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22
23 Abstract

24 This work firstly studies the radar climatology of low-level meso-γ-scale vortices 

25 (MVs) occurred in the warm season of East China. Two kinds of MVs are considered 

26 which are, respectively, produced by isolated cells and mesoscale convective systems 

27 (MCSs). Results show that MVs most often occur in June and July. For MCS-type MVs, 

28 there is a high occurrence frequency in the late afternoon and early evening, while no 

29 apparent diurnal variation is found for cell-type ones. Moreover, MCS-type MVs tend 

30 to be stronger and longer-lived due to their favorable environment conditions of higher 

31 convective available potential energy (CAPE) and larger vertical wind shear. Compared 

32 to the supercell MVs in southeastern United States, the cell-type MVs in East China are 

33 much weaker and shorter-lived, indicating a lower occurrence frequency of supercells 

34 and thus prevailing of low-level MVs in East China than in the United States. The MCS-

35 type MVs in East China mainly form in the developing and mature stages of their parent 

36 system which suggests that the cold-pool induced baroclinic vorticity plays a major role 

37 in the genesis of MV. This seems to be different from the MVs produced by quasi-

38 linear convective systems (QLCSs) in the United States where frictional vorticity owing 

39 to surface drag contributes more significantly to MV genesis. Given their higher 

40 damaging potential, tracking of MVs within MCSs based upon the linear, least squares 

41 derivatives (LLSD) azimuthal shear used in this work would be helpful for the 

42 operational warning and forecasting of severe convective weather in East China.

43 Keywords: Meso-γ-scale vortices; convective systems; radar climatology; East China
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44 1. Introduction

45 Convective systems can often produce severe weather like heavy rainfall, large hail, 

46 wind gusts, and downbursts (Burlando et al. 2012; Lompar et al. 2017; Abulikemu et 

47 al. 2016; Clavner et al., 2018). Strong rotating vortices of various horizontal scales are 

48 common characteristics of a number of severe weather systems, including tornadoes 

49 (from a few hundreds to a few thousands of meters), line-end vortices (several tens of 

50 kilometers), mesoscale convective vortex (MCV, about 200 km) and tropical cyclones 

51 (about 500–1000 km). At the meso-γ-scale (i.e., 2–20 km), there are two kinds of 

52 convective vortices, namely, mesocyclones within isolated convective storms such as 

53 supercells (Burgess et al. 1993) and mesovortices (Funk et al. 1999; Schenkman and 

54 Xue 2016) that are typically found in organized mesoscale convective systems (MCSs).

55 Mesocyclones are usually associated with deep and rotating updrafts of supercell 

56 thunderstorms. The rotation of midlevel mesocyclones is mainly caused by the tilting 

57 of horizontal vorticity associated with the ambient wind vertical shear. In contrast, the 

58 source of low-level rotation is believed to originate from the tilting of baroclinic 

59 horizontal vorticity generated at the cold-pool outflow boundary (Rotunno and Klemp 

60 1985). Using 20 years of Doppler radar observations in Oklahoma, Burgess et al. (1993) 

61 found that about 30%~50% of mesocyclones can produce tornadoes. Trapp et al. (2005a) 

62 reassessed the percentage of tornadic mesocyclones based on a much larger set of radar 

63 data in the United States and found that the percentage of tornadic mesocyclones was 

64 only ~26%, lower than previously thought. According to 3 years radar data in Germany, 

65 Wapler et al. (2016) examined the characteristics of mesocyclones in Central Europe 
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66 which showed a prominent annual and diurnal cycles. Mesocyclones most often occur 

67 in the late afternoon and evening. Investigation of the relation between severe weather 

68 and mesocyclones showed that half of the hail events and all tornados were associated 

69 with a mesocyclone. The statistical features of mesocyclones in East China are similar 

70 to that in central Europe, as studied by Wang et al. (2018) using single Doppler radar 

71 observations from 2005 to 2013. They also found that high (low) centroid mesocyclones 

72 are favorable for the genesis of hailstorms (tornadoes).

73 Different from mesocyclones, mesovortices in general form on the leading line of 

74 quasi-linear convective systems (QLCSs, e.g., squall lines and bow echoes) below 

75 about 2–3 km (Funk et al. 1999; Atkins et al. 2004; Schenkman and Xue 2016). The 

76 structure and evolution of low-level mesovortices can also be simulated by convection-

77 resolving models (Weisman and Trapp 2003; Ćurić et al. 2009; Schenkman et al. 2011). 

78 Based on idealized convection-resolving simulations, the formation of mesovortices 

79 had been attributed to either downward or upward tilting of baroclinic vorticity (Trapp 

80 and Weisman 2003; Atkins and Laurent 2009b). However, recent studies using real-

81 data convection-resolving simulations that included surface friction revealed that the 

82 tilting of frictionally-generated horizontal vorticity owing to surface drag can also 

83 contribute to the vertical vorticity of mesovortices (Schenkman et al. 2012; Xu et al. 

84 2015b; Schenkman and Xue 2016; Roberts and Xue 2017). 

85 QLCS mesovortices are capable of producing tornadoes as well (Coniglio et al. 

86 2010). As studied by Thompson et al. (2014), a larger percentage of QLCS tornadoes 

87 tend to occur in southeastern United States while more tornadoes over the central Great 
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88 Plains tend to be of supercell type. Radar-based analyses of mesovortices in a bow echo 

89 event in the United States suggested that tornadic mesovortices tended to be stronger, 

90 longer-lived, and deeper than their nontornadic counterparts (Atkins et al. 2004). Trapp 

91 et al. (2005b) studied the climatology of tornadoes spawned by QLCSs in the United 

92 States. Statistically, QLCS tornadoes were weaker than those produced by supercells. 

93 Both types of tornadoes showed a clear peak in occurrence near 1800 Local Standard 

94 Time (LST). However, QLCS tornadoes additionally displayed a higher occurrence 

95 frequency in the late night/early morning hours. QLCS tornadoes were also reported in 

96 Europe (e.g., Clark 2011; Gatzen 2011; Bech et al. 2015). According to their intensity 

97 distribution, Antonescu et al. (2016) argued that tornadoes were more likely spawned 

98 by QLCSs (supercells) over northern and southern (western and eastern) Europe. 

99 Moreover, low-level mesovortices are closely related to damaging winds produced 

100 by QLCSs at the surface (Weisman and Trapp 2003). The presence of mesovortices can 

101 notably modify the outflow of QLCSs and hence affect the location of wind damages 

102 (Atkins et al. 2005). Generally, the strongest winds occur on the side of mesovortices 

103 where the mean translational flow and the vortex rotational flow are in the same 

104 direction. The vortical flow of mesovortices can account for up to 50% of the total wind 

105 (Atkins and Laurent 2009a; Xu et al. 2015a).

106 Recently, Davis and Parker (2014) studied the climatology of meso-γ-scale vortices 

107 (MVs) that occurred in the high-shear and low-CAPE environment of mid-Atlantic and 

108 southeastern United States using Doppler radar observations. Significant differences 

109 were found in the low-level azimuthal shear of MVs that can be used to discriminate 
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110 tornadic and nontornadic vortices. The MVs produced within supercells were found to 

111 be longer-lived than nonsupercell (mainly QLCSs) ones, with the latter of greater 

112 diameters and stronger intensities. 

113 Convective systems are common in the warm season of East China. Many previous 

114 studies in this region had focused on larger-scale convective vortices such as MCV and 

115 the MCSs themselves (e.g., Meng et al. 2013; Zheng et al. 2013; He et al. 2017). There 

116 have been few studies on MVs in China, however, such that their spatial and temporal 

117 distributions and characteristics are still poorly understood. This work, for the first time, 

118 attempts to study the climatology of MVs in China by using multi-year Doppler radar 

119 observations. The main purpose is to improve our understanding on the characteristics 

120 (e.g., spatiotemporal distributions, intensity, size and duration) of MVs in East China, 

121 in particular of MVs that occur within MCSs. Because MVs are often accompanied by 

122 severe weather, including high winds, short-time intense rainfall or even tornadoes, the 

123 radar climatology of MVs presented herein can help forecasters better monitor severe 

124 convective weather and forecast their damaging potential. It can also benefit the study 

125 on climate trend of extreme weather events.

126 The remainder of this paper is organized as follows. Section 2 describes the dataset 

127 and methods utilized for detecting MCS and MV. Section 3 presents the radar 

128 climatology of MCSs and MVs in East China during the warm season of 2013–2015, 

129 together with their environment conditions. Finally, the paper is summarized in section 

130 4 with additional discussions.
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132 2. Data and methods

133 2.1. Data

134 In this work, three-year (2013–2015) Doppler radar observations from April to 

135 July at 17 radar sites are used, with their locations shown in Fig. 1a. In general, these 

136 radars cover the Yangtze and Huai River Basins (YHRB) between about 112–124°E 

137 and 28–36°N. The raw radar data are processed using the 88D2ARPS program of the 

138 Advanced Regional Prediction System (APRS, Xue et al. 2000) developed at the Center 

139 for Analysis and Prediction of Storms (CAPS), the University of Oklahoma. Firstly, 

140 data quality control is performed including the removal of non-meteorological echoes 

141 and de-aliasing of radial velocity (Brewster et al. 2005). The processed radar data are 

142 used for detecting MCSs and MVs and producing climatological statistics.

143 To investigate the environmental conditions of MCSs and MVs, the 6-hourly, 

144 0.5°×0.5° National Centers for Environmental Prediction (NCEP) Global Forecast 

145 System (GFS) analyses are used. 

146 2.2. Detection of MCS

147 The detection of MCS uses the mosaic of composite (i.e., column maximum) 

148 reflectivity of the 17 radars in YHRB, as produced by radar mosaic program 

149 RADMOSAIC from the ARPS system. The horizontal resolution of the radar mosaic 

150 reflectivity is 4 km, which is sufficient to capture MCSs. Given the time differences 

151 among the radar volume scans, the composite reflectivity mosaics are produced every 

152 10 minutes.

153 According to the American Meteorology Society (AMS) Glossary (Glickman and 
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154 Zenk 2000), an MCS is defined as “… a cloud system that occurs in connection with 

155 an ensemble of thunderstorms and produces a continuous precipitation area of the 

156 order of 100 km or more in horizontal scale in at least one direction …” For the 

157 detection of MCSs, there are indeed many different criteria in literature. For example, 

158 Parker and Johnson (2000) defined an MCS as “(a) band of contiguous or quasi-

159 contiguous larger than 40 dBZ ≥ 100km and lasting ≥ 3h, and (b) linear or quasi-linear 

160 convective area sharing a common leading edge.” Herein, an MCS is defined as a 

161 continuous band of 35dBZ reflectivity extending at least 100 km in at least one direction 

162 and persisting for at least 2 hours, with a minimal area of 1000 km2. This definition is 

163 similar to those used in previous studies of MCSs in East China (Meng and Zhang 2012; 

164 Zheng et al. 2013). 

165 An objective detection procedure is proposed according to the definition above. 

166 Firstly, the composite reflectivity is smoothed using a 3×3 median filter as in Smith and 

167 Elmore (2004), in order to remove small-scale signals and thus better detect mesoscale 

168 systems. Secondly, convective bands of 35-dBZ are identified by an image recognition 

169 technique (Comaniciu et al. 2003). Thirdly, convective bands greater than 1000 km2 are 

170 fitted by an ellipse to obtain their geometric features, e.g., orientation, eccentricity, and 

171 long axis (Gander et al. 1994). Only convective bands with an axis longer than 100 km 

172 will be considered as a potential MCS. Lastly, potential MCSs are tracked to obtain 

173 their lifetime to ensure that MCSs persist for at least two hours. There are a number of 

174 MCS tracking methods. In this study, the Maximum Spatial Correlation Tracking 

175 Technique (MASCOTTE) developed by Carvalho and Jones (2001) is used, which is 
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176 simple and effective for predicting and tracking the evolution of MCSs. This method is 

177 mainly based on the magnitudes of spatial correlation between two identified 

178 convective systems at successive times. The technique can provide several structural 

179 properties of the convective systems such as horizontal area, perimeter, and center of 

180 mass. Readers are referred to their paper for more details.

181 2.3. Detection of MV

182 Traditionally, meso-γ-scale, or even smaller-scale circulations (e.g., tornadoes) are 

183 detected by calculating the difference between radar radial velocities of adjacent 

184 azimuths at a given range (Mitchell et al. 1998). In the case of strong background winds, 

185 however, the difference between outbound and inbound velocities may become too 

186 weak. Moreover, the “gate-to-gate” azimuthal shear is not tolerant of radar data noise 

187 since the shear estimation relies only on two adjacent radial velocities. Herein, the linear 

188 least squares derivatives (LLSD) method developed by Smith and Elmore (2004) is 

189 adopted, which had been used by Davis and Parker (2014) and Xu et al. (2015a). At a 

190 given radar gate location, radial velocity is locally fitted by linear combination of 

191 azimuthal shear and radial shear of radial velocities at a number of gates. Therefore, the 

192 linearly regressed azimuthal shear is more tolerant of radial velocity noise.

193 As MVs generally occur at the low levels, only LLSD azimuthal shear at 0.5° 

194 elevation and within 150 km of the radar site is calculated. Beyond this distance, the 

195 radar azimuthal resolution becomes low and unsuitable for the detection of meso-γ-

196 scale vortices. MVs are identified when the shear intensity exceeds 10-3 s-1, that is, one 

197 order greater than the Coriolis parameter in midlatitudes. This intensity threshold is 
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198 smaller than that used in Davis and Parker (2014) because they aimed to study tornadic/ 

199 nontornadic vortices. Moreover, MVs should persist for at least 3 consecutive volume 

200 scans (about 18 minutes) of the operational weather radar. As such, MVs are tracked 

201 both backward and forward to obtain their lifetime, using an objective tracking method 

202 similar to the WSR-88D Storm Cell Identification and Tracking (SCIT) algorithm 

203 (Johnson et al. 1998). 

204 MVs should be detected for each radar because the radial velocity cannot be 

205 composited for multiple radars. However, given the dense radar coverage in YHRB, the 

206 same MV might be detected by several radars simultaneously, leading to the problem 

207 of multiple counting. For this reason, MVs are only detected using data of three radars, 

208 i.e., the Wuhan, Hefei, and Yancheng radars, that are located in the upper, middle and 

209 lower reaches of YHRB, respectively (Fig. 1b). Together, these radars provide a good 

210 overall coverage of YHRB.

211

212 3. Results

213 3.1. Characteristics of MCSs 

214 Figure 2 displays the spatial distribution of MCSs in YHRB. There are in total 95 

215 MCSs from April to July of 2013 through 2015. Most MCSs formed in eastern Hubei 

216 and western Anhui province, i.e., the upper reach of YHRB. There are also a number 

217 of MCSs that are generated in northern Anhui and the adjacent Jiangsu province. After 

218 formation MCSs mostly move northeastward (not shown). Therefore, the three radars 

219 chosen for the examination of MVs are in the main path of MCSs in this region. It is 
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220 noteworthy that MCSs can also form in the Sichuan Basin (i.e., upstream of YHRB) 

221 and move eastward into YHRB. However, these MCSs are outside of our radar 

222 coverage.

223 The monthly variation of detected MCSs is shown in Fig. 3a. More than 60% of 

224 the MCSs take place in June and July, i.e., the YHRB rainy season. From middle/late 

225 June to early/middle July, a quasi-stationary, persistent Meiyu front often occurs in 

226 YHRB under the influence of Asian summer monsoon. MCSs are repeatedly generated 

227 and move along the Meiyu front, producing heavy rainfall (e.g., Xu et al. 2017). In 

228 contrast, there are fewer MCSs in April and May when the summer monsoon has not 

229 yet reached YHRB. Figure 3b displays the diurnal variation of MCSs in YHRB. MCSs 

230 most often occur in late afternoon through midnight, i.e., between 1500 and 0000 LST. 

231 A second peak is found in the early morning between 0600 and 0900 LST, likely related 

232 to early morning precipitation peak of Meiyu system owing to boundary layer inertial 

233 oscillations (Xue et al. 2018). The diurnal variations of MCSs are consistent with the 

234 findings of Meng et al. (2012).

235 3.2. Characteristics of MVs 

236 With the three radars, there are 3790 MVs detected from April to July of 2013 

237 through 2015. As shown in Table 1, about 50% of the MVs are detected by Hefei radar 

238 in the middle reach of YHRB. In comparison, only about 30% and 20% MVs occurred 

239 in the upper (Wuhan radar) and lower (Yancheng radar) reaches of YHRB, respectively. 

240 Figure 4 shows the spatial distribution of MVs. For the Wuhan and Hefei radar coverage 

241 regions, MVs are mainly distributed in the southwest and northeast quadrants of the 
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242 radar (Figs. 4a, 4b). For the Yancheng radar region, MVs are generally located on the 

243 left side when facing northeast (Fig. 4c). Given the geographic locations of the three 

244 radars, MVs tend to occur in an elongated region extending northeastward from eastern 

245 Hubei to northern Jiangsu province.

246 MVs exhibit greater monthly variation than MCSs. As shown in Fig. 5a, 45% of 

247 the MVs occur in July and 25% in June, with similar occurrence frequencies in April 

248 (14%) and May (16%). On the contrary, the diurnal variation of MVs is not as 

249 prominent as that of MCSs (Fig. 5b). MVs occur a little more frequently in the evening 

250 (1800 to 2100 LST) and early morning (0600 to 0900 LST), with a somewhat lower 

251 frequency between 0300 and 0600 LST. Such diurnal cycle is much weaker than that 

252 of mesocyclones/tornadoes in the United States and Europe (Trapp et al. 2005b; Dotzek 

253 2001; Wapler et al. 2016). Figure 5c and 5d show the distributions of MV maximum 

254 size and shear intensity during their lifetime. Most MVs (about 70%) have maximum 

255 diameters between 4 km and 10 km, while only about 23% of MVs can grow larger 

256 than 10 km. For all MVs, the maximum diameter is 8.1 km on average (Table 2). As 

257 for the peak LLSD azimuthal shear representing the MV intensity, more than 80% of 

258 them are weaker than 3×10-3 s-1 (Fig. 5d), with a mean value of 2.3 ×10-3 s-1 (Table 2). 

259 As noted in section 2.3, the mean azimuthal shear of MVs in this work is lower than 

260 that documented in Davis and Parker (2014) for MVs in the United States.

261 The lifetime of MVs in YHRB is also examined. On average, the detected MVs 

262 persist for ~26.3 minutes (Table 2). This is comparable to the lifetime of nonsupercell 

263 vortices but shorter than that of supercell vortices found in southeastern United States 
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264 (Davis and Parker 2014). Based on the lifetime, MVs are divided into three subsets, 

265 i.e., short-lived (18–30 min), moderate-lived (30–60 min) and long-lived (> 60 min). 

266 Most MVs (69%) are short-lived, while only about 5% of MVs can persist for over an 

267 hour (Table 1). For the three sets of MVs, the monthly variations are similar to that of 

268 all MVs (Fig. 5a), although long-lived MVs have slightly higher occurrence frequencies 

269 in June and July (not shown). The diurnal variations of short- and moderate-lived MVs 

270 agree with that of all MVs. However, long-lived MVs have stronger diurnal variation, 

271 with higher frequencies in early afternoon, evening and early morning but very low 

272 frequency between 0000 and 0600 LST (not shown). Besides, long-lived MVs tend to 

273 have greater diameters and stronger azimuthal shears (Fig. 6). For instance, the 

274 maximum diameter of long-lived MVs is 10.2 km on average, which is 34% and 11% 

275 larger than those of short- and moderate-lived MVs, respectively (Table 2). 

276 As mentioned in Introduction, MVs can be divided into two categories according 

277 to their parent system, i.e., cell- and MCS-type MVs. Seen from Table 1, there are 374 

278 MVs spawn by MCSs, accounting for about 10% of the total MVs. This is qualitatively 

279 similar to the results of Trapp et al. (2005b) that in the United States about 79% (18%) 

280 of tornadoes were produced by storm cells (QLCSs). Nearly all MCS-type MVs occur 

281 in the middle and lower reaches of YHRB (i.e., with coverages of Hefei and Yancheng 

282 radars), although a considerable number of MCSs formed in the upper reach of YHRB 

283 (Fig. 2). This is because MVs are often generated in the developing and mature stages 

284 of MCSs (Fig. 7) when the system cold pool is well established, producing sufficient 

285 baroclinic vorticity for the genesis of low-level vertical rotation (Trapp and Weisman 
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286 2003; Atkins and Laurent 2009b). The MCSs that occurred in the eastern Hubei 

287 province are in their early stage of development and usually move quickly out of the 

288 detection range of Wuhan radar.

289 The MCS-type MVs are of greater monthly variations than cell-type ones (Fig. 

290 8a). More than 60% of MCS-type MVs are found in July while only about 5% occur in 

291 May. They occur more than twice as frequently (~25%) between 1800 to 2100 LST 

292 than all other time periods of the day, which have similar percentages of occurrence of 

293 about 10% (Fig. 8b). Contrastingly, cell-type MVs have little diurnal cycle. This again 

294 differs from the diurnal cycle of cell-type tornadoes in the United States which have a 

295 clear peak in occurrence near 1800 LST (Trapp et al. 2005b). 

296 The distributions of maximum diameter for the two types of MVs are shown in 

297 Fig. 8c. Cell-type MVs are in general smaller than 8 km, with a mean diameter of 6 km 

298 (Table 2). The maximum diameter of MCS-type MVs is concentrated in the range of 6 

299 to 12 km, with a mean diameter of 10 km. Similarly, Fig. 8d displays the distribution 

300 of MV intensity in terms of maximum azimuthal shear. For both types, the azimuthal 

301 shear with the highest frequency is smaller than 2×10-3 s-1, especially for cell-type MVs. 

302 On average, the maximum azimuthal shear of MCS-type MVs is 2.5×10-3 s-1, which is 

303 about 20% larger than that of cell-type MVs (Table 2). 

304 There are also distinct differences between the lifetimes of cell- and MCS-type 

305 MVs. Almost all MCS-type MVs persist for more than 30 minutes, while there are only 

306 about 8% for cell-type MVs (not shown). The mean lifetime of MCS-type MVs is about 

307 46.4 minutes, nearly twice that of cell-type (Table 2). In particular, about 16% of the 
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308 MCS-type MVs last for more than an hour, with a mean lifetime of about 72 minutes 

309 (Table 3). These MVs are obviously long-lived MVs. For other shorter-lived MCS-type 

310 MVs, their mean lifetime is about 42 minutes. Long-lived MCS-type MVs tend to have 

311 higher intensities. The peak azimuthal shear is 3.2×10-3 s-1 on average, which is about 

312 40% stronger than that of short-lived ones. The maximum diameters of the two subsets 

313 of MCS-type MVs are quite similar, however.

314 Davis and Parker (2014) studied the characteristics of MVs in southeastern United 

315 States. Their results showed that QLCS MVs were generally larger and stronger than 

316 supercell ones, consistent with our findings with MVs in YHRB. On the contrary, 

317 supercell MVs tended to be longer-lived than those produced by QLCSs, which differs 

318 from our findings with cell-type MVs. This is likely due to the fact that strong supercells 

319 are much less frequent in eastern China than in the United States, and many of the cells 

320 in our statistics are weaker and smaller ones. As for tornadoes that are smaller in scale 

321 than MVs, it is noteworthy that QLCS tornadoes are statistically weaker than supercell 

322 ones in the United States (Trapp et al. 2005b).

323

324 3.3. Composite synoptic conditions

325 Undoubtedly, the monthly variations of MCSs and MVs are affected by the 

326 monthly variations of synoptic conditions. Figure 9 shows the composite environmental 

327 conditions in East Asia during 2013–2015. In April and May (Figs. 9a, 9b), an intense 

328 upper-level jet of over 40 m s-1 is present at 200 hPa. YHRB is at the entrance region 

329 of the upper-level jet. At 500 hPa, the subtropical high is located south of 20°N, with 
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330 YHRB located underneath broad westerlies in midlatitudes. At 850 hPa, a trough 

331 stretches from Northeast China to the Yellow Sea. Northwesterly winds behind the 

332 trough and southwesterlies associated with the subtropical high are found to converge 

333 in YHRB. In June and July (Figs. 9c, 9d), the upper-level jet is weakened and shifted 

334 northward and westward. YHRB is now on the southern flank of the jet exit region 

335 where the ascending branch of the jet-induced secondary circulation is found. At 500 

336 hPa, the midlatitudes of East Asia are dominated by westerlies, featuring weak 

337 temperature advection. The subtropical high has moved northward to about 25°N and 

338 retrogressed eastward to the Northwest Pacific. As a result, southern YHRB is under 

339 the influence of southwest flows along the western periphery of subtropical high. In the 

340 lower troposphere, due to the northward progression of Asian summer monsoon, much 

341 more warm, moist air of high equivalent potential temperature (θe) is transported to 

342 YHRB from South China Sea and Indian Ocean than in April and May.

343 Figure 10 depicts the spatial distributions of CAPE and vertical wind shear between 

344 1000 and 700 hPa. Benefiting from the transport of high-θe air by the monsoonal flow, 

345 the CAPE over YHRB is notably increased in June and July (Figs. 10a, 10c). The mean 

346 CAPE is 386 J kg-1, which is ten times greater than that of April and May (Table 4). In 

347 both periods, the vertical shear in the layer of 1000–700 hPa is approximately toward 

348 east in YHRB, with stronger shear found in eastern YHRB (Figs. 10b, 10d). Overall, 

349 the low-level vertical shear is stronger in April and May (5.7 m s-1) than in June and 

350 July (4.3 m s-1). The relatively weak shear in the warm season of YHRB is thus not 

351 favorable for supercell storms.
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352 Synoptic conditions for the cell- and MCS-type MVs in YHRB are also studied. 

353 As shown in Fig. 9e, for cell-type MVs, there is weak synoptic-scale forcing in the 

354 middle troposphere, with predominantly zonal winds over YHRB. At 200 hPa, a west-

355 east oriented jet streak is located just north of YHRB. In the case of MCS-type MVs 

356 (Fig. 9g), the 200-hPa jet breaks into two segments over East Asia. The eastern jet, with 

357 the jet core located northeast of YHRB, is more intense compared to the case of cell-

358 type MVs. YHRB is located to the right of the jet entrance region, where rising motion 

359 due to synoptic-scale secondary circulation is expected. At 500 hPa, there exists a short-

360 wave trough which can increase the temperature advection over YHRB. In the lower 

361 troposphere (Figs. 9f, 9h), YHRB is under the influence of synoptic-scale southwesterly 

362 flows extending from Indian Ocean to the Northwest Pacific. In the case of MCS-type 

363 MVs (Fig. 9h), the southwesterly flows are much stronger, forming a low-level jet (LLJ) 

364 at the 850 hPa level. A closed cyclonic circulation is found in YHRB, on a shear line 

365 (between the southwesterly flows from the south and northeasterly flows from the north) 

366 that typically exists in the region during the warm season. Positive vertical vorticity in 

367 the region favors the development of convective systems. Due to the LLJ, there is more 

368 water vapor flux into YHRB, giving rise to greater CAPE than in the case of cell-type 

369 MVs (Figs. 10e and 10g, see also Table 4). The presence of LLJ also enhances the low-

370 level vertical shear which can be greater than 12 m s-1 (Fig. 10h). Therefore, compared 

371 to the cell-type MVs, MCS-type MVs are mainly generated in an environment of higher 

372 CAPE and stronger low-level vertical shear. 

373

374 4. Conclusions
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375 This work focuses on the radar-based climatology of meso-γ-scale vortices (MVs) 

376 occurred in the warm season of East China, and in particular, in the Yangtze-Huai River 

377 Basins (YHRB). As a first study of this kind, detailed characteristics and environment 

378 conditions are examined for two kinds of MVs that are produced by isolated cells and 

379 mesoscale convective systems (MCSs), respectively. Features of MVs in East China 

380 are also compared to those of MVs in other countries, especially the United States.

381 In the period of April to July of 2013–2015, there are 3790 MVs detected in YHRB, 

382 about 10% of which are produced by MCSs. The majority of MVs (~70%) occurred in 

383 June and July, i.e., in the rainy season of YHRB. MVs more often formed in the evening 

384 and early morning, with a low occurrence frequency at night. In general, MVs are short 

385 lived (< 30 minutes), while only about 5% can persist for over 60 minutes. 

386 Notable differences are found between the two kinds of MVs. MCS-type MVs most 

387 often occur in the late afternoon and early evening. On the contrary, there is no apparent 

388 diurnal variation for cell-type MVs. Overall, MCS-type MVs tend to be larger, stronger 

389 and longer-lived than cell-type ones. Examination of ambient conditions reveals that 

390 MCS-type MVs generally occur in an environment of stronger upper and middle level 

391 synoptic forcings. A southwesterly jet is present in the low level which transports more 

392 warm and moist air into YHRB, leading to higher CAPE and stronger low-level shear 

393 that favor the development of strong and long-lived MVs (Weisman and Trapp 2003; 

394 Atkins and Laurent 2009b).

395 Compared to the cell-type MVs in East China, the MVs produced by supercells in 

396 southeastern United States are significantly longer-lived (Davis and Parker 2014). The 
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397 supercell MVs are also longer-lived (and stronger) than those generated within QLCSs, 

398 which is opposed to the case of cell- and MCS-type MVs in East China. This indicates 

399 that the isolated cells in East China are prone to be weaker than their US counterparts, 

400 i.e., they are more likely to be ordinary cells rather than supercells. The fact that East 

401 China has less frequent supercells can be readily inferred from the weak CAPE (< 600 

402 J kg-1) and ambient vertical shear (< 10 m s-1), both of which are unfavorable for the 

403 development of supercelluar storms. As a result, it can be concluded that low-level MVs 

404 prevail in East China compared to the United States.

405 Moreover, the MCS-type MVs in East China mainly formed during the developing 

406 and mature stages of their parent convective systems. This suggests that the baroclinic 

407 horizontal vorticity produced by system cold pool is of great importance for the genesis 

408 of low-level MVs. This finding appears to be different from the case of QLCS MVs in 

409 the United States——surface friction was found to play an important role in producing 

410 the MVs (Schenkman et al. 2012; Xu et al. 2015b). Nonetheless, to better understand 

411 the dynamics of MVs occurred in the typical environment of East China, both idealized 

412 and real-data numerical simulations as well as sensitivity experiments are still needed, 

413 which will be addressed in the future research.

414 Finally, although accounting for only a small fraction of total MVs in East China, 

415 MCS-type MVs may induce more severe weather hazards, given their strong intensity 

416 and long-lasting lifetime compared to their cell-type counterparts. For instance, a cruise 

417 ship capsized in Yangtze River on 1 June 2016, leading to over 400 fatalities (Meng et 

418 al. 2016). This shipwreck was attributed to the high straight-line winds near the apex 

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121



20

419 of a bow echo, which were likely produced by low-level MVs formed on the leading 

420 edge of the bow echo (Xu et al. 2015a; Atkins and Laurent 2009a). In view of their 

421 damaging potential, tracking of MVs within MCSs (probably based on the LLSD 

422 azimuth shear of radial velocity as in this research) should be of practical use for the 

423 operational warning and forecasting of severe convective weather. Towards that end, it 

424 is thus necessary to further explore the relation between MVs and severe weather 

425 hazards according to more observations (e.g., automated surface stations, and severe 

426 weather report), in parallel with development of advanced MV detection and tracking 

427 technique.
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655 Table 1. MVs detected at three radars from April to July during 2013–2015. Numbers 

656 in the parentheses are the percentages of MVs for different lifetime and parent systems. 

Wuhan Hefei Yancheng Total

All MVs 1129 1875 786 3790

Short-lived 800 (71%) 1269 (68%) 542 (69%) 2611 (69%)

Moderate-lived 281 (25%) 500 (27%) 222 (28%) 1003 (26%)

Long-lived 48 (4%) 106 (5%) 22 (3%) 176 (5%)

MCS type 21 (2%) 261 (14%) 92 (12%) 374 (10%)

Cell type 1108 (98%) 1614 (86%) 694 (88%) 3416 (90%)

657

658

1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888



33

659 Table 2. Average diameter, azimuthal shear and lifetime of MVs detected at three radars 

660 in YHRB from April to July during 2013–2015

Diameter (km) Azimuthal shear (10-3 s-1) Lifetime (min)

All MVs 8.1 2.3 26.3

Short-lived 7.6 2.2 20.1

Moderate-lived 9.2 2.4 36.2

Long-lived 10.2 2.7 61.5

MCS type 10.0 2.5 46.4

Cell type 6.0 2.1 24.0
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663 Table 3. Average diameter, azimuthal shear and lifetime of MCS-type MVs detected at 

664 three radars in YHRB from April to July during 2013–2015

Diameter (km) Azimuthal shear (10-3 s-1) Lifetime (min)

Short-lived 9.9 2.3 41.5

Long-lived 10.7 3.2 72.3
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666 Table 4. Mean CAPE and vertical shear (between 1000 and 700 hPa) over YHRB 

667 averaged between 2013 and 2015

April & May June & July Cell-type MCS-type

CAPE (J kg-1) 36.4 384.5 275.2 333.0

V1000-700 (m s-1) 5.7 4.3 5.0 6.5
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671
672 Fig. 1. (a) Location of 17 radars in YHRB including Nanhui (9210), Nanjing (9250), 
673 Wuhan (9270), Zhengzhou (9371), Nantong (9513), Yancheng (9515), Xuzhou (9516), 
674 Huaian (9517), Lianyungang (9518), Changzhou (9519), Taizhou (9523), Jinan (9531), 
675 Qingdao (9532), Hefei (9551), Fuyang (9558), Tongling (9562), and Hangzhou (9571). 
676 Color circles represent the 230 km range. (b) Location of Wuhan (9270), Hefei (9551) 
677 and Yancheng (9515) radars, with red circles denoting the 150 km range. Terrain 
678 heights are shaded (units: meter).
679

2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124



37

680

681
682 Fig. 2. Spatial distribution of the formation locations of MCSs in YHRB from April to 
683 July during 2013–2015.
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685

686  

687

688 Fig. 3. (a) Monthly and (b) diurnal variations of MCSs in YHRB from April to July 
689 during 2013–2015.
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691  

692 Fig. 4. Distributions of initial locations of MVs detected by radars of (a) Wuhan, (b) 
693 Hefei, and (c) Yancheng from April to July during 2013–2015.
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695

696  

697

698 Fig. 5. (a) Monthly and (b) diurnal variations of MVs detected in YHRB from April to 
699 July during 2013–2015. (c) and (d) are the percentages of MV maximum diameter (unit: 
700 km) and maximum azimuthal shear (unit: 10-3 s-1) during their lifetime.
701

2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360



41

702

703

704 Fig. 6. Percentages of (a) maximum diameter (unit: km) and (b) maximum azimuthal 
705 shear (unit: 10-3 s-1) for MVs of different lifetime.
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707  

708 Fig. 7. Percentage of the formation time of MCS-type MVs relative to the life cycle of 
709 parent MCSs.
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711

712

713
714 Fig. 8. (a) Monthly variation, (b) diurnal variation (LST) and percentages of (c) 
715 maximum diameter (unit: km) and (d) maximum azimuthal shear (unit: 10-3 s-1) for cell-
716 MVs (blue bars) and MCS-MVs (red bars) in YHRB from April to July during 2013–
717 2015.
718
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719

720
721 Fig. 9. Composite environmental conditions in different months of 2013 through 2015. 
722 [(a), (b)] April–May and [(c), (d)] June–July. (e)-(h) are similar to (a)-(d) but for 
723 composite environmental conditions of different types of MVs. [(e), (f)] Cell-MVs and 
724 [(g), (h)] MCS-MVs. On the left panel, black and red contours are the 500 hPa 
725 geopotential height (units: m) and temperature (units: K), with the horizontal wind field 
726 denoted by vectors. The horizontal wind speed (units: m s-1) at 200 hPa is shaded. On 
727 the right panel, black lines and vectors show the geopotential height (units: m) and 
728 horizontal wind at 850 hPa. The color shading in (b) (d) denotes the equivalent potential 
729 temperature (units: K) but horizontal wind speed in (f) (h). The gray shading denotes 
730 the terrain above 850 hPa. The green box indicates the location of YHRB.
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731
732 Fig. 10. Composite [(a), (c)] CAPE (shading, units: J kg-1) and water vapor flux at 700 
733 hPa (vector) and [(b), (d)] vertical wind shear (shading and vector) in the layer of 1000–
734 700 hPa in different months of 2013 through 2015. [(a), (b)] April–May and [(c), (d)] 
735 June–July. (e)-(h) are similar to (a)-(d) but for different types of MVs. [(e), (f)] Cell-
736 MVs and [(g), (h)] MCS-MVs. The green box indicates the location of YHRB.
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