). However, many 

issues still exist because although reflectivity has proven to be useful, reflectivity alone is not 

sufficient to analyze all the state variables included in advanced multi-moment microphysics 

schemes (e.g., hydrometeor mixing ratios and number concentrations). PRD may help resolve 

these issues with additional information about cloud microphysics and physics processes 

(Vivekanandan et al. 1999; Zhang et al. 2006; Ryzhkov et al. 2013a, b; Kumjian et al. 2014, Carlin 

et al. 2016).  

Several studies have been conducted to initialize a NWP model with PRD (Wu et al. 2000; 

Jung et al. 2008b, Li et al. 2010; Posselt et al. 2015, Li et al. 2017). However, in those studies, 

polarimetric data were assimilated indirectly (e.g. Wu et al. 2000; Li et al. 2010), assimilated 

directly but in the observing system simulation experiment framework (Jung et al. 2008b), or using 

a single-moment microphysics scheme, which is unable to simulate size sorting (e.g., Posselt et al. 

2015; Li et al. 2017). Recently, there was a more advanced PRD assimilation of ZDR in addition to 

Z and vr using an EnKF and a multi-moment microphysics scheme for the 20 May 2013 Newcastle 

– Moore tornadic supercell case, as shown in Fig. 6 (adapted from Putnam et al. 2019). The 

http://journals.ametsoc.org/author/Vivekanandan%2C+J
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analysis with differential reflectivity increased the low-level ZDR values with fewer, larger 

raindrops along the right forward flank of the supercell adjacent to the updraft in the vicinity of 

the observed ZDR arc polarimetric signatures (Kumjian and Ryzhkov. 2008). The ZDR values are 

lower downshear in the forward flank in the storm in the transition region between and the 

supercell immediately to its north. Additionally, the gradient of hail mean mass diameter was 

larger aloft and similar to hail patterns studied in Dawson et al. (2014, see their Fig. 17), which 

demonstrated the importance of size sorting of rimed-ice in producing a low-level ZDR arc, further 
indicating the positive impact of PRD assimilation.  

There is some evidence that PRD also contains information about storm dynamic and 

moisture information, which can also be used to initialize NWP models (Snyder et al. 2015; 

Carlin et al. 2017). Their studies indicate that ZDR columns can be used to identify regions of 

positive temperature perturbations from latent heat release due to condensation and/or freezing. 

Realizing this, Carlin et al. (2017) explored the impact of assimilating real PRD through a 

modified cloud analysis (Hu et al. 2006). Preliminary findings suggested a marked improvement 

in analyzed updraft location. Quantitative analysis of Equitable Threat Score for Z also revealed 

improved performance when using the modified cloud analysis routine in several experiments 

with ZDR column than that of the control experiment without using ZDR column. The study is also 

very preliminary. 

Many challenges still remain for PRD assimilation. The May 20 study demonstrated how 

the number of predicted moments in model microphysics schemes affect microphysical processes, 

where excessive size sorting known to occur with double moment microphysics schemes (Dawson 

et al. 2010; Morrison and Milbrandt 2011; Dawson et al. 2015) had a significant impact on the 

effectiveness of PRD data assimilation. Also, the forward operators and microphysics schemes 

must be improved, specifically in regard to the treatment of frozen hydrometeors as well as mixed-

phase hydrometeors, which most microphysics schemes do not predict. Additionally, the choice 

of model resolution has a significant impact on the detailed polarimetric patterns and signatures 

that can be resolved.  The 20 May study used a 500m grid spacing, and continuing advances in 

computer power can allow for even higher resolution experiments. PRD assimilation is still in its 

infancy, but the additional microphysical information provided can help to improve our 

understanding of current model deficiencies, both through assimilation experiments like those 

referenced here and direct simulation comparisons similar to Johnson et al. (2016) and Putnam et 
al. (2017b). 

 

6. Polarimetric phased array radar technology  

 While radar polarimetry allows for more microphysical information measured, there is 

increasing need for faster data updates. To timely detect and predict fast evolving weather 

phenomena such as tornadoes and downbursts, it is desirable to rapidly acquire volumetric radar 

data at intervals of one or less minute, as opposed to the current five minutes with WSR-88D. For 

this reason, rapid scan phased array radar (PAR) with agile beam scanning capability was recently 

introduced to the weather community (Weber et al. 2007; Zrnic et al. 2007; Heinselman and Torres 

2011). Simulation experiments demonstrate assimilation of PAR observations at 1-min intervals 

over a short 15-min period yields significantly better analyses and ensemble forecasts than those 

produced using WSR-88D observations (Yussouf and Stensrud 2010).  Thus, there is the potential 
to increase the tornado warning lead time beyond the present 10 to 15 minutes.  
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 Another motivation to introduce PAR technology is the MPAR (multifunction PAR) and 

SENSR (Spectrum Efficient National Surveillance Radar) initiatives to use one radar network to 

replace the four radar networks in the United States of  (1) National Weather Surveillance Radar 

(WSR-88D), (2) Terminal Doppler Weather Radar (TDWR) for detecting low altitude wind shear; 

(3) Airport Surveillance Radar (ASR) for air traffic control; and (4) Air Route Surveillance Radar 

(ARSR) for the long range air surveillance (Stailey and Hondl 2016) Since all the radars share the 

same principle in detecting EM wave scattering from targeted media, it is efficient to use a single 

radar network to service all the missions. To do so, PAR fast scanning capability is needed. 

Because WSR-88D has the dual-polarization capability, future PAR for weather observation needs 
to have the polarimetry capability as well, i.e., polarimetric PAR (PPAR).  

PPARs have been developed for satellite and military applications, but with limited 

scanning angles (Jordan et al. 1995). For ground-based weather measurements, it is challenging to 

develop the PPAR technology because of the requirements of wide angle scan and high accuracy 

for polarimetric measurements (ZDR error <0.2 dB, ρhv error < 0.01, ϕDP error < 3 degrees). 

Nevertheless, the challenges and difficulty have not stopped the enthusiasm and efforts of the 

community to formulate PPAR theory and design and develop PPAR systems for future weather 
observation and multi-missions (Zhang et al. 2009).  

 Several PPAR configurations and systems have been attempted, including 1) A planar 

PPAR (PPPAR) with one-dimension (1D) electronic scan capability antenna mounted on a 

mechanically steerable platform, e.g., the CASA phase tilted radar (Hopf et al. 2009); 2) a two-

dimension (2D) electronic scan PPPAR, like the NSSL ten-panel demonstrator (Shown in Fig. 7a); 

and 3) a cylindrical PPAR (CPPAR) demonstrator (Fig. 7b) being developed jointly between OU 

and NSSL (Zhang et al. 2011, Karimkashi and Zhang 2015, Fulton et al. 2017). Each of these 

PPARs can cover the volume more quickly than a mechanically steered beam due to beam agility, 

versatility in beam shape, speed of changing pointing direction, and/or four radars operating 

simultaneously.  Although a considerable amount of effort has been put into developing PPPAR, 

no satisfactory polarimetric weather measurements have appeared in the literature. Initial testing 

results of CPPAR are promising, but still preliminary, as documented in a technical report by Byrd 

et al. (2017). A set of CPPAR measurements compared to the WSR-88D KTLX measurements are 

duplicated in Fig. 8. Since the CPPAR has a lower power (<2kW) and smaller aperture (<2 m in 

diameter), the lower sensitivity is expected, yielding less data coverage than KTLX. It is promising 

to see the similar features in ZDR, and ZH appear in both with the CPPAR and the KTLX 

measurements. However, ρhv is low and not up to expectations due to the antenna beam mismatch 

and other system instability issues. The beam mismatch is being addressed by a redesign of the 

frequency-scan dual-polarization column antennas (Saeidi-Manesh et al. 2017).  The CPPAR 

electronics is also being redesigned and rebuilt to have a stable system so that many CPPAR related 

issues such as commutating scan, sector-to-sector isolation, surface wave effects, and accurate 
weather measurements can be addressed/demonstrated.  

 Achieving comparable or better accuracy in the polarimetric measurements than on the 

WSR-88D is challenging. It is most difficult for the 2D PPPAR with multiple faces because the 

polarization basis for a planar array changes and becomes coupled for a pair of radiators and can 

cause bias/error that are much larger than the maximum allowed error.  The 1D PPPAR with a 

mechanical scan in azimuth is feasible because of its relative simplicity in maintaining polarization 

purity and azimuthal scan invariant beam characteristics, but needs to be demonstrated. CPPAR is 

an alternate solution for accurate polarimetric PAR measurements, which scans in the azimuth by 
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commutating its beam position to achieve the high performance beam characteristics like the 1D 
PPPAR. Further research and development are needed to realize this potential. 

 

7. Conclusions and discussions  

We have reviewed the status of weather radar polarimetry, identified the limitations and 

challenges of using polarimetric radar data, and proposed possible solutions and unification of 

approaches. We have also discussed challenges and explored the research and development for 

future weather observation using phased array radar polarimetry technology. The main objective 
of this paper is to bring up these issues and generate consensus for finding a path forward. 

Collaborative efforts between the radar engineering/meteorology/hydrology and NWP 

communities are necessary to develop feasible new technology and to more efficiently utilize the 

existing PRD to better monitor, quantify, and forecast weather. Although radar data are becoming 

a dominant factor and PRD are useful in short-term forecasting and warning, PRD alone do not 

guarantee accurate short-term forecasts. Other measurements such as satellite remote sensing data 

and cellular communication signals (Overeem et al. 2013) can be included to enhance the 

information content. On the other hand, NWP model microphysics parameterizations need to be 

improved so that the utilization of PRD can make substantial contributions to improving the 

accuracy of weather forecasts. Direct comparisons between NWP simulated PRD and polarimetric 

radar measurements open a feasible way to reveal model deficiencies and to improve model 

physics and microphysics parameterizations. Assimilation of PRD and data from other in situ and 

remote sensors such as satellites into high-resolution convective scale NWP models, together with 

judicious interpretation by meteorologists, is required to produce further improvements of QPE, 

QPF, and severe weather warning lead time. 
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Figure 1. WSR-88D data and their derived products after the dual-polarization upgrade. The data 
and products in the dashed boxes are for single polarization. 
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Figure 2. Polarimetric variables at S-band radar KFDR for a supercell observed in southwest 

Oklahoma, US at 22:43 UTC on 16 May 2015. a) Reflectivity (Z); b) Radial velocity (vr); c) 

Spectrum width (σv); d) Differential reflectivity (ZDR); (e) Copolar correlation coefficient (ρhv); 

and f) Differential phase (ΦDP). The radar (not shown) is located southeast of the supercell. The 

white lines are county or state borders, and the orange and brown lines are roadways. Plotted using 

GR2Analyst software. 
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Figure 3. a) Hydrometeor Classification product generated from National Severe Storm Laboratory 

(NSSL) hydrometeor classification algorithm (HCA) at 22:43 UTC at 16 May 2015, and b) Dual-

polarization radar estimated 1-hour rainfall accumulation. The radar is located southeast of the 

supercell (not shown). The white lines are county or state borders, and the orange and brown lines 
are roadways.  Plotted using GR3Analyst software. 

*Echo class notations are: Biological scatterers (BI); Ground clutter (GC); Ice crystals (IC); Dry 

snow (DS); Wet snow (WS); Light/Moderate rain (RA); Heavy rain (HR); Big drops (BD); 

Graupel (GR); and Rain and hail (HA). Purple areas represent unknown classification 

 

 

Figure 4. Sketch of the weather physics state variables of DSD (N(D)), axis ratio (γ), density (ρ), 

and orientation angles (θ,φ) versus polarimetric radar measurables. 

 

State variables

x: [N(D), ϒ, ρ, (θ,φ)]

Pol. measurables:

y: [ZH, ZDR, ρhv, ΦDP]

Forward: y=H(x)

Inverse: x=H-1(y)

• The national NEXRAD (WSR-88D) network has
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 polarimetric radar data (PRD) are available.
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Figure 5: Sketch of different components for optimal utilization of PRD and connections between 

observation-based retrieval that can be used in radar meteorology and DA based retrieval used in 

NWP. 

*Acronyms are: Polarimetric radar data (PRD); Quality control (QC); Microphysics (MP); 

Electromagnetic (EM); Forward observation operators (Fd obs. operators); Variational (VAR); 

Ensemble Kalman filter (EnKF); Quantitative precipitation estimation (QPE); Quantitative 

precipitation forecast (QPF), Numerical weather prediction (NWP); Data assimilation (DA).  
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Figure 6:  Comparison between polarimetric radar observation and DA analysis: (a) Observed 

reflectivity and (b) differential reflectivity from KTLX of the Newcastle-Moore tornadic supercell 

at 1938 UTC on 20 May 2013, with storm location noted in (a); (c) analyzed reflectivity and (d) 

differential reflectivity at 1940 UTC from an EnKF experiment that assimilated only reflectivity 

and radial velocity (EXP Z + vr) as well as (e) analyzed reflectivity and (f) differential reflectivity 

from an EnKF experiment that assimilated differential reflectivity in addition to reflectivity and 

radial velocity (EXP Z + vr + ZDR).  
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Figure 7: Pictures of polarimetric phased array radars that are under development. (a) NSSL 2D 

ten-panel planar PPAR (PPPAR) demonstrator (TPD), and (b) OU-NSSL cylindrical PPAR 
(CPPAR). 
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Figure 8:  Comparison of polarimetric weather measurements between the CPPAR demonstrator 

located at the pink circle “o” and WSR-88D KTLX radar at the red asterisk “*”. The data were 

collected on September 10, 2016 at 04:13:47 UTC for CPPAR and 04:13:50 UTC for KTLX. (Data 

points with Z < 20dBZ were excluded. There are echoes in KTLX data, but not in CPPAR data  

because CPPAR has a much lower sensitivity due to its smaller antenna and lower transmitted 

power). 


