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ABSTRACT

A framework for Observing System Simulation Experiments (OSSEs) based on the ensemble square root
Kalman filter (EnSRF) technique for assimilating data from more than one radar network is described. The
system is tested by assimilating simulated radial velocity and reflectivity data from a Weather Surveillance
Radar-1988 Doppler (WSR-88D) radar and a network of four low-cost radars planned for the Oklahoma
test bed by the new National Science Foundation (NSF) Engineering Research Center for Collaborative
Adaptive Sensing of the Atmosphere (CASA). Such networks are meant to adaptively probe the lower
atmosphere that is often missed by the existing WSR-88D radar network, so as to improve the detection of
low-level hazardous weather events and to provide more complete data for the initialization of numerical
weather prediction models.

Different from earlier OSSE work with ensemble Kalman filters, the radar data are sampled on the radar
elevation levels and a more realistic forward operator based on the Gaussian power-gain function is used.
A stretched vertical grid with high vertical resolution near the ground allows for a better examination of the
impact of low-level data. Furthermore, the impacts of storm propagation and higher-volume scan frequen-
cies up to one volume scan per minute on the quality of analysis are examined, using a domain of a sufficient
size. The generally good analysis compared to earlier work indicates that the filter can effectively handle the
non-uniform-resolution data on the radar elevation levels.

The assimilation of additional data from a well-positioned (relative to the storm) CASA radar improves
the analysis of a supercell storm system that uses data from one WSR-88D radar alone; and the improve-
ment is most significant at the low levels. When data from a single CASA radar are assimilated and when
the radar does not provide full coverage of the storm system, significant errors develop in the analysis that
cannot be effectively corrected. The combination of three CASA radars produces analyses of similar quality
as the combination of one WSR-88D radar and one well-positioned CASA radar.

The most significant effect of storm propagation speed appears to be on the data coverage, which in turn
affects the analysis quality. It is generally true that the more observations, the better the analysis. The results
of the EnSRF assimilation are not very sensitive to the propagation speed. The quality of analysis can be
improved by employing faster volume scans. The sensitivity of the EnSRF analysis to the volume scan
interval is however much less than that of traditional velocity and thermodynamic retrieval schemes,
suggesting the superiority of the EnSRF method compared to traditional methods. The very frequent
update of the model state by the filter, even at 1-min intervals, does not show any negative effect, indicating
that the analyzed fields are well balanced.
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1. Introduction

A new National Science Foundation Engineering Re-
search Center, the Center for Collaborative Adaptive
Sensing of the Atmosphere (CASA), was established in
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2003 to develop innovative observing systems for high-
resolution sensing of the lower atmosphere. The devel-
opment of low-cost, high-spatial density (also short
range), and dynamically adaptive networks of Doppler
radars with polarimetric capabilities is one of the first
goals. Such networks are to probe the lower atmo-
sphere that is often missed by the existing operational
Weather Surveillance Radar-1988 Doppler (WSR-88D)
radar network, so as to significantly improve the detec-
tion of low-level hazardous weather events such as tor-
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nadoes, and to provide more complete data for the ini-
tialization of storm-scale numerical weather prediction
(NWP) models. A future upgrade to electronically
steered phased-array antennas will permit even more
dynamic scan strategies and collaborations among the
network radars.

To help with the design and optimal operation of the
first CASA radar test bed to be deployed in southwest-
ern Oklahoma, and to examine the potential impact of
the data from the test bed radars on storm-scale
weather prediction through the assimilation of these
data into the model initial conditions, an ensemble Kal-
man filter (EnKF)-based Observing Simulation System
Experiment (OSSE) system is established based on a
nonhydrostatic mesoscale weather prediction model.
The system, when coupled with realistic radar emula-
tors, permits a variety of OSSEs examining various is-
sues related to optimal use of radar configurations and
scan strategies.

The EnKF technique for data assimilation was first
introduced by Evensen (1994). It has gained enormous
popularity in recent years because of its simple formu-
lation and relative ease of implementation compared
to, for example, the four-dimensional variational data
assimilation (4DVAR) method. Further, its computa-
tional requirements are comparable to sophisticated
methods such as the 4DVAR method (Le Dimet and
Talagrand 1986; Talagrand and Courtier 1987) and the
representer method (Bennett 1992). The method has
found applications in a number of fields, including me-
teorology and oceanography (see Evensen 2003 for a
review). In the standard EnKF formulation, observa-
tions are treated as random variables that are subject to
added perturbations (Burgers et al. 1998; Houtekamer
and Mitchell 1998, 2001; Evensen 2003) so that the
analysis error covariance is consistent with that of the
traditional Kalman filter. Deterministic methods have
been developed more recently to avoid sampling errors
associated with the use of perturbed observations or to
address the adaptive observational network design
problem; these methods include the ensemble square
root filter (EnSRF; Whitaker and Hamill 2002; Tippett
et al. 2003), ensemble adjustment filter (EAKF; Ander-
son 2001), and ensemble transform Kalman filter
(ETKF; Bishop et al. 2001), all of which belong to the
broader class of square root filters (Tippett et al. 2003).

In general, the EnKF and related methods are de-
signed to make possible the computation of flow-
dependent error statistics. Rather than solving the
equation for the time evolution of the probability den-
sity function of model state as in the traditional Kalman
filter, EnKF methods apply the Monte Carlo method to
estimate the forecast error statistics. An ensemble of
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model states is integrated forward in time using the
dynamic equations, the moments of the probability
density function are then calculated from this ensemble
for different times (Evensen 1994, 2003).

Most recently, EnKF and its variation, the EnSRF,
have been applied to the assimilation of simulated
Doppler radar data for modeled convective storms
(Snyder and Zhang 2003, hereafter SZ03; Zhang et al.
2004, hereafter ZSS04; Tong and Xue 2005, hereafter
TX05) and to the assimilation of real radar data by
Dowell et al. (2004). Encouraging results are obtained
in these studies in analyzing the state variables for con-
vective storms, even though none of these state vari-
ables are directly observed by the radar. SZ03 and
ZSS04 assimilated only radial velocity data while Dow-
ell et al. (2004) include reflectivity data, but their use is
limited to the update of rainwater mixing ratio only. All
three studies used an anelastic cloud model with warm-
rain microphysics. Very recently, Caya et al. (2005)
show through OSSEs that the similarly configured
EnSRF and 4DVAR methods perform comparably.
The 4DV AR method is able to produce better analyses
within a 10-15-min assimilation window, while the
EnSRF method does a better job after more assimila-
tion cycles, when more volume scans are assimilated.

In TXO05, the perturbed-observation EnKF method is
used with a general-purpose compressible model that
includes a multiclass ice microphysics parameterization.
Different from SZ03 and ZSS04, both radial velocity
and reflectivity data are assimilated and used to update
all state variables. The study demonstrates, through
OSSEs, the ability of EnKF in retrieving, from single-
Doppler radar data, multiple microphysical species as-
sociated with a multiclass ice microphysics scheme, and
in accurately retrieving the wind and thermodynamic
variables as well. In general, the filter is able, after a
number of assimilation cycles, to establish the model
storm not present in the initial guess. The best results
are obtained when both radial velocity and reflectivity
data are used, even though the observation operator for
reflectivity is highly nonlinear.

In this paper, an EnSRF (Whitaker and Hamill
2002)-based system is developed as an extension of the
EnKEF system of TXO05 (because the EnSRF belongs to
the general class of ensemble-based Kalman filters, we
also use EnKF to refer to the filter used in this study).
The system is used to assimilate simulated single- or
multiple-radar data from the WSR-88D and/or the
CASA networks. The single WSR-88D radar is located
at Oklahoma City while the CASA radars are located
in the Oklahoma test bed near Chickasha and Lawton,
about 80-100 km southwest of Oklahoma City. Details
on the assimilation system, the assumed configurations
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of CASA radars, the simulation of observations, and
the design of the OSSEs will be given in section 2. In
section 3, the results of the OSSEs are reported that
examine the value added by one well-positioned (rela-
tive to the storm location) CASA radar to the existing
WSR-88D radar network, and the effectiveness in as-
similating data from one or multiple CASA radars
alone. The evaluation is performed for both quasi-
stationary and fast-moving storm systems and for dif-
ferent volume scan frequencies. A general summary is
given in section 4, together with some general discus-
sions.

2. The OSSE system and EnKF analysis procedure

a. The prediction model and truth simulations

While our OSSE system is general and can be applied
to any convective systems, in this paper, we (as in
TXO05) test our system and evaluate the data impact
with the 20 May 1977 Del City, Oklahoma, supercell
storm (Ray et al. 1981). Both simulation and analysis
use the Advanced Regional Prediction System (ARPS)
model (Xue et al. 2000, 2001, 2003), a fully compress-
ible and nonhydrostatic atmospheric prediction system.
The ARPS contains 12 prognostic state variables, in-
cluding wind components u, v, w, potential temperature
0, pressure p, the mixing ratios for water vapor g,, cloud
water ¢, rainwater g¢,, cloud ice ¢;, snow ¢, and hail ¢,
plus the turbulent kinetic energy (TKE) used by the
1.5-order subgrid-scale turbulent closure scheme. The
microphysical processes are parameterized using the
three-category ice scheme of Lin et al. (1983). More
details on the model can be found in Xue et al. (2000,
2001).

Different from TXO05, a smaller horizontal grid spac-
ing of 1.5 km is used in this study. Further, to better
resolve the lower atmosphere, a vertically stretched
grid with a minimum vertical resolution of 100 m is
used, instead of the uniform 500-m vertical resolution
that is used by TXO05, SZ03, and ZSS04. The vertically
stretched grid is defined using the hyperbolic tangent
function, which is one of the built-in options in the
ARPS (Xue et al. 1995). The model domain is 16 km
deep with 40 physical layers. Two domain sizes are used
(see Fig. 1); the smaller one has 47 X 47 horizontal
points, which, excluding two boundary points, is 66 km
on each side. The larger domain, needed to accommo-
date fast-moving storms, has 55 X 103 horizontal points
and is 78 km X 150 km in physical size. The small
domain is centered at 34.8°N and 98.1°W and the large
domain is centered at 34.75°N and 98.11°W, and both
use Lambert projection. The true latitudes of projec-
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FIG. 1. A map with county borders showing the locations of the
first four planned CASA Oklahoma test bed radars, near Chick-
asha (CHI), Rush Springs (RUS), Lawton (LAW), and Cyris
(CRY), together with the Twin Lake (KTLX) WSR-88D radar
near Oklahoma City. The assumed 30-km maximum range of
CASA radars are shown by the low-level 30-km range circles, and
the two (large and small) analysis and forecast domains are shown
as square and rectangular boxes with axis tick marks and labels.
The origin of both domains is set at the center of the domains.
Also plotted are the 10-dBZ low-level (50 m AGL) reflectivity
contours of truth simulations FML (thick solid contours, with that
for 60 min the thickest) and SMS (thick dashed), at the times
labeled in the figure. The 10-dBZ contours for SML are similarly
located as those of FML at 60 min, and are therefore not shown.

tion are 30° and 60°N and the true longitude circle goes
through the center of each grid. These domains roughly
center on the four-radar Oklahoma CASA test bed.

The truth simulations or nature runs are initialized in
the same way as in TX05. A sounding of 3300 J kg™
CAPE (see Xue et al. 2001 for a skew 7-logp plot of the
sounding) is used to define the environmental condi-
tion, and a 4-K ellipsoidal thermal bubble is used to
initiate the storm. Three truth simulations were cre-
ated; one for a slow-moving storm system with a quasi-
stationary right-moving cell in the small domain (re-
ferred to as SMS), one for a fast-moving system in the
large domain (FML), and one for a slow-moving system
in the large domain (SML).

The center location of the bubble is at x = 16, 0, and
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9km, and y = —12, —62, and —12 km, respectively, for
SMS, FML, and SML. In the vertical, the bubble is
centered at z = 1.5 km. The origin of horizontal coor-
dinates is located at the domain center for both grids.
The initial location of the bubble for FML is chosen so
that over most of the assimilation period, much of the
storm system remains within the coverage of the four-
radar CASA network (see Fig. 1). The choice for SML
is such that at 60 min, the storm system is located at
roughly the same location as that in FML so as to fa-
cilitate more direct comparisons.

A radiation condition is applied at the lateral bound-
aries. The top boundary is a rigid lid combined with a
wave-absorbing layer; the lower boundary is free slip.
For the experiments with a slow-moving supercell sys-
tem, a constant wind of u = 3ms 'andv =14 ms !
is subtracted from the original sounding to keep the
right-moving cell near the center of model grid, as is
done in TXO05. For the experiments with a fast-moving
storm system, the original wind profile is used.

The time evolutions of the simulated storm intensi-
ties and structures are very similar. During each simu-
lation, the strength of the initial cell that develops out
of the initial bubble increases quickly over the first 20
min then decreases over the next 30 min because of the
splitting of the cell into two at around 55 min (see Fig.
S). The right-moving (relative to the storm motion vec-
tor toward the north-northeast) cell tends to dominate
the system; the updraft reaches a peak value of 56 m s~
at 101 min. The left-moving cell starts to split again at
90 min. The initial cloud started to form at about 10
min, and rainwater formed shortly thereafter. Signifi-
cant ice phase fields appeared at about 15 min. The
general evolution of the storm is similar to that docu-
mented in Xue et al. (2001).

b. Simulation of radar observations

One WSR-88D and up to four CASA test bed radars
are involved in this OSSE study. For the WSR-88D
radar, standard precipitation-mode parameters are as-
sumed, including 10-cm wavelength, 1° beamwidth, and
a total of 14 elevations with the lowest elevation at 0.5°
and the highest at 19.5°. The radial resolution is 250 m
for radial velocity and 1 km for reflectivity (the radial
resolution does not matter in this study because data
are sampled in Cartesian coordinates in the horizontal,
see later); the maximum range is assumed to be 230 km
(which is sufficient to cover the entire computational
domain). For the first four CASA radars to be installed
in the Oklahoma test bed, whose primary goal is for the
detection of low-level hazardous weather including tor-
nadoes, and for improving weather prediction, the
wavelength will be 3 cm (X band) and the beamwidth
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will be about 2°. The maximum range will be 30 km.
Because the CASA radars will be dynamically config-
urable in real time in response to weather situation and
user needs, their scanning strategies will remain flex-
ible. For the purpose of this study, we assume a total of
10 elevations at 2° increments, with the elevation of the
center of the lowest beam at 1°. The impact of a variety
of scanning strategies, including the vertical data cov-
erage, on the quality of storm analysis will be the sub-
ject of future study.

The locations of the initial four Oklahoma test bed
radars to be installed as early as fall 2005 are near
Chickasha, Rush Springs, Lawton, and Cyril in Okla-
homa, about 90 km to the southwest of the Twin Lakes
(KTLX) WSR-88D radar near Oklahoma City. The lo-
cations of the four CASA radars are shown in Fig. 1,
together with their assumed 30-km low-level range
circles.

Different from the earlier OSSE studies of SZ03,
75504, and TX05, we assume that the simulated obser-
vations are available in the plan position indicator
(PPI) planes or the elevation levels of the radar rather
than at the model grid points. We do assume that the
radar observations are already interpolated to the Car-
tesian coordinate in the horizontal directions; in other
words, the observations are found in the vertical col-
umns through the model scalar points. This assumption
is reasonable because a horizontal interpolation to
bring real radar data to the vertical columns is usually
done before assimilating the data (e.g., in the 4DVAR
work of Sun and Crook 2001). The main purpose of
interpolation is to make the data distribution more uni-
form in the horizontal so as to avoid the cost of assimi-
lating an excessive number of data at the close ranges of
the radar. Still, we plan to examine in the future the
effect of such horizontal interpolation by comparing
with the analyses using data in native radar coordinates.

The effects of the curvature of the earth and the
beam bending resulting from the vertical change of re-
fractivity are taken into account by using the simple 4/3
effective earth radius model discussed in Doviak and
Zrnic (1993); it is mainly the earth curvature effect that
prevents the radars from seeing the lower atmosphere
far away. The radar beams of one WSR-88D radar and
one CASA radar located 90 km apart are illustrated in
Fig. 2, together with the coverage by these beams up to
their half-power width.

Because the observations are not at the model grid
points, a forward observation operator is needed to
bring the data from the model vertical levels to the
radar elevation levels. This is achieved by using a sim-
plified radar emulator that does power-gain-based sam-
pling only in the vertical direction,
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where m, and m, are, respectively, the elevation level
and gridpoint values of either radial velocity (V,) or
reflectivity (Z); Az is the depth of the layer in which
grid point value m, is found. Equation (1) neglects the
effect of reflectivity weighting for radial velocity obser-
vations. The power-gain function G is assumed to be
Gaussian and has the form of

G = exp[—4ln4<%>2], 2

following Wood and Brown (1997), where ¢,, is the
beamwidth and is equal to 1° and 2° for WSR-88D and
CASA radars, respectively. The elevation angle for the
grid point value is ¢, and ¢, the elevation at the beam
center. A simpler and less accurate version of Eq. (2)
has been used by Sun and Crook (2001). The power
returns from sidelobes are not considered in Eq. (2).

For radial velocity, the gridpoint values involved in
the numerator of Eq. (1) are first calculated from

@

V,e = t cosd, siny, + vcosd, cosy, + w sind,,
(€)

where ¢, is the elevation angle (as defined earlier) and
Y, is the azimuth angle of the radar beam that goes
through the given grid point; and u, v, and w are the
model velocities interpolated to the scalar point of a
staggered model grid. Subscript g denotes the gridpoint
value. After V, observations are sampled from the grid-
point values according to Eq. (1), random errors drawn
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from a normal distribution with zero mean and stan-
dard deviation of 1 ms~' are added as simulated ob-
servation errors. Because V, is sampled directly from
velocity fields, the effect of hydrometeor sedimentation
does not come into play. When the effect is simulated,
incorrect estimation of the terminal velocity will intro-
duce errors into the assimilation system; this will be
considered in our future work.

The simulated reflectivity Z in dBZ is calculated
from the mixing ratios of rainwater, snow, and hail hy-
drometeors, using the same formulations as in TXO05.
Formally, it is given by

Z = Z7(q, 95 q1)- “)

The formulations mostly follow those of Smith et al.
(1975) and are consistent with the ARPS ice microphys-
ics. As with V,, Z is first calculated at the grid points
within the beamwidth then is transferred to the beam
elevations using Eq. (1). Random errors of zero mean
and standard deviations of 5 dBZ are then added to the
simulated reflectivity data. The effect of attenuation is
currently not considered but will be in the future.

When Eq. (1) is used to create simulated observa-
tions, no data are collected when no grid level is found
within the beamwidth. This is equivalent to saying that
data are discarded by the assimilation when the forward
observation operator involves no grid levels within the
beamwidth. For our vertically stretched analysis grids
with high resolutions at the low levels, this does not
happen often; when it does happen, the radar beam is
usually very narrow and the atmosphere is, therefore,
already well sampled. Our procedure is thus a natural
way of thinning the data. For data sampling and for
assimilation, we assume that the observation operators
as well as the prediction model are perfect, an assump-
tion that is used in all earlier radar OSSE studies.
Model error will be an issue for future study.

¢. The EnSRF data assimilation procedure

The EnSRF system used in this study is similar to
that described in Tong and Xue (2005), but with several
important differences. The first is that we now use an
EnSREF instead of the perturbed observation method as
discussed earlier. Relatively small differences between
the two methods were reported in TX05 where 100
ensemble members were used. In this study, 40 mem-
bers are used in all experiments and the EnSRF method
is expected to perform better (Whitaker and Hamill
2002).

Following Whitaker and Hamill (2002), the serial
EnSRF algorithm for analyzing uncorrelated observa-
tions, one after another, is summarized here. With the
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serial analysis, the observations are analyzed one at a
time. Therefore, the observation error covariance ma-
trix R reduces to a scalar; so does matrix HP’H™, which
is the background error covariance between observa-
tion points. The analysis equations for ensemble mean
state ¥ and the ensemble deviation from the mean x]
are, respectively,

X =x"+ Ky — Hx")], Q)
x;" = Bl — aKH)x;’, (6)

where
K = PPH'(HP’H" + R)! (7)

is the Kalman gain matrix, P® is the background or
prior error covariance matrix, and H is the linearized
version of the observation operator, H, that projects
state variable x to observation y°. Here, the super-
scripts, a, b, and o denote analysis, background, and
observation, respectively. The ensemble mean analysis
x“is obtained first from Eq. (5); the deviation from the
mean of the ith ensemble member is then given by Eq.
(6), in which B is a covariance inflation factor that is
usually slightly larger than 1, and

a=[1+"\VRHPH" +R) '] (8)

Equation (8) is only valid for single observation analy-
sis and therefore both the numerator and denominator
inside the square root are scalars and the evaluation of
« is easy. In the above, the background error covari-
ances P’H" and HP’H" are estimated from the back-
ground ensemble, according to

N
PPHT = ﬁ > 0 = NHED) — HOO)T, (9)

N
HP"H'" = ﬁ 2 [H() = Ha"HD) — HO)T

(10)

where N is the ensemble size, and H is the observation
operator, which can be nonlinear (and is in this study).
For a single observation, P’H" is a vector having the
length of vector x and HP’H" is a scalar. In practice,
because of covariance localization, all elements in P’PHT
are not calculated; those outside the influence range of
a given observation are assumed to be zero. After the
analysis of one observation is completed, the analysis
becomes the new background (x“ becomes x”) for the
next observation and the analysis is repeated. After all
observations at a given time are analyzed, an ensemble
of forecasts proceeds from the analysis ensemble until
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the time of new observation(s); at that time the analysis
cycle is repeated.

In our system, the analysis variables contained in
state vector x include the gridpoint values of u, v, w, 6,
P> 9w 9e> 4 i 45, and g, In this study, the Smagorinsky
subgrid-scale turbulence option is used; therefore TKE
is not needed. The observation vector y° contains radar
radial velocity V, and reflectivity Z. The observation
operator H is defined by Egs. (1), (3), and (4), with the
detailed formation of (4) given in TXO05.

As in TXO05, we start the initial ensemble forecast at
20 min of model time when the first storm cell devel-
oping out of an initial bubble reaches peak intensity.
The ensemble is initialized by adding random pertur-
bations to a horizontally homogeneous ensemble mean
defined by the environmental sounding, and the ran-
dom perturbations are sampled from Gaussian distri-
butions with zero mean and standard deviations of 3
m s~ ! for u, v, and w, 3 K for potential temperature 6,
and 0.5 g kg~' for water vapor mixing ratio g,. The
pressure and microphysical variables are not perturbed.
Similar to TXO05, we apply the initial perturbations to
the entire domain except for the outermost five rings of
grid points near the lateral boundaries. We do not per-
turb u, v, 6, and q,, at the first grid level about ground
either; doing so was found to introduce pressure noise
into the analysis.

For the standard set of experiments, observations are
assimilated every 5 min. Here, the CASA radars are
assumed to be operating in the traditional full volume
scan mode and initially at a volume scan interval of 5
min. In other sets of experiments, CASA radar data at
volume scan intervals of 1 or 2.5 min are assimilated
and the impact of faster scanning is examined. For all
experiments, the first analysis is performed at 25 min.

As mentioned earlier, 40 ensemble members are
used. As in TX0S5, a covariance localization procedure
following Houtekamer and Mitchell (2001) is employed
that applies a Schur product of the background error
covariance calculated from the ensemble and a corre-
lation function with local support. This method multi-
plies each element of the background error matrix PH™
with a weight computed from the correlation function
given by Eq. (4.10) of Gaspari and Cohn (1999). The
weight decreases gradually from 1 at the observation
point to zero at an effective cutoff radius and remains
zero beyond. An effective cutoff radius of 6 km in all
directions is used in this study rather than 8 km as in
TXO05, which used 100 ensemble members and a 2-km
horizontal resolution. The best choice of cutoff radius is
found through numerical experimentation.

Covariance inflation is necessary because of the typi-
cal underestimation of background error covariances
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TABLE 1. List of small-domain assimilation experiments.

Experiment Radars assimilated and configuration
TLX KTLX radar data only, small domain, storm-motion subtracted, standard assimilation procedure
TLXCYR As TLX, but with both KTLX and Cyril radars
TLXCYR3km As TLXCYR, but with Cyril radar data limited to below 3-km level
CASAI1S As TLX, but with one CASA radar at Rush Springs
CASA3S As CASAIS, but with three CASA radars at Cyril, Rush Spring, and Lawton

from the limited-sized ensemble. The procedure we use
is based on that of Anderson (2001) with an important
modification; instead of being applied everywhere, co-
variance inflation is limited to the grid points that are
directly influenced during the analysis update by the
observations found within the precipitation (where ob-
served Z > 10 dBZ) regions. This modification is nec-
essary to avoid amplifying spurious cells in precipita-
tion-free regions. Snyder and Zhang (2003) also noted
this problem and proposed an alternative inflation pro-
cedure, which was, however, found by Caya et al.
(2005) to degrade their analysis. The inflation factor 8
we use is 1.07.

In TXO05, it is found that the best analysis is obtained
when, during the first four analysis cycles, reflectivity
(Z) data are used to update only the variables that are
directly related to reflectivity via the observation op-
erator, that is, the mixing ratios of rainwater and snow,
because of initially unreliable estimate of cross covari-
ances with Z. In this study, we found that further delay
in the use of Z to update indirectly related variables by
five more minutes gives even better analyses. There-
fore, in all experiments, the update of all variables
when assimilating Z starts from the fifth analysis, that
is, at 45 min. The problems with updating Z in the
initial cycles are also noted by Caya et al. (2005). Unless
noted otherwise, all reflectivity data, including data
with no reflectivity, within the radar range are assimi-
lated, while for radial velocity, only data in regions
where Z = 10 dBZ are used. This was found to work
best in TXO05.

3. Assimilation of WSR-88D and CASA radar
data and their impact

a. Impact of single CASA radar in addition to one
WSR-88D radar

As stated in the introduction, one of the key prob-
lems with the existing national WSR-88D radar net-
work is that the typical radar spacings of a few hundred
kilometers preclude the observations of the lowest ki-
lometers of the atmosphere at many locations because
of the earth curvature effect and the nonzero elevation

of the lowest beams. The problem is even worse in
mountainous regions because of terrain blocking. Im-
portant low-level features such as tornados, cold pools,
gust fronts, and downbursts are often missed by the
network, and it is well established that low-level cold
pools are very important for the support and mainte-
nance of convective systems. The proposed CASA-type
dense, inexpensive radar networks promise to signifi-
cantly improve the low-level coverage.

In this section, we compare the analyses of the TLX-
CYR, TLXCRY3km, and TLX experiments (Table 1).
In TLXCYR, data from the CASA radar at the Cyril
site are assimilated in addition to those from the KTLX
radar. Experiment TLX used only KTLX data, while
TLXCYR3km is the same as TLXCYR except that
Cyril radar data that are assimilated are limited to the
lowest 3 km. This latter case is likely to be more real-
istic because there is an initial plan to collect only data
below the 3-km level by the CASA radars.

As can be seen from Fig. 2 at a 90-km range, the
center of the lowest radar beam of KTLX is over 1 km
above the ground, and the lower edge of the 1°-wide
beam is about 500 m above ground, implying that the
atmosphere below 500 m is not illuminated by the radar
beam, and hence is not observed (this problem will be
worse when the radar is farther away). The addition of
CASA radars fills such gaps while at the same time may
increase the data resolution in the covered region. In
certain regions, the CASA radars may even provide
dual- or multiple-Doppler wind coverage; in our case,
such coverage is very limited partly because of the po-
sitioning of the limited precipitation regions (see Fig.
1). The total numbers of V, and Z observations avail-
able and assimilated at selected times in each experi-
ment will be given later (see Table 3).

The curves of the root-mean-square (rms) errors for
the state variables of experiments TLXCYR and
TLXCYR3km, calculated in the regions where true re-
flectivity exceeds 10 dBZ, are plotted in Fig. 3 together
with those of TLX. It is immediately clear through com-
parison that the additional CASA radar provides a con-
sistently positive impact on the analyses of essentially
all variables. Most of the impact comes from the data
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FIG. 3. The rms errors of ensemble mean forecast and analysis, averaged over points at which the true reflectivity is greater than 10
dBZ for (a) u, (b) v, (c) w, (d) 0', (e) p', (f) q., (&) g,» (h) g, (the curves with larger values) and ¢; (the curves with lower values), (i)
q,, and (j) g,, for experiments TLX (thick solid), TLXCYR (thin solid), and TLXCYR3km (thick dashed), and the ensemble spread
of TLXCYR (thin dashed). Units are shown in the plots. The drop of the error curves at specific times corresponds to the reduction

of error by analysis.

below 3 km because the errors from TLXCYR and
TLXCYR3km are very close but are lower than those
of TLX. The improvement is largest before 60 min
when errors are reduced significantly by the analysis
cycles. The decrease in the rms errors resulting from the
addition of the Cyril radar is more than 0.5 m s~ ' in the
wind components, making the analysis errors in the
later cycles significantly lower than the typical observa-
tional error of 1 ms™!in V, data. The reduction in the
rms error of g, is about 0.25 g kg~! at around 50 min
and the error is reduced from 0.3 to 0.2 g kg~ ' at the
end of the assimilation (100 min) for ¢,, which are quite
significant improvements. Improvements in the analy-
ses of other variables are also clearly evident according
to Fig. 3. The filter is very well behaved overall; less
increase in error is found in later cycles than in TXO0S,
which was attributed to the nonsteady evolution of the
storm system.

In Fig. 3, the spread, in terms of standard deviation,
of the ensemble forecasts before the analysis are also
plotted for TLXCYR. It is clear that for all variables,
the ensemble spread underestimates the corresponding
forecast error, although the discrepancy generally de-
creases with the assimilation cycles, indicating conver-
gence of the filter. Similar behaviors are also observed
in earlier OSSE studies with radar data (Snyder and
Zhang 2003; Tong and Xue 2005).

To examine the impact of additional CASA radar
data at the low levels on the analyses at different levels,
we plot in Fig. 4 the vertical profiles of rms errors for
TLX and TLXCYR3km. For these profiles, the errors
are calculated for the entire horizontal domain. It can
be seen that the largest differences in the rms errors are
found at the low levels for most variables. For u, the
rms difference at the surface is about 1 m's™' at both
times. For 6', the surface rms error differences are be-
tween 0.35 and 0.4 K at the two times. The difference in
the rms errors between TLX and TLXCYR3km is par-
ticularly large in the g, field, with the difference at the
surface being 0.07 g kg ™' at 60 min, which is reduced to
about 0.04 by 80 min. The larger errors in TLX reflect
the poorer analysis of the low-level cold pool, which is
further driven by the poorer precipitation analysis (see
Fig. 5). The error difference is generally larger at the
earlier times (e.g., at 60 min); the difference decreases
with the cycles as the analysis of TLX is also improved
with the assimilation of more data and with the buildup
of the storm.

Figure 5 shows the low-level flow and the simulated
reflectivity, together with the cold pool as revealed by
negative 6 perturbations. It is clear that the analyzed
cold pool and the precipitation region are too small in
area coverage in both experiments at the earlier times
and are even more so in TLX (Figs. 5d and 5g). The
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domain) from experiments TLX (thin lines) and TLXCYR3km (thick lines) at 60 (solid) and
80 (dashed) min for variables (a) u, (b) w, (c) p', (d) 6', (e) q,, and (f) g,.

reflectivity shows a better hook pattern in TLXCYR at
40 min (Fig. 5g). The cold pool expands with time in
both cases, but that in TLX never reaches the south
boundary of the plotted domain by 100 min as the real
one and TLXCYR do. In fact, by 100 min, the structure
and location of the cold-pool boundary (or gust front)
in TLXCYR agree very well with the truth (Fig. 5i and
Fig. 5c), while the agreement in the reflectivity with the
truth is very good in both cases at 100 min. At higher
levels where the KTLX radar provides good coverage,
the differences between the two experiments are
smaller though still identifiable, with the updraft struc-
ture in TLXCYR generally agreeing better with the
truth (not shown).

To further examine the impact of Cyril radar, we plot
in Fig. 6 low-level vertical cross sections at 40 and 60
min through the cold pool along lines A—A’ and B-B’
indicated in Fig. 5. The cold pool is indicated by the
contours of negative 6’, which are plotted together with
the winds projected to the plane of cross section. It can

be seen by 40 min, or after four analysis cycles, that the
gust-front updraft is reasonably captured in TLXCYR
(Fig. 6e) but is much weaker in TLX (Fig. 6c). The
latter is because of the absence of a cold pool and the
associated gust-front lifting. The low-level winds also
differ from the truth significantly more in TLX. After
four more analysis cycles, at 60 min, the cold pool be-
comes much better established in both cases, though
that in TLX remains noticeably narrower while the
gust-front locations and cold-pool width in TLXCYR
are almost identical to the true ones (Fig. 6f versus Fig.
6b). The gust-front strength measured in terms of the
horizontal 6’ gradient is very good for TLXCYR (Fig.
6f) but is slightly weaker for TLX (Fig. 6d). The above
results clearly indicate that the additional data from the
Cyril radar are very helpful, especially during the ear-
lier cycles, in establishing accurate low-level precipita-
tion and cold-pool structures as well as the associated
winds in the model. At the later times, TLX is able to
establish a reasonably good cold pool as the upper-level
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FIG. 5. Horizontal winds (vectors; m s~ '), perturbation potential temperature (thick dashed lines at
1-K intervals), and simulated reflectivity (thin solid contours with shading at intervals of 5 dBZ, starting
from 15 dBZ) in a subdomain at z = 50 m AGL for (a)—(c) truth simulation in the small domain (SMS);
(d)—(f) analyses from experiments TLX, and (g)-(i))TLXCYR at ¢t = 40, 60, and 100 min during the
assimilation period. Lines A—A’ and B-B’ in the plots indicate the locations of vertical cross sections to
be shown in Fig. 6. The arcs in the plots are part of the 30-km-range circles of the CASA radars whose

data are assimilated by the corresponding experiment(s).

analysis improves, even though the lowest levels are not
directly observed. A relatively early start time of the
assimilation relative to the life cycle of the true storm
might have contributed to this, as did the perfect model
that was used.

The impact of vertical radar data coverage is also
examined by Zhang et al. (2004), in which simulated
radial velocity data are assumed to be available at the
grid points. Experiments in which radar data were
available only above 2 or 4 km were compared with
their control experiment. Similar conclusions on the
role of the low-level data were obtained.

b. Assimilation of CASA radar data alone

In this section, we examine the ability of the CASA
radar(s) alone to produce a good analysis of the super-

cell storm system. Results from experiments CASA1S
and CASA3S will be shown (Table 1), which use the
same analysis grid and procedure as the previous two
experiments. In CASA1S, data from single radar at
Rush Springs are used (see Fig. 1), while in CASA3S
data from three radars at Cyril, Rush Springs, and Law-
ton are used. The trailing “S” in the names denotes the
small analysis domain.

Figure 7 shows that when three CASA radars that
provide a good spatial coverage of the storm system are
used (see Fig. 1, Fig. 8, and Table 3), the quality of
analysis is close to that of TLXCYR (whose error
curves are reproduced in thin black lines in Fig. 7); in
fact, for most variables, the error curves of CASA3S
are between those of TLX and TLXCYR (cf. Fig. 3).
For w, p’', q., q,, and g, the errors of CASA3S are
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perturbation potential temperature (') contours at 1-K intervals, and the wind vectors projected to the
cross section for (a), (b) truth simulation SMS, and (c), (d) experiments TLX and TLCYR (e), (f) at 40

(left) and 60 (right) min during the assimilation period.

actually smaller than those of TLXCYR before 45 min.
The wind analysis errors are reduced to below 1 ms™!
after 50 min. Similar conclusions can be drawn from the
surface plots shown in Fig. 8. The analysis of CASA3S
can therefore be considered very good.

The errors of CASAIS are, however, consistently
larger at all times (Fig. 7), and the rms errors start to
increase significantly after 70 min, reaching above 2
ms~! in the winds by 100 min. The later increase is
because of the lack of spatial coverage on the left-
moving cells from 60 min onward (Fig. 8b and Fig. 8c)
by the single Rush Springs radar. The lack of coverage
in the western portion of the analysis domain is also
responsible for the inability of the filter to suppress
spurious precipitation persistent in this part of domain
(Fig. 8b). At 100 min, the low-level cold pool extends
too far north (Fig. 8c), partly because of the merger
with earlier spurious precipitation near the western
boundary (Fig. 8b). Because of the lack of coverage, the
midlevel updraft core associated with the left-moving

cell is poorly analyzed by 100 min, while that in
CASAS3S is very close to the truth (not shown).

The above results show that when three CASA ra-
dars work together to provide lower- and midlevel cov-
erage of the storm system during the assimilation pe-
riod, the EnKF analysis is almost as good as that from
one well-positioned CASA radar plus one WSR-88D
radar, even though the CASA radars do not reach as
high as the WSR-88D radar (cf. Fig. 2). When only one
CASA radar is available and when a portion of the
storm system moves out of the radar coverage, the qual-
ity of analysis deteriorates significantly. Spurious pre-
cipitation developed in part of the domain that could
not be corrected by the analysis because of the lack of
observations there.

c. Effect of storm motion

In all of our OSSEs reported so far, and in those of
TXO05 and ZSS04, a mean storm motion speed is first
subtracted from the environmental sounding to keep
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F1G. 7. As in Fig. 3, but for experiments CASA1S (thick black), CASA3S (thin gray), and TLXCYR (thin black).

the main storm cell quasi stationary relative to the
model grid. Doing so effectively reduces the local time
tendency of the model state and may have helped im-
prove the quality of the analysis. The use of a moving
reference frame that follows the storm system is known
to improve single-Doppler wind analysis (Gal-Chen
1982; Zhang and Gal-Chen 1996; Liou and Luo 2001);

traditional techniques that retrieve thermodynamic
fields from the Doppler wind analyses (Gal-Chen 1978;
Gal-Chen and Kropfli 1984) are also sensitive to the
accuracy of time tendency estimate (Sun and Crook
1996). For general NWP applications, a moving refer-
ence frame is not possible.

In this section, we examine the effect of storm motion

CASA1S
y (km)
o

CASA3S
y (km)
o

o -

£

S 100 -24 1270 12 24

x (km)

241270
x (km)

270 12 24

x (km)

12 24 D4

F1G. 8. As in Fig. 5, but for the analyses from experiments (a)—(c) CASAI1S and (d)—(f) CASA3S.
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speed on the quality of EnKF analysis by comparing
experiments that do and do not subtract the storm mo-
tion from the sounding. A larger grid, as shown in Fig.
1, is used to contain within the domain the fast-moving
storm cells for the entire assimilation period. The truth
simulations used for the slow- and fast-moving experi-
ments are SML and FML, respectively.

Figure 9 shows the forecast and analysis errors in the
model state variables during the assimilation period for
experiments CASA1L, CASA4L, CASA1LM, and
CASAA4LM (see Table 2). The former two contain a
slow-moving storm system while the latter two contain
a fast-moving one. In CASAIL and CASAI1LM, a
single CASA radar located at Lawton is assimilated,
while in CASA4L and CASA4LM all four CASA ra-
dars are assimilated. Lawton radar provides the best
coverage of the fast-moving storm system during the
early cycles. All four experiments use the same large
domain.

It can be seen from the rms error plots (Fig. 9) that
the analyses using four radars are consistently better
than those using one radar. Between 70 and 80 min
when the errors are generally the smallest, the differ-
ence in the wind analysis errors is larger than 1 ms™ !,
and the difference in 0 errors is about 0.5 K between the
one- and four-radar cases. In CASA1LM, the errors in
all variables increase rapidly after 75 min from a level
that is below that of CASA1L, when the precipitation
regions of both left and right movers propagate or are

about to propagate out of the range of the Lawton
radar (cf. Fig. 11e and Fig. 11f). The same happens to
the left movers in CASAIL but at a later time (Fig.
10f). At earlier times, spurious precipitation also exists
in a significant portion of the model domain in both
single-radar cases that is not corrected (Fig. 10e and
Fig. 11e). As in CASAL1S, such spurious precipitation is
mainly caused by the initial random perturbations used
to start the initial ensemble. Because the rms errors
shown in Fig. 9 are calculated over the regions where
true reflectivity exceeds 10 dBZ, most of the errors
resulting from the spurious precipitation are not even
reflected in the error plots.

The CASAA4L case with a slow-moving storm system
and four radars produces the best analysis (Fig. 9), al-
though after 80 min that of CASA4LM becomes very
close for almost all variables. The significant difference
in the amount of V, data before 60 min (see Table 3)
appears to be the main cause for the difference in the
analysis quality between CASA4L and CASA4LM, al-
though the effect of the different local rates of change
with these storms may have also played a role.

The surface analysis fields in Fig. 10 and Fig. 11 help
us better understand the error evolutions shown in Fig.
9. As suggested earlier, in general, the data coverage
appears to be the most significant factor that affects the
quality of storm analysis. A slower-moving storm sys-
tem tends to remain within the radar network longer.
Once a storm or a portion of it moves out of the range
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TABLE 2. List of large-domain assimilation experiments.

Volume scan and

Experiment Radar(s) used Storm motion assimilation interval (min)
CASAIL Single Lawton radar Storm motion subtracted 5
CASA4L All four CASA radars Storm motion subtracted 5
CASAILM Single Lawton radar Fast moving 5
CASA4LM All four CASA radars Fast moving 5
CASAILF2 Single Lawton radar Storm motion subtracted 2.5
CASAA4LF2 All four CASA radars Storm motion subtracted 2.5
CASA1LMF2 Single Lawton radar Fast moving 2.5
CASA4LMF2 All four CASA radars Fast moving 2.5
CASAI1LF1 Single Lawton radar Storm motion subtracted 1
CASA4LF1 All four CASA radars Storm motion subtracted 1
CASA1LMF1 Single Lawton radar Fast moving 1
CASA4LMF1 All four CASA radars Fast moving 1

of radar network, the model state error growth can no
longer be controlled and the analysis deteriorates. The
lack of data coverage in the entire analysis domain also
negatively impacts the overall analysis because some
spurious cells can be not suppressed.

d. Impact of volume scan interval

Another factor that can affect the accuracy of local
time tendency estimation is the radar volume scan in-
terval (VSI). Faster scanning tends to give a better es-
timate of the tendency.! Furthermore, the frozen tur-
bulence assumption (Taylor 1938) made in certain
single-Doppler velocity retrieval (SDVR) techniques
becomes more valid between two scans of a shorter
time interval. The mean winds determined from succes-
sive volume scans based on the principle of tracking
quasi-conserved quantities (e.g., Qiu and Xu 1992; Sha-
piro et al. 1995) can definitely benefit from higher-
frequency data. Shapiro et al. (2003) find that with a
SDVR scheme based on a Lagrangian form of the ra-
dial component of the equation of motion, the wind
retrieval error statistics are substantially improved be-
cause the volume scan intervals decrease from 5 min
down to 1 min, using real Doppler-on-Wheels mobile
radar data. ZSS04 find, however, with their EnKF sys-
tem, that the analysis is only marginally better during
the first few assimilation cycles when 2- instead of
5-min volume scan data are assimilated, and the differ-
ence becomes minimal during later cycles. The main
storm in their case was quasi stationary, however.

The CASA radars will be designed to operate with a

! There are limits to the improvement one can expect from
scanning more rapidly. The quality of radar measurements dete-
riorates significantly when the pulse returns used to obtain the
averaged values become temporally correlated.

variety of scan strategies that would respond in real
time to user needs. When necessary, the radar can per-
form sector or even spatially or temporally interleaved
scans at short time intervals. The increased scan fre-
quency is, however, usually associated with a shortened
dwell time of the radar signal on a particular sampling
volume, and therefore results in reduced accuracy of
the radar measurements. It is important to better un-
derstand the impact of scan frequency on the quality of
thunderstorm analysis, so as to help design the control
system of the network and to optimize the system op-
erations. In this section, we attempt to address some of
these issues by comparing analyses from the WSR-88D
standard 5-min-interval data and data collected at 2.5-
and 1-min intervals. To be fair, the analysis starts at 25
min in all cases. Further, we will examine the impact of
VSI for both slow- and fast-moving storms. As in the
previous subsection, truth simulations SML and FML
are used.

The four large-domain experiments in the previous
subsection are repeated by assimilating 2.5- and 1-min
volume scan data instead (see Table 2). The rms error
curves during the assimilation period for eight fast-scan
cases are plotted in Figs. 12-15, together with the cor-
responding 5-min scan cases. Figure 12 shows that for
the single-radar slow-moving storm cases, the analysis
and forecast errors are clearly smaller for the 2.5- and
1-min VSIs, and the 1-min VSI gives the smallest errors
until 80 min when the analysis becomes ineffective as
storm cells move out of the radar coverage. For u, the
1-min volume scan is able to reduce the rms errors to
about 1 ms~! while those in the 5-min case remain
above 2 m s~ !, except for a short period of time around
84 min (Fig. 12a). The error in g, is also significantly
lower in the 1-min case. It can be said that for this
single-radar case, faster volume scanning is clearly ben-
eficial. In addition, the errors in the model state is



60 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

T=40 min

T=60 min

VOLUME 23

T=100 min

Truth (SML)

CASA1L

CASA1LF1

CASA4L

CASA4LF1
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AGL for (a)—(c) truth simulation of slow-moving storm in a large domain (SML); analyses from experi-
ments (d)~(f) CASAIL, (g)-(i) CASAILF1, (j)~(1) CASA4L, and (m)—(0) CASA4LF1 at r = 40, 60, and

100 min during the assimilation period.

steadily reduced in all cases by 1-min analysis cycles
during which the forecast errors apparently have little
chance to grow; in addition, the system does not seem
to suffer from any possible shock introduced by very
frequent analysis updates, indicating that the analyzed
fields are well balanced.

The errors for the single-radar fast-moving storm
cases are shown in Fig. 13. Somewhat counterintu-

itively, the shorter VSI did not have as much an impact
on the analysis as in the corresponding slow-moving
cases (cf. Fig. 12), although the positive impact does
exist before the cells move out of radar coverage. This
is mainly because the 5-min VSI analysis of CASA1LM
was already very good compared to CASAI1L in terms
of the rms errors (cf. Fig. 9), therefore there is less room
for further improvement.
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TABLE 3. Number of radar radial velocity observations for each experiment at selected times during the assimilation cycles.

Time

Experiments 30 min 40 min 50 min 60 min 70 min 80 min 90 min
TLX 1121 2106 3043 3754 4272 5049 6177
TLXCYR 1789 3359 5093 6508 7677 9284 11 024
TLXCYR3km 1389 2681 4082 5297 6187 7531 9013
CASAI1S 711 2254 3837 4886 4836 5600 6187
CASA3S 1796 4203 6945 8938 9698 11321 12 408
CASAI1L, CASA1LF1/2 1091 1665 2242 2739 3120 3197 2859
CASA4L, CASA4LF1/2 3012 6514 10 164 13 568 14 398 16 347 18 431
CASAI1LM, CASA1LMF1/2 1175 2240 2876 2722 2030 828 179
CASA4LM, CASA4LMF1/2 1194 3728 8107 12751 15763 16 361 15231

ning does improve the quality of analysis, especially
during the earlier cycles, but the sensitivity of the analy-
sis to VSI is much smaller than the traditional retrieval
techniques, and the sensitivity decreases as the length
of the assimilation period increases, but generally in-
creases when the storm evolves faster.? However, be-
cause of the already very good analysis from the 5- and
2.5-min data, the much increased cost of collecting and
assimilating 1-min data does not appear justified, at
least for the purpose of analyzing a supercell storm
system when using a perfect model. This conclusion
may or may not hold when the model resolution is in-
creased so as to allow for the resolution of more fines-
cale details that evolve at much shorter time scales and/
or when model errors are present that cause faster fore-
cast error growth and/or poorer analysis. The former is
not a major issue right now because operational NWP
resolution is not expected to exceed that tested here
any time soon, while the model error is an important
issue for our planned future research.

4. Summary and discussion

In this paper, a radar data assimilation system based
on the ensemble square root Kalman filter is described
and tested with simulated data. In particular, the impact
of data from a standard WSR-88D network radar and
those from a network of closely spaced low-cost short-
range radars planned for the Oklahoma test bed by the
Center for Collaborative Adaptive Sensing of the At-
mosphere (CASA; a new NSF Engineering Research
Center), are examined for the analysis of a supercell
storm. Differing from earlier OSSE studies using an
ensemble Kalman filter, the radar data in this study are
sampled on the radar elevation levels instead of at the

2 This is true for the four CASA radar cases (CASA4L and
CASA4LM). The counterintuitive behaviors with the single
CASA radar cases (CASAIL and CASA1LM) have been dis-
cussed earlier.

model grid points, so vertical data resolution varies
with range. A realistic Gaussian power-gain weighting
function is used to sample the simulated data and as the
forward operator during the assimilation. The excellent
analysis results indicate that the ensemble-based square
root Kalman filter can effectively handle the non-
uniform-resolution data.

It is shown that the assimilation of data from one
CASA radar, in addition to data from a WSR-88D ra-
dar located about 90 km away, improves the analysis.
Such improvement is most significant at the low levels
where the WSR-88D radar does not observe. The ex-
periments also show that when a single CASA radar is
assimilated and when the radar does not provide full
coverage of the storm system, significant errors can de-
velop in the analysis that cannot be effectively cor-
rected. The combination of several CASA radars effec-
tively eliminates the problem when complete coverage
is available. When three CASA radars work together to
provide lower and midlevel coverage of the storm sys-
tem, the analysis is almost as good as that from one
well-positioned CASA radar plus one WSR-88D radar,
even though the CASA radars do not measure as high
as does the WSR-88D radar.

The impact of storm propagation speed on the qual-
ity of analysis is also examined. In general, the effect of
storm propagation on the data coverage by the small
radar network appears to be the most important factor,
and the analysis is generally not very sensitive to the
propagation speed otherwise. The quality of analysis
can be improved by employing faster volume scans,
especially for less well analyzed storms with slower vol-
ume scans, but the sensitivity of the EnSRF analysis of
convective storms to the volume scan interval is much
less than that of more traditional single-Doppler veloc-
ity and thermodynamic retrieval schemes. In fact, very
good analyses can be obtained even with the WSR-88D
standard 5-min volume scan interval. For this reason,
more versatile scan strategies may be developed for and
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employed by the CASA radars in response to user
needs. For example, complete volume scans can be
made by the radar network every 5 min in short periods
while in between, the radars can be doing sector scans
that focus on active local features such as a tornado or
a microburst.

The data coverage appears to be the most significant

factor that affects the quality of storm analysis. A gen-
eral rule that appears to be valid is that the more ob-
servations, the better the analysis. A slower-moving
storm system tends to remain within the relatively small
radar network longer. Once a storm or a portion of it
moves out of the range of radar network, the model
error growth can no longer be controlled and the analy-
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sis deteriorates. The lack of data coverage in the entire
analysis domain also negatively impacts the overall
analysis because some spurious cells cannot be sup-
pressed.

In Snyder and Zhang (2003), a considerable variabil-
ity was found in the analysis quality for different real-
izations of the initial random perturbations used to ini-

tialize their 50-member forecast ensemble. In Tong and
Xue (2005), much less variability was found, using the
classical EnKF method with perturbed observations but
with 100 ensemble members. In this paper, we per-
formed 10 versions of experiment TLX, starting from
different realizations of initial random perturbations,
and found the rms errors of analysis to be generally
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within a few percent of each other (not shown), sug-
gesting that the analyses are not sensitive to the differ-
ent realizations, as long as the same initialization pro-
cedure is used.

Near the end, we point out that the CASA radar-
related issues examined in this study are only a few of
many. The dynamic adaptive systems in the CASA ra-
dar networks promise to establish a new paradigm for
the sensing of the atmosphere, and the impact of data
collected using a variety of possible scanning modes
remain to be studied in a more systematic way. This
study represents only the first step in this direction.

We also point out that the value of obtaining a good
estimate of the state of the atmosphere is to produce
accurate weather predictions. Limited by space, we
confine our current study to the impact of CASA radar
data on the analysis only. The impact of the data on
model predictions will be a subject of future studies,
which will also examine the growth of errors during the
forecast period. We also caution the readers that the
results obtained in this study are based on a perfect
prediction model and perfect forward observational op-
erators. In the presence of model errors, as is the case
with real data, it will be much more difficult, if at all
possible, to obtain analyses that match the accuracy
obtained here. The impact of additional or even redun-
dant observations, such as those provided by multiple
CASA radars scanning at high frequencies, is expected
to produce a larger impact than observed here.

Including model errors in ensemble Kalman filter
data assimilation systems is a very important area of
research, especially given the fact that real data appli-
cations of this method remain very limited. For the
convective scale, when significant model bias and/or
initial condition error exist, it is possible that all mem-
bers of an ensemble fail to predict any storm. In such a
case, the background error estimate will be in serious
error, causing the filter to fail. These are some of the
issues that one has to deal with when working with real
data.
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