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ABSTRACT: The Geostationary Operational Environmental Satellite-R (GOES-R) Geostationary Lightning Mapper

(GLM) instrument detects total lightning rate at high temporal and spatial resolution over the Americas and adjacent

oceanic regions. The GLM observations provide detection and monitoring of deep electrified convection. This study

explores the impact of assimilating the GLM-derived flash extent density (FED) on the analyses and short-term

forecasts of two severe weather events into an experimental Warn-on-Forecast system (WoFS) using the ensemble

Kalman filter data assimilation technique. Sensitivity experiments are conducted using two tornadic severe storm

events: one with a line of individual supercells and the other one with both isolated cells and a severe convective line.

The control experiment (CTRL) assimilates conventional surface observations and geostationary satellite cloud water

path into WoFS. Additional experiments also assimilate either GLM FED or radar data (RAD), or a combination of

both (RAD1GLM). It is found that assimilating GLM data in the absence of radar data into the WoFS improves the

short-term forecast skill over CTRL in one case, while in the other case it degrades the forecast skill by generating

weaker cold pools and overly suppressing convection, mainly owing to assimilating zero FED values in the trailing

stratiform regions. Assimilating unexpectedly low FED values in some regions due to lowGLMdetection efficiency also

accounts for the poorer forecasts. Although RAD provides superior forecasts over GLM, the combination RAD1GLM

shows further gains in both cases. Additional observation operators should consider different storm types and GLM

detection efficiency.

KEYWORDS: Lightning; Numerical analysis/modeling; Numerical weather prediction/forecasting; Data assimilation;

Ensembles

1. Introduction

Lightning activity, especially total lightning flash rate

(cloud-to-ground and intracloud), has been recognized as a

good indicator of deep electrified convection. Previous studies

have shown that total flash rate is well correlated with mea-

sures of graupel and ice content, updraft intensity, and rainfall

amount in single cell and multicell storms (e.g., Goodman et al.

1988; MacGorman et al. 1989; Carey and Rutledge 1996; Wiens

et al. 2005; Deierling and Petersen 2008; Kuhlman et al. 2006;

Fierro et al. 2006), as well as in tropical cyclones (Fierro et al.

2015b; Fierro and Mansell 2017, 2018).

The recently operational Geostationary Lightning Mapper

(GLM) instrument on board the Geostationary Operational

Environmental Satellite-R (GOES-R) series of weather

satellites greatly extends the ability of total lightning de-

tection. The GLM continuously detects total lightning over

the Americas and adjacent oceanic regions in the western

hemisphere, providing lightning products with high tempo-

ral (2 ms) and good spatial (8–12 km) resolution (Goodman

et al. 2013). The GLM lightning observations are a valuable

source of convective activity information, which are a po-

tential complement to ground-based networks especially in

mountainous and oceanic regions, where both radar cover-

age and the detection efficiency (DE) of other lightning

networks are poor.

Earlier studies have demonstrated the positive impact of

lightning data assimilation (LDA) in mesoscale and convective-

scale models. Through the simple and effective nudging methods,

previous studies used lightning data to adjust the latent heating

rate (e.g., Alexander et al. 1999; Chang et al. 2001; Pessi and

Businger 2009b) or the humidity profiles (Papadopoulos et al.

2005, 2009) in a convection parameterization scheme (CPS), to

force the CPS directly (Mansell et al. 2007), to adjust the water

vapor mixing ratio at observed lightning locations (Fierro et al.

2012, 2014, 2015a, 2016), to warm the updraft source layer at

lightning locations to promote convection (Marchand and

Fuelberg 2014), and to adjust the graupel mixing ratio and la-

tent heat (Wang et al. 2017). Fierro et al. (2016) evaluated the

added value of LDA approach from Fierro et al. (2012) in

tandem with radar data in a three-dimensional variational

(3DVAR) framework. In an ensemble Kalman filter (EnKF)

framework, Hakim et al. (2008) was the first one to assimilate

the lightning data using the EnKF method by converting

the lightning data to convective rainfall amount through the

lightning-rainfall relationship following Pessi et al. (2006). The

correlation between lightning and precipitation were explored

by analyzing available lightning and rainfall observations (e.g.,

Pessi et al. 2004; Pessi and Businger 2009a). Mansell (2014)Corresponding author: Yaping Wang, yaping.wang@noaa.gov
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directly assimilated the flash extent density (FED) derived from

simulated total lightning data using the EnKF in an observing

system simulation experiment. Allen et al. (2016) applied the

LDA technique in Mansell (2014) to real cases using pseudo-

GLMdata derived from ground-based LightningMappingArray

(LMA) data.

Most of the previous LDA studies used lightning data

detected from ground-based platforms, such as the LMAs

(Mansell et al. 2007; Allen et al. 2016), the Earth Networks

Total Lightning Network (ENTLN, e.g., Fierro et al. 2012,

2015a; Marchand and Fuelberg 2014), the U.S. National

Lightning Detection Network (NLDN, e.g., Mansell et al.

2007; Alexander et al. 1999), and the Pacific Lightning

Detection Network/Long-Range Lightning Detection Network

(PacNet/LLDN, e.g., Pessi and Businger 2009b). As GLM

lightning data became available, Fierro et al. (2019) and Hu

et al. (2020) converted GLM flash centroid locations to pseu-

dowater vapor observations, which were assimilated in a

3DVAR system and demonstrated the added value of lightning

with radar data also being assimilated. Kong et al. (2020) for

the first time assimilated GLM-derived FED into the EnKF

framework.

Building upon Allen et al. (2016) and Kong et al. (2020), the

present study assesses the impact of assimilating GLM-derived

FED using the EnKF technique into the National Severe

Storms Laboratory (NSSL) Experimental Warn-on-Forecast

System (WoFS) with all available observations including radar

data also being assimilated. The WoFS is a convection-allowing

ensemble analyses and forecast system designed to provide

short-range (0–6 h) probabilistic guidance for thunderstorm

hazards (e.g., tornadoes, severe hail, damaging winds, and flash

flooding). The WoFS has been run in real time for NOAA

Hazardous Weather Testbed (HWT) since 2016 (Skinner et al.

2018), and has demonstrated the ability to provide accurate

short-term probabilistic forecast for thunderstorm hazards

(Wheatley et al. 2015; Yussouf et al. 2013, 2015; Jones et al.

2016) and heavy rainfall events (Lawson et al. 2018; Yussouf

et al. 2016, 2020; Yussouf and Knopfmeier 2019; Jones et al.

2019).The current experimental WoFS assimilates conven-

tional observations, reflectivity and radial velocity fromWeather

Surveillance Radar-1988 Doppler (WSR-88D), and satellite

retrievals.

While Kong et al. (2020) evaluated the performance ofGLM

data assimilation for one MCS case in the absence of radar

data, this study further explores the potential value of GLM

LDA in tandem with radar DA for two tornadic severe storm

events with different convection patterns using WoFS. As ex-

perimental WoFS system output is increasingly used in the

forecasting community, the results of GLM LDA into the

system could be very impactful. The following questions are

addressed in this work: How does GLM LDA perform com-

pared to radar DA? Is there a forecast benefit from additional

GLM LDA in combination with radar DA? How does GLM

detection efficiency impact DA performance? Following the

introduction, section 2 describes the DA experiments setups,

including the DA system, the processing of GLM data and the

lightning observation operator. Section 3a discusses the optimal

configuration for GLMDA, and section 3b compares the impacts

of radar DA and lightning DA. Summary and conclusions are

given in section 4.

2. The data assimilation experiments

a. GSI-EnKF data assimilation system

The WoFS is an on-demand, ensemble DA and prediction

system. The initial and boundary conditions for the WoFS are

provided by the experimental High-Resolution Rapid Refresh

Ensemble (HRRRE; Dowell et al. 2016). The configuration

used in this work is similar to the ones used in a prototype real-

timeWoFS run during the 2018 and 2019 NOAAHWT Spring

Forecast Experiment (SFE; Kain et al. 2003; Gallo et al. 2017;

Clark et al. 2020). The WoFS uses the Advanced Research

Version of theWeather Research and Forecasting (WRF-ARW)

Model, version 3.8.1 (Skamarock et al. 2008) and comprises an

ensemble of 36 members. The multiphysics ensemble is con-

figured with different sets of boundary layer and radiation

schemes (e.g., Stensrud et al. 2000; Wheatley et al. 2014) and

initial and boundary conditions. The cloud microphysics pa-

rameterization scheme used in all ensemble members is the

NSSL two-moment scheme (Mansell et al. 2010). A domain

was selected to cover the primary severe weather event each

day based on the Storm Prediction Center’s Day 1 convective

outlook. The domain contains 250 3 250 grid points (approxi-

mately 750km3 750km) for the 2018 version and 3003 300 grid

points (approximately 900km 3900km) for the 2019 version,

both with a 3-km horizontal grid spacing. Conventional observa-

tions, radar reflectivity and radial velocity from the WSR-88D,

and satellite-derived cloud water path (CWP) are assimilated

at 15-min intervals using the Community Gridpoint Statistical

Interpolation (GSI; Kleist et al. 2009) based ensemble Kalman

filter (EnKF; Houtekamer and Mitchell 2005) (GSI-EnKF)

DA system. Conventional observations, which include pressure,

temperature,moisture, andwind from surface andmarine stations,

Aircraft Communications Addressing and Reporting Systems

(ACARS), air report (AIREP)/pilot weather report (PIREP),

rawinsondes, Next Generation Weather Radar (NEXRAD)

velocity azimuth display (VAD) wind reports, and profilers

from NCEP’s PrepBUFR files, and Oklahoma mesonet ob-

servations (McPherson et al. 2007) are assimilated within the

WoFS domain. AssimilatedWSR-88D reflectivity data derived

from the 1-km Multi-Radar Multi-Sensor (MRMS) products

are objectively analyzed to 5 km spacing using a Cressman

interpolation scheme (Cressman 1959; Smith et al. 2016).

Radial velocites from WSR-88D data are also objectively an-

alyzed to the 5-km grid using the same Cressman scheme.

Cloud water path (CWP) retrievals from the Geostationary

Operational Environmental Satellite-16 (GOES-16) imager

data are also assimilated. A complete description of the WoFS

is available in Yussouf et al. (2015), Wheatley et al. (2015),

Jones et al. (2016, 2018), and Skinner et al. (2018).

b. GLM FED data processing

The publicly available GLM 20-s Level-2 data files contain

the three-level parent–child hierarchy metrics, which are flashes,

groups, and events, at the pixel resolution of approximately

3218 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by UNIVERSITY OF OKLAHOMA LIBRARY | Unauthenticated | Downloaded 08/24/23 10:15 PM UTC



8 km at nadir and less than 12 km over the continental United

States (CONUS). An event is the most elementary product,

defined as the occurrence of a single pixel exceeding the

background threshold during a single 2-ms frame. A group

consists of adjacent events within the same time frame. A set of

groups that are sequentially separated by 330ms or less in time

and no more than 16.5 km in space are aggregated as a flash

(Goodman et al. 2013). Each event, group or flash includes a

centroid latitude and longitude, time and number identification

(ID). Each event or group also includes a parent ID for the

next level up the hierarchy. That is, events belonging to the

same group share a same parent group and flash ID; groups

belonging to the same flash share the same parent flash ID.

More details regarding the GLM data structure could be found

in Goodman et al. (2013), Bruning et al. (2019), and Kong

et al. (2020).

The FED derived from the GLM data are assimilated in this

study. Events, groups, and flashes in the GLM dataset are re-

ported as geolocated points, and FED is defined as the count of

flashes that propagate through a grid column during some

period of time. In this study, the GLM FED is obtained by

utilizing a Python package called ‘‘glmtools’’ (Bruning et al.

2019). In this algorithm, the GLM grids are first produced in

the GOES fixed grid coordinates, which is the standard coor-

dinate reference frame for the Advanced Baseline Imager

(ABI) observations and other geostationary satellite observa-

tions. The algorithm restores the spatial footprint of GLM

events on the fixed grid coordinates, and then connects the

spatial footprint of events to flashes through the parent–child

relationship information (flash/group IDs stored in each event).

The events belonging to different flashes in a fixed grid pixel

within a certain time period (e.g., 1 and 5min in this work) are

counted as the number of flashes passing through that pixel,

which is the calculated FED. The fixed grid coordinates are

then converted to a longitude/latitude array by intersecting the

fixed grid angle with Earth’s surface before DA. The algorithm

in glmtools provides a universal solution to the gap and double-

counting problems caused by resampling the GLM data to

grids with a smaller or larger grid spacing. In this study, the

pixel width at nadir is set to 8 km for the fixed grids. After

the fixed grid projecting to Earth’s surface, the pixel width of

GLM data on ground varies from;8 km at nadir to;14 km at

corners, similar to the GLM charge-coupled device (CCD)

detection pixel size.

c. Observation operator

A FED observation operator based on graupel mass (FEDM)

fromAllen et al. (2016) and then tuned by Kong et al. (2020) is

employed in this study. In Allen et al. (2016), FEDM is a linear

best-fit operator between model flash rate and graupel mass

derived from a simulation with radar radial velocity assimi-

lated. Their work also showed that the operator performs well

when using 1-min pseudo-GLM FED data, which was derived

from LMA data. To evaluate the feasibility of this operator

using real GLM FED, Kong et al. (2020) conducted several

sensitivity experiments and found that applying a scaling factor

of 0.5 to the operator is more suitable for the real 1-min GLM

FED data, which is shown below:

FEDM5 0:53 2:0883 1028(GM). (1)

In this study, Eq. (1) is used as the observation operator and

GM is the vertically integrated graupel mass in a volume

covering a 15 3 15 km2 area in the horizontal dimensions

centered on model grids before being interpolated to the GLM

FED locations. The horizontal coverage of the graupel mass is

slightly larger than the pixel size of the GLM data, in order to

account for lightning occurring on the edge of a GLM pixel

(Mansell 2014; Allen et al. 2016). Zero FED observations are

also assimilated in order to limit spurious deep convection

(Mansell 2014). Following Allen et al. (2016) and Kong et al.

(2020), the 1-min accumulated FED observations are used and

are assigned to a height of 6.5 km in this study. The observation

error is set to 0.5min21 per pixel (Kong et al. 2020). Also

similar to Allen et al. (2016) and Kong et al. (2020), the hori-

zontal localization radius for FED is set to 15 km and the

vertical localization is set to 4.0 in units of scale height, which

corresponds to a very large radius of influence. A large vertical

localization allows the two-dimensional GLM-FED observa-

tions impact the entire domain depth. In addition, the outlier

check inGSI-EnKF is turned off for FEDobservations in order

to maximize the impact of FED DA.

d. Case description and experimental design

In this study, two high-impact weather events that occurred

on 1–2 May 2018 and 20 May 2019 are examined. The 1–2 May

2018 severe weather outbreak occurred across Kansas and

southeastern regions of Nebraska, where convection first ini-

tiated along a front across western Kansas and southeastern

Nebraska between 1900 and 2000 UTC. In the following hours,

several thunderstorms including several isolated tornadic su-

percells, further developed and later merged into a quasi-linear

mesoscale convective system. There was a total of 18 tornadoes

as well as several damaging wind and large hail reports in

Kansas, Nebraska, and Oklahoma for this case. The other case

examined is the severe weather outbreak on 20–21 May 2019

that occurred across northern Texas, Oklahoma, southeastern

Kansas, and western Missouri. High instability and deep-layer

shear favored a number of supercells to develop and to merge

into a squall line, with a broad trailing stratiform region. A

total of 37 tornadoes and many severe wind and damaging hail

reports were recorded in Texas, Oklahoma, Kansas, and

Missouri. The 20 May 2019 event was a challenging case to

forecasters as well. The National Weather Service (NWS)

Storm Prediction Center (SPC) issued a high-risk outlook for

tornadoes and severe thunderstorms from northwest Texas

into western and central Oklahoma. While tornadoes and

other severe weather did happen over the high-risk region,

they were not as intense or as widespread as anticipated, es-

pecially in central Oklahoma.

The simulation domains and the locations of radar sites for

the two cases are shown in Fig. 1. The continuous 15-min DA

cycling starts at 1800 UTC and ends at 0300 UTC for the 1May

2018 event, and from 1700 to 0100 UTC for the 20 May 2019

event. The 3-h forecasts are launched at 1-h intervals when

thunderstorms were most active in each case, between 2100 and

0300 UTC, and between 1900 and 0100 UTC, respectively.
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A set of sensitivity experiments are performed to evaluate

the added value of assimilating GLM FED into WoFS on

short-term forecasts (Table 1). A control experiment (CTRL)

with only the conventional observations and the CWP data

assimilated, and an experiment (GLM_1min) with additional

1-min GLM FED data assimilated into CTRL are first con-

ducted to show the effect of GLM assimilation. In WoFS,

smooth and random additive noise is introduced to the u, y, w,

u, and Td variables of each ensemble member in and near high-

reflectivity regions to help initiate convection in the model

and to maintain ensemble spread (Caya et al. 2005; Dowell

and Wicker 2009). In GLM_1min experiment, similar three-

dimensional fields of additive noise are added in and near the

regions where the FED is greater than 1min21 per pixel, ver-

tically centered on the assumed altitude of GLM observations,

which is 6.5 km according to previous studies (Allen et al. 2016;

Kong et al. 2020). The horizontal and vertical length scales for

smoothing perturbations are set to 9 and 3 km, respectively. An

experiment (GLM_1min_NPT) identical to the GLM_1min

experiment but without FED-based additive noise (Table 1) is

conducted to assess the impact of additive noise. Additionally,

considering the wide zero-FED regions when aggregating light-

ning in a short time period, an experiment (GLM_1min_NZR)

using only nonzero GLM FED data is conducted. Another ex-

periment (GLM_5min) using GLM FED temporally smoothed

(i.e., averaged) in a 5-min window is conducted. Figure 2 shows

examples of 1-minGLMFEDandGLMFEDaveraged in the 5-

min window prior to the analysis time. Generally, the smoothed

FED has slightly lower maximum values but a larger nonzero

FED region compared to the nonsmoothed FED. To further

assess the potential value of assimilating GLM data with radar

data assimilated, twomore experiments are conducted, one with

radar data assimilated into CTRL (RAD), and another experi-

ment in which both radar and 5-min average accumulated GLM

datawith zero values are assimilated intoCTRL(RAD1GLM).

Experiments with radar data assimilated (RAD, RAD1GLM)

used high-reflectivity regions to determine where additive noise

is placed. The RAD1GLM experiment also used the FED-

based additive noise (Table 1). The GLM FED and radar ob-

servations are both assimilated at 15-min intervals over the

entire DA window. Although withholding radar data from

CTRL and GLM-based experiments is not practical in opera-

tional WoFS, these experiments simulate a radar dropout

scenario. Assimilating GLM observations alone provides in-

sights on how much GLM FED could improve the forecasts

compared to radar data and suggestions on the potential ben-

efit of GLM LDA in radar sparse regions.

e. Evaluation and verification methods

To assess the accuracy of ensemble forecasts in each ex-

periment and each case, a combination of subjective evalua-

tion and objective verification methods is used in this study.

FIG. 1. Simulation domains (red polygon) and the locations of radar sites for two cases.

TABLE 1. Description of sensitivity experiments.

Expt Data being assimilated Additive noise

CTRL Conventional observations, CWP None

GLM_1min As in CTRL, but additional 1-min GLM FED FED-based additive noise

GLM_1min_NPT As in GLM_1min None

GLM_1min_NZR As in CTRL, but additional 1-min nonzero GLM FED FED-based additive noise

GLM_5min As in CTRL, but additional 1-minGLMFEDaveraged in a 5-minwindow FED-based additive noise

RAD As in CTRL, but additional radar reflectivity and radial velocity data Radar-based additive noise

RAD1GLM As in RAD, but additional 1-min GLM FED as used in GLM_5min Both FED-based and radar-based

additive noise
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The observation-space diagnostic statistics (Dowell et al.

2004; Dowell and Wicker 2009; Dowell et al. 2011; Yussouf

et al. 2013;Wheatley et al. 2015; Jones et al. 2018) of the mean

innovation, the root-mean-square innovation (RMSI), total

spread and consistency ratio (CR) for the assimilated FED

are calculated to evaluate the performance of the system in

assimilating GLM observations. Here, the difference between

the observations and the model prior (forecast) or posterior

(analysis) fields represent the innovation. The mean innova-

tion and RMSI are the corresponding statistics between the

observations and the model variables. Compared to the prior,

a smaller absolute innovation and RMSI from the posterior

is expected, indicating a successful DA cycle. A decreasing

RMSI as a function of time is desirable, representing a de-

creasing forecast error. The total spread is the summation of

the prior ensemble variance and the observation error vari-

ance, which measures the degree of the ensemble spread. A

comparable magnitude of prior total spread and RMSI indi-

cates that the forecast error is representative of the ensemble

spread. The CR is defined as the ratio of the square of total

spread to the variance of prior innovation (square of RMSI).

A CR value of;1.0 indicates that the ensemble variance is an

optimal approximation for the forecast error variance for the

assumed observation error. Details for these metrics can be

found in the above-cited references.

To evaluate the reflectivity and the precipitation from the

forecasts, the observed MRMS reflectivity and the Stage IV

multisensor hourly rainfall estimates from the National

Centers for Environmental Prediction (Baldwin and Mitchell

1997) are employed in this study. To compare with the model-

simulated variables, the observations are all interpolated

onto the WoFS domain with a 3-km grid spacing. Subjective

comparisons between the observations and the model vari-

ables directly depict how the model reproduces the storm

features (e.g., convection distribution and intensity). The

neighborhood-based equitable threat score (ETS; Clark et al.

2010) and the performance diagram (Roebber 2009) depict-

ing contingency elements including the probability of detec-

tion (POD), the false alarm ratio (FAR), the success ratio

(SR 5 1 2 FAR), the frequency bias, and the critical success

index (CSI), are used to quantitatively evaluate the short-term

forecasts for each experiment and each case. These statistics

FIG. 2. Plan views of the1-min GLM FED (flashes per minute per pixel) (a),(c) without temporal smoothing and

(b),(d) smoothed in a 5-min time window at (top) 2300UTC 1May 2018 and (bottom) 0000UTC 21May 2019. The

FED are aggregated over the prior 1- or 5-min intervals from the listed times.
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FIG. 3. Mean innovation (hO-Fi), root-mean-square innovation (RMSI), observation error (ob error), total spread,

consistency ratio (CR) of FED (left axis), and number of assimilated nonzero GLM FED observations (right axis) from

all experiments listed in Table 1 for cases (a)–(e) 1May 2018 and (f)–(j) 20May 2019. Two thin dashed lines denote

0 and 1 values on the left axis. TheFEDstatistics are computedonlywhere the assimilatedobservedFED is.0min21 per

pixel. The sawtooth patterns of hO-Fi, RMSI, and total spread are due to the plotted prior and posterior statistics. The

square-marked end of the sawtooth lines denotes the prior values, and the other end denotes the posterior values.
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are calculated using all the ensemble members of each case

grouped together.

3. Results and discussion

a. Sensitivity tests on GLM data assimilation

1) GLM DA DIAGNOSTIC STATISTICS

The observation-space diagnostic statistics of FED and the

number of assimilated nonzero FED throughout the entire DA

window for the two cases are presented in Fig. 3. In each ex-

periment, the statistics are only calculated in areas where ob-

served FED is greater than 0min21 per pixel. Note that the

posterior FED in Fig. 3 is not recalculated from the posterior

state, but rather is the prior operator value that has been up-

dated by the DA itself, and thus will have difference from a

‘‘true’’ posterior FED. For 1 May 2018, the RMSI for the

experiments increases at ;2000 UTC (Figs. 3a–e) as con-

vective cells develop and lightning occurs. The RMSI for all

experiments is smaller than 6min21 per pixel throughout

the entire DA period and the posterior RMSI decreases to-

ward 0min21 per pixel. The prior mean innovation ranges

from 21 to 3.5min21 per pixel and the posterior mean inno-

vation differs from it after each DA cycle. Due to the observed

increasing flashes in isolated supercells, the underpredicted

FED and the displacement error (not shown), the RMSI and

mean innovation sharply increase at ;2330 UTC except ex-

periment RAD1GLM, followed by the increase of the total

spread and the ensemble spread. Correspondingly, the CR

increases rapidly with convection initiation, then slowly de-

creases, and eventually remains lower than 0.5. The small CR

and the low total spread are mainly due to the choice of a small

FIG. 4. Observed 1-min GLM FED (flashes per minute per pixel) and ensemble mean FED analyses at 2300 UTC 1 May 2018 from

GLM-based experiments.
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observation error, which increases the influence of low FED

observations.

The CR in all the GLM experiments for case 20 May 2019

increases rapidly, then gradually decreases, and eventually

remains around 1.0 or slightly greater (Figs. 3f–i). A CR of

;1.0 indicates that the ensemble variance is a good approxi-

mation of the forecast error variance for an assumed obser-

vation error (e.g., Dowell and Wicker 2009; Yussouf et al.

2013). That is, the observation error of 0.5min21 per pixel is a

reasonable estimate for this case. The RMSI are all lower than

4min21 per pixel while GLM_5min shows smaller RMSI

among all experiments for this case (Fig. 3i).

The statistics from GLM_1min and GLM_1min_NPT for

the both events are very similar except for slightly larger total

spread or ensemble spread fromGLM_1min, which is expected

with additive noise applied. Also, experiment GLM_5min for

both events have larger CR and smaller RMSI compared to

experiment GLM_1min. Smaller mean innovation or RMSI in

GLM_5min is because in addition to FED greater than 1min21

per pixel, fractional FED observations (0 , FED , 1min21

per pixel) due to smoothing are also assimilated and included

in calculating statistics. Overall, the saw-tooth pattern of in-

novation and RMSI indicate that assimilating GLM FED does

reduce the model simulated FED error in all experiments. The

statistics from RAD1GLM are discussed in section 3b.

2) ANALYSES OF FED AND COMPOSITE REFLECTIVITY

The performances of each experiment are evaluated by

comparing with the observations and the CTRL experiment.

Severe weather was relatively active on 1 May 2018 between

2300 and 0200 UTC, with a total of 12 tornadoes within this

time period and a number of severe wind and large hail reported

FIG. 5. Observed MRMS composite reflectivity (dBZ) and simulated probability matched mean composite reflectivity analyses at

2300 UTC 1 May 2018 from GLM-based experiments.
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in four tornadic supercells (denoted 1, 2, 3, 5 in Fig. 5a) and one

nontornadic supercell (denoted 4 in Fig. 5a) in Kansas,

Nebraska and Oklahoma. As such, the analyses and the 3-h

forecast initialized at 2300 UTC are evaluated. The FED an-

alyses from all GLM-based experiments are shown in Fig. 4.

The five FED cells corresponding to five supercells in Fig. 5a

are denoted as 1–5. All five sensitivity experiments are able to

produce flashes in most of the supercells except supercell 5, but

the FED values in all the experiments are weaker than the

observations (Figs. 4b–f). Compared to GLM_1min_NZR,

all the other GLM-based experiments produce more isolated

supercells similar to the observed ones, indicating that zero

FED helps to better resolve individual supercells. Experiments

GLM_1min_NPT, GLM_1min, and GLM_5min show very

similar FED features.

The model-simulated probability matched mean (PMM)

composite reflectivity (CREF) at the analysis time (2300UTC)

for case 1 May 2018 are shown in Fig. 5. The probability

matching assumes that the most likely spatial representation is

given by the ensemble mean and restores the amplitude char-

acteristics of the full ensemble to the ensemble mean (Ebert

2001). Specifically, the values from ensemble mean and full

ensemble are sorted from highest to lowest. Then the ensemble

mean field is substituted by the values from the full ensemble,

which are thinned by the ensemble size. Similar to the FED,

the five experiments generally reproduce the four supercells

(denoted 1, 2, 3 4) but miss the supercell 5. They overall

have very similar reflectivity fields. Compared to CTRL and

GLM_1min_NZR, experiments GLM_1min, GLM_1min_NPT

and GLM_5min reproduce better convection mode, and the

shapes and the isolation features of the tornadic convective

cells (denoted 1, 2, 3) are more like the observation.

For the case 20 May 2019, FED at 0000 UTC 21 May 2019

shows a quasi-linear mode of deep electrified convection that

extends from northern Texas into southeastern Kansas and

eastern Missouri through Oklahoma (Fig. 6a). Compared to

the observation, CTRL produces a broader intense lightning

band, with slightly lower FED near the border between

Oklahoma and Kansas but much higher FED in Texas.

Assimilating both zero and nonzero GLM data significantly

narrows the lightning band and reduces the FED in Texas

(Figs. 6c,d,f). In GLM_1min_NZR (Fig. 6e), the maximum

lightning intensity in Texas decreases but the lightning band is

still broad.

The MRMS CREF at 0000 UTC 21 May 2019 shows that

the MCS consists of a quasi-linear structure of severe convec-

tion and a broad trailing stratiform region (Fig. 7a). The light-

ning flashes were mainly within the convective region (Figs. 6a

and 7a). Generally, CTRL overpredicts convection in intensity

and areal coverage. Assimilating GLM data including zero

values yields more reasonable convection intensity in northern

Oklahoma and Kansas (Figs. 7c,d,f). The convective cells in

Texas and southwesternOklahoma, however, are substantially

suppressed. The stratiform region to the north is already

poorly simulated in CTRL, and is further reduced by assimi-

lation of zero FED.With only nonzeroGLMFED assimilated,

GLM_1min_NZR produces a broader stratiform rainband

near the border between Oklahoma and Kansas compared

FIG. 6. As in Fig. 4, but at 0000 UTC 21 May 2019.
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to GLM_1min and GLM_5min (Figs. 7b,c,e,f). Given that

GLMFEDvalues are nearly 0 flashes per minute in the trailing

stratiform region (Figs. 2c,d), the stratiform rainband in

GLM_1min and GLM_5min are likely to be weakened by

assimilating zero FED values. Also, GLM_1min_NZR out-

performs GLM_1min or GLM_5min by not suppressing the

convection in southwestern Oklahoma and northern Texas as

much. Nevertheless, the convective cells in northern Texas in

GLM_1min_NZR still are neither as well organized, nor as

intense as those in observation and CTRL. The PMM CREF

from the 1-h forecasts (Figs. 7h–l) show that the GLM-based

experiments, especially GLM_1min and GLM_5min, per-

form worse in terms of larger convection displacement er-

rors in southwestern Oklahoma and Texas. Experiment

GLM_1min_NZR performs better in reproducing the strati-

form region of the MCS than GLM_1min and GLM_5min.

However, GLM_1min_NZR is still slightly worse than CTRL

by displacing the convection in Texas too far north.

The comparison among these sensitivity experiments sug-

gests that assimilating zeroGLMFEDover stratiform region is

FIG. 7. Observed MRMS composite reflectivity (dBZ) and simulated probability matched mean composite reflectivity from analyses

and 1-h forecasts initialized at 0000 UTC 21 May 2019 from GLM-based experiments. Black contours represent the 30-dBZ value

from MRMS.

3226 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by UNIVERSITY OF OKLAHOMA LIBRARY | Unauthenticated | Downloaded 08/24/23 10:15 PM UTC



detrimental for this MCS case. However, assimilating nonzero

GLM FED tends to degrade the analyses in the southwestern

part of the domain. Note that the observed reflectivity inten-

sities of the convective cells in Texas and southwestern

Oklahoma are comparable to those in northern Oklahoma

(Fig. 7a), but the GLM flash rates in southwestern domain

are much lower (Fig. 6a). One possibility is that flashes from

those storms are less easily detected by GLM. Further

comparing GLM data with Oklahoma Lightning Mapping

Array (OKLMA) data (for information on the network op-

eration, accuracy and the covered domain, see Thomas et al.

2004; MacGorman et al. 2008; Chmielewski and Bruning 2016;

Chmielewski et al. 2020) shows that the GLM FED is much

lower than the OKLMA FED in southwestern and central

Oklahoma (Fig. 8), indicating lower GLMDE in these regions.

For instance, in the tornadic storm near the southwestern

corner of Oklahoma around 2200 UTC 20 May 2019, the

maximum of the 5-min accumulated OKLMA FED was above

400 per pixel (Fig. 8a) while that of GLM FED is less than 40

per pixel (Fig. 8b). ThemaximumOKLMAFED from only the

flashes with durations of at least 0.3 s and areas of at least

10 km2, which would be expected to have GLM DE . 50%

(Zhang and Cummins 2020), still reached over 120 per pixel in

the southwestern storm (not shown). It is unclear why the

GLM flash rate was so much lower in this event. The convec-

tive cells in Texas had slightly warmer cloud tops than those in

northern Oklahoma during the DA window according to the

GOES-16 infrared images (not shown). Some recent studies

have shown that GLM DE could be particularly low in storms

with large cloud water and cloud ice content, and compact

flashes at lower altitudes (Rutledge et al. 2020), with very high

midaltitude reflectivity (Murphy and Said 2020), and with

small, short duration flashes (Zhang andCummins 2020). DE is

also sensitive to the vertical cloud inhomogeneity (Brunner

and Bitzer 2020) and the location of small parent flashes rela-

tive to the pixels (Zhang et al. 2019). Studies comparing GLM

FIG. 8. Horizontal cross sections illustrating the 5-min accumulated (a),(c) Oklahoma LMA FED (flashes per

5 minutes per pixel) and (b),(d) GLM FED on a ;10 3 10 km2 grid box at (top) 2200 UTC 20 May 2019 and

(bottom) 0000 UTC 21 May 2019. LMA FED is generated using ‘‘lmatools’’ (Fuchs et al. 2016) with at least

10 points per flash.
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to ground-based lightning networks have also found lowerDEs

in western Great Plains (Marchand et al. 2019; Rutledge et al.

2020). The FED forward operator function may also overes-

timate the flash rates for this convection, which would tend

cause erroneous weakening.

3) SHORT-TERM FORECAST EVALUATION

To quantitatively evaluate the performance of each experi-

ment, the aggregated neighborhood-based ETS are computed

using a neighborhood radius of 15 km for the CREF using a

threshold of 40 dBZ and for the hourly accumulated precipi-

tation using a threshold of 10mm from the 3-h forecasts ini-

tialized at the top of the hour for each of the experiments for

the two events (Fig. 9). Different thresholds (e.g., 35 and

45 dBZ for CREF; 5mm for hourly precipitation) yield similar

results. For the 1 May 2018 event, experiment CTRL produces

forecasts with a relatively low ETS time series for CREF,

generally below 0.5 throughout the 3-h forecast period (Fig. 9a).

The sharp increase or decrease of ETS shown during the

forecast period is due to the missing MRMS CREF data be-

tween 2150 and 2210 UTC, which affects evaluation of the two

forecasts at 2100 and 2200 UTC at varying lead times. Overall,

assimilating GLM FED data greatly improves the forecast

skill over the entire 3-h forecast compared to CTRL. The

experiment GLM_5min outperforms other GLM-based ex-

periments, by improving the ETS about 0.15 relative to

CTRL. The GLM_1min and GLM_1min_NPT have compara-

ble ETS with GLM_1min presenting a slightly better analyses

than GLM_1min_NPT. GLM_1min_NZR also has lower ETS

compared to GLM_1min, indicating the positive impact of zero

FED. The performance of the precipitation forecasts from all

experiments are consistent with those of CREF (Fig. 9c).

FIG. 9. Aggregate equitable threat score (ETS) of (a),(b) composite reflectivity greater than 40 dBZ relative to

the MRMS observations, and (c),(d) hourly accumulated precipitation greater than 10mm relative to the Stage IV

multisensor precipitation analyses over seven 3-h forecast periods of each GLM-based experiment for (left) 1 May

2018 and (right) 20 May 2019. The neighborhood radius is 15 km. The shaded areas denote the ETS affected by

missing MRMS observations.

3228 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by UNIVERSITY OF OKLAHOMA LIBRARY | Unauthenticated | Downloaded 08/24/23 10:15 PM UTC



For the 20 May 2019 event, all GLM-based experiments

improve the analyses and the 0–40-min forecast of CREF

(Fig. 9b). After 40min, however, ETS for all GLMexperiments

except GLM_1min_NZR decreases and eventually becomes

;0.12 lower than CTRL. GLM_1min_NZR shows less im-

provement to the performance of the first 40-min forecast, but

it significantly outperforms GLM_1min and only is slightly

worse than CTRL in the following 2.5-h forecast. This result

suggests that, despite giving a better ETS in the analyses, as-

similating zero FED value is the dominant source of the

forecast error in GLM_1min for this case, which is consistent

with the subjective analyses in Fig. 7, which shows correct sup-

pression of some spurious cells, but also incorrect weakening of

some real storms. GLM_5min appears to slightly outperform

GLM_1min, probably owing to GLM_5min having fewer zero-

FED values after smoothing. Also, GLM_1min_NPT performs

FIG. 10. (a)–(f) The ensemblemean 2-m temperature (colors), 10-mwind vectors (m s21), and 500-m vertical velocity (magenta contours

at 0.6 and 1m s21) from experiments CTRL, GLM_1min, and GLM_1min_NZR from analyses and 1-h forecast initialized at 0000 UTC

21 May 2019. The color-filled dots are the corresponding 2-m temperature from Automated Surface Observing System (ASOS); (g)–(i)

vertical cross sections of ensemble mean mixing ratio (1023 g g21) of cloud water (qc; blue contours), rainwater (qr; black solid contours),

snow (qs; color shaded), graupel (qg; red contours), and ice (qi; black dashed contours) from the analyses at 0000 UTC 21May 2019 along

the magenta dashed lines in Figs. 7b, 7c, and 7e. The x axis gives the indices of zonal grid points.
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slightly better than GLM_1min. This is likely because GLM_

1min_NPT has a smaller ensemble spread than GLM_1min

(Figs. 3f,g), and thus gives more weight to the prior forecasts

over the observation, which in turn mitigates the negative

impact caused by GLM observations.

The precipitation forecasts for 20 May 2019 event also are

quite consistent with the CREF forecasts (Fig. 9d). Overall,

GLM_1min_NZR appears to outperform other experiments

by notably improving the forecast of the first-hour precipitation.

Another experiment assimilating nonzero values from the 1-min

accumulated GLM FED data and zero values from 10-min

accumulated GLM FED data into CTRL was conducted for

this case such that fewer zero FED observations are used over

the stratiform or nonintense convective region. Results show

FIG. 11. (a) The increment of FED (posterior2 prior; flashes per minute per pixel) after the DA at 0000UTC 21May 2019 fromGLM_

1min_NZR; (b)–(g) background error correlations between a simulated FED located at the magenta circle location and model state

variables qg, qs, qi, qr, qy, and potential temperature u. The x axis in (b)–(g) gives the indices of zonal grid points.
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that this GLM experiment still performs better than CTRL in

the first 40min and then performs worse (not shown).

Figures 10a–f shows that GLM-related experiments, es-

pecially GLM_1min, have larger warm bias near surface in

Texas, compared to the observation and that from CTRL,

though all the experiments are able to reproduce the cold front

across Oklahoma. The poorer forecasts in the southwestern

domain from the GLM-based experiments are likely due to the

weakened cold pools. In CTRL, the eastward outflow at the

edge of the strong cold pool in Texas interacts with the southeast

flow, stimulating strong updrafts along the cold pool east edge

(Figs. 10a,d). However, in GLM_1min and GLM_1min_NZR,

the weaker cold pool-driven outflows are mainly northward,

resulting in fewer and weaker low-level updrafts in Texas

(Figs. 10b,c,e,f). GLM_1min_NZR has a better cold pool be-

cause it allows spurious but close storms to persist while the

real storms are kept weak (incorrectly) by low GLM FED.

The aforementioned zero- and low-FED observations likely

result in negative FED increment after DA (difference be-

tween posterior and prior FED operator values; Fig. 11a). Via

the overall positive background error correlations between

FED and hydrometeor mixing ratios (e.g., qg, qs, qi, qr, qy,

Figs. 11b–f), hydrometeor contents in GLM_1min and GLM_

1min_NZR decrease (Figs. 10g–i) as a result of the negative FED

increment, which was also discussed by Kong et al. (2020). The

weaker cold pools are partly owing to the associated weaker

evaporation, melting, and sublimation of precipitation. Negative

FED increments could also warm the near surface air via a

negative correlation between FED and low-level potential

temperature (Fig. 11g), which could also suppress cold pools.

Significant warmer cold pools in GLM_1min are likely due to

many more zero-FED values being assimilated and suppressing

neighboring (yet spurious) storms.

In summary, assimilating total GLM data (a combination of

zero and nonzero values) could better capture the features of

the individual supercells and substantially improve the forecast

skill. However, for the MCS case consisting of deep electrified

convection, nonintense convection and trailing stratiform re-

gions, assimilating GLM data without radar data appears to

harm the forecast despite the improvement in the analyzed

FED and CREF field. Assimilating only nonzero GLM FED

values mitigates the negative impact (partially via compen-

sating spurious cells) but does not eliminate it owing to unex-

pected low GLM FED values, which appears to be the root

source of degradation. The current observation operator,

which is a linear fit using model output variables, does not fit

for the GLM observations at some regions of the MCS, espe-

cially when the GLM data suffer from the detection efficiency

issue. Lower GLM DE, particularly in severe storms with lots

of small, intracloud flashes at low altitudes over the western

great plain, should be considered for a more advanced obser-

vation operator.

b. Data assimilation of GLM data with radar data

Based on the results in section 3a, experiment GLM_5min

is selected to compare against additional two experiments:

one that assimilates radar data (RAD), and another experi-

ment that uses the same setup as in GLM_5min to assimilate

both GLM data and radar data (RAD1GLM). Experiment

GLM_5min is renamed to ‘‘GLM’’ for convenience in

FIG. 12. Observed MRMS composite reflectivity (dBZ) and simulated probability matched mean composite reflectivity from analyses

and 1-h forecasts initiated at 2300 UTC 1 May 2018 from experiments CTRL, GLM, RAD, and RAD1GLM. Black contours represent

the 35-dBZ value from MRMS.
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this section. The forecast skill in predictingCREF, precipitation,

and storm tracks will be evaluated for the two selected cases.

1) CASE 1 MAY 2018

Figure 3e shows the diagnostic statistics of FED for

RAD1GLM. The magnitudes of RMSI and total spread

match each other better than those in experiments with no

radar DA, resulting in more constant CR. The faster growth in

RMSI from RAD1GLM than GLM indicates faster storm

spinup with radar DA. In general, RAD and RAD1GLM

better capture the five main convective cells across Kansas

compared to CTRL and GLM (Figs. 12a–e). RAD and

RAD1GLMperform very similarly except that RAD1GLM

has a slightly more intense convective cell at the Kansas–

Oklahoma border, which is more consistent with the observa-

tion. In the 1-h forecasts, all experiments present some larger

reflectivity cores than the analyses (Figs. 12f–j). GLMperforms

slightly better than CTRL with somewhat weaker convection

on the east border of Nebraska (Figs. 12f–h). The two experi-

ments with radar DA still outperform CTRL and GLM with

less displacement error. RAD1GLMperforms best, and is still

able to forecast the southernmost tornadic convective cell,

although it is weaker than the observation (Fig. 12j).

To further examine the impact of radar and GLM DA,

the vertical cross sections of the ensemble mean reflectivity of

the three tornadic convective cells (denoted as 1, 2, and 3 in

Fig. 12f) from CTRL, GLM, RAD, and RAD1GLM are

shown in Fig. 13. The west–east cross sections are through the

maximum reflectivity center in each experiment. Overall,

all the experiments with radar or lightning data assimilated

(GLM, RAD, RAD1GLM) enhance the convection columns

similar to the observation with notably stronger reflectivity and

updraft than those in CTRL. Convection cores in experiments

with radar data assimilated (RAD,RAD1GLM) are generally

stronger than those in GLM (Figs. 13c1–e1,c2–e2) except the

third convective cell (Figs. 13c3–e3). The low ensemble-mean

reflectivity and the high PMM CREF (Figs. 12g–j) associated

with convection 3 indicates a large amplification between en-

semble members or a large ensemble spread in predicting this

cell. Experiment GLM performs best in reproducing the third

storm cell with strongest updraft and reflectivity (Fig. 13c3).

Assimilating GLM FED with radar data creates slightly

weaker convective cells (Figs. 13e1,e2,e3). Among all the

experiments, the displacement error between the simulated

storms in experiment RAD1GLM and observations, at least

along the zonal direction, are generally the smallest.

FIG. 13. Vertical cross sections of the ensemble mean reflectivity (shaded; dBZ) and vertical velocity (contours; m s21) of (a1)–(e1)

convection 1, (a2)–(e2) convection 2, and (a3)–(e3) convection 3 from 1-h forecasts in Figs. 10f–j along the west–east direction through the

maximum reflectivity center. The x axis gives the indices of zonal grid points.
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The 3-h accumulated precipitation from the forecast initi-

ated at 2300 UTC is compared with the Stage IV precipitation

products in Fig. 14. Generally, all the DA experiments over-

predict the coverage of the heavy precipitation region crossing

the east border of Nebraska while underpredicting the pre-

cipitation amount in northern Kansas. Assimilating radar data

suppresses the northern false precipitation region exhibited in

CTRL and reduces the northern displacement of the heavy

precipitation center in Kansas (Figs. 14a,b,d,e). Assimilating

GLM FED into CTRL produces a slightly narrower rainband

over the east border of Nebraska and larger rainfall amount in

the south, which are more consistent with the observation

(Figs. 14a–c).

There were 12 tornado events as well as a number of severe

wind and large hail reports during 2300 UTC 1 May to

0200 UTC 2 May 2018. Figure 15 shows the probability swaths

of the model-simulated 2–5-km updraft helicity (UH) greater

than 60m2 s22 in the 3-h forecast beginning at 2300 UTC for

four experiments, overlaid by the severe weather reports from

NWS during that period. This UH value is similar to the in-

tensity thresholds used in previous studies (Skinner et al. 2018;

Jones et al. 2018). With conventional observations and CWP

data assimilated, CTRL is able to predict storm tracks over-

lapping with most of the severe weather events (Fig. 15a).With

additional GLM data assimilated (GLM), three high-probability

swaths, associated with convective cells 1, 2, and 3 become clearer

with probability exceeding 90% (Fig. 15b). However, both

CTRL and GLM miss the tornado over the border between

Kansas and Oklahoma and several hail events to north of that

tornado. There is also notable spatial displacement error be-

tween the high-probability swaths and the observed events in

these two experiments. As expected, assimilating radar data

FIG. 14. The 3-h accumulated precipitation (mm) from Stage IV multisensor precipitation products and from forecasts beginning at

2300 UTC 1 May 2018 for experiments CTRL, GLM, RAD, and RAD1GLM.
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(RAD and RAD1GLM) significantly improves the forecast

skill of tornadic potential (Figs. 15c,d). Specifically, the three

high-probability swaths overlay the observed tornadoes over

the northern portions of Kansas quite well. The RAD1GLM

experiment slightly outperforms RAD experiment by ex-

hibiting a short low-probability (.0.3) swath over the border of

Kansas and Oklahoma, where one tornado and several hail

events occurred.

The impact of GLM FED assimilation on the short-term

forecast is further evaluated by objective methods to supple-

ment the above subjective verification. In additional to ETS,

aggregate forecast metrics, including POD, CSI, FAR, SR, and

the frequency bias are computed for the composite reflectivity

and hourly accumulated precipitation relative to observations

over seven separate 3-h forecasts in each experiment. These

additional metrics are displayed on a performance diagram.

Overall, assimilating GLM FED or radar data greatly im-

proves the ETS for CREF compared to CTRL (Fig. 16a). The

GLM and RAD experiments consistently improve the ETS for

CREF by about 0.1 and 0.25 relative to CTRL, respectively

(Fig. 16a). The RAD1GLM generates a slightly but consis-

tently better performance than RAD. Correspondingly, the

performance diagram indicates higher POD, lower FAR and

the resultant higher CSI in GLM, RAD, and RAD1GLM

relative to CTRL throughout the entire 3-h forecast period

(Fig. 16c). Specifically, CTRL has a CSI value lower than 0.4

and a slightly low (,1) frequency bias for the first forecast

hour. GLM increases the CSI up to ;0.6. Assimilating GLM

FED into CTRL has little effect on the bias, which is a result of

approximately equally increased POD and SR. Overall, CTRL

and GLM both have quite good bias. Assimilating radar data

(RAD, RAD1GLM) substantially outperforms CTRL and

GLM. In addition to notably increasing the values of POD, SR

and CSI (;0.8 for the first hour), radar DA is likely to change

the bias for the first forecast hour from under forecasting to

over forecasting. This indicates that radarDA tends to increase

POD more than increase SR, which is probably due to the

convection introduced by assimilating a large number of radar

observations. Meanwhile, RAD1GLM creates a 3-h forecast

with the highest CSI, which is contributed by a highest POD

and a lowest FAR.

Hourly accumulated precipitation results (with a threshold

of 10mm) are presented in Figs. 16b and 16d. Overall, the re-

sults are consistent with those from CREF. RAD1GLM per-

forms only slightly better than RAD, in terms of a slightly

higher ETS, a higher POD, SR, and CSI. GLM produces an

ETS about 0.1 higher relative to CTRL while RAD produces

an ETS about 0.3 higher. The performance diagram shows that

the precipitation from CTRL has a dry bias in the first forecast

hour, then the frequency bias gradually increases to;1.0 in the

following two hours (Fig. 16d). GLM produces higher POD,

SR, and CSI compared to CTRL, and generally maintains the

same bias as CTRL.RADproduces nearly unbiased precipitation

with higher POD, SR and CSI. Once again, RAD1GLM slightly

outperforms RAD.

2) CASE 20 MAY 2019

The observation-space diagnostic statistics of FED for 20 May

show that the CR decreases and becomes constant faster

in RAD1GLM than in the GLM experiments for this case

(Figs. 3f,j). Radar DA again spins the storms up faster so that

RMSI in RAD1GLM grows more rapidly and is larger than

GLM. The severe weather events were most active during 2100

to 0000 UTC as reported by NWS. Due to the incomplete

MRMS CREF observation between 2130 and 2330 UTC,

however, the PMM CREF from the analysis at 0000 UTC

21 May 2019 and the corresponding 1-h forecast in each ex-

periment are compared to the MRMS observation in Fig. 17.

Experiments RAD and RAD1GLM both well capture the

entire MCS structure including the severe leading line and the

associated stratiform area (Figs. 17d,e). Specifically, radar DA

is able to enhance the analyzed reflectivity in both the strati-

form and convective areas, while additional GLM DA modu-

lates the reflectivity field to be slightly more consistent with the

observation in intensity (Figs. 17a,d,e). For the 1-h forecast,

severe supercells in both CTRL and GLM are less organized

as a line through Oklahoma, and convection in CTRL is still

more intense than the observation while GLM produces slightly

weaker convection than CTRL (Figs. 17f–h). Correspondingly,

CTRL slightly overpredicts the precipitation in central

FIG. 15. Probability of simulated 2–5-km updraft helicity greater

than 60m2 s22 within the 3-h forecast period beginning at 2300 UTC

1 May 2018 for experiments CTRL, GLM, RAD, and RAD1GLM.

Blue circles represent severe wind reports, green squares represent

large hail reports, and black triangles represent tornado reports

during the 3-h forecast period.
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Oklahoma while GLM underpredicts it (Figs. 18a–c). The

size and the detailed structure of the MCS in RAD and

RAD1GLM from the analyses are more like the observations

and generally outperform the no-radar experiments (Figs. 17a–

e). However, as the forecast continues, RAD andRAD1GLM

produce excessive convection (Figs. 17f–j), resulting in over-

predicted 3-h accumulated precipitation (Figs. 18d,e).

The probability of the model-simulated strong midlevel

UH in the 3-h forecast initiated at 2100 UTC for this case is

presented in Fig. 19, overlaid by a number of reported se-

vere weather events including 16 tornadoes. The four ex-

periments all capture the overall high-probability swaths of

severe weather extending from the southwest to the north-

east of the domain. The severe weather events in western

Texas are the most poorly predicted with a large displace-

ment error. In general, CTRL performs well but misses

the tornado reports near the border between Kansas and

Missouri and the tornadoes in Texas (Fig. 19a). Compared

to CTRL, GLM is able to produce a moderate-probability

(about 0.4) swath near the tornado reports on the border

between Kansas and Missouri (Fig. 19b). As expected, as-

similating radar data (RAD) remarkably increases the

probability in regions overlaid by severe weather events

(Fig. 19c). RAD also adds a high-probability swath near to,

but south of the tornado in southwestern Oklahoma. A

primary improvement of RAD1GLM compared to RAD

is a substantial increase in the UH probability crossing the

Kansas–Missouri border.

FIG. 16. (a),(b) Aggregate equitable threat score (ETS) and (c),(d) performance diagram of composite re-

flectivity greater than 40 dBZ relative to (left) the MRMS observations and (right) hourly accumulated precipi-

tation greater than 10mm relative to the Stage IV multisensor precipitation analyses over seven 3-h forecast

periods of each experiment for 1 May 2018. The neighborhood radius is 15 km. Score metrics in the performance

diagrams are averaged in the first, second, and third forecast hours. The shaded areas denote the ETS affected by

missing MRMS observations.
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The ETS time series and the performance diagram for

CREF and precipitation prediction for 20 May 2019 are

presented in Fig. 20. For CREF, both the ETS and the

performance diagram show that CTRL has very similar

performance in the first-, the second- and the third-forecast

hour (Figs. 20a,c). GLM shares comparable CSI with CTRL in

the first forecast hour, but with a lower POD, a higher SR and

smaller bias (Fig. 20c). In the following two hours, lower POD

and SR make GLM perform worse than CTRL. The experi-

ments with radar assimilated (RAD, RAD1GLM) once again

have a higher ETS than both CTRL and GLM throughout the

3 forecast hours, but the ETS values decrease faster than in

CTRL (particularly in the first hour). Specifically, the differ-

ence between the ETS of RAD and CTRL gradually decreases

from 0.2 at the beginning to 0.05 at the end. In terms of the

contingency metrics, RAD and RAD1GLM have notably

FIG. 17. As in Fig. 12, but for the analyses and 1-h forecasts initiated at 0000 UTC 21 May 2019.

FIG. 18. As in Fig. 14 (accumulated precipitation), but for the forecasts initiated at 0000 UTC 21 May 2019.
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higher POD, SR and CSI than GLM and CTRL. Again,

RAD1GLM performs slightly better than RAD.

For the precipitation forecast in the case 20 May 2019, exper-

iment GLM performs worst with the lowest ETS for the second

and the third hour forecastwhileRADandRAD1GLMperform

much better with ETS at least 0.2 higher than that of CTRL

(Fig. 20b). Both the ETS and the performance diagram show

that CTRL has a very stable forecast skill through the 3 fore-

cast hours (Figs. 20b,d). Though GLM has a similar CSI with

CTRL in the first hour forecast, it had a larger dry bias with bias

frequency value of ;0.8. In the following two hours, experiment

GLMshows lower POD, SR, andCSI relative toCTRL.RADand

RAD1GLM performs very similar and both better than CTRL

and GLM. RAD1GLM keeps slightly better performance than

RAD in the three forecast hours. The positive impact of GLMDA

inRAD1GLMis likely because the radar observations overwhelm

the negative impact of the anomalously low FED observations.

In summary, compared to GLM FED data, assimilating ra-

dar data improves the forecast skill more substantially for

both selected storms by reducing storm displacement error,

better capturing and predicting the intensity and structure of

thunderstorms, the associated accumulated precipitation, and

the high-rotation tracks. This is an expected result given the

higher density of radar observations, which provide direct wind

and hydrometeor information. The assimilation of GLM data

only, however, could obtain about 50% of the improvement of

radar data in one case based on the ETS values (Figs. 16a,b),

which is encouraging, given that the assimilated 2D GLM data

are much sparser than radar data. With radar data assimilated,

adding GLM data could also slightly improve the forecasts of

both the supercell case and the MCS case.

4. Summary and conclusions

The GOES-R GLM instrument detects total lightning rate

at high temporal and spatial resolution (8–12km) over the

Americas and adjacent oceanic regions. The GLM observations

provide detection and monitoring of deep electrified convection,

which has the potential to fill the gaps of the ground-based net-

work in mountainous and ocean regions. This study assimilates

FED derived from GLM flash data into WoFS using the EnKF

DA technique for two severe convection events, one with a line of

individual supercells and the other onewith severe convective and

trailing stratiform areas.

FIG. 19. As in Fig. 15 (updraft helicity probability), but for the forecasts initiated at 2100 UTC 20 May 2019.
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ACTRL experiment solely assimilates conventional surface

observations and geostationary satellite CWP. Additionally, a

set of experiments assimilating GLM FED into CTRL are

conducted to evaluate different DA configurations. In general,

assimilating GLM FED produces FED analyses more consis-

tent with the observation. However, the impact on the 3-h

forecasts of composite reflectivity and precipitation are dif-

ferent between the two severe storm events. For the case with

multiple individual supercells, experiment GLM_5min, which

assimilates 5-min average GLM FED and applies additive

noise to high-FED regions, substantially improves the forecast

skill by better capturing the size, the intensity, and the tracks of

supercells. For the MCS case consisting of deep electrified

convection, nonintense convection and trailing stratiform re-

gions, the GLM FED is unexpectedly low in the southwestern

parts of the domain, apparently due to low GLM DE. While

assimilating zero GLM FED values over stratiform regions

without radar data suppresses the development of the MCS and

greatly degrades the forecast despite the improvement in the

analyzed FED and CREF field, assimilating the abnormally

low GLM FED further harms the forecasts. The cold pools are

weakened from assimilating low FED values and are less able

to maintain reasonable convection. Nevertheless, UH proba-

bilities are still enhanced by GLM where severe events oc-

curred in the northeastern part of the domain.

The potential value of assimilating GLM FED observations

together with radar data is also evaluated with two more ex-

periments, one assimilating radar data and the other one

assimilating a combination of radar data and GLM data.

Assimilating GLM FED data in addition to radar data slightly

outperforms the radar-only experiment in predicting compos-

ite reflectivity, accumulated precipitation, and rotation tracks

in both two cases. Improvement in the analyzed fields and the

subsequent short-term forecasts contributed by radar DA is

more notable than assimilating GLM data alone. This result is

expected from the higher information content of 3D radar

reflectivity and radial velocity data compared to 2D GLM.

While the results in this paper indicate a positive impact of

assimilating lightning observations together with radar data,

more cases should be evaluated in the future to find an optimal

FIG. 20. As in Fig. 16, but for 20 May 2019 event.
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way to combine the lightning data with the radar data. The

opposite impact of GLM FED DA in one case with and

without assimilating dense radar data indicates a need to better

understand and account for variations in GLM detection effi-

ciency. Given that only two severe storm events in the locations

with dense radar coverage are tested in this work, future work

should expand case studies to regions with sparse radar cov-

erage, e.g., the western CONUS and over sea, and over a va-

riety of storm types, e.g., southwest monsoon thunderstorms

and landfalling tropical cyclones. Additional future work could

explore advanced observation operators considering different

storm types by building statistics between GLM observations

and WoFS forecasts. Calibration and quality control of GLM

data before assimilation would also be necessary given the

detection efficiency issues.
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