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ABSTRACT

A tropical cyclone (TC) circulation Tracking Radar Echo by Correlation technique (T-TREC) developed

recently is applied to derive horizontal winds from single Doppler radar reflectivity Z data (combined with

radial velocity Vr data when available). The typically much longer maximum range of Z observations com-

pared to Vr data allows for much larger spatial coverage of the T-TREC-retrieved winds (VTREC) when a TC

first enters the maximum range of a coastal radar. Retrieved using data frommore than one scan volume, the

T-TRECwinds also contain valuable cross-beamwind information. The VTREC orVr data at 30-min intervals

are assimilated into the Advanced Regional Prediction System (ARPS) model at 3-km grid spacing using an

ensemble Kalman filter, over a 2-h window shortly after Typhoon Jangmi (2008) entered theVr coverage area

of an operational weather radar of Taiwan. The assimilation of VTREC data produces analyses of the typhoon

structure and intensity that more closely match observations than analyses produced using Vr data or the

referenceGlobal Forecast System (GFS) analysis. Subsequent 28-h forecasts of intensity, track, structure, and

precipitation are also improved by assimilating VTREC data. Further sensitivity experiments show that as-

similation of VTREC data can build up a reasonably strong vortex in 1 h, while a longer assimilation period is

required to spin up the vortex when assimilatingVr. Although the difference between assimilatingVTREC and

Vr is smaller when the assimilation window is longer, the improvement from assimilating VTREC is still evi-

dent. Assimilating Z data in addition to Vr or VTREC results in little further improvement.

1. Introduction

Doppler weather radar is an important instrument

for observing landfalling tropical cyclones (TCs) at

high spatial and temporal resolutions. In recent years,

radial velocity Vr and/or radar reflectivity Z data from

ground-based coastal Doppler radars have been assimi-

lated into high-resolution numerical weather prediction

(NWP) models to improve TC forecasts, primarily using

a three-dimensional variational data assimilation (DA)

(3DVAR) system (e.g., Xiao et al. 2007; Zhao and Jin

2008; Zhao and Xue 2009; Zhao et al. 2012a,b) or an

ensemble Kalman filter (EnKF; e.g., Zhang et al. 2009;

Dong and Xue 2013, hereafter DX13; Xue and Dong

2013). Compared with 3DVAR using static background

error covariance, the EnKF can estimate flow-dependent

background error covariance through an ensemble of
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forecasts and theoretically has significant advantages for

TC analysis (Zhang et al. 2009; Hamill et al. 2011).

For typical S band operational weather surveillance

radars, including the Weather Surveillance Radar-1988

Doppler (WSR-88D) of the United States and the China

NewGenerationRadar-1998Doppler (CINRAD-98D) of

China, the maximum range ofVrmeasurements is 230km,

limiting radar coverage of TCs when they are located far

from the coast. The maximum range ofZmeasurements

of these radar systems extends about twice as far, pro-

viding potentially very useful information before the

core region of the TC moves into the Vr coverage area.

The assimilation of Z has produced positive impacts on

hurricane analysis and forecasting within 3DVAR

frameworks (Xiao et al. 2007; Zhao and Jin 2008; Zhao

andXue 2009), butVr data generally have larger impacts

than Z data for TC initialization (Zhao and Jin 2008;

Zhao and Xue 2009; DX13).

Apart from providing direct information on precip-

itation, reflectivity has been used to derive wind fields

within TCs using the Tracking Radar Echo by Correla-

tion (TREC) method, assuming that reflectivity changes

between two successive radar volume scans are mainly

caused by advection (Tuttle and Gall 1999). Harasti

et al. (2004) modified the TREC technique for the real-

time wind analysis of TCs at different altitudes. Re-

cently, Wang et al. (2011) developed the TC circulation

TREC (T-TREC) technique by extending TREC to

polar coordinates (centered on the TC) and constraining

the local echo tracking region using the vortex rotation

rate estimated from availableVr data. T-TREC has been

used for diagnosing TC circulations in realtime at the

China Meteorological Administration (CMA).

The Vr only contains the along-beam component of

the wind field, thus when assimilating Vr from a single

radar the cross-beam components of winds are often

retrieved poorly (Zhao et al. 2012a,b). The full three-

dimensional wind field retrieved from a single Doppler

radar can, however, be valuable for TC initialization.

Zhao et al. (2012a) investigated the impact of assimi-

lating ground-based velocity track display (GBVTD)-

retrieved winds from a single Doppler radar, and found

that doing so resulted in an improved analysis and

forecast of a typhoon compared to an analysis obtained

by assimilating Vr data directly. The cross-beam wind

component and more-complete spatial coverage pro-

vided by GBVTD-retrieved winds in the TC inner core

region were the primary reasons for the better perfor-

mance of GBVTD-retrieved winds compared to Vr. The

drawback with GBVTD retrievals is that the data do not

contain asymmetric wind components beyond wave-

number 3; therefore, more detailed asymmetric struc-

tures presented in Vr data may be lost. Retrieved from

two time levels of three-dimensionalZ observations, the

T-TREC winds (VTREC) are not subject to such limita-

tions; they contain retrieved cross-beam winds and

generally have a much wider data coverage area than Vr

(because of the typically longer range of Z compared to

Vr for operational radars) and GBVTD-retrieved winds

(which are derived from Vr observations). For these

reasons, VTREC data have the potential to improve the

analysis and initialization of the inner core structures of

TCs approaching landfall.

Recently, Li et al. (2013) explored the assimilation

of VTREC winds using the Weather Research and Fore-

casting Model (WRF) 3DVAR system (Barker et al.

2004; Xiao et al. 2005) for the analysis and forecast

of Typhoon Meranti (2010) before it made landfall at

Fujian Province at the southeast coast of China. They

assimilated VTREC or Vr data from a single coastal ra-

dar at a single time approximately 8, 6, 4, or 2 h prior to

landfall. Their results indicate that assimilation of

VTREC data leads to better analysis of the structure and

intensity of the typhoon than directly can be obtained

assimilating Vr data. The subsequent forecasts for the

typhoon track, intensity, structure, and precipitation are

also improved, although the differences become smaller

for the latter analysis times when Vr data coverage im-

proves as the typhoon approaches the radar. The larger

spatial coverage of VTREC data and the cross-beam in-

formation it contains are believed to be the primary rea-

sons for the superior performance of VTREC over Vr data.

Parallel to the effort of Li et al. (2013), this study ex-

amines the impacts of cycled assimilation of VTREC data

on the analysis and forecasting of Typhoon Jangmi

(2008), using an ensemble Kalman filter (EnKF) at a

convection-permitting resolution. Typhoon Jangmimade

landfall on the east coast of Taiwan on 28 September

2008. Before and during its landfall, the TC inner core

was observed by an operational S band Doppler radar

located at Hualian, Taiwan, from 0000UTC 28 September

to 0000 UTC 29 September. In this study, the retrieved

VTREC data are assimilated using EnKF through 30-min

assimilation cycles for 1–3 h prior to Jangmi entered the

observation range of Hualian radar. The impacts of as-

similating VTREC data on the track, intensity, structure,

and precipitation forecasts are examined, and the anal-

yses thus obtained are compared with analyses obtained

by assimilating Vr data directly. The impacts of assimi-

lating reflectivity data in addition to VTREC or Vr data

are also examined.

The rest of this paper is organized as follows. Section 2

describes the forecast model, radar data, and experi-

mental design. The results of the first set of experiments

that assimilate radar data for 2 h are first presented in

section 3, together with discussions on the impacts of the
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radar data on the analyses and forecasts. Section 4

presents the results of sensitivity experiments that ex-

amine the impacts of assimilation window length (of 1

or 3 h) and reflectivity assimilation. Conclusions and

discussion are presented in section 5.

2. Model, radar data, and experimental design

a. The prediction model

The Advanced Regional Prediction System (ARPS;

Xue et al. 2000, 2001) version 5.3 is used as the pre-

diction model. The physical domain is 2400 3 2400 3
25 km3 and has a 3-km horizontal grid spacing (Fig. 1). A

stretched vertical grid is used; the mean vertical grid

spacing is 500m, with a minimum vertical spacing of

20m near the surface. Full model physics are used, in-

cluding the Lin ice microphysics scheme (Lin et al.

1983), Goddard Space Flight Center (GSFC) longwave

and shortwave radiation parameterization, a two-layer

force-restore soil-vegetation model (Ren and Xue 2004),

1.5-order turbulent kinetic energy (TKE)-based subgrid-

scale turbulence (Deardorff 1980), and PBL parameter-

ization (Xue et al. 1996). For this study in particular,

a new surface flux parameterization scheme for the

ocean surface based on Makin (2005) is implemented

into the ARPS and used in this study. Different from the

original scheme in theARPS, based on (Anderson 1993)

and having the drag coefficient linearly increasing with

the surface wind speed (see, Xue et al. 1995), the new

scheme reduces the drag coefficient for wind speeds

exceeding 33m s21 based on field measurement data

(Powell et al. 2003). This new scheme is found to allow

for the prediction of larger surface wind speeds than the

original formulation, though the overall intensity of the

analyzed and predicted typhoon is not substantially

changed in our experiments. The initial analysis back-

ground and the lateral boundary conditions (LBCs) are

obtained from the National Centers for Environmental

Prediction (NCEP) operational Global Forecast System

(GFS).

b. Radar data processing and quality control

The Vr and Z data from Hualian radar on the east

coast of Taiwan (HLRD, Fig. 1) are first manually edited,

including velocity dealiasing and ground clutter removal.

To retrieveVTREC,Z, andVr data are first interpolated to

FIG. 1. The physical domain of the numerical simulation, with the average best track (ABT,

see section 2) locations plotted every 3 h from 0000 UTC 28 Sep to 0600 UTC 29 Sep 2008

(marked by black dots). The triangle denotes the position of Hualian radar (HLRD), and its

observation ranges for radial velocity and radar reflectivity are denoted by dashed and solid

circles, respectively. The gray shading indicates terrain height (m).
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a grid with 1-km grid spacing in both horizontal and

vertical; the retrieval is performed within a 300-km ra-

dius of the TC center at each level from 1 to 8 km. To

keep the retrieved VTREC data mostly independent, the

retrieval was performed on a grid with horizontal grid

spacing of 10 km, and the retrieved data are directly

assimilated. More details on the T-TREC technique

can be found inWang et al. (2011).When assimilatingVr

data for comparison, the data are interpolated in the

horizontal to the ARPS model columns but kept on

radar elevation levels in the vertical.

TheVTREC data at 3 km above the surface at 0000UTC

28 September 2008 are shown along with the observed Z

(in Fig. 3a), along with observedVr (in Fig. 3b), and along

with theVr simulated fromVTREC data (by projecting to

the radar radial directions; in Fig. 3c). Observed Vr is

limited to a maximum range of 230 km, resulting in an

incomplete velocity dipole pattern with areas of missing

data (Fig. 3b). T-TREC retrieves the cross-beam ve-

locity and fills theVr data voids quite effectively (Fig. 3a).

The simulated Vr shows a similar pattern as the observed

Vr within the 230-km radius, suggesting that VTREC (in-

cluding the cross-beam component) estimates are rea-

sonably accurate both within and outside of the Vr

coverage area (Fig. 3c). The root-mean-square error

of simulatedVr against the observedVr is about 3.8m s21

during the 3-h DA window (see Fig. 2), which is consis-

tent with the corresponding error statistics of less than

4m s21 from data samples examined in Wang et al.

(2011). During EnKF DA, observation error standard

deviations for Vr and VTREC are specified as 2 and

5m s21, respectively, guided by the error statistics of our

data samples.

c. EnKF experiments and settings

A baseline control forecast (CNTL) without radar

DA is run from 0000 UTC 28 September to 0600 UTC

29 September, initialized from the NCEP operational

GFS analysis (Table 1). Following DX13, an initial fore-

cast ensemble is generated by adding mesoscale per-

turbations at 1800 UTC 27 September and convective

perturbations at 2330 UTC, 30min before the first radar

DA(seeFig. 2), giving a 6-h ensemble spinup period prior

to DA. For additional details about the mesoscale and

convective perturbations used, we refer the reader to

DX13.

All DA experiments start from 0000 UTC 28

September and use 30-min assimilation cycles. For the first

set of twoDAexperiments, ExpTREC2H andExpVr2H,

VTREC and Vr data are assimilated within a 2-h window

(Table 1; Fig. 2). This specific DA period is chosen be-

cause it is a period during which the main circulation of

Jangmi was fully covered by Z data but not by Vr data

(Fig. 3). The assimilation period is relatively short in or-

der to maximize the forecast lead time prior to landfall of

the typhoon; studies have also shown that it is usually the

first few assimilation cycles for radar data that have the

largest impact on TC initialization (DX13; Li et al. 2012).

To further examine the impact of the DA window on the

analysis and forecast, two additional pairs of experiments,

ExpVr1H (ExpVr3H) andExpTREC1H(ExpTREC3H)

are run. These experiments are the same as ExpVr2H

FIG. 2. EnKF data assimilation and forecast flowcharts for all experiments. The vertical

arrows denote assimilation of radar data and the slanted arrows at 1800 and 2330 UTC denote

the addition of two sets of perturbations to generate the ensemble.

TABLE 1. List of data assimilation and control experiments.

Expt Obs assimilated Assimilation window (h)

CNTL No radar DA —

ExpVr2H Vr 2

ExpTREC2H VTREC 2

ExpVr1H Vr 1

ExpTREC1H VTREC 1

ExpVr3H Vr 3

ExpTREC3H VTREC 3

ExpVrZ2H Vr 1 Z 2

ExpTRECZ2H VTREC 1 Z 2
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and ExpTREC2H except that they perform data as-

similation for a period of 1 (3) h starting at the same

time (Table 1; Fig. 2). In another pair of experiments,

ExpVrZ2H and ExpTRECZ2H, radar reflectivity ob-

servations are assimilated in addition to Vr or VTREC

within a 2-h window. At the end of the assimilation

window of each experiment, a deterministic forecast is

launched and run until 0600 UTC 29 September. The

workflows of theDA experiments are illustrated in Fig. 2.

Considering the different observation densities

(Zhang et al. 2009; Torn 2010), covariance localization

radii of 50 (10) km in the horizontal and 4 km in the

vertical are used when assimilating VTREC (Vr) data. A

posterior relaxation to prior adaptive covariance in-

flation (Whitaker and Hamill 2012) with a 5 0.9 is ap-

plied at those model grid points directly influenced by

observations to help maintain the ensemble spread. In

addition to experience obtained from DX13, sensitivity

experiments were performed to arrive at the current

optimized DA configuration.

The deterministic forecasts are verified against the

best track data and precipitation observations. During

the verification period, which extends from 0000 UTC

28 September to 0600UTC 29 September, best track data

from the Japan Meteorological Agency (JMA), Taiwan

Central Weather Bureau (CWB), and the Joint Typhoon

Warning Center (JTWC) have significant differences;

standard deviations of track, minimum sea level pres-

sure (MSLP), and maximum surface wind (MSW) are

as large as 31 km, 10 hPa, and 8ms21, respectively. Un-

certainties in best track estimates are also well recognized

in recent studies (Torn and Snyder 2012; Landsea and

Franklin 2013). In this study, average best track (ABT)

data from these three operational centers is used for

verification.

3. EnKF analyses and deterministic forecasts

a. EnKF analyses of typhoon circulations
and structures

The horizontal winds at 3 km above the surface after

the first EnKF analysis at 0000 UTC are shown in

Figs. 4b,c for ExpVr2H and ExpTREC2H, together with

the horizontal winds in the initial condition of CNTL,

which are interpolated from GFS analysis valid at the

same time (Fig. 4a). The vortex in the GFS analysis is too

broad, with a radius of maximum wind (RMW) in excess

of 100km (Fig. 4a). In ExpVr2H, the RMW is only about

30km, with the strongest winds found northeast and

southwest of the eye (Fig. 4b). These strong winds are

mostly in the radial direction of the HLRD radar, sug-

gesting that the cross-beam wind component is un-

derestimated in ExpVr2H. The inability of EnKF to

accurately analyze the cross-beam wind component from

single-Doppler radial velocity data was also noted in

DX13; suspected causes include relatively poor quality of

the background error covariance derived from ensemble

forecasts of typhoons that are too weak, and possible

prediction model error. More investigation of this prob-

lem is warranted in future studies, but such investigation

is beyond the scope of the current study.

In ExpTREC2H, the vortex is much stronger than in

ExpVr2Hwith amore continuous azimuthal circulation.

The wind field does exhibit a prominent wavenumber-1

asymmetry structure, with the maximum of 45m s21

located in the northeastern quadrant (Fig. 4c), collo-

cated with a region of strong convection observed by

HLRD (Fig. 3a).

Figures 4d–f show the sea level pressure (SLP) and sur-

face wind speed of the CNTL forecast and the final EnKF

analyses of ExpVr2H and ExpTREC2H at 0200 UTC.

FIG. 3. The T-TREC analysis at 3 km above the surface at 0000 UTC 28 Sep 2008. (a) T-TREC-retrieved wind vectors overlaid with the

observed reflectivity (color shaded, dBZ), (b) the observed Doppler radial velocity from HLRD, and (c) the radial velocity calculated

from the T-TREC-retrieved winds (see section 2). The solid arcs indicate the maximum range of radial velocity data: 230 km from the

radar. The plus symbol (1) denotes the center of the vortex, determined from radar reflectivity.
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The simulated vortex in CNTL has a MSLP of 986 hPa,

much higher than the ABT value of 920 hPa (Fig. 4d).

TheMSLP of ExpVr2H is at 973 hPawhile ExpTREC2H

has the lowest value at 936hPa, only 16 hPa above the

ABT estimate. The circulation around the eyewall in

ExpTREC2H is stronger than in both CNTL and

ExpVr2H, with an annulus of wind speeds exceeding

30m s21 around the center. ExpTREC2H also has the

smallest position error (approximately 5 km).

To examine the vertical structure of the analyzed

vortices, the azimuthally averaged tangential wind and

temperature anomaly are presented in Figs. 4g–i. The

temperature anomaly is defined as the deviation from

the horizontal average within a 180-km radius (Liu et al.

FIG. 4. (top) Horizontal wind vectors and speed (color shaded, m s21) at 3-km height and 0000 UTC from (a) the GFS analysis

and analyses of (b) ExpVr2H and (c) ExpTREC2H. (middle) The SLP (contours) and surface wind speed (color shaded, m s21) at

0200 UTC in (d) CNTL, (e) ExpVr2H, and (f) ExpTREC2H. MSLP is shown at the bottom-left corner of each figure. (bottom) Azi-

muthally averaged tangential wind (color shaded) and temperature anomaly (contours with intervals of 2K) at 0200 UTC for (g) CNTL,

(h) ExpVr2H, and (i) ExpTREC2H. The black dot in the panels denotes the observed typhoon center, and the black triangles denote the

location of RCHL.
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1999). The vortex circulations of CNTL (Fig. 4g) and

ExpVr2H (Fig. 4h) are weak and broad. ExpTREC2H

(Fig. 4i) has a much tighter, stronger, and deeper vortex,

with a RMW of only 30km and a 30ms21 wind speed

contour that extends as high as 8km above the surface.

The maximum temperature anomaly in ExpTREC2H is

approximately 14K at 6km above the surface in the eye of

the typhoon, suggesting amuch strongerwarm core than in

either CNTL or ExpVr2H.Although the vertical structure

cannot be directly verified by observation, the warm core

structure is consistent with recent observation and simu-

lation studies (Halverson et al. 2006; Stern and Nolan

2012) in terms of general warm core structure. TheVTREC

data build a stronger vortex than Vr data due to the much

more complete vortex circulation within the VTREC data.

b. Impacts on track and intensity predictions

The predicted typhoon tracks, track errors, MSLPs,

and MSWs from CNTL, ExpVr2H, and ExpTREC2H

are plotted along with theABT in Fig. 5. From 0200UTC

28 September to 0600UTC 29 September, Jangmimoved

first to the northwest, then turned westward toward

Taiwan. The track turned northwestward soon after

landfall, then turned north-northeastward after the

center passed over Taiwan (Fig. 5a). All three turns occur

in the forecast of ExpTREC2H at locations close to those

indicated in the ABT data, except for the final turn,

which is substantially delayed. The track forecast of

ExpTREC2H has a mean error of 51 km (Fig. 5b). The

track of CNTL has the most westward bias, with a mean

track error of approximately 65 km. ExpVr2H has the

most northward track bias early on and lacks the initial

westward and northwestward turns, resulting in a mean

track error of about 66km (Fig. 5b).Overall, ExpTREC2H

has the smallest track error.

TheMSLPs andMSWs from all three experiments are

plotted along with those of the ABT in Figs. 5c and 5d,

respectively. Starting from a relatively weak vortex with

FIG. 5. The predicted (a) track, (b) track error, (c) MSLP, and (d) maximum surface wind speed from 0200 UTC

28 Sep to 0600UTC 29 Sep 2008 for selected experiments, alongwith the average best track (ABT, see section 2). The

dots in (a) denote the center locations every 3 h starting from 0300 UTC 28 Sep. The ABT at 0200 UTC 28 Sep is

linearly interpolated from 0000 and 0300 UTC. The numbers in the legend of (b) denote the mean track errors over

the 28-h forecast against the ABT.
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aMSLP of 986 hPa, the typhoon intensity in CNTL does

not change much during the forecast period, resulting

in a mean MSLP error of 28 hPa and an error as large

as 65 hPa at the initial condition time (0200 UTC). The

intensity forecast is somewhat improved in ExpVr2H,

but themeanMSLP error is still as large as 22 hPa during

the forecast period and the initial error is around 53 hPa.

In comparison, ExpTREC2H has a much smaller mean

MSLP forecast error of about 11 hPa, and an initial error

of only about 16 hPa; starting from a much lower initial

MSLP, ExpTREC2H captures well the weakening of

the typhoon as it makes landfall around 0800 UTC

(Fig. 5c). Consistent with themuch improvedMSLP, the

analyzed and predicted MSW in ExpTREC2H also

show clear improvement compared to the other exper-

iments (Fig. 5d). The initial MSW at 0200 UTC in

ExpTREC2H is about 43m s21, about 10m s21 higher

than in ExpVr2H and CNTL; this difference is main-

tained for about 12h. ExpTREC2H captures the weak-

ening phase of the typhoon quite well. These results again

show clear benefit of assimilating VTREC data, even

though there is still some intensity error (weak bias) in the

final analysis of this very intense typhoon.

c. Impacts on the forecast of typhoon structure

To examine the impacts of VTREC and Vr assimilation

on Jangmi’s structure in the forecast, the predicted

composite reflectivity (column maximum) and hori-

zontal wind vectors at 3-km height are presented in

Fig. 6 for all three experiments, together with the ob-

served composite reflectivity. At 0500 UTC, Jangmi has

a rather compact eye with heavy precipitation in the

southern and eastern quadrants of the vortex. The sim-

ulated typhoon in CNTL has a broad, elliptical eyewall

with overly intense reflectivity (Fig. 6d). The eye in

ExpVr2H is tighter and more circular, but still too large

(Fig. 6g). The forecast typhoon in ExpTREC2H, which

features the strongest predicted intensity, has a tighter

vortex with a smaller eye (Fig. 6j) than that of ExpVr2H,

and even contains some inner-core rainbands that ap-

pear to match radar observations (Fig. 6a). Similar

to observations, precipitation in ExpTREC2H is most

widespread in the southern and eastern quadrants of

the storm.

In the 9-h forecast (after Jangmi has made landfall),

the eye of the typhoon has filled in with precipitation,

and the strongest echo (.35 dBZ) regions are located

primarily over Taiwan (Fig. 6b). The inner-core pre-

cipitation over land is disrupted in CNTL, with an overly

broad outer spiral rainband over the ocean (Fig. 6e).

ExpVr2H (Fig. 6h) has a tight vortex over land and dis-

organized precipitation bands, while ExpTREC2H fea-

tures the tightest vortex and inner rainbands located over

Taiwan (Fig. 6k), including a north–south heavy pre-

cipitation band [due to interaction with the Central

Mountain Range (CMR)] located farther east than in

the observations (Fig. 6b). At 1700 UTC, the observed

precipitation is highly asymmetric, and the strongest

echoes are mostly located over southern Taiwan along

the CMR (Fig. 6c). In all experiments, reflectivity pat-

terns over land (Figs. 6f,i,l) agree well with the obser-

vations because of the interactions with the mountain

range. In general, the rainbands in ExpTREC2H are

closer to the typhoon center, resulting in better agree-

ment with the observations than in CNTL and ExpVr2H,

whose precipitation distributions are too broad. In sum-

mary, the assimilation of VTREC or Vr data improves the

predicted structure of Jangmi, and the best agreement

with observations in terms of the predicted rainband

structures and precipitation distributions occurs in

ExpTREC2H.

d. Precipitation forecasts

The 12-h accumulated precipitation and the corre-

sponding equitable threat scores (ETS) valid at 1400UTC

28 September from all experiments are plotted in Fig. 7

together with the precipitation observations. The ob-

served rainfall is obtained from quantitative precipita-

tion estimation and segregation using multiple sensor

(QPESUMS; Gourley et al. 2002) system data provided

by the CWB of Taiwan. Prominent in the data is a strong

precipitation band along the CMR (Fig. 7a). Two pre-

cipitation maxima are located over north and central

Taiwan. These maxima are significantly underpredicted

in ExpVr2H and CNTL (Figs. 7b,c), but better captured

in ExpTREC2H, with the greatest improvement occur-

ring for the northern maximum (Fig. 7d). ExpTREC2H

also produces the highest ETSs (0.47, 0.41, and 0.35) for

thresholds of 40, 80, and 120mm, respectively. In sum-

mary, ExpTREC2H produces the best precipitation fore-

cast both in terms of distribution and magnitude; these

relatively good predictions can be attributed to the ac-

curacy of track, intensity, and structure forecasts of the

typhoon.

4. Sensitivity experiments

The experiments presented earlier used a 2-h-long

assimilation window with 30-min DA cycles. To deter-

mine whether the conclusions regarding the relative

impacts of T-TREC versus Vr data still hold when data

are assimilated at different window lengths, two addi-

tional pairs of experiments are performed using 1- and

3-h assimilation windows. Another question one may

ask is the following:When radar reflectivity data are also

assimilated, does the relative impact of VTREC and Vr
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FIG. 6. Composite reflectivity (color shaded) and wind vectors at 3 km above the surface predicted by (d)–(f) CNTL, (g)–(i) ExpVr2H,

and (j)–(l) ExpTREC2H, compared with (a)–(c) corresponding composite reflectivity observations at (from left to right) 0500, 1100, and

1700 UTC 28 Sep 2008.
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data change? This question is examined through two

experiments that are identical with ExpVr2H and

ExpTREC2H except for the addition ofZ data (Table 1).

a. Sensitivity to assimilation window length

Experiments ExpVr1H (ExpVr3H) and ExpTREC1H

(ExpTREC3H) are the same as ExpVr2H and

ExpTREC2H, respectively, except that the length of

time during whichDA is performed is changed to 1 (3) h.

We can also consider ExpVr1H (ExpTREC1H) and

ExpVr2H (ExpTREC2H) part of the longer DA ex-

periment ExpVr3H (ExpTREC3H) with the difference

being the time at which the forecast is launched. A

summary and comparison of experiments is presented

in Table 1.

Analyses and forecasts of MSLP andMSW during the

assimilation cycles from 0000 to 0300UTC are plotted in

Fig. 8 to examine the direct impacts of data assimilation

on typhoon intensity. ABT data and the CNTL forecast

are also plotted for comparison. At the end of the 1-h

FIG. 7. 12-h accumulated precipitation from 0200 to 1400UTC for (a) observations, (b) CNTL, (c) ExpVr2H, and (d) ExpTREC2H. The

corresponding equitable threat scores for the thresholds of 40mm (ETS40), 80mm (ETS80), and 120mm (ETS120) are shown in (b),(c),

and (d), respectively.

FIG. 8. Analysis and forecast (a) MSLP and (b) maximum surface winds during the analysis cycles from 0000 to

0300 UTC. The average best track data and the forecast of CNTL are plotted for comparison.
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assimilation window, the MSLP readings in ExpVr1H

and ExpTREC1H decrease by 3 and 45 hPa, respec-

tively; these values are 6 and 48 hPa lower than that of

CNTL experiment, respectively. Over the next 2 h, when

assimilating VTREC, MSLP remains between 936 and

937 hPa, resulting in errors of 16–17 hPa against the

ABT data. When assimilating Vr, the MSLP decreases

from 980 to 962hPa, resulting in an error of around 42hPa

compared to ABT data at the end of the DA period.

The MSW of ExpTREC2H (Fig. 8b) increases by

about 11m s21 during the first EnKF analysis (time 5 0

in the figure), while the MSW increment in ExpVr2H is

very small. Assimilation ofVr only has a small impact on

theMSW until later cycles, due to the limited number of

near-surface inner-core observations of Vr early in the

experiment. The MSW in the VTREC assimilation ex-

periments increases to about 48ms21 after 1 h of assim-

ilation (60min in the figure), 18m s21 higher than the

MSW in the Vr assimilation experiments at the corre-

sponding time. MSW later remains relatively steady in

the VTREC experiments, decreasing slightly to 43m s21

at 120min, then increasing slightly to 45ms21 at 180min.

Throughout the 3h, the MSW in the VTREC experiments

consistently remains approximately 10ms21 higher than

the MSW in the Vr assimilation and CNTL experiments;

the stronger analyzed surface vortex in the VTREC ex-

periments more closely matches the best track intensity.

Generally, as the number of assimilation cycles (and

thus the length of assimilation window) increases, the

differences in analyses produced using VTREC and Vr

assimilation becomes smaller, but even after 3 h of as-

similation the analyzed vortex in ExpTREC3H remains

much stronger than that of ExpVr3H, with MSLP and

MSW differences between the experiments of 25 hPa

and 10m s21, respectively. Overall, assimilating VTREC

can effectively build up a strong typhoon vortex using

a shorter data assimilation period; for real-time fore-

casting this would permit a longer forecast lead time

prior to typhoon landfall. It takes much longer for Vr to

establish the typhoon vortex, and the resultant vortex is

weaker even after 3 h of DA.

We note from Fig. 8 that assimilation of VTREC data is

very effective in increasing the MSW, especially in the

first analysis when the background vortex is too weak

(Fig. 8b). In comparison, the reduction to the MSLP in

the first as well as other cycles is minimal (Fig. 8a). To

investigate how assimilation of VTREC data impacts the

wind and pressure fields, east–west vertical cross sections

FIG. 9. Analysis increments of tangential wind (color shaded, m s21) and pressure (contours

with 50 Pa interval) in the east–west vertical cross section through the analyzed typhoon center

from ExpTREC2H, from the first analysis at 0000 UTC 28 Sep 2008.
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of tangential wind and pressure analysis increments are

plotted in Fig. 9 through the vortex center for the first

analysis. Directly updated by theVTREC data, the vortex

circulation is greatly enhanced, with a maximum wind

speed increment of over 45m s21. EnKF analysis of

VTREC data reduces the pressure near the vortex center

via cross-variable correlation between wind and pres-

sure, but the maximum pressure reduction is only around

2hPa. This rather small reduction is at least partly due to

the relatively small ensemble spread in the near-surface

pressure field. Compared to uncertainty in the wind

forecast, which is relatively localized, the ensemble

spread of pressure in the inner core of the TC is more

related to the overall TC intensity uncertainty. All vor-

tices in the background ensemble forecasts at 0600 UTC

are too weak compared to observations, contributing to

the underestimation of surface pressure ensemble spread.

The lowest altitude at which VTREC data are available

is 1 km; below this level, the tangential wind increment is

achieved through spatial covariance subject to vertical

covariance localization. Given that the vertical locali-

zation radius used is 4 km, localization reduction is rel-

atively small at the surface. Still, spatial correlation

tends to decrease with distance from the observations;

as a result, the wind increment at the 1-km level is as

large as 40m s21, while the maximum wind increment at

the surface is only around 25m s21. The MSW after the

first analysis is 11m s21 (Fig. 8b); this is because assim-

ilation of VTREC data also corrects the position of the

strongest surface winds, reducing the radius of maxi-

mum wind in the vortex from about 100 km to about

40 km (not shown).

Most of the increase inMSWduringDA is achieved in

the analysis steps, while most of the MSLP reduction is

achieved during the forecast steps (Fig. 8). Similar be-

havior was observed in Li et al. (2012), which used the

WRF 3DVAR and WRF ensemble transform Kalman

filter (ETKF)–En3DVar hybrid system to assimilate

coastal radar radial velocity data for a landfalling hur-

ricane. Almost allMSLP reductions in their experiments

were also achieved during the forecast steps (see their

Fig. 8b). The overall MSW increases and MSLP re-

ductions are much more substantial when assimilating

VTREC data. TheVTREC-assimilating experiments create

strong, closed circulations much more quickly than ex-

periments assimilating Vr data (Figs. 8c and 4c). How-

ever, because the analysis step creates large wind

increments but very small pressure increments, the bal-

ance of the analyzed wind and pressure fields may not be

particularly good.

Within a typhoon vortex and above the boundary

layer, the gradient wind balance is a reasonable approx-

imation between the wind and pressure field. To examine

if and how the wind and pressure fields adjust to each

other during the assimilation cycles, the gradient wind

relation is diagnosed by calculating the residual of gra-

dient wind balance (GWR), defined as

GWR5
V2
T

r
1 f VT 2

1

r

›p

›r
,

whereVT is the tangential wind, p is the pressure, r is the

air density, f is the Coriolis parameter, and r is the ra-

dius from vortex center. The root-mean-square (RMS)

GWRs are calculated and plotted every kilometer from

0 to 12 km above the surface within a 300-km radius of

the typhoon for analyses and forecasts during the DA

period in Fig. 10. The calculation region is chosen to

cover the main circulation of the typhoon; most of the

direct impact of radar DA is confined to this region.

A higher value of RMS GWR means more wind–

pressure imbalance, and vice versa. In general, the as-

similation ofVTREC orVr data induces imbalance between

wind and pressure, but this imbalance is quickly reduced

during the subsequent model forecast. The RMS GWR

is increased from 0.001 to more than 0.02m s22 during

the first analysis of VTREC data (Fig. 10); this result is

consistent with the significant increase in MSW with

only a small reduction in MSLP noted in Fig. 8. After

30min of forecast time, the RMS GWR is reduced to

about 0.003m s22, and after 1 h, the RMS GWRs in

analyses and forecasts stabilize, remaining below 0.01

and 0.005m s22, respectively, suggesting that the model

pressure field in these later cycles has adjusted to match

the vortex presented in the wind field. As a result, no large

FIG. 10. The root-mean-square of the gradientwindbalance residual

for the analyses and forecasts from ExpVr3H and ExpTREC3H,

during the analysis cycles from 0000 to 0300 UTC.
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discrepancy arises during the later cycles when the wind

field is directly updated by theVTREC assimilation, again

demonstrating the ability ofVTREC assimilation to quickly

build up a strong, balanced vortex through frequent DA

cycles. In comparison, assimilation of Vr data creates

less imbalance, due to much smaller wind increments.

The RMSGWR increases slightly during assimilation in

theVr experiment, which may be due to the increasedVr

data coverage, but remains below 0.01 and 0.005m s22

for the analyses and forecasts, respectively. This in-

vestigation indicates that even through the analyzed

pressure and wind fields are not well balanced, espe-

cially when the wind increments are large, the pressure

field can rather quickly adjust to the strengthened wind

fields during the subsequent forecast step, especially

when a strong vortex circulation is established in the

analysis steps.

The predicted track, track error, MSLP, and MSW

for ExpVr1H, ExpVr2H, ExpVr3H, ExpTREC1H,

ExpTREC2H, and ExpTREC3H, respectively, are plot-

ted in Fig. 11. For experiments assimilatingVr for varying

lengths of time, the track forecasts show similar paths

(Fig. 11a). The mean track errors are 67, 66, and 65 km

in ExpVr1H, ExpVr2H, and ExpVr3H, respectively

(Fig. 11b). The predicted tracks from ExpTREC1H,

ExpTREC2H, and ExpTREC3H are similar, but their

mean track errors of 50, 51, and 57 km, respectively, are

smaller than those of the Vr–assimilating experiments

(Figs. 11a,b). When assimilatingVr, due to the improved

intensity analyses obtained when using a longer DA

period, intensity forecasts are also improved, with mean

MSLP errors of 26, 22, and 20hPa in ExpVr1H, ExpVr2H,

and ExpVr3H, respectively (Fig. 11c). In comparison, the

MSLP forecasts from ExpTREC1H, ExpTREC2H, and

ExpTREC3H are not sensitive to the assimilation window

length; all have amuch lowermean error of around 11hPa.

Consistent with the improved MSW analysis, the MSW

forecasts from the VTREC assimilation experiments agree

FIG. 11. The predicted (a) tracks, (b) track errors, (c) MSLPs, and (d) maximum surface wind speeds from 0100

(ExpVr1H, ExpTREC1H), 0200 (ExpVr2H, EpxTREC2H), and 0300 (ExpVr3H, ExpTREC3H) UTC 28 Sep to

0600 UTC 29 Sep 2008, along with the ABT (see section 2). The dots in (a) denote the center locations every 3 h

starting from 0300 UTC 28 Sep. The ABT at 0100 and 0200 UTC 28 Sep is linearly interpolated from 0000 to

0300 UTC. The numbers in (b) denote the mean track errors over the 28-h forecast against the ABT.
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better with observations than those of the experiments

assimilating Vr data (Fig. 11d). The mean MSW errors

from ExpTREC1H, ExpTREC2H, and ExpTREC3H

are 6.9, 5.6, and 5.0m s21, respectively, lower than those

of ExpVr1H, ExpVr2H, and ExpVr3H, respectively.

These results again show the advantage of assimilating

VTREC data as opposed toVr data, particularly for shorter

assimilation window lengths.

b. Sensitivity to assimilation of reflectivity

In ExpVrZ2H and ExpTRECZ2H, reflectivity data

are assimilated alongside Vr or VTREC from 0000 to

0200 UTC using EnKF (see Table 1) to investigate

whether the relative impact of Vr and VTREC is changed

when Z data are included. Similar to DX13, our sensi-

tivity experiments showed that using reflectivity to up-

date the wind, potential temperature, and water vapor

mixing ratio had a negative impact on the analysis (not

shown). Therefore, reflectivity data are used to update

only pressure and microphysical variables in our ex-

periments. Compared to the assimilation ofVr orVTREC

in ExpVr2H and ExpTREC2H, the assimilation of

additional Z data has little impact on the intensity

analyses and forecasts (Fig. 12). The track forecasts of

ExpVrZ2H and ExpTRECZ2H (Fig. 12a) are similar

to those ExpVr2H and ExpTREC2H. The mean track

errors are 63 and 52km forExpVrZ2HandExpTRECZ2H,

comparable to those of ExpVr2H and ExpTREC2H.

The ETSs of 12-h accumulated precipitation are 0.34

and 0.49 for ExpVrZ2H and ExpTRECZ2H at the

40mm threshold, and 0.13 and 0.32 at the 120mm

threshold, respectively; these values are similar to

those obtained in ExpVr2H and ExpTREC2H

(Fig. 7). Overall, assimilation of Z data does not sub-

stantively alter the relative impacts of Vr and VTREC

assimilation.

FIG. 12. The predicted (a) tracks, (b) track errors, (c) MSLPs, and (d) maximum surface wind speeds from

0200UTC 28 Sep to 0600UTC 29 Sep 2008 for ExpVr2H,ExpVrZ2H,ExpTREC2H, andExpTRECZ2H, alongwith

the ABT (see section 2). The dots in (a) denote the center locations every 3 h starting from 0300 UTC 28 Sep. The

ABT at 0200 UTC 28 Sep is linearly interpolated from 0000 to 0300 UTC. The numbers in (b) denote the mean track

errors over the 28-h forecast against the ABT.
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5. Conclusions and discussion

Radar reflectivity Z data have been used to retrieve

winds using the recently developed TC circulation

Tracking Radar Echo by Correlation (T-TREC) tech-

nique, which, in our implementation, also uses Vr ob-

servations to limit the correlation search region when

available. This study examines, for the first time, the

impacts of cycled assimilation of T-TREC retrieval winds

(VTREC) on TC analysis and forecasting using an EnKF.

Typhoon Jangmi, which passed over Taiwan during

September of 2008, is chosen as a test case. Radar data

from a single coastal operational weather radar atHualian,

Taiwan, are assimilated prior to typhoon landfall.

The VTREC or Vr data are assimilated at 30-min in-

tervals during a 2-h window shortly after the typhoon

entered the Vr coverage region of the Hualian opera-

tional radar. The assimilation of VTREC data improves

the intensity and structure of the typhoon significantly,

while the assimilation of Vr data over the same time

period yields a much smaller improvement due to lim-

ited Vr data coverage and poor retrieval of the cross-

beamwind component. The improved analyses obtained

by assimilating VTREC data allows for better track, in-

tensity, structure, and precipitation forecasts. Second,

four sensitivity experiments using data assimilation pe-

riods of different lengths are performed. Results show

thatVTREC assimilation can quickly (within 1 h) build up

a strong vortex, while a longer period of cycled data

assimilation is requiredwhen usingVr data to spin up the

vortex. While the difference between VTREC and Vr

assimilation is smaller as the length of data assimila-

tion increases, even after 3 h of data assimilation the

analysis and forecasts obtained by assimilating VTREC

data are still much better than those obtained by

assimilating Vr.

Assimilation of VTREC (and, to a lesser extent, Vr)

data effectively updates the wind fields and creates

large wind increments in early data assimilation cycles,

though the associated pressure increments are much

smaller, resulting in an imbalance between the analyzed

wind and pressure. Gradient wind balance diagnoses are

performed to show that the pressure field can adjust

quickly and efficiently to the enhanced wind fields, es-

pecially in the VTREC assimilation experiments. As a

result, MSLP reduction can be achieved during the

forecast steps of the EnKF, since strong vortex circula-

tions have already been established by the radar data

assimilation.

Finally, when Z data are assimilated alongside Vr or

VTREC for 2 h in another pair of experiments, the rela-

tive impact of Vr and VTREC assimilation is unchanged.

Overall, because of more complete wind information

(including the retrieved cross-beam component) and a

larger spatial coverage of data, VTREC assimilation is

more effective than Vr assimilation, and can potentially

provide good TC initialization and improved forecasts

several hours earlier than Vr observations can as a TC

approaches the coast. Although the conclusions here are

based on a single landfalling typhoon case, the results

obtained by assimilating VTREC and Vr data for dif-

ferent lengths of time appears to be robust. More cases

should be examined to confirm these conclusions in

the future.

Compared to the single-time assimilation of VTREC

data for TyphoonMeranti (2010) in Li et al. (2013) using

WRF 3DVAR, this study examines the impacts of cycled

assimilation of VTREC data using an EnKF on the anal-

ysis and forecast of the intense Typhoon Jangmi (2008).

Consistent with Li et al. (2013), our results demonstrate

the ability of VTREC assimilation to quickly build up a

strong vortex. In this study, the assimilation of VTREC at

the first analysis time also significantly improves the

vortex circulation in the analysis, while subsequent cy-

cles further improve the typhoon analysis and facilitate

the establishment of a balanced vortex through wind-

pressure adjustment.

A few other issues are worthy of future exploration.

T-TREC-retrieved winds have a larger spatial coverage

than GBVTD-retrieved winds, but may have less ac-

curacy in the inner-core region of the TC for low-

wavenumber components. Thus, it would be interesting

to compare assimilation of T-TREC and GBVTD re-

trieval winds. The Vr data are not directly used for

T-TREC wind retrieval; therefore, Vr is mostly inde-

pendent of VTREC. Thus, it may be possible to assimilate

both Vr and VTREC together to obtain better analyses

than could be obtained assimilating VTREC alone. It

would also be interesting to compare the assimilation of

VTREC data and the assimilation ofVr data frommultiple

radars in a case where a typhoon is covered by multiple

coastal radars. Understanding the relative impacts of

assimilating individual data sources or their combi-

nations using assimilation periods of varying length

would also be valuable. These would be good topics

for future studies.
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