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ABSTRACT

A hybrid parallel scheme for the ensemble square root filter (EnSRF) suitable for parallel assimilation of

multiscale observations, including those from dense observational networks such as those of radar, is de-

veloped based on the domain decomposition strategy. The scheme handles internode communication through

a message passing interface (MPI) and the communication within shared-memory nodes via Open Multi-

processing (OpenMP) threads. It also supports pure MPI and pure OpenMPmodes. The parallel framework

can accommodate high-volume remote-sensed radar (or satellite) observations as well as conventional ob-

servations that usually have larger covariance localization radii.

The performance of the parallel algorithm has been tested with simulated and real radar data. The parallel

program shows good scalability in pure MPI and hybrid MPI–OpenMP modes, while pure OpenMP runs

exhibit limited scalability on a symmetric shared-memory system. It is found that inMPImode, better parallel

performance is achieved with domain decomposition configurations in which the leading dimension of the

state variable arrays is larger, because this configuration allows for more efficient memory access. Given

a fixed amount of computing resources, the hybrid parallel mode is preferred to pure MPI mode on super-

computers with nodes containing shared-memory cores. The overall performance is also affected by factors

such as the cache size, memory bandwidth, and the networking topology. Tests with a real data case with

a large number of radars confirm that the parallel data assimilation can be done on amulticore supercomputer

with a significant speedup compared to the serial data assimilation algorithm.

1. Introduction

With significant advances in computing power in re-

cent years, advanced data assimilation (DA) techniques,

such as the ensemble Kalman filter (EnKF) (Evensen

1994; Evensen and van Leeuwen 1996; Burgers et al.

1998; Houtekamer and Mitchell 1998; Anderson 2001;

Bishop et al. 2001; Whitaker and Hamill 2002; Evensen

2003; Tippett et al. 2003) and four-dimensional varia-

tional data assimilation (4DVAR) (e.g., Le Dimet and

Talagrand 1986; Courtier and Talagrand 1987; Sun and

Crook 1997; Gao et al. 1998; Wu et al. 2000; Caya et al.

2005), are becoming more popular in both operational

and research communities. However, they both incur a

high computational cost, one of the biggest constraints

for their operational applications at very high resolu-

tions. Between EnKF and 4DVAR, the EnKF method

appears to be more attractive for convective-scale nu-

merical weather prediction (NWP), where nonlinear

physical processes have critical roles. EnKF can also

provide a natural set of initial conditions for ensemble

forecasting. EnKF has been applied at scales ranging

from global to convective and has produced encouraging

results (e.g., Snyder and Zhang 2003; Dowell et al. 2004;

Tong and Xue 2005, hereafter TX05; Xue et al. 2006;

Jung et al. 2008; Buehner et al. 2010; Dowell et al. 2011;

Hamill et al. 2011; Snook et al. 2011; Jung et al. 2012).

Among variants of EnKF, the ensemble square root

Kalman filter (EnSRF) ofWhitaker andHamill (2002) is
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widely used in convective-scale DA studies involving

radar data. The EnSRF, as well as the similar ensemble

adjustmentKalman filter (EAKF;Anderson 2003) and the

classic perturbed-observation EnKF algorithm (Evensen

2003), is an observation-space-based algorithm in which

observations are assimilated one after another. Because

of the sequential nature of the EnSRF (and EAKF and

classic EnKF), parallelization of the algorithm at the

observation level is not straightforward. It is possible to

parallelize at the state variable level, that is, to perform

the updating of the state variables in parallel because

each observation updates many state variables within

the covariance localization radius of the EnSRF, and

these operations are independent. Such parallelization

can be easily achieved on shared-memory platforms

via Open Multiprocessing (OpenMP) directives, and is

done with the Advanced Regional Prediction System

(ARPS; Xue et al. 2003) EnSRF system (e.g., Xue et al.

2006; Jung et al. 2008). A processing element (PE) on

a shared-memory or distributed-memory platform is

an individual processor with single-core processors or

a processor core on multicore CPUs. Each PE generally

supports only a single process or a single thread. The

number of PEs available on shared-memory nodes [the

term ‘‘processing unit’’ (PU), will be used to refer to a

shared-memory node] usually limits the scale of shared-

memory parallelization (SMP) and the number of state

variables that can be updated simultaneously. Distributed-

memory parallelization (DMP) via the message passing

interface (MPI) library would allow the use of much

larger computers, which are essential for very high-

resolutionDA and NWP over large domains (Xue et al.

2007).

Anderson and Collins (2007, hereafter AC07) pro-

posed a modification to the standard EAKF algorithm

that is also applicable to EnSRF. In their algorithm,

multiple observation priors (background converted to

observed quantities via observation operators) are first

calculated in parallel, and the observation priors corre-

sponding to as-yet unused observations are updated by

the filter together with the state vector, allowing easier

parallelization at the state vector level (for a given ob-

servation, multiple elements in the state vector are up-

dated in parallel). However, its state update procedure

requires broadcasting the observation priors from one

PU to the rest—andmore importantly, the processing of

observations is still serial. Because of this, the algorithm

does not scale well when the number of PUs increases

to the point where the cost of communication starts to

dominate or when the ratio of the number of observa-

tions to that of state variables is large. Other parallel

approaches have also been proposed by Keppenne and

Rienecker (2002) and Zhang et al. (2005). While both

methods utilize domain decomposition, they differ in

whether communication among PUs is allowed. Because

there is no cross-PU communication in the algorithm of

Zhang et al. (2005), the analysis near the PU boundaries

is not the same as that of scalar implementation, which

is a potentially serious drawback of their algorithm.

Keppenne andRienecker (2002), on the other hand, allow

observations in other PUs to update the states in the cur-

rent PU, but their communication cost is potentially very

high because message passing is executed many times to

properly exchange information among PUs.

In this paper, we develop a new parallelization algo-

rithm for EnSRF (also suitable for other similar serial

ensemble filters) that is especially suitable for dense

observations that typically use relatively small horizon-

tal covariance localization radii. Most NWP models,

including the ARPS and the Weather Research and

Forecasting (WRF) model, use horizontal domain de-

composition for effective parallelization (Sathye et al.

1997;Michalakes et al. 2004). A domain-decomposition-

based parallel DA strategy is attractive because it can

share much of the parallelization infrastructure with

the prediction model. If the DA system and prediction

model use the same number and configuration of sub-

domains, then the transfer ofmodel grids between the two

systems will be more straightforward either through disk

or within computer memory. Furthermore, with typical

ensemble DA systems, the state arrays are usually moved

between the prediction model and DA system through

disk input/output (I/O)within theDA cycles; such I/O can

take more than half of the total wall-clock time within

each cycle (Szunyogh et al. 2008), making high-frequency

assimilation of observations on large, high-resolution

grids prohibitively expensive. Our eventual goal is to

achieve data exchange through message passing within

computer memory, bypassing disk I/O altogether; adopt-

ing a domain decomposition parallelization strategywould

simplify this process. Finally, the domain decomposition

strategy makes grid-based calculations within the DA

system, such as spatial interpolation, easier.

The domain-decomposition-based strategy we pro-

pose takes advantage of the relatively small localization

radii typically used by very dense observations within

ensemble algorithms, because observations that do not

influence state variables at the same grid points can be

processed in parallel. More sparse conventional obser-

vations tend to require larger localization radii (Dong

et al. 2011) and are therefore more difficult to process in

parallel. In this case, a strategy similar to that of AC07 is

taken, in which observations are processed serially but

still using the same decomposed domains. Paralleliza-

tion can be achieved at the state variable level in the

case; in other words, different parallelization strategies
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can be used in combination, taking advantage of the

serial nature of the ensemble algorithms. Note that this

approach scales well only for observations whose lo-

calization radius is large enough to impact most of the

grid points in the model domain, unless additional steps

are taken to balance the load, as in AC07.

In addition to domain-decomposition-based paralle-

lization, we also want to take advantage of SMP capa-

bilities of multicore compute nodes that are available on

essentially all large parallel systems of today. SMP among

cores on the same node eliminates explicit data transport

among the cores, thus reducing communication costs

and contention for interconnect ports. By performing

domain decomposition for the nodes while parallelizing

across the PEs (e.g., cores) on the same PUs (e.g.,

nodes), the decomposed domains can be larger relative

to the localization radii, increasing the chance that ob-

servations on different decomposed domains can be

processed independently.

For the EnSRF algorithm, SMP is easily achieved at

the state variable level, because each observation will

need to update all state variables within its localization

radius, and these update operations are independent.

Thus, the state variable update can be parallelized using

OpenMP directives applied to the loops over the state

variables. The combination of MPI and OpenMP strat-

egies gives hybrid parallelization. This paper describes

a hybrid parallel scheme implemented for the ARPS

EnSRF system. In addition, observation data are orga-

nized into batches to improve the load balance when

assimilating data from a number of radars.

This paper is organized as follows. Section 2 reviews

the EnSRF formulation and briefly describes the ARPS

model used in timing experiments. Section 3 introduces

the parallel algorithms for high-density radar data and

conventional observations separately. It also describes

the OpenMP–MPI hybrid strategy as well as the obser-

vation organization. Validation of the parallel implemen-

tation and its performance are examined in section 4. A

summary and conclusions are presented in section 5.

2. The ARPS ensemble DA system

The ARPS (Xue et al. 2000, 2001, 2003) model is a

general purpose multiscale prediction system in the

public domain. It has a nonhydrostatic, fully compressible

dynamic core formulated in generalized terrain-following

coordinates. It employs the domain decomposition strat-

egy in the horizontal for massively parallel computers

(Sathye et al. 1997; Xue et al. 2007), and it has been tested

through real-time forecasts at convection-permitting and

convection-resolving resolutions for many years (e.g., Xue

et al. 1996), including forecasts in continental United

States (CONUS scale) domains at 4- and 1-km grid

spacing (e.g., Xue et al. 2011), assimilating data from all

radars in the Weather Surveillance Radar-1988 Doppler

(WSR-88D) radar network using a 3DVAR method.

As mentioned earlier, the current ARPS EnKF DA

system (Xue et al. 2006) is primarily based on the EnSRF

algorithm of Whitaker and Hamill (2002). In addition,

an asynchronous (Sakov et al. 2010) four-dimensional

EnSRF (Wang et al. 2013) has also been implemented.

The system includes capabilities for parameter estimation

(Tong and Xue 2008), dual-polarimetric radar data as-

similation (Jung et al. 2008), simultaneous reflectivity

attenuation correction (Xue et al. 2009), and the ability

to handle a variety of data sources (Dong et al. 2011).

Additionally, it has been coupled with a double-moment

microphysics scheme (Xue et al. 2010; Jung et al. 2012).

To be able to apply this system to large convection-

resolving domains, such as those used by ARPS 3DVAR

for continental-scale applications (e.g., Xue et al. 2011),

and to be able to assimilate frequent, high-volume

observations, efficient parallelization of the system is

essential.

Briefly, in EnSRF, the ensemble mean and ensemble

deviations are updated separately. The analysis equations

for the ensemble mean state vector x and the ensemble

deviations x0i are, respectively,

xa5 xb 1 roK[yo 2H(xb)] , (1)

x0i
a5b(I2aroKH)x0i

b , (2)

where K is the Kalman gain and yo is the observation

vector. Subscript i denotes the ensemble member and

ranges from 1 toN, withN being the ensemble size;H is

the forward observation operator that projects state

variables to observed quantities, which can be nonlinear.

Symbol 8 in the equations represents the Schur (ele-

mentwise) product and r is the localization matrix,

containing localization coefficients that are typically

functions of the distance between the observation being

processed and the state variable being updated. The

analysis background xb projected into observation space,

that is,H(xb), is called the observation prior. Superscripts

a, b, and o denote analysis, background, and observa-

tion, respectively. State vector x includes in our case the

gridpoint values of the three wind components (u, y, w),

potential temperature (u), pressure (p), the mixing ratios

of water vapor (qy), cloudwater (qc), rainwater (qr), cloud

ice (qi), snow (qs), and hail (qh). When a two-moment

microphysics parameterization scheme is used, the total

number concentrations for the five water and ice spe-

cies are also part of the state vector (Xue et al. 2010).

Background state vectors xb and x0bi are either forecasts
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from the previous assimilation cycle or the states up-

dated by observations processed prior to the current

one. The parameter b is the covariance inflation factor.

Variable a is a factor in the square root algorithm de-

rived by Whitaker and Hamill (2002):

a5

�
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R(HPbHT 1R)21

q �21

. (3)

Here, R is the observation error covariance matrix, Pb is

the background error covariance matrix, and H is the

linearized observation operator. The Kalman gain ma-

trix K is given by

K5PbHT(HPbHT 1R)21 . (4)

In the above equation, matrices PbHT and HPbHT, rep-

resenting the background error covariance between the

state variables and observation priors, and that between

observation priors, respectively, are estimated from the

background ensemble, according to

PbHT 5
1

N2 1
�
N

i51

(xbi 2 xb)[H(xbi )2H(xb)]T , (5)

HPbHT 5
1

N2 1
�
N

i51

[H(xbi )2H(xb)][H(xbi )2H(xb)]T .

(6)

The overbars in Eqs. (5) and (6) denote the ensemble

mean. When a single observation is analyzed, PbHT be-

comes a vector having the length of the state vector x. In

practice, because of covariance localization, all elements

in PbHT are not calculated; those for grid points outside

the localization radius of a given observation are as-

sumed to be zero. In fact, it is this assumption thatmakes

the design of our parallel algorithm practical; observa-

tions whose domains of influence (as constrained by the

covariance localization radii) do not overlap can be an-

alyzed simultaneously. Another basic assumption with

this algorithm (and most atmospheric DA algorithms) is

that observation errors are uncorrelated, so that obser-

vations can be analyzed sequentially in any order. When

the observations are processed serially, one at a time,

the observation error covariance matrix R reduces to

a scalar, as does matrixHPbHT. In this case,HPbHT is the

background error variance at the observation point.

After an observation is analyzed based on Eqs. (1)–

(6), the analyzed ensemble states xai (i 5 1, . . . , N), the

sum of the ensemble mean and deviations, become the

new background states xbi for the next observation, and

the analysis is repeated until all observations at a given

time are analyzed. An ensemble of forecasts then pro-

ceeds from the analysis ensemble until the time of new

observation(s); at that time the analysis cycle is repeated.

3. The parallel algorithm for EnSRF

For convective-scale weather, Doppler weather radar

is one of the most important observing platforms. The

U.S. National Weather Service (NWS) operates a net-

work of over 150 WSR-88D radars that continuously

scan the atmosphere, at a rate of one full volume scan

every 5–10 min, producing radial velocity and reflectivity

data. One volume scan in precipitation mode typically

contains 14 elevations with approximately several million

observations every 5 min.

The number of conventional observations, such as

surface station measurements, upper-air soundings, and

wind profiler winds, is small compared to radar obser-

vations; because the observations typically represent

weather phenomena of larger scales, their assimilation

in EnKF typically uses larger covariance localization

radii, and therefore their influence reaches larger dis-

tances (Dong et al. 2011). Because of the different

characteristics of each data type, different parallel

strategies are employed for conventional and radar data.

a. The parallel algorithm for high-density
observations with small covariance
localization radii

The algorithm partitions the entire analysis domain

into subdomains defined by the number of participating

MPI processes in the horizontal x and y directions. No

decomposition is performed in the vertical direction;

therefore, state variables are always complete in the

vertical columns. High-density radar observations (and

other high-resolution observations including those of

satellite) are distributed to each subdomain according to

their physical locations. Figure 1 illustrates an analysis

domain that is partitioned into four physical subdomains

horizontally, to be handled by four PUs in the comput-

ing system. Each computational domain is composed of

the physical subdomain (in darker gray for P1, separated

with thick solid lines) and extended boundary ‘‘halo’’

zones surrounding the physical subdomain (in light gray

for P1, bounded by thin lines); the physical domain and

the boundary halo zones combined together are called

computational subdomains. The width of the extended

boundary halo zone for theDA system is typically larger

than the halo zone or ‘‘ghost cells’’ needed for boundary

condition exchanges in parallel NWP models based on

domain decomposition (e.g., Sathye et al. 1997). The

width of the halo zone in the ARPS model, for example,

is only one grid interval on each boundary.
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The extended boundary zone on each side must be at

least as wide as the maximum localization radius (R) of

observations handled by the algorithm in the sub-

domain. For radar observations, R is usually equal to

a few grid intervals. Each physical subdomain is further

divided into four patches that are separated by bold

dashed lines in Fig. 1, and these patches are labeled S1,

S2, S3 and S4, respectively. The horizontal width of

patch S2 and the vertical height of patch S3 must be at

least 2R. The rest of the physical domain is assigned to

patches S1 and S4 as in Fig. 1, and their horizontal width

and height also must be at least 2R. Thus, the width of

the physical subdomain must be larger than 4R for the

algorithm to work. All other subdomains in Fig. 1 are

divided following the same patch pattern. Such a patch

division assures that patches with the same label in ad-

jacent subdomains are at least 2R apart, so observations

in any one patch do not affect grid points in the same

patch on other PUs; thus, they can be analyzed in par-

allel. In other words, no two observations that are being

analyzed in parallel will influence the same grid point. In

practice, we want to make patch S1 as large as possible,

increasing the chance that any two observations can be

processed independently (see below). Thus, the width of

S2 and the height of S3 are assigned the minimum pos-

sible size of 2R (see Fig. 1), which leaves the majority of

the subdomain to patch S1.

The EnKFDA over the analysis domain is performed

in four sequential steps for observations within S1–S4. In

the first step, only observations within S1 on all PUs are

assimilated in parallel, while observations on each S1

patch are assimilated sequentially. Let P be the number

of PUs. Then, there can be at most P observations being

assimilated in parallel at any time. After all observations

located within S1 are assimilated, MPI communications

are required to properly update state variables at grid

points within the extended boundary zones that are

sharedwith neighboring PUs. The same procedure is then

repeated for observations within S2–S4 in steps 2–4.

The assimilation of observations within the same-

labeled patches from all PUs can be done in parallel

because 1) the grid points influenced by the observations

analyzed in parallel are separated far enough without

overlap; and 2) the ensemble state arrays are extended

beyond the physical subdomain, so that the influence on

state grids by observations within each subdomain can

be passed to its neighbor PUs with MPI communica-

tions. Best load balancing is realized if the same-labeled

patches contain the same number of observations, so

that all PUs can complete each analysis step in approx-

imately the same time. In practice, however, the number

of observations on each subdomain is usually different

because of uneven spatial distribution of observations

(and of observation types). One way to improve paral-

lelism is to make one patch (S1 in our system) as large as

possible, which increases the number of observations

that can be processed independently and improves the

load balance. Assimilation of observations on S2–S4

may not be well balanced. However, because they tend

to be smaller and contain fewer observations, their ef-

fect on the assimilation time tends to be small.

Since high-density observations, such as radar data,

usually assume relatively small localization radii, the

constraint that the width of the physical subdomain

should be at least 4R in each direction usually does not

become a major problem, especially when the DA do-

main is large. When a hybrid MPI–OpenMP paralleli-

zation strategy is used, this problem can be further

alleviated (see later). While the proposed algorithm is

valid for most meteorological observations that can

assume a small localization radius, certain ‘‘integral

observations,’’ such as radar reflectivity with path-

integrated attenuation effect (e.g., Xue et al. 2009) and

GPS slant-path water vapor (e.g., Liu and Xue 2006),

FIG. 1. A schematic of the domain decomposition strategy for the

analysis of high-density observations, illustrated with four PUs

(denoted by P1–P4). Letters i–l denote observations that are as-

sumed to be equally spaced, and letters a–h indicate the influence

limits (as determined by the covariance localization radii of EnKF)

of those observations. In this example, observations i and l are far

enough apart that they will not influence any of the same state

variables; they are among the observations that are analyzed si-

multaneously in the first step of the procedure. Observations j and

k are analyzed in the second step, but they must be analyzed se-

quentially. Note that in practice, there will be many more obser-

vations within patches S1 and S2 of subdomains P1–P4 than shown

in the figure.
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pose special challenges for the serial EnSRF algorithm

in general, since their observation operators are non-

local (Campbell et al. 2010).

b. The parallel algorithm for conventional
observations with large covariance
localization radii

Currently supported conventional observations in the

ARPS EnKF system include surface station, upper-air

sounding, wind profiler, and aircraft observations. Since

the covariance localization radii applied to these ob-

servations are usually large, the width of the extended

boundary zones described in section 3a would be im-

practical for these data, unless the decomposed sub-

domains aremuch larger than the localization radii. This

is usually only true when a small number of subdomains

is used. Therefore, we design and implement an alter-

native algorithm for this type of observations. Because

the number of conventional (or any other coarse reso-

lution) observations is typically much smaller than the

number of (dense) radar observations, we can afford to

process the observations serially while trying to achieve

parallelism at the state variable level, similar to the

strategy taken by AC07.

In our current implementation, conventional obser-

vations within the entire analysis domain are broadcast

to all PUs and assimilated one by one. Only the PU

containing the observation to be analyzed computes the

observation prior; it then broadcasts the observation

prior ensemble, H(xi), to all other PUs. The state vari-

ables within the covariance localization radius of this

observation are updated simultaneously on each PU

that carries the state variables (Fig. 2). Since we do not

need extra boundary zones, state variable updating oc-

curs within the computational subdomains of the original

NWP model. However, a set of MPI communications

betweenPUs is still needed right after the analysis of each

observation to update the state variables within the halo

zone to facilitate the spatial interpolation involved in

observation operators. These steps are repeated until all

observations are assimilated.

Our current implementation does not precalculate or

update H(x) as part of the extended state vector as

AC07 does, and we use a regular domain decomposition

strategy to distribute the state variables across the PUs.

This implementation will have load balance issues for

conventional observations, especially when the covariance

localization radii of these observations are small relative

to the size of the entire model domain. AC07 mitigates

this problem by distributing the state variables across PUs

as heterogeneously as possible, that is, by distributing

neighboring grid points across as many PUs as possible.

Such an irregular distribution of state variables makes it

difficult to implement gridpoint-based treatments within

the EnKF algorithms. TheH(x) precalculation and update

strategy employed by AC07 allows simultaneous calcula-

tion of observation priors. This can be an option in a future

implementation; in fact, the 4D EnSRF algorithm im-

plemented by Wang et al. (2013) employs this strategy.

c. Hybrid MPI–OpenMP parallelization

All current supercomputers use compute nodes with

multiple shared-memory cores. The originalARPSEnSRF

code supports OpenMP parallelization via explicit loop-

level directives at the state variable update level (Xue et al.

2006). Thus, it is straightforward to employ a hybrid

technique, using SMP among cores on the same node and

DMP via MPI across nodes. Doing so can reduce explicit

data communication within nodes and allow for larger S1

patches within the decomposed domains on each PU (see

Fig. 1). Our hybrid implementation is designed such that

each MPI process spawns multiple threads. Since message

passing calls are outside of the OpenMP parallel sections,

they are parallel thread safe, that is, only themaster thread

in a processmakes calls toMPI routines. Thefinal program

is flexible enough to run in MPI only, OpenMP only, or in

MPI–OpenMP hybrid modes, on a single-node worksta-

tion or on supercomputers made up of multiple nodes.

d. Parallel strategy for assimilating data
from multiple radars

In the ARPS EnKF system, full-resolution radar ob-

servations in the radar coordinates are usually mapped

horizontally to the model grid columns during

FIG. 2. A schematic for analyzing conventional data. Three steps

are involved when analyzing one observation whose location is

denoted by a black dot in the figure: 1) PU14 computes H(xi)
(where i is the ensemble index), 2) H(xi) are broadcasted to all

PUs, and 3) state variables xi within the influence range of this

observation (within the large circle) are updated in parallel by the

PUs that carry the state variables.
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preprocessing (Brewster et al. 2005). The original ARPS

EnSRF implementation processes data from one radar

at a time, sequentially. This is convenient because the

data are stored in arrays for individual radars on ele-

vation levels (Xue et al. 2006). For data from the same

radar, only a few parameters are needed to describe

the radar characteristics. However, because each radar

typically covers only a portion of the model domain, this

procedure severely limits the scalability of the analysis

system because of load imbalances (see Fig. 3). Figure 3a

illustrates a domain that contains six radars labeledA–F.

If this domain is decomposed into four subdomains, then

all PUs, except P1, will be idle when data from radar A

are assimilated. The same is true for radars B–F. To

mitigate this problem, we develop a procedure that

merges radar data into composite sets or batches so that

data from multiple radars can be processed at the same

time.

In the analysis program, all vertical levels of radar

observations at each horizontal grid location are stored

continuously as a vector column. The most general ap-

proach is to store all columns of radar data in a single

dynamically allocated storage array or data structure

while keeping track of the radar characteristics asso-

ciated with each column. Each column may contain

different numbers of available radar elevations. When

overlapping coverage exists, the grid columns covered

by multiple radars will have multiple columns of data

(see Fig. 3a). To keep track of data in reference to the

analysis grid, it is convenient to define arrays that have

the same dimensions as the model grid in the horizontal

directions, but such arrays will only be able to store no

FIG. 3. Composite radar data batches organized such that within each batch, no more than one column of data exists for each grid

column. (a) Observations from six radars (A–F) with their coverage indicated by themaximum range circles are remapped onto themodel

grid. (b) Observations of the first batch. (c) Observations of the second batch. (d) Observations of the third batch. If there are more

observations unaccounted for, then additional data batch(es) will be formed.
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more than one column of data at each grid location

unless the last dimension is defined dynamically or pre-

defined to be large enough. While for optimally tuned

EnKF the order in which observations are assimilated

should not matter, in practice, because the ensemble

spread can be reduced too much by observations pro-

cessed earlier before covariance inflation is applied, the

order of observation processing sometimes does matter

somewhat. For this reason, we group the radar data into

several batches, the number of which is no bigger than

the maximum number of radars covering the same spot

anywhere in the analysis domain. For a radar network

that is designed to maximize spatial coverage, such as the

WSR-88D radar network, this maximum is usually a sin-

gle digit number; that is, anywhere in the network, fewer

than 10 radars observe the same column.

Figure 3 shows the spatial coverage of three batches of

data that add up to all the columns of data available;

those three batches of observations will be processed in

sequence. Within regions having multiple radar cover-

age, the radar from which data will be first picked can be

chosen randomly or based on the order the data were

input into the program. Alternatively, the data columns

from the closest radar can be picked first. The last option

is more desirable, as it removes the randomness of the

algorithm. Finally, because the radar data are no longer

organized according to radar, additional two-dimensional

arrays are needed to store parameters for each data col-

umn. When only a few elevations within a radar volume

scan are analyzed using short (e.g., 1–2 min) assimilation

cycles, the vertical dimension of the arrays storing the

composite datasets need only to be a few.

With the above-mentioned implementation, the load

balance is significantly improved for the first composite

dataset. It should be noted that we usually assimilate

reflectivity data even in precipitation-free regions, which

has the benefit of suppressing spurious storms (TX05).

We note that load imbalance does still exist with radial

velocity data in the first group, since they are usually only

available in precipitation regions; however, their num-

bers are usually much smaller than the total number of

reflectivity data. In addition, load imbalances usually

exist with the second group of data and above, but again

the volume of data in these groups is small since they

only exist in overlapping regions, and these regions are

usually spread over the assimilation domain.

4. Algorithm verification and performance analysis

a. Verification of the parallelized code

The domain partition and batch processing inevitably

change the sequence of observations being assimilated

in the EnKF system. Theoretically, the order in which

the observations are processed does not matter for ob-

servations with uncorrelated errors, to the extent that

sampling error does not impact the results. In practice,

the analysis results may differ significantly if the filter is

not properly tuned, where the tuning typically includes

covariance inflation and localization.

A set of experiments has been performed to in-

vestigate the effect of domain decomposition on the

analysis of simulated radar observations in an observing

system simulation experiment (OSSE) framework.

Convective storms are triggered by five 4-K ellipsoidal

thermal bubbles with a 60-km horizontal radius and a

4-km vertical radius in an environment defined by the

20May 1977DelCity,Oklahoma, supercell sounding (Ray

et al. 1981). The model domain is 300 3 200 3 16 km3

with horizontal and vertical grid spacings of 1 km and

500 m, respectively. Forty ensemble members are initi-

ated at 3000 s of model time. The full state vector has

1.4 3 109 elements. Simulated radar observations from

three radars are produced, using the standardWSR-88D

volume coverage pattern (VCP) 11, which contains 14

elevation levels. The total number of observations is

approximately 6.7 3 105 from three volume scans span-

ning 5 min each. Radar DA is first performed at 5-min

intervals from 3300 to 5700 s, using the original serial

ARPS EnSRF code to provide an ensemble for sub-

sequent parallel assimilation tests. The Milbrandt and

Yau (2005) double-moment microphysics scheme is used

in both truth simulation and DA. The environment and

model configurations that are not described here can be

found in Xue et al. (2010).

Three parallel DA experiments are then performed at

6000 s, one running in pure MPI mode, one in pure

OpenMP mode, and one in pure OpenMP mode but

processing observations serially in a reversed order. These

experiments are referred to asMPI, OMP_F, andOMP_B

(F for forward and B for backward), respectively. For each

experiment, averageRMS errors for the state variables are

computed against the truth simulation at the grid points

where truth reflectivity is greater than 10 dBZ. The RMS

errors of MPI and OMP_B are normalized by the RMS

errors of OMP_F and shown in Fig. 4 for individual state

variables.Most of the normalized errors are very close to 1,

and all of them are between 0.95 and 1.05 forMPI. Among

the variables, the total number concentration for rainwater

shows the largest variability, probably because of the high

sensitivity of reflectivity to the raindrop size distribution. In

fact, the normalized error for rainwater number concen-

tration is an outlier for OMP_B, reaching close to 1.25,

much larger than the normalized error of about 1.05 for

MPI. These results suggest that the effect of the domain

partition on the analysis is small, and the differences are
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within the range of sampling uncertainties of the en-

semble system.

With respect to the parallel code implementation for

conventional data analysis, domain decomposition does

not change the sequence of the observation processing

(see section 3b). Therefore, identical results from ex-

periments OMP_F and MPI are guaranteed. The results

from the experiments when simulated surface observa-

tions are also included are not shown here.

b. Performance evaluation with OSSE experiments

The performance of our parallel EnKF system is eval-

uated with radar DA benchmark experiments on a Cray

XT5 system (called Kraken) at the National Institute for

Computational Sciences (NICS) at the University of

Tennessee, which has 9408 total compute nodes with 12

cores each (6 cores per processor, 2 processors per node),

giving a peak performance of 1.17 petaflops.With Kraken,

users can set the number of MPI processes per node (1–

12), the number ofMPI processes per processor (1–6), and

the number of cores (OpenMP threads) per MPI process

(1–12). A number of experiments with combinations of

different numbers of MPI processes, OpenMP threads,

cores per node, and cores per processor have been per-

formed to examine the timing performance of various

configurations. The same case described in section 4a is

used for benchmarking.

First, the scalability of theOpenMP implementation is

investigated as a reference. Since each Kraken node

contains only 12 cores, the maximum number of threads

that can be used for an OpenMP job is 12. The OpenMP

implementation shows scalability up to 8 cores (see

Table 1), beyond which the reduction in wall-clock time

becomes minimal. One very likely reason is the con-

tention accessing shared memory and cache by different

cores of the Opteron processors used.

To evaluate the performance of our MPI implementa-

tion, we ran several OpenMP and MPI experiments on

FIG. 4. RMS errors averaged over the grid points where truth reflectivity is .10 dBZ and

normalized by the errors of experiment OMP_F. The state variables are the 16 ARPS prog-

nostic variables (refer to text) and their respective number concentrations (Ntc,Ntr,Nti,Nts, and

Nth, associated with a two-moment microphysics scheme used).

TABLE 1. Timing comparisons of OpenMP experiments with

MPI experiments on one compute node. Speedup for OpenMP and

MPI experiments are computed relative to o1 and m01 3 01, re-

spectively.

Experiment

Total number

of cores used

Wall-clock

time (s) Speedup

o1 1 6310 1.00

o2 2 3617 1.75

o4 4 2597 2.43

o6 6 1919 3.29

o8 8 1597 3.95

o12 12 1607 3.93

m01 3 01 1 6815 1.00

m01 3 02 2 3994 1.71

m02 3 01 2 5698 1.20

m01 3 04 4 2660 2.56

m02 3 02 4 3690 1.85

m04 3 01 4 2896 2.35

m03 3 02 6 4177 1.63

m02 3 04 8 2100 3.25

m04 3 02 8 2413 2.82
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a single compute node. Table 1 lists the wall-clock times

and relative speedups for these experiments. The exper-

iment names follow the convention o(total cores used)

for OpenMP and m(nproc_x) 3 (nproc_y) for MPI ex-

periments, where nproc_x and nproc_y denote the num-

ber of PUs corresponding to the decomposed domains

in the x and y directions, respectively. Generally, the

OpenMP jobs perform better than their MPI counter-

parts using the same number of cores when running on

a single node because of the communication overhead

of MPI processes and possibly better load balance with

OpenMP. It is also noticed that the wall-clock time is

heavily influenced by the domain partitioning configura-

tion in the x and y directions. For example, m02 3 01

takes almost 1.4 times longer than m01 3 02, although

both use the same number of cores. Since FORTRAN

arrays are stored contiguously in the column-major order

in the computer memory, a run that has a smaller parti-

tion number in the x direction than the y direction (e.g.,

m01 3 02) is better at taking advantage of the spatial

locality of the data in memory. This can accelerate data

loading frommainmemory into cache and improve cache

reuse. Conversely, an inefficient partition can degrade the

performance even when more system resources are used.

For example, m033 02 using six cores has amuch smaller

speed improvement over m01 3 01 than experiments

using four cores or even some experiments using two

cores. These results suggest that finding the optimal do-

main decomposition is important in achieving the best

performance with the given system resources.

Table 2 shows performance data collected from pure

MPI runs, and from hybrid MPI–OpenMP experiments

that run on four Kraken nodes. All experiments are

named as follows: m(h)(nproc_x)3 (nproc_y)_(number

of processes per node) o(number of threads per pro-

cess), where m denotes MPI runs and h denotes hybrid

runs. For MPI runs, the number of threads per process is

always 1. Thus, o(number of threads per process) is

omitted from the notations for all MPI runs in Table 2.

Since each Kraken node contains two processors, the

processes on each node are distributed to those processors

as evenly as possible in order to obtain the best possible

performance.

It is found that the domain partitioning again plays an

important role in the DA system performance. For ex-

ample, experiments that use 20 cores in total on four

compute nodes show large variability in the execution

time. Among these experiments, m02 3 10_05 has the

best performance, suggesting that m02 3 10_05 utilizes

the system cache most efficiently and/or has the least

message-passing overhead given 20 cores. Generally,

the MPI experiments using more nodes perform better

than those experiments with the same domain parti-

tioning but using fewer nodes. For example, m013 04 in

Table 1 running on one compute node takes 2660 s to

finish, while m01 3 04_01 in Table 2 running on four

compute nodes takes only 2343 s. This is consistent with

the observation that performance is improved as avail-

able cache size increases. Adding more processes im-

proves the performance on four compute nodes. As an

example, m06 3 08_12 takes less time than those exper-

iments using 40 cores or less. This is because more ob-

servations can be processed in parallel in them063 08_12

experiment than the others, even though MPI communi-

cation costs are higher than in the other experiments.

However, as observed before with OpenMP experiments,

access contention for the memory bandwidth and the

cache sharing as more cores are used may impede the

performance at some point. It suggests that there is

a trade-off between the number of processes and available

computing resources and, therefore, finding optimal con-

figurations for MPI runs may not be straightforward be-

cause it depends on a number of hardware factors.

TABLE 2. Timing comparisons of pure MPI experiments with hy-

brid MPI–OpenMP experiments on four compute nodes. Speedup is

computed relative to experiment m01 3 01 (6815 s in Table 1).

Experiment

Total number

of cores used

Wall-clock

time (s) Speedup

m01 3 04_01 4 2343 2.91

m02 3 02_01 3577 1.91

m04 3 01_01 2750 2.48

m02 3 04_02 8 2169 3.14

m04 3 02_02 2330 2.92

m03 3 04_03 12 1575 4.33

m06 3 02_03 1699 4.01

m04 3 04_04 16 1327 5.14

m02 3 10_05 20 915 7.45

m10 3 02_05 1357 5.02

m04 3 05_05 1082 6.30

m05 3 04_05 1085 6.28

m03 3 08_06 24 880 7.74

m06 3 04_06 1049 6.50

m04 3 10_10 40 637 10.70

m10 3 04_10 720 9.47

m06 3 08_12 48 606 11.25

h01 3 04_01o2 8 1471 4.63

h01 3 04_01o4 16 1129 6.04

h01 3 04_01o6 24 831 8.20

h01 3 04_01o8 32 772 8.83

h01 3 04_01o12 48 733 9.30

h02 3 04_02o2 16 1200 5.68

h02 3 04_02o4 32 908 7.51

h02 3 04_02o6 48 709 9.61
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For the hybrid runs, thewall-clock times ofm013 04_01

(i.e., h01 3 04_01o1), h01 3 04_01o2, h01 3 04_01o4,

h01 3 04_01o6, h01 3 04_01o8, and h01 3 04_01o12

decrease monotonically, in that order. The decreasing

trend of wall-clock time with an increasing number of

threads is consistently found in other similar sets of ex-

periments. It is also found that the hybrid runs are as

sensitive as the MPI runs to the domain partitioning,

available cache, and other hardware configuration fac-

tors. A hybrid experiment can outperform or underper-

form the corresponding MPI experiments using the

same resources (number of cores and number of nodes)

depending on the configuration (Tables 2 and 3). For

example, the minimum wall-clock time with eight cores

from four nodes in hybridmode is 1471 s, which is smaller

than the minimum time required by an MPI run with

eight processes on four nodes (2169 s) in Table 3. On the

other hand, h01 3 04_01o12 takes 733 s, more than the

606 s of m06 3 08_12, which uses the same resources. It

is also observed that a larger improvement is achieved

by the hybrid jobs with a fewer number of threads. This

is because observations are processed one by one with

OpenMP processes. By using more MPI processes rather

than more OpenMP threads, we can assimilate more

observations simultaneously and, hence, improve the

parallel efficiency (see section 4c for more details). In

addition, cache availability and memory access conten-

tion with a large number of threads in the hybrid exper-

iments also affect program performance.

c. Performance evaluation with a real data
application

The parallel ARPS EnKF system is applied to the

10 May 2010 Oklahoma–Kansas tornado outbreak case.

Over 60 tornadoes, with up to EF4 intensity, affected

large parts of Oklahoma and adjacent parts of southern

Kansas, southwestern Missouri, and western Arkansas

on that day. This real data case is run on an SGIUV 1000

cache-coherent (cc) nonuniformmemory access (NUMA)

shared-memory system at the Pittsburgh Supercomputing

Center (PSC). The system, called Blacklight, is composed

of 256 nodes containing 2 eight-core Intel Xeon pro-

cessors each; its theoretical peak performance is 37

teraflops. The cc-NUMA architecture allows for SMP

across nodes. Up to 16 terabytes (TB) of memory can be

requested for a single shared-memory job, while hybrid

jobs can access the full 32 TB of system memory.

The EnSRF analyses are performed on a grid with

4-km horizontal grid spacing, using 40 ensemble mem-

bers. The domain consists of 4433 4833 53 grid points,

TABLE 3. Comparison of the minimum time taken in hybrid mode with that in MPI mode using the same number of cores on four

compute nodes.

No. of cores Hybrid case Min time (s) MPI case Min time (s) Difference (s)

8 h01 3 04_01o2 1471 m02 3 04_02 2169 698

16 h01 3 04_01o4 1129 m04 3 04_04 1327 198

24 h01 3 04_01o6 831 m03 3 08_06 880 49

40 h02 3 10_05o2 635 m04 3 10_10 637 2

48 h03 3 08_06o2 604 m06 3 08_12 606 2

FIG. 5. (a) The observed radar reflectivitymosaic and (b) reflectivity field analyzed by the parallel EnKF algorithm, at

model grid level 20 at 1800 UTC 10 May 2010.
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and the model state includes three velocity components,

potential temperature, pressure, andmixing ratios ofwater

vapor, and five water and ice species. A single-moment

microphysics scheme is used. The state vector has 4.93
109 elements. Observations of radar reflectivity and ra-

dial velocity from 35 radars are analyzed from 1705 to

1800 UTC at 5-min intervals. Figure 5 presents a compar-

ison between the radar observation mosaic at 1800 UTC

10 May 2010 and the corresponding analysis results by the

parallel ARPS EnSRF system. Overall, the analyzed re-

flectivity exhibits a good fit to the observations in shape,

structure, and intensity. The exceptions are several echoes

in Texas, southeast Montana, and northwest Colorado,

which are due to the incomplete radar coverage over those

areas. Several timing benchmark analyses at 1710UTCare

performed. There are about 1.3 3 106 observations from

the 35 radars at this time (see Fig. 6), more than any of the

other times in the analysis window.

Our parallel benchmark experiments are run in pure

OpenMP, pure MPI, and hybrid MPI–OpenMP modes.

In all cases, all cores on the compute nodes were fully

utilized, either by individual MPI processes or by OMP

threats. The experiment names and their configurations

are listed in Table 4. Guided by the timing results on

Kraken, experiments are designed to use the most op-

timal configurations, that is, with a larger number of PUs

in the y direction than in the x direction. Each experi-

ment in Table 4 was repeated 7 times. Because the

timing results on Blacklight show up to 185% variability

because of system load variations, the best timing results

for each case are selected and presented here. Figure 7

shows the best timing results of each case as a function of

the number of cores used. Very large variations in run

time were found to be attributable to disk I/O on a large

shared file system; I/O times are therefore excluded in

Fig. 7 to allow us to focus on the time spent on the

analyses. The times with and without including message

passing are shown.

Both MPI and hybrid runs show good scalability

according to Fig. 7, and they outperform pure OpenMP

runs by a large margin except for the case of 16 cores.

Because each physical node of Blacklight has only 16

cores, when more than 16 cores are used by OpenMP,

the memory access will be across different physical

nodes; this clearly leads to reduced parallelization effi-

ciency with theOpenMP runs. Also, with pureOpenMP,

the parallelization is limited to the state variable level,

meaning all observations have to be processed serially

(i.e., not parallelization at the observation level).

Figure 7 also shows that, when using the same amount

of total resources, the hybrid runs generally outperform

pure MPI runs when both analysis and message passing

times are included. For the same number of cores used,

pure MPI runs implies more PUs, that is, more message

passing requests. Even though the pure MPI mode may

be able to parallelize more at the observation level, the

message passing overhead can reduce the benefit. Not

surprisingly, the hybridOpenMP–MPI runs are better in

terms of total computational time. Among the hybrid

groups, jobs with fewer threads—hence more MPI

processes—seem to give better performances, in terms

of the analysis time. This suggests that assimilating ob-

servations in parallel via MPI processes gives a greater

benefit before the increased message passing overhead

becomes overwhelming.

We have noticed that I/O can easily take 60%–80% of

the total wall-clock time with experiments in which all

data I/O were handled by a single MPI process or the

master OpenMP thread. This I/O time can be reduced

by distributing I/O loads among the MPI processes (but

not among OpenMP threads). Therefore, our solution is

to let each MPI process read and write data within its

own subdomain, in the form of ‘‘split files.’’ This im-

proves I/O parallelization and also reduces time needed

for communicating gridded information across PUs.

With split files, only data within the extended boundary

zones need to be exchanged with neighboring PUs.

Because of the large variations in the I/O times collected

on Blacklight, we ran another set of experiments on

a supercomputer with more consistent I/O performance

between runs. It consists of 2.0-GHz quad-core Pentium

4 Xeon E5405 processors, with two processors on each

FIG. 6. Model domain and coverage of 35 WSR-88D radars with

230-km range rings for the 10 May 2010 real data test case.
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node. Tests with split files on this system, corresponding

to h04 3 08_01o8 (see above-mentioned naming con-

ventions), reveal that the times spent on I/O and mes-

sage passing are reduced (the latter because of the

reduced exchanges of gridded information across MPI

processes); the total wall-clock time for I/O andmessage

passing for one experiment was reduced from 1231 to

188 s using split files.

5. Summary and conclusions

A parallel algorithm based on the domain decom-

position strategy has been developed and implemented

within the ARPS EnKF framework. The algorithm takes

advantage of the relatively small spatial covariance local-

ization radii typically used by high-resolution observations

such as those of radar. Assuming that the maximum hor-

izontal covariance localization radius of the observations

to be analyzed in parallel is R, the horizontal area of

a decomposed physical subdomain should be at least

4R 3 4R. An additional boundary zone of width R is

added to each side of the physical subdomains to create

enlarged computational subdomains, which facilitate in-

formation exchanges between neighboring subdomains.

Each subdomain is assigned to one processing unit (PU),

within which no MPI message passing is required. The

subdomains are then further divided up into four sub-

patches, denoted S1–S4. The width and height of each

patch are required to be at least 2R to ensure any two

observations that may be processed in parallel are well

separated. In practice, the size of S1 is made as large as

possible within its subdomain to increase the probability

that observations from different subdomains can be

processed in parallel.

Observations within the four patches are processed

sequentially, but data in the patches with the same

label in different subdomains are processed simulta-

neously. Distributed-memory parallelization is therefore

achieved at the observation level. The patch division

ensures that most of the analysis work is done in parallel

when processing observations within patches S1 of all

PUs. To handle the load imbalance issue when assimi-

lating observations from many radars, the observation

arrays are organized into batches. The maximum

number of batches is limited by the maximum number

of radars covering the same location anywhere in the

analysis domain. Such an observation organization

improves the uniformity of observation distribution

within the first observation batch and thereby improves

load balance.

Conventional data that use larger covariance locali-

zation radii are still processed serially. State variables

TABLE 4. Names and configurations of real data experiments.

Experiment

Number of PUs

in x direction

Number of PUs

in y direction

Number of threads

per PU

Total number of

cores used

OpenMP o16 16 16

o32 32 32

o64 64 64

o80 80 80

o160 160 160

MPI m16 1 16 16

m32 2 16 32

m64 3 16 64

m80 5 16 80

m160 10 16 160

Hybrid group 1 h4o4 1 4 4 16

h8o4 1 8 32

h16o4 2 8 64

h20o4 2 10 80

h40o4 4 10 160

Hybrid group 2 h2o8 1 2 8 16

h4o8 1 4 32

h8o8 1 8 64

h10o8 2 5 80

h20o8 4 5 160

Hybrid group 3 h2o16 1 2 16 32

h4o16 1 4 64

h5o16 1 5 80

h10o16 2 5 160
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influenced by a particular observation are updated

synchronously on the PUs carrying those state variables.

The algorithm supports three parallel modes: pure

OpenMP, pure MPI, and MPI–OpenMP hybrid. Within

the PUs with multiple cores, shared-memory paralleli-

zation can be achieved via OpenMP at the state variable

update level. OpenMP parallelization reduces message

passing overhead and allows for larger decomposed

domains, making the 4R requirement easier to satisfy.

It was first confirmed via OSSEs that changing the

sequence of observation processing because of domain

decomposition has little impact on the analysis. Parallel

DA benchmark experiments are performed on a Cray

XT5 machine. The OpenMP implementation shows scal-

ability up to eight threads, beyond which memory and

cache access contention limit further improvement. MPI

and OpenMP runs on a single compute node show that

OpenMP parallelization runs faster because of the lower

communication overhead.MPI jobswith a smaller number

of partitions in the x direction than in the y direction ex-

hibit better performance. The same also applies to most of

the hybrid jobs, although all hybrid jobs do not outperform

the corresponding MPI jobs.

A real data case involving 35 radars is tested on an SGI

UV 1000 cc-NUMA system capable of shared-memory

programming across physical nodes. Poor scalability with

pure OpenMP is observed when more than one node is

used, but both MPI and hybrid runs show good scalability

on this system. Excluding message passing time, pureMPI

runs exhibit the best performance. When message-passing

time is included, the hybrid runs generally outperform

pure MPI runs. For this real data case, the EnKF analysis

excluding I/O can be completed within 4.5 min using 160

cores of the SGI UV 1000.

Given a fixed amount of resources, the hybrid jobs

improve more over pure MPI jobs with fewer numbers

of threads. Because MPI processes realize paralleliza-

tion at the observation level, they aremore efficient than

OpenMP threads. However, there is a trade-off between

a performance improvement because of the parallel pro-

cessing of observations and degradation because of in-

creased message passing overhead. On the other hand,

a pure OpenMP strategy for EnKF shows good scalability

on symmetric shared-memory systems but is limited by

the number of cores available on the individual node and

by the physical memory available on the node. With pure

OpenMP, data I/O can only be handled by a single pro-

cess, reducing the overall scalability.

The MPI–OpenMP hybrid strategy combines the

strengths of bothmethods. However, caremust be taken

when partitioning the domain, because the configuration

of MPI domain partitioning has a significant impact on

FIG. 7. Wall-clock times of the EnKF analyses as a function of the total number of compute

cores used, for the 10 May 2010 real data case in the analysis domain shown in Fig. 6, obtained

on the PSCBlacklight (an SGIUV 1000). Hybrid runs with 4, 8, and 16OpenMP threads within

eachMPI process are denoted as H_o4, H_o8, andH_o16, respectively. In all cases, all cores on

the compute nodes were fully utilized, either by individual MPI processes or by OMP threats.

Solid lines denote the total time excluding message passing, and dashed lines show the total

times including message passing. Data I/O times are excluded from all statistics.
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the system performance. Given the same resources, jobs

with smaller numbers of partitions in the x direction tend

to run faster because FORTRAN arrays are stored in the

column-major order inmemory. Timing experiments have

also shown that determining the optimal decomposition

configuration on a specific computing system is not

straightforward because the performance depends on

factors such as the subdomain size in the x and y di-

rections, the number of cores on each node, the cache

sizes and memory bandwidth available to each core,

and the networking topology across the nodes.

In all configurations, data I/O constituted a large

portion of the execution time. Experiments on a small

dedicated Linux cluster show that the time spent on I/O

and message passing are reduced significantly by dis-

tributing I/O loads among the MPI processes with MPI–

OpenMP hybrid or pure MPI runs.

Although a data batching strategy is developed to re-

duce the load imbalance issue, further improvement could

be obtained through dynamic load balancing. Another

problem is the low resource utilization during internode

communications because all threads are idle except one:

the master thread. The development of runtime manage-

ment algorithms, for example, the Scalable Adaptive

Computational Toolkit (SACT) (Li and Parashar 2007;

Parashar et al. 2010), are expected to decrease runtime

of the application automatically with reduced efforts

from developers. Finally, we point out that our parallel

algorithm can be easily applied to other serial ensemble-

based algorithms such as EAKF and the classic EnKF.
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