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ABSTRACT

In finite-difference representations of the conservation equations, the flux form of the advection terms is often
preferred to the advective form because of the immediate conservation of advected quantity. The scheme can
be designed to further conserve higher-order moments, for example, the kinetic energy, which is important to
the suppression of nonlinear instability. It is pointed out here that in most cases an advective form that is
numerically equivalent to the flux form can be found, for schemes based on centered difference. This is also
true for higher-order schemes and is not restricted to a particular grid type. An advection scheme that is fourth-
order accurate in space for uniform advective flows is proposed that conserves both first and second moments
of the advected variable in a nonhydrostatic framework. The role of the elastic correction term in addition to
the pure flux term in compressible nonhydrostatic models is also discussed.

1. Introduction

In finite-difference representations of the conserva-
tion equations (e.g., for momentum, mass, heat, and
other substances), the flux form of advection terms is
more commonly used in primitive equation models be-
cause of the immediate conservation of the advected
quantities (e.g., momentum, mass, and water substanc-
es). The scheme can be designed to further conserve
higher-order moments (here the moments are multiplied
by the density in a nonhydrostatic system and by water
depth in the case of shallow water equations), for ex-
ample, the kinetic energy, which is important to the
control of nonlinear instability. Second-order discreti-
zation schemes that conserve both the first (e.g., mo-
mentum) and the second moment (e.g., kinetic energy)
of the advected quantities can be easily formulated in
flux form (e.g., Lilly 1964). In general, numerical
schemes that conserve more quantities that are con-
served by the continuous counterpart perform better,
especially in maintaining correct energy cascade in the
discrete system. Arakawa (1966) and Arakawa and
Lamb (1977) showed for hydrostatic systems that the
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conservation of both kinetic energy and enstrophy (vor-
ticity squared) by advection schemes prevent systematic
and unrealistic energy cascade toward high wavenum-
bers, a cause of nonlinear instability (Phillips 1959).
Their pioneering work has since been extended and gen-
eralized by many researchers, examples include Sa-
dourny (1972), Arakawa and Lamb (1981), Mesinger
(1981), and Janjić (1984). These schemes are all pre-
sented in hydrostatic frameworks in which the flows are
quasi-two-dimensional, however. Numerical schemes
that conserve enstrophy are much harder to design in
three-dimensional nonhydrostatic systems. Still, the
conservation of kinetic energy and the second moments
of scalar variables is also highly desirable in nonhy-
drostatic systems.

For the above reasons, most contemporary nonhy-
drostatic numerical models use conservative discreti-
zation schemes based on the flux-form advection for-
mulation (e.g., Clark 1977; Anthes and Warner 1978;
Xue and Thorpe 1991). The advective form is nonethe-
less also used in some models (e.g., Klemp and Wil-
helmson 1978, referred to as KW78 hereafter) partly
due to its simplicity when implementing higher-order
(e.g., fourth order) schemes. It should be pointed out
that it is certainly possible to design conservative dis-
cretization schemes based on the advective form. Early
examples can be found in Grammeltvedt (1969), Janjić
(1984), and Rančić (1988), among others. Most of these
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schemes were designed for quasi-two-dimensional hy-
drostatic flows.

Without special care, discretization schemes based on
the advective form of advection terms usually do not
conserve even the first moment, for example, the mo-
mentum. This is the primary reason why many modelers
abandon the use of advective form (e.g., Wilhelmson
and Chen 1982, WC82 hereafter; Tripoli and Cotton
1982, TC82 hereafter). Elastic (compressible) meteo-
rological models usually do not predict the full air den-
sity using an exact mass conservation equation (KW78;
TC82). To cast the advection term in an elastic system
in flux form, a correction term due to compressibility
(to be referred to as the elastic correction term hereafter)
is present (or neglected by some modelers) in addition
to the pure flux term (e.g., WC82; Dudhia 1993). It is
pointed out in this note that there exists, in most cases,
a numerically equivalent advective form to a flux form
formulation, and neglecting the elastic correction term
does not necessarily improve the conservation of the
second moment. One of such equivalent advective forms
is used by Skamarock and Klemp (1993), but its exact
equivalence to a flux form is not well recognized, at
least in the nonhydrostatic modeling community. Such
equivalence appears to be implicitly recognized by Jan-
jić (1984) and Rančić (1988), for shallow water equa-
tions formulated on Arakawa E grid.

2. The numerical equivalence

Without loss of generality, we consider only 2D equa-
tions for u and w and an equation for the scalar potential
temperature u in a nonhydrostatic elastic system, and
concentrate on the advective part of the equations, which
are written as

u 1 uu 1 wu 5 f , (1a)t x z u

w 1 uw 1 ww 5 f , and (1b)t x z w

u 1 uu 1 wu 5 f , (1c)t x z u

where the subscripts x and z denote partial differenti-
ations. Here, f u, f w, and f u represent the right-hand side
(rhs) of the u, w, and u equations, respectively, and their
detailed form varies with applications. The other vari-
ables have their usual meanings.

The advection terms in Eqs. (1) are in advective form.
In models that do not explicitly predict full air density,
the above equations are often multiplied by a base-state
density r(z) and recast into a flux form:

u* 1 [(u*u) 1 (w*u) ] 2 {u(u* 1 w*)} 5 f , (2a)t x z x z u

w* 1 [(u*w) 1 (w*w) ] 2 {w(u* 1 w*)} 5 f , (2b)t x z x z w

and

(ru)* 1 [(u*u) 1 (w*u) ] 2 {u(u* 1 w*)} 5 f , (2c)t x z x z u

where u* [ ru and w* [ rw. Systems similar to Eqs.
(2) are widely used in elastic cloud models (e.g., TC82).

Note that in an anelastic system, the continuity equa-
tion is

1 5 0,u* w*x z (3)

and the terms enclosed in braces (curly brackets) in Eqs.
(2) vanish. In the rest of this paper, we should refer to
these terms as the elastic correction terms.

Adopting the following notations,
nx

f 5 (f 1 f )/2 andi1n /2 i2n /2

d f 5 (f 2 f )/(nDx), (4)nx i1n /2 i2n /2

a second-order centered-difference form of Eqs. (2) on
the Arakawa C grid can be written as follows:

x x x xx zu* 1 [d (u* u ) 1 d (w* u )] 2 {u(d u* 1 d w* )}t x z x z

5 f ,u

z z z zx zw* 1 [d (u* w ) 1 d (w* w )] 2 {w(d u* 1 d w* )}t x z x z

5 f , andw

x z
(ru)* 1 [d (u*u ) 1 d (w*u )] 2 {u(d u* 1 d w*)}t x z x z

5 f .u (5)

It is well known that for an anelastic flow the ad-
vective process in the above system conserves momen-
tum ru, rw, the kinetic energy r(u2 1 w2)/2, and ru
as well as ru2 (Lilly 1964). In a compressible system,
the density (r) weighted divergence Div2 [ (dxu* +
dzw*) is, though small in general, nonzero, and exact
conservations no longer exist. WC82 and Ikawa (1988)
choose to neglect the elastic correction terms in an at-
tempt to preserve conservations. Doing so does make
the first moment conservative. However, without Eq.
(3) being satisfied, the second moment is not conser-
vative either (see the appendix). In fact, neglecting them
makes the model integration less stable in some cases
(Ikawa 1988; Durran and Klemp 1983). Sound wave
damping of a certain type alleviates its impact (Ikawa
1988; Skamarock and Klemp 1993). In a recent effort
to compare the results of the Advanced Regional Pre-
diction System (ARPS) model (Xue et al. 1995) against
that of the KW78 model with WC82 formulation (which
uses flux-form advection but neglects the elastic cor-
rection terms), Richardson (1999) found that a good
agreement in the time evolution of a multicell convec-
tive storm simulation could not be obtained until the
neglected elastic correction term is added back to the
equation of water vapor mixing ratio in the KW78 mod-
el. For the comparison purpose, the ARPS code was
modified to the maximum extent possible to match the
WC92 version of the KW78 model, except for the treat-
ment of advection. Certain simple bubble tests also show
that the solutions including the elastic correction term
are better behaved, in terms of producing more coherent
structure of the rising bubble. Ikawa (1988) found that
his mountain flow solution becomes unstable when the
horizontally explicit and vertically implicit mode-split
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time integration scheme (as used in ARPS and WC82)
is used together with the flux-form advection without
elastic correction, unless extra effort is made to damp
deep horizontal acoustic modes. These results suggest
strongly that the elastic correction terms should not be
neglected.

Finite differencing can be based on the advective form
of Eqs. (2), which are then discretized as follows:

x zx x
u* 1 (u* d u) 1 (w* d u) 5 f , (6a)t x z u

x zz z
w* 1 (u* d w) 1 (w* d w) 5 f , and (6b)t x z w

x z
(ru)* 1 (u*d u) 1 (w*d u) 5 f . (6c)t x z u

Similar finite differencing is done in Skamarock and
Klemp (1993). However, it is not generally recognized
that Eqs. (6) are exactly equivalent to Eqs. (5). It takes
only some algebraic manipulations to prove for the u
equation, for instance, that

xx x xx(u* d u) [ d (u* u ) 2 ud u* andx x x

zx x xz(w* d u) [ d (w* u ) 2 ud w* . (7)z z z

Equations (5a) and (6a) are therefore exactly the same.
Hence, there is no need to split the advection term into
two parts to take advantage of the known conservation
properties of flux form. From a practical point of view,
formulating the term in advective form cuts the com-
putations by half, and in addition, roundoff errors are
also reduced simply because there are fewer floating-
point operations. In an anelastic system where Eq. (3)
is exactly satisfied, the equivalence between the two
systems also holds. The same is true for other systems
whose flux formulation of advection terms does not in-
volve a correction term.

Numerical experiments were performed to verify the
above observations. We have formulated a 3D com-
pressible model using the split-explicit time integration
scheme of KW78. Two runs with formulations (5) and
(6) are found, without any explicit diffusion, to be stable
for long time integrations, and the results are essentially
identical (with the only difference being caused by ma-
chine roundoff errors). In contrast, when the advection
terms were formulated, for example, for the u equation,
in a straightforward fashion on a C grid as

1 ,
xzx zu*d u w* d ux z (8)

explicit numerical diffusion must be added to control
nonlinear instability. Without diffusion, the model run
blows up after a certain time.

3. Extension to higher-order and other grid
structures

The equivalent advective form can also be found for
fourth-order differencing schemes as well as for
schemes based on other types of grid structure. For ex-

ample, for the u equation, a fourth-order accurate dif-
ference scheme on the Arakawa C grid can be formu-
lated by a straightforward extension of the conservative
second-order scheme:

4 x xx z[d (u* u ) 1 d (w* u )]x x53

1 2x xz x2x 2z2 [d (u* u ) 1 d (w* u )] 2 uDiv42x 2z 63

x z4 x x
[ [(u* d u) 1 (w* d u) ]x z3

2x 2z1 2x xz
2 [(u* d u) 1 (w* d u) ], (9)2x 2z3

and for scalar u,

4 x z
[d (u*u ) 1 d (w*u )]x z53

1 x 2x z 2z
2 [d (u* u ) 1 d (w* u )] 2 uDiv42x 2z 63

4 x z
[ [(u*d u) 1 (w*d u) ]x z3

2x 2z1 x z
2 [(u* d u) 1 (w* d u) ], (10)2x 2z3

where the fourth-order (base state) density weighted di-
vergence Div4 is defined at the scalar point as

4
Div4 [ [(d u* 1 d w*)]x z3

1 x z
2 [u(d u* 1 d w* )]. (11)2x 2z3

Terms on the left-hand side of Eqs. (9) and (10) are in
flux form whereas those on the rhs are in the equivalent
advective form. In an anelastic system where Div4 in
(11) is identically zero, the fourth-order advections in
both forms conserve first and second moments (see the
appendix for proof ) of the advected quantities. Again
neglecting the Div4 term on the left-hand side to yield
a pure flux term, as is done in WC82, does not guarantee
the conservation of second moments in a compressible
model.

It should also be noted that the formulations in Eqs.
(9) and (10) are only quasi-fourth-order accurate, mainly
because the linear spatial average is introducing second-
order truncation errors that do not cancel each other.
High-order spatial averaging must be used to construct
a truly fourth-order scheme, and more grid points will
be involved in such a scheme. The fourth-order scheme
used by WC82 is not truly fourth order for nonconstant
advective flow either. Both schemes reduce to the same
truly fourth-order scheme when the flow is uniform in
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conservation of the first moment by Eq. (A1) is evident
when Div4 5 0.
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