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Abstract 35 

 Ensemble-based probabilistic forecasts are performed for a mesoscale convective system 36 

(MCS) that occurred over Oklahoma on 8-9 May 2007, initialized from ensemble Kalman filter 37 

analyses using multi-network radar data and different microphysics schemes. Two experiments 38 

are conducted, using either a single-moment or double-moment microphysics scheme during the 39 

one-hour long assimilation period and in subsequent three-hour ensemble forecasts. Qualitative 40 

and quantitative verifications are performed on the ensemble forecasts, including probabilistic skill 41 

scores. The predicted dual-polarization (dual-pol) radar variables and their probabilistic forecasts 42 

are also evaluated against available dual-pol radar observations, and discussed in relation to 43 

predicted microphysical states and structures.  44 

Evaluation of predicted reflectivity (Z) fields shows that the double-moment ensemble 45 

predicts the precipitation coverage of the leading convective line and stratiform precipitation 46 

regions of the MCS with higher probabilities throughout the forecast period compared to the 47 

single-moment ensemble. In terms of the simulated differential reflectivity (ZDR) and specific 48 

differential phase (KDP) fields, the double-moment ensemble compares more realistically to the 49 

observations and better distinguishes the stratiform and convective precipitation regions. ZDR from 50 

individual ensemble members indicates better raindrop size-sorting along the leading convective 51 

line in the double-moment ensemble. Various commonly used ensemble forecast verification 52 

methods are examined for the prediction of dual-pol variables. The results demonstrate the 53 

challenges associated with verifying predicted dual-pol fields that can vary significantly in value 54 

over small distances. Several microphysics biases are noted with the help of simulated dual-pol 55 

variables, such as substantial over-prediction KDP values in single-moment ensembles.  56 
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1. Introduction 57 

 A major focus in recent convective scale numerical weather prediction (NWP) research has 58 

been improving both the forecast initial conditions and the microphysics parameterizations that 59 

are important for convective-scale predictions; both areas address major challenges identified for 60 

the Warn-on-Forecast paradigm by Stensrud et al. (2013). Data assimilation (DA), which is an 61 

indispensable part of convective-scale NWP, aims to improve the forecast initial condition by 62 

optimally combining available observations and a background model state to produce the best 63 

possible estimate of the atmospheric state. One popular DA method for convective-scale NWP is 64 

the ensemble Kalman filter (EnKF, Evensen 1994; 2003), which uses an ensemble of forecasts to 65 

estimate the background error covariance. The application of EnKF methods for the assimilation 66 

of radar observations has produced successful results for a variety of real storm cases (e.g., Dowell 67 

et al. 2004; Dowell and Wicker 2009; Lei et al. 2009; Aksoy et al. 2009; Aksoy et al. 2010; Dowell 68 

et al. 2011; Snook et al. 2011; Dawson et al. 2012; Jung et al. 2012; Snook et al. 2012; Yussouf et 69 

al. 2013; Tanamachi et al. 2013; Putnam et al. 2014, hereafter P14; Wheatley et al. 2014; Snook 70 

et al. 2015; Yussouf et al. 2015). 71 

 Additionally, microphysics parameterization (MP) schemes are used in convective-scale 72 

NWP models for the explicit prediction of fields describing the type and amount of hydrometeors 73 

present within the simulated storms. Due to computational expense, most MP schemes treat the 74 

hydrometeor particle size distributions (PSDs) in a bulk form, as opposed to representing the PSDs 75 

using a spectral bin model (e.g., Khain et al. 2004), and the three-parameter gamma distribution is 76 

often assumed: 77 

𝑁(𝐷)𝑥 = 𝑁0𝑥𝐷𝑥
𝛼𝑥𝑒(−Λ𝑥𝐷)  ,                                                 (1) 78 

where 𝑁(𝐷)𝑥  is the number of particles of hydrometeor species x with diameter D in a unit 79 

volume, and Λ𝑥, 𝑁0𝑥, and 𝛼𝑥 are the slope, intercept, and shape parameters, respectively (Ulbrich 80 



4 

 

1983; Milbrandt and Yau 2005a). MP schemes are often characterized by the number of PSD 81 

moments that are explicitly predicted and used to derive the same number of PSD parameters. 82 

Single-moment schemes (SM) usually predict the third moment of the distribution, the 83 

hydrometeor mixing ratio (qx), while specifying the intercept and shape parameters; double-84 

moment (DM) schemes also predict the zeroth moment, the total number concentration (Ntx), so 85 

that both the slope and intercept parameters can be updated; triple-moment (TM) schemes predict 86 

the additional sixth moment of the distribution, often called radar reflectivity factor (z), and 87 

effectively allow the slope, intercept, and shape parameters of the gamma distribution to vary 88 

independently. The shape parameter is specified as a constant or diagnosed value in DM schemes. 89 

 The use of DM scheme for EnKF-based convective-scale NWP has been shown to improve 90 

storm structure and evolution during the analysis cycles as well as forecasts for both supercell and 91 

mesoscale convective system (MCS) cases. Dawson et al. (2009) showed that DM and triple-92 

moment (TM) schemes produced better predictions of a supercell storm than a SM scheme. Xue 93 

et al. (2010) first successfully applied EnKF to the estimation of model states associated with a 94 

DM scheme using simulated radar observations of a supercell, while Jung et al. (2012) first 95 

successfully used a DM scheme for EnKF radar DA for a real supercell storm. For the 8 May 2003 96 

Moore, Oklahoma supercell, Yussouf et al. (2013) found that both a fully DM scheme (which 97 

predicts total number concentration for graupel, Ntg) as well as a semi-DM scheme (which 98 

diagnoses intercept parameter for graupel, N0g) produced more small graupel than a SM scheme; 99 

this graupel was advected farther downwind, forming a broader forward flank downdraft (FFD), 100 

in agreement with observations. For MCS cases, P14, and subsequently Wheatley et al. (2014), 101 

found that DM MP schemes improved the development of trailing stratiform precipitation 102 

compared to a SM scheme. A dramatic increase in the formation and detrainment of snow and ice 103 
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from the leading convective towers rearward over the stratiform region resulted in much broader 104 

stratiform coverage. 105 

 Recently, simulated dual-polarization (dual-pol) radar variables have been used to evaluate 106 

microphysical states estimated through data assimilation and predicted by convective scale models 107 

for real cases, by comparing these variables to observations (Jung et al. 2012; Li and Mecikalski 108 

2012; Dawson et al. 2014; P14; Posselt et al. 2015; Putnam et al. 2016). The dual-pol variables 109 

contain additional information on PSDs over reflectivity (Z), specifically information about the 110 

size, content, and diversity of hydrometeors present in the radar volume. For example, differential 111 

reflectivity (ZDR) values are dependent on the horizontal-to-vertical axis ratio of hydrometeors; 112 

values are higher for large, oblate raindrops and low for dry, tumbling hail (Bringi and 113 

Chandrasekar 2001). Additionally, specific differential phase (KDP) is sensitive to the amount of 114 

liquid water the radar pulse interacts with.  115 

Dynamical and microphysical processes can lead to significant variation in hydrometeor 116 

PSDs over small spatial scales. For example, the size-sorting of hydrometeors associated storm-117 

relative wind shear in the forward flank of supercells leads to a significant increase in the number 118 

of large raindrops in low-level rain PSDs that can be identified by an increase ZDR values known 119 

as the ZDR arc (Kumjian and Ryzhkov 2008; Kumjian and Ryzhkov 2012; Dawson et al. 2014). 120 

This signature is indistinguishable in the observed Z pattern. Jung et al. (2012), in an EnKF data 121 

assimilation study of a supercell storm that occurred on 29 May 2004 in central Oklahoma, showed 122 

that using a DM MP scheme (Milbrandt and Yau 2005b) allowed the model to replicate observed 123 

dual-pol signatures such as the ZDR arc. P14 found that simulated ZDR patterns in the final EnKF 124 

analysis of an MCS produced using a DM scheme better represented the distribution of large, 125 

oblate raindrops in the leading convective line and small to medium sized raindrops in the trailing 126 

stratiform region compared to an analysis produced using a SM scheme. The SM analysis failed 127 
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to capture this distinction, overestimating raindrop size in the stratiform region.  128 

P14, which considered DM schemes and simulated dual-pol variables, focused on the final 129 

EnKF analyses of the experiments and on deterministic forecasts of simulated Z. P14 paid 130 

particular attention to the improvement in the microphysical and dynamical aspects of the MCS 131 

when using the DM scheme, such as the hydrometeor distributions and cold pool, and did not 132 

consider forecasts of dual-pol variables in depth. The current study expands upon P14 by 133 

performing and examining ensemble forecasts of the 8-9 May 2007 MCS case in terms of both Z 134 

and dual-pol radar variables. Ensemble forecasts offer additional benefits compared to 135 

deterministic forecasts, including the ability to produce probabilistic forecasts for precipitation 136 

events instead of a binary hit or miss forecast. Ensemble forecasts are integral to the Warn-on-137 

Forecast vision outlined in Stensrud et al. (2009), providing the basis for operational probabilistic 138 

prediction of hazards associated with severe convection in the near future. Probabilistic forecasts 139 

help account for the uncertainties related to both the initial condition and the prediction model 140 

(including the microphysics), so as to provide a means of measuring the level of confidence in the 141 

prediction.  142 

One of the advantages of EnKF methods is that they inherently provide an ensemble of 143 

analyses suitable for initializing an ensemble of forecasts (Kalnay 2002). Analyses from well-144 

tuned EnKF systems provide a good representation of flow-dependent background error that 145 

properly characterizes the analysis uncertainty (Kalnay et al. 2006). EnKF-initialized ensemble 146 

forecasts have been used to produce convective-scale probabilistic forecasts in several recent 147 

studies. For tornadic storms, probabilistic forecasts have focused on the low-level vorticity; 148 

Dawson et al. (2012) and Yussouf et al. (2013; 2015; 2016) showed that the ensemble probability 149 

of vorticity exceeding certain thresholds predicted the observed damage paths of tornadoes well in 150 

supercell cases, while Snook et al. (2012; 2015) obtained similarly successful results for an MCS 151 
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case. Snook et al. (2012; 2015) also examined and demonstrated the benefits of using multiple SM 152 

MP schemes in EnKF ensembles for probabilistic forecasts of Z, while Yussouf et al. (2016) 153 

showed the assimilation of radar data in a continuous-update-cycle EnKF DA system provides 154 

significant improvement during the first three hours of probabilistic quantitative precipitation 155 

forecasts.  156 

 In previous convective-scale EnKF studies using DM MP schemes, little attention has been 157 

given to probabilistic prediction of simulated radar variables or quantitative probabilistic forecast 158 

skill scores of simulated radar variables. In particular, probabilistic forecasting of simulated dual-159 

pol variables has never been reported in the formal literature as far as we know. Although Snook 160 

et al (2012; 2015) examined probabilistic prediction of Z, the studies were limited to the use of 161 

SM MP schemes, and they did not examine any of the dual-pol variables either. Dawson et al. 162 

(2012), Yussouf et al. (2013), and Wheatley et al. (2014) conducted ensemble forecasts using DM 163 

MP schemes, but they only examined individual member or ensemble mean forecasts, not 164 

probabilistic forecasts of Z. The more recent studies of Yussouf et al. (2015; 2016) showed that 165 

probabilistic forecasts of Z exceeding 40 dBZ based on the semi-DM Thompson (Thompson et al. 166 

2004; Thompson et al. 2008) scheme for two tornadoes cases matched the locations of observed 167 

supercells well. However, no quantitative probabilistic forecast skill scores for Z were presented. 168 

Additionally, these preceding studies did not directly compare simulated radar variables on the 169 

elevation levels where observed data were taken, but such comparisons are more intuitive for 170 

operational forecasting purposes and therefore should be performed first. Putnam et al. (2016) 171 

simulated dual-pol variables from the CAPS storm-scale ensemble forecasts for Hazardous 172 

Weather Testbed Spring Experiment (Kong 2013) for several members that differed only in the 173 

use of MP schemes. The study emphasized the differences among the different MP schemes in 174 
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their ability to simulate dual-pol radar signatures, but ensemble probabilistic forecasting of dual-175 

pol radar variables was not investigated. 176 

In this study, we examine two ensemble forecasts of an MCS produced using either mixed 177 

SM MP schemes or a DM MP scheme during both the EnKF DA and subsequent forecasts. We 178 

evaluate the simulated dual-pol variables both qualitatively and quantitatively.  Neighborhood 179 

probabilities are calculated for both Z and the dual-pol variables from ensemble forecasts with 180 

both perturbed initial conditions and microphysics perturbations, and the probabilistic forecasting 181 

performances of the two ensembles are compared. Probabilistic forecasts of the dual-pol variables 182 

include additional physical meaning beyond what Z can show, including the connection between 183 

KDP and rainfall rate, and the uncertainty such forecasts may contain. As pointed out earlier, 184 

probabilistic forecasts of dual-pol radar variables have never been examined before.   185 

The remainder of this paper is organized as follows: Section 2 reviews the 8-9 May 2007 186 

MCS case and the experiment design, and briefly summarizes the methods used in the SM and 187 

DM ensemble forecasts. In section 3, we assess the skills of the ensemble probabilistic forecasts 188 

obtained with the SM and DM schemes. Finally, section 4 summarizes the findings. The challenges 189 

associated with probabilistic forecasting and evaluation of highly localized dual-pol signatures are 190 

also discussed and some suggestions for future research are given.  191 

2. Experimental case and method 192 

 The model, EnKF settings, and data sources used in this study are all inherited from P14. 193 

Two experiments are conducted using a SM and DM MP scheme, respectively, in which ensemble 194 

forecasts are initialized from the final EnKF analyses for the 8-9 May 2008 MCS.  The SM 195 

ensemble (EXP_S) and the DM ensemble (EXP_D) use the same configuration during the EnKF 196 

analysis period as the corresponding control experiments EXP_S_M_3_5/EXP_S and 197 
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EXP_D_M_3_5/EXP_D from P14. A brief summary of the case and experiment settings is 198 

provided below.  199 

a. System overview 200 

 On 8 May 2007, an MCS developed in western Texas and moved to the northeast into 201 

southwestern and central Oklahoma during the evening hours (approximately 0000-0500 UTC 9 202 

May).  During the day on 8 May, a positively-tilted upper level trough and seasonably warm, moist 203 

air at the surface led to the development of widespread convection over western Texas. The cool 204 

outflow from these storms helped to initiate additional convection and contributed to upscale 205 

growth over time as the storms became organized into a convective line. Ahead of the line, isolated 206 

supercell storms developed in northwest Texas and southwest Oklahoma. The developing MCS 207 

interacted with two of these storms, leading to the development and maintenance of a line end 208 

vortex (LEV) near the northern end of the MCS (P14, Schenkman et al. 2011). During the 0100 – 209 

0500 UTC 9 May timeframe the system remained in the asymmetric stage of MCS development, 210 

with a broad area of leading stratiform precipitation, an intense leading convective line, and a 211 

trailing region of stratiform precipitation (Fig. 1, with term definitions based on Fritsch and Forbes 212 

(2001)). Widespread heavy rain was observed with this MCS, and four tornadoes were reported 213 

near the LEV (NWS 2012). For a more detailed discussion of the development, structure, and 214 

impacts of this MCS, we refer the reader to P14, Schenkman et al. (2011), and Snook et al. (2011).   215 

b. Forecast model settings 216 

 The forecast model used is the Advanced Regional Prediction System (ARPS, Xue et al. 217 

2000; Xue et al. 2001; Xue et al. 2003). ARPS is a fully-compressible, non-hydrostatic, three-218 

dimensional atmospheric model suitable for convective-scale simulation and prediction. ARPS 219 

predicts the three-dimensional wind components (u,v,w), pressure (p), potential temperature (θ), 220 

water vapor mixing ratio (qv), as well as the mixing ratios for cloud water (qc), rain (qr), snow (qs), 221 
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ice (qi), graupel (qg), and hail (qh) for a SM MP scheme. For a DM MP scheme, the model also 222 

predicts the hydrometeor number concentrations (Ntx, where x refers to individual hydrometeor 223 

species). Additional parameterizations used include NASA Goddard Space Flight Center long- and 224 

shortwave radiation, 1.5-order turbulent kinetic energy (TKE)-based subgrid-scale turbulence 225 

closure and convective boundary layer parameterization schemes, and a two-layer land 226 

surface/soil-vegetation model. More details on the model physics can be found in Xue et al. (2001) 227 

. The model domain used consists of 259 × 259 grid points in the horizontal with a 2 km horizontal 228 

grid spacing and a stretched vertical grid using 53 vertical grid points with a minimum grid spacing 229 

of 100 m and average grid spacing of 500 m. The model terrain is interpolated to the 2 km grid 230 

from a 30 arcsecond high resolution USGS dataset.  231 

 The full experiment consists of a 1-hour (h) spin-up period, 1-h data assimilation period, 232 

and a 3-h ensemble forecast. During the spin-up period, a 1-h deterministic forecast on the 2 km 233 

model grid is initialized from the NCEP North American Mesoscale Model (NAM) analysis at 234 

0000 UTC. The 3-h NAM forecast from 0000 UTC valid at 0300 UTC and the NAM analysis at 235 

0600 UTC provide lateral boundary conditions during the forecast. At 0100 UTC, smoothed 236 

random perturbations are added to the 1-h spin-up forecast (Tong and Xue 2008, Snook et al. 2011) 237 

to initialize a 40-member ensemble for performing the EnKF data assimilation cycles. The first 238 

assimilation is performed at 0105 UTC and the last at 0200 UTC, with an assimilation cycle length 239 

of 5 minutes. Only radar data are assimilated. Further details on the data assimilation are given 240 

below.  Following the assimilation period, the final ensemble analyses are used to initialize 3-h 241 

ensemble forecasts from 0200 UTC through 0500 UTC.  242 

c. Data sources 243 

 As in Snook et al. (2011) and P14, Level-II Z and radial velocity (Vr) data from five WSR-244 

88D S-band radars in Oklahoma and Texas are assimilated. These include KTLX of Twin Lakes, 245 
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Oklahoma City, Oklahoma, KVNX of Vance Air Force Base, Oklahoma, KAMA of Amarillo, 246 

Texas, KLBB of Lubbock, Texas, and KDYX of Abilene, Texas. Together, these five radar sites 247 

provide full coverage of the MCS during the DA period. KFDR (Fredrick, Oklahoma) is also 248 

located near the MCS, but level-II data from KFDR are unavailable during the assimilation 249 

window. Z and Vr data are also assimilated from four experimental X-band radars maintained by 250 

the Engineering Research Center (ERC) for Collaborative and Adaptive Sensing of the 251 

Atmosphere (CASA,  McLaughlin et al. 2009) in southwestern Oklahoma. These radars, KCYR 252 

(Cyril, Oklahoma); KSAO (Chickasha, Oklahoma); KLWE (Lawton, Oklahoma); and KRSP 253 

(Rush Springs, Oklahoma), provide additional low-level radar coverage over a portion of the MCS 254 

near the LEV. The National Severe Storms Laboratory’s dual-pol S-band radar KOUN is used for 255 

verification. The locations of radars used in this study are marked in Fig. 1.  256 

 Radar observations are interpolated to the model grid horizontally, but are left at the height 257 

of the radar elevation scan in the vertical, following Xue et al. (2006). The observations are 258 

interpolated to the time of each assimilation cycle using the previous and subsequent volume scan. 259 

Quality control procedures, include despeckling, ground clutter removal, and velocity dealiasing, 260 

are applied to the radar data prior to assimilation. For the CASA X-band Z observations, 261 

attenuation correction is performed  before the data are assimilated (Chandrasekar et al. 2004). 262 

The data quality control procedure used follows P14. Specifically, for KOUN, dual-pol variables 263 

are removed when ρHV < 0.8, which corresponds to non-meteorological echoes. KDP is calculated 264 

by first unfolding and then smoothing the differential phase (ΦDP) data using an averaging window 265 

with 9 gates when Z > 40 dBZ and 25 gates when Z < 40 dBZ. The least squares fit method of 266 

Ryzhkov and Zrnic (1996) is then used to calculate KDP using the same threshold to determine the 267 

number of gates. 268 



12 

 

d. Ensemble Kalman filter settings 269 

 The EnKF algorithm used is an implementation of the ensemble square root filter (EnSRF) 270 

of Whitaker and Hamill (2002). As mentioned earlier, the ensemble is first initialized at 0100 UTC 271 

by adding random, smoothed, Gaussian perturbations to the 1-h spin-up forecast. Perturbations 272 

with a standard deviation of 2 m s-1 are added to u, v, and w and a standard deviation of 2 K to θ 273 

(using positive values only) across the entire model domain. Additional perturbations with a 274 

standard deviation of .001 kg kg-1 are added to the hydrometeor mixing ratios and water vapor but 275 

they are confined to regions of precipitation where Z is greater than 5 dBZ. The perturbations are 276 

smoothed following Tong and Xue (2008) and use a horizontal correlation length scale of 8 km 277 

and vertical scale of 5 km.  278 

  Processed Z and Vr data from the nine radars are assimilated every 5 minutes between 279 

0105 UTC and 0200 UTC. This includes clear-air Z data from the WSR-88D radars, which Tong 280 

and Xue (2005) have shown helps to suppress development of spurious convection. Clear-air data 281 

from the CASA network are not used because of uncertainties associated with the X-band 282 

attenuation (Z values similar to those associated with clear air may be due to a completely 283 

attenuated signal). Assimilation of Vr is limited to regions where Z > 20 dBZ. The radar observation 284 

operator used is that of Jung et al. (2008), which is different from that used in Snook et al. (2011) 285 

and the same as that in P14. A horizontal and vertical covariance localization radius of 6 km is 286 

used for both Z and Vr based on the correlation function of Gaspari and Cohn (1999). 287 

 The observation error and covariance inflation methods used are the same as in P14. They 288 

were chosen based on preliminary experiments using various configurations. Radar observation 289 

error values of 5 dBZ for Z and 3 m s-1 for Vr are used. Multiplicative inflation (Anderson 2001) 290 

with a factor of 1.25 is applied to the prior ensemble for grid points where Z > 20 dBZ in order to 291 

maintain ensemble spread and produce a closer to optimal consistency ratio value (Dowell et al. 292 
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2004) throughout the assimilation period than could be achieved using lower values of observation 293 

error and other covariance inflation methods such as additive noise (Dowell and Wicker 2009) and 294 

relaxation to prior ensemble (Zhang et al. 2004).  295 

e. Microphysics schemes used and their configurations 296 

 The two control experiments differ solely in terms of the microphysics scheme used. 297 

EXP_S uses a combination of three different SM MP schemes during both the assimilation period 298 

and the forecast. Using multiple MP schemes within the ensemble was shown to increase ensemble 299 

spread and improve root-mean-square innovation (RMSI) during the assimilation period by Snook 300 

et al. (2011). Of the 40 ensemble members, 16 use the Lin scheme (Lin et al. 1983), 16 use the 301 

WRF single-moment 6-class WSM6 scheme (Hong and Lim 2006), and 8 use the simplified NWP 302 

scheme (NEM) of Schultz 1995). Fewer NEM members are included because NEM member 303 

forecasts did not tend to perform as well as members using the other SM schemes. The intercept 304 

parameter used for rain (N0r) is reduced by a factor of 10 from the typical value of 8 x 106 m-4 to 8 305 

x 105 m-4 , following Snook and Xue (2008), who found that the reduced N0r value led to a lower 306 

and more realistic evaporation rate and associated surface cold pool intensity.  307 

 The DM experiment, EXP_D, uses the Milbrandt and Yau (MY, 2005b) scheme. During 308 

the assimilation period, the shape parameters (α) for rain and hail vary inversely between 0.0 and 309 

2.0 in 0.05 increments for each member to increase ensemble spread. All other hydrometeor 310 

categories use α = 0; furthermore α is set to 0 for all categories in the forecasts after 0200 UTC. 311 

As in Snook et al. (Snook et al. 2011) and P14, the graupel category of the MY scheme is turned 312 

off to more closely resemble the majority of members in EXP_S which did not predict graupel.  313 

3. Results of experiments 314 

 In this section, ensemble forecast results from EXP_S and EXP_D are presented. The 315 
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results are divided into two parts: (1) an evaluation of the overall forecast quality of the complete 316 

MCS using Z mosaics and (2) verification of simulated dual-pol variables against KOUN 317 

observations. Evaluations include qualitative discussion of system structure and feature placement, 318 

evaluation of probabilistic forecasts, as well as quantitative verification. We also discuss methods 319 

and challenges as they relate to dual-pol variables.   320 

a. Ensemble forecasts of radar reflectivity 321 

1) QUALITATIVE EVALUATION OF REFLECTIVITY MOSAICS 322 

 Ensemble forecasts of the MCS are evaluated at 1, 2, and 3-h of forecast time by verifying 323 

the probability matched ensemble mean (PMEM; Ebert 2001) forecasts of Z from EXP_S and 324 

EXP_D against constant height mosaics of observed Z at model level 10, which is approximately 325 

2 km AGL (Fig. 2). Model level 10 is the lowest level where complete radar coverage of the MCS 326 

is available without gaps between radars.  The mosaics of observed Z are created by combining 327 

observations from the five WSR-88D radars used during assimilation, with observations 328 

interpolated to the model grid as discussed above in section 2c. Where multiple radars observe a 329 

specific grid point, the maximum value of Z is used in the mosaics. The larger values are used 330 

because they are less likely to have been subject to resolution smearing and attenuation effects, 331 

although the latter is usually rather small. The PMEM is used instead of a regular ensemble mean 332 

because Z can vary greatly over small distances, leading to under-prediction of intensity and over-333 

prediction of areal coverage when ensemble members with even slightly-displaced convective 334 

features are averaged. The PMEM ranks all Z values in the domain from highest to lowest for both 335 

the ensemble mean and the full ensemble, then reassigns values from the full ensemble probability 336 

density function of Z to the grid location with the same rank in the ensemble mean; this process 337 

helps mitigate the aforementioned biases introduced by taking the ensemble mean (Ebert 2001; 338 

Clark et al. 2009).  339 
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Unlike in P14, the simulated radar variables in the results in this manuscript use a different, 340 

more complex observation operator than was used for EnKF DA. This operator, outlined in Jung 341 

et al. (2010), uses a lookup table of scattering amplitudes for all hydrometeors calculated using the 342 

T-matrix method (Vivekanandan et al. 1991; Bringi and Chandrasekar 2001). This operator 343 

enables us to take into account Mie scattering for large ice particles, such as hail or graupel, and 344 

to use a new axis ratio for rain revised based on observations. The simpler operator used during 345 

EnKF DA, based on Jung et al. (2008), uses a fitted approximation to the T-matrix values for rain, 346 

and uses the Rayleigh approximation for ice species. The simpler operator is used during DA to 347 

reduce computational expense, while the more advanced operator is used for forecast verification 348 

because it allows for a more realistic comparison to observations. Specifically, this has a noticeable 349 

effect on ZDR, reducing maximum values by more than 0.5 dB, which is beyond the estimated 350 

uncertainty of observed ZDR of approximately 0.1-0.3 dB (Ryzhkov et al. 2005; Doviak and Zrnic 351 

1993). The new operator also, more correctly, simulates lower Z values for both dry and wet hail 352 

beyond the typical uncertainty for Z observations, which is approximately 1-2 dBZ.  353 

 The PMEM of Z in EXP_S contains a region of anomalously high Z (>55 dB) centered 354 

near the LEV (see Fig. 1), and there is little distinction between regions of stratiform and 355 

convective precipitation (Fig. 2d-f). The intensity of the trailing stratiform precipitation is also 356 

over-forecast. On the other hand, the PMEM of Z in EXP_D (Fig. 2g-i) contains broader 357 

precipitation coverage in the leading stratiform region and a convective line with greater southern 358 

extent, though it does over-forecast Z intensity in the leading stratiform region. The ensemble 359 

spread of Z is lower in EXP_D than in EXP_S (not shown); only one MP scheme is used in EXP_D, 360 

leading to closer agreement among members and higher ensemble mean values (Snook et al. 2012). 361 

These results are similar to those obtained in deterministic forecasts of this case in P14, where the 362 

authors found the size sorting of smaller raindrops rearward in the leading convective line when 363 
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using a DM scheme (absent in EXP_S) led to greater evaporative cooling and a stronger cold pool 364 

that helped maintain a more realistic MCS structure. They also found that the cold pool in EXP_S 365 

is disorganized, contributing to the development of spurious convection near the LEV. It should 366 

be noted that neither EXP_S nor EXP_D predict the small clusters of storms that develop in the 367 

southeast and southwest portion of the domain in the observations, likely in part because this 368 

convection developed mostly after the DA period.   369 

2) PROBABILISTIC FORECASTS OF REFLECTIVITY  370 

 Uncertainty within the ensemble forecast due to, e.g., initial condition and model errors, 371 

can be considered by producing probabilistic forecasts of Z from the forecast ensemble. High-372 

resolution, convection-permitting NWP forecasts are particularly sensitive to timing and location 373 

errors as forecast lead time increases due to the small spatial and temporal scales of convective 374 

storms (Lorenz 1969; Roberts 2008). To account for this sensitivity, we use the neighborhood 375 

ensemble probability (NEP) method (Ebert 2008; Roberts and Lean 2008; Schwartz et al. 2009), 376 

which, at each model grid point, produces a probabilistic forecast using a collection of nearby 377 

points in all ensemble members rather than relying solely on data from that single grid point in 378 

each member.  In this way, NEP accounts for spatial uncertainty as well as uncertainty conferred 379 

by the ensemble.  Appropriate specification of the neighborhood is important; in this study we use 380 

a circular neighborhood with a radius of 5 km, which is appropriate for the grid spacing used and 381 

convective features predicted (Snook et al. 2012; 2015). NEP is calculated for P[Z > 20 dBZ] (Fig. 382 

3) and P[Z > 40 dBZ] (Fig. 4) at the same vertical level 10 as in Fig. 2. The 20 dBZ threshold is 383 

used to consider overall precipitation coverage in the MCS, including the stratiform regions, while 384 

the 40 dBZ threshold is chosen to focus on areas of heavy, convective precipitation. In Fig. 3 and 385 

Fig. 4, the observed Z contours for the corresponding threshold are also plotted.  386 
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 As was noted in the PMEM forecasts, the NEP forecasts of Z for EXP_D exhibit improved 387 

precipitation structure and feature placement compared to EXP_S. At the 20 dBZ threshold, the 388 

region of high P[Z > 20 dBZ] in EXP_D (Fig. 3d-f) closely matches the observed region of 20+ 389 

dBZ Z, particularly in the leading stratiform region and leading convective line.  In particular, 390 

EXP_D predicts broad area of very high probability (> 0.9) that closely matches the observed 391 

leading stratiform region in terms of position, shape, and motion throughout the forecast period. 392 

In contrast, EXP_S (Fig. 3a-c) exhibits high probability (> 0.8) for only about half of the observed 393 

region of 20+ dBZ Z during the first two hours of the forecast, and even less in the 3-h forecast. 394 

EXP_S also has a substantial region of moderately high probabilities (up to 0.8) to the west of the 395 

MCS where no precipitation is observed.  Considering the individual SM microphysics schemes 396 

within EXP_S, the LIN members exhibit the best agreement with observations in terms of forecast 397 

coverage and intensity of Z; WSM6 members generally over-forecast the extent of the trailing 398 

stratiform region, while NEM members under-forecast the extent of both the trailing and leading 399 

stratiform regions (not shown). These results are consistent with those of Snook et al. (2012), 400 

which, using a similar ensemble with the same MP schemes, found that the RMS innovation of 401 

Lin members during the forecast period was lower than that of WSM6 and NEM members. In both 402 

EXP_D and EXP_S, low probabilities are predicted for the for the trailing stratiform precipitation 403 

region; overall, this region is the worst forecast portion of the MCS.  404 

 Although overall precipitation coverage (Z > 20 dBZ) is generally good for both cases, the 405 

P[Z > 40 dBZ] associated with heavier convective precipitation exhibits greater error. EXP_S has 406 

only a small overlap of low probabilities (0.05-0.2) with the observed 40 dBZ region in the 1-h 407 

forecast (Fig. 4a); EXP_D has greater overlap throughout the forecast period (Fig. 4d-f), but the 408 

predicted probabilities remain low. The convective line has a width of a few km and will be more 409 

susceptible to spatial error as forecast lead time increases compared to the stratiform regions, even 410 
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with the consideration of a 5 km neighborhood. EXP_D also has higher probabilities in the 411 

convection near the LEV on the north end of the MCS. However, there are areas of high probability 412 

in the stratiform region as well, where EXP_D over-forecasts Z intensity. The over-forecast in 413 

intensity is in part due the height of the model grid used in Fig. 2-4 being at the bottom of the 414 

model melting layer, where high Z occurs due to the presence of large, oblate, and wet 415 

hydrometeors. MP schemes used thus far with the simulator have shown a tendency to delay 416 

melting until warmer temperatures at lower elevations below the 0º isotherm in the model, and 417 

compared to observations, due to overestimated evaporative cooling (Jung et al. 2008; Jung et al. 418 

2010; Johnson et al. 2016). Because radar coverage is incomplete below this level, though, this 419 

issue is difficult to avoid. A modified melting model in the radar simulator that includes 420 

temperature information to help account for the delay is considered for future work. Previous 421 

studies have also shown that DM MP schemes can overestimate Z values compared to observations 422 

due to excessive size sorting (Kumjian and Ryzhkov 2012).  423 

3) QUANTITATIVE EVALUATION OF REFLECTIVITY FORECASTS  424 

 Qualitative evaluations based on the PMEM (Fig. 2) show quite skillful forecasts in terms 425 

of Z but there are still apparent spatial errors that would adversely affect quantitative skill scores. 426 

The NEP of Z > 40 dBZ used to identify the leading convective line indicated how small spatial 427 

error can lead to lower Z probabilities. When considering features with small spatial scales, scores 428 

such as the equitable threat score, which consider hits, misses, and false alarms in a deterministic 429 

point by point framework, are susceptible to a ‘double-penalty’: a forecast with even a modest 430 

spatial displacement in a feature not only misses the observed feature but also produces a false 431 

alarm because the forecast feature is not coincident with any observed feature (Ebert and McBride 432 

2000; Rossa et al. 2008; Mittermaier et al. 2013).  Therefore, quantitative measures that consider 433 

the probability of an event within a neighborhood are considered.  434 
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 The first metric considered is the area under the relative operating characteristic (ROC) 435 

curve (AUC, Mason 1982; Mason and Graham 1999). The AUC is a summary skill score that 436 

compares the probability of detection and the probability of false detection for a given event over 437 

a range of probability thresholds; in this case the event is Z exceeding a given threshold within a 438 

neighborhood with a 5 km radius. Possible AUC values range from 0.0 to 1.0, with 1.0 indicating 439 

a perfect forecast (no false alarms or misses). AUC values of 0.5 or below indicate that the forecast 440 

has no useful skill.  AUC is calculated for EXP_S and EXP_D using Z thresholds ranging from 10 441 

dBZ to 50 dBZ for 1, 2, and 3-h forecast times (Fig. 5), and a bootstrap procedure is used to 442 

resample the ensemble 1000 times to determine the 5th to 95th percentile range, which is shaded. 443 

Background shading is included to indicate the areas of useful forecast skill (green; AUC > 0.7), 444 

low skill (yellow; 0.5 < AUC < 0.7), and no skill (red; AUC < 0.5). Calculations are performed 445 

over the full experiment domain (Fig. 5a-c) as well as an Oklahoma subdomain positioned to cover 446 

the leading stratiform region and leading convective line, where both forecasts performed better 447 

compared to the trailing line (Fig. 5d-f).  448 

 Both experiments generally produce high AUC values, except for the very highest Z 449 

thresholds, associated with intense convective precipitation; confidence in AUC at these thresholds 450 

is low, however, because the sample size of Z exceeding these thresholds is quite small, and the 451 

regions in question are very small in spatial extent. AUC also, as expected, decreases with 452 

increasing forecast time. In general, EXP_D shows improvement over EXP_S in skill, especially 453 

for moderate Z thresholds representing the stratiform region in the later hours.  454 

 The AUC increases overall for both experiments when calculations are limited to the 455 

Oklahoma subdomain (Fig. 5d-f). In the 1-h forecast, AUC is similar in EXP_S and EXP_D, but 456 

in the 2 and 3-h forecasts, EXP_D outperforms EXP_S in terms of AUC at nearly all thresholds. 457 

In particular, EXP_D has an AUC value over 0.9 for thresholds of 20-25 dBZ throughout the 458 
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forecast period over the Oklahoma subdomain (Fig. 5d-f), indicating a highly skillful forecast of 459 

general precipitation coverage of the leading stratiform region. EXP_D also exhibits useful skill 460 

(AUC > 0.7) for higher Z thresholds representing convective precipitation throughout the forecast 461 

period over the Oklahoma subdomain, suggesting that the poorer scores over the full domain are 462 

partially due to the overly quick dissipation of the trailing convective line and the newly-developed 463 

convection in the southern portion of the domain, while the leading convective line is generally 464 

well forecast.  465 

 Reliability and sharpness diagrams are examined next. A probabilistic forecast is 466 

considered reliable when the probability of an event forecast to occur closely corresponds to the 467 

rate at which the event actually occurs (Brown 2001).  Reliability diagrams are calculated for P[Z 468 

> 20 dBZ] using a 5 km radius neighborhood at 1, 2, and 3-h forecast times (Fig. 6). In these 469 

reliability diagrams, perfect reliability is indicated by the one-to-one diagonal and the shaded 470 

region indicates a skillful forecast. Areas where the calculated reliability lies above the diagonal 471 

indicate that Z is under-forecast (forecast probability is lower than the observed frequency); 472 

conversely, areas below the diagonal indicate that Z is over-forecast (forecast probability is higher 473 

than the observed frequency). Sharpness diagrams, which are histograms of the calculated 474 

probability values, are shown in Fig. 7. An ideal forecast will have many values near 1.0 or 0.0, 475 

distinguishing sharply between events and non-events. Calculations are again performed over both 476 

the full domain and Oklahoma subdomain.  477 

 Overall, there is not much difference in the reliability of EXP_S and EXP_D either on the 478 

full domain or the Oklahoma subdomain. For the 1-h forecast time (Fig. 6a,d), both forecasts show 479 

good reliability, with the region of Z > 20 dBZ slightly under-forecast in EXP_S and slightly over-480 

forecast in EXP_D. For the 2 and 3-h forecast times (Fig. 6b,c,e,f), precipitation coverage is 481 

generally over-forecast in both experiments. EXP_D does show greater sharpness than EXP_S, 482 
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particularly over the Oklahoma domain (Fig. 7j-l). Both experiments have a large number of 483 

probabilities of 0.0 that represent the large areas where precipitation is not observed, but EXP_D 484 

has a much higher number of points with probabilities close to 1.0 where the ensemble predicts 485 

precipitation with very high confidence. As indicated by the AUC (Fig. 5) and the qualitative 486 

evaluation of NEP forecasts (Fig. 3), this region of very high confidence agrees well with 487 

observations in EXP_D, outperforming EXP_S. One concern is that the mixed MP scheme setup 488 

of EXP_S may lead to a decrease in sharpness compared to EXP_D because of higher spread in 489 

the ensemble. However, Snook et al. (2012) showed that the use of multiple SM MP schemes in 490 

an ensemble actually increased the sharpness of a forecast of mesovortices compared to an 491 

ensemble using only the SM LIN MP scheme.  492 

b. Ensemble forecasts of polarimetric variables 493 

1) QUALITATIVE EVALUATION OF PREDICTED POLARIMETRIC VARIABLES 494 

 The PMEM is calculated as in Fig. 2 for simulated Z, ZDR, and KDP as though the ensemble 495 

forecasts of EXP_S and EXP_D were observed by KOUN at 1-h (Fig. 8), 2-h (Fig. 9), and 3-h 496 

(Fig. 10) forecast times; KOUN observations at the corresponding times are provided for 497 

comparison. The simulated fields are shown at the 0.5° elevation; this choice of the lowest 498 

elevation is because dual-pol radar signatures tend to be the strongest at the low levels where size 499 

sorting effects (Dawson et al. 2014) and rain water species dominate. Also, the lower elevation is 500 

less affected by the melting layer. The difference in Z between the forecasts over the KOUN 501 

observing region is similar to the PMEM mosaics considered earlier (Fig. 2); EXP_D exhibits 502 

improved representation of the leading convective line and better coverage of the stratiform region 503 

compared to EXP_S, though it somewhat overestimates intensity due to the low model melting 504 

layer compared to the 0º isotherm and the excessive size-sorting seen in DM MP schemes.  505 
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There are two notable differences between EXP_D and EXP_S in terms of their forecast 506 

dual-pol fields. First, the areal coverage of high ZDR values (ZDR > 2.3dB), a threshold that 507 

distinguishes the convective region from the stratiform region in the observations, is over-forecast 508 

in EXP_S. The highest ZDR values predicted by EXP_S are coincident with the poorly-organized 509 

region of intense convection within the system due to the monotonic relationship between the Z 510 

and ZDR (e.g., Fig. 8e). The ZDR values in EXP_D (Fig. 8f), while slightly higher than the 511 

observations (Fig. 8d), still show a similar general distribution of high and low ZDR regions 512 

compared to the observations, indicating a distinct difference in maximum raindrop size between 513 

the convective and stratiform regions that is maintained throughout the entire forecast period. P14 514 

found that these MCS features were maintained by an improved cold pool due to increased 515 

evaporative cooling from the advection of small raindrops rearward by the DM scheme.  516 

 The second notable difference is that the KDP values in EXP_S are unrealistically high 517 

when compared to the observations, with values peaking at nearly 10° km-1, suggesting that EXP_S 518 

greatly over-forecasts liquid water content in the convective precipitation. By comparison, KDP in 519 

EXP_D is much closer to the observations. In fact, the qr values near the surface in EXP_S 520 

associated with the maximum values of simulated KDP are, on average, twice as high as those in 521 

EXP_D. The difference in KDP values during the forecast in the current study is notable when 522 

compared to P14, where dual-pol variables were considered only for the analysis (not for 523 

forecasts). In the P14 analysis, KDP values were generally quite similar between SM and DM 524 

experiments, with KDP slightly underestimated compared to the observations due to a high hail 525 

bias. However, the ZDR patterns differ between the SM and DM analyses in P14 and in the forecasts 526 

of EXP_S and EXP_D in the current study. These differences in ZDR occur in the stratiform region. 527 

The region of non-zero KDP values is mainly confined to the leading convective line. The 528 

unrealistically-high KDP values in EXP_S occur by the first forecast hour. Rain development in the 529 
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stratiform region of the MCS is heavily dependent on the transport of frozen hydrometeors in the 530 

mid and upper levels of the MCS from the convective to the stratiform region. There is very little 531 

hydrometeor transport from the convective line to stratiform region in the SM case (P14), and 532 

therefore there is a higher precipitation rate in the convective line. While the difference in KDP 533 

values in the convective region between the SM and DM experiment is less substantial in the 534 

analysis, the improved development and maintenance of the MCS when using the DM scheme 535 

leads to improved representation of ZDR and KDP fields, compared to the observations, throughout 536 

the forecast (Fig. 8- Fig. 10).  537 

 The patterns in the dual-pol variables that reflect microphysical processes can be subtle; 538 

one such pattern is increased ZDR along the leading convective line due to size sorting. Though the 539 

PMEM helps to alleviate some of the biases introduced by taking an ensemble mean, it can smear 540 

such high-detail patterns. For this reason, the best individual ensemble member from each 541 

experiment is examined in order to bring to light distinct pattern differences within the predicted 542 

dual-pol fields (Fig. 11). The 2-h forecast of EXP_S member 14 and EXP_D member 39 are chosen 543 

based upon a qualitative examination of the ensemble members that considers placement of system 544 

features, ZDR patterns, and overall value range. The best EXP_S member contains precipitation 545 

extending southeastward where the observations have the leading convective line, but the intensity 546 

and extent is rather limited compared to the best EXP_D member. As expected, areas of high ZDR 547 

coincide with areas of high Z in the EXP_S member. In the EXP_D member, however, high ZDR 548 

values are located along the eastern/leading edge of the leading convective line. This ZDR pattern 549 

is indicative of the size sorting of raindrops within the convective line, with smaller raindrops 550 

being advected rearward in the line while larger raindrops remain.   551 
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2) PROBABILISTIC FORECASTS OF POLARIMETRIC VARIABLES 552 

 In section 3a2, probabilistic forecasts were used to evaluate the ensemble forecast 553 

precipitation coverage of stratiform and convective precipitation, based on 20 and 40 dBZ Z 554 

thresholds, respectively. A distinct variation in the ZDR values also occurs, with ZDR increasing 555 

where larger raindrops are present along the leading edge of the convective line. To evaluate how 556 

well the two experiments forecast the high ZDR signatures, the probability of ZDR > 2.3 dB at the 1, 557 

2, and 3-h forecast time is calculated (Fig. 12). The threshold of ZDR = 2.3 dB is chosen based on 558 

the observed values in this case (Fig. 8d, 9d, 10d), and the observed ZDR = 2.3 dB contour is shown 559 

as a thick black line. EXP_S has a broad expanse of relatively high probability of ZDR > 2.3 dB 560 

over the stratiform region, a result consistent with the overall pattern of ZDR in Fig. 8e, 9e, and 10e. 561 

This region of high P[ZDR > 2.3 dB] is significantly displaced from the observed leading convective 562 

line. In EXP_D, there is some overlap of low to moderate probabilities of ZDR > 2.3 dB with the 563 

observed 2.3 dB contour in the 1-h forecast, and some overlap of low probabilities at the 2 and 3-564 

h forecasts. Though the regions of moderate P[ZDR > 2.3 dB] in EXP_D do not exactly match the 565 

observed region of high ZDR, the geographic distribution of higher probability follows a north-566 

northwest to south-southeast orientation, similar to the observed leading convective line, and 567 

substantially improved compared to the more circular pattern found in EXP_S. The EXP_D 568 

probabilistic forecast of ZDR thus has greater practical value, indicating moderate probability of an 569 

arc of larger raindrops relatively near the observed leading convective line, correctly indicating 570 

the existence and general direction of motion of the leading convective updrafts in the MCS within 571 

the ensemble forecast.  572 

3) QUANTITATIVE VERIFICATION OF POLARIMETRIC VARIABLES  573 

 The same concerns for how small spatial errors can affect quantitative skill scores of Z 574 

discussed in section 3a3 are even greater when considering skill scores for predicted dual-pol 575 
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variables. Dual-pol signatures follow patterns associated with microphysical processes that occur 576 

at very small scales, such as the size-sorting of raindrops along the leading convective line. With 577 

this potential limitation in mind, the AUC is calculated for ZDR (0.0 to 2.7 dB) and KDP (0.0 to 1.5 578 

° km-1) for the 1, 2, and 3-h forecasts (Fig. 13) using a 5 km neighborhood radius as was done in 579 

Fig. 5 for Z. Both experiments have similar, skillful AUC values for predicting ZDR at thresholds 580 

of 0.0 to 1.0 dB (Fig. 13a-c). For higher thresholds, the AUC for EXP_S indicates very poor skill, 581 

while EXP_D still produces a skillful forecast. AUC for ZDR is better in EXP_D due to the lower 582 

ZDR values throughout the leading stratiform region, which agree much more closely with 583 

observations than the forecast of EXP_S. The ZDR associated with the leading convective line also 584 

has a good overlap with observed values in EXP_D. EXP_S outperforms EXP_D for the 585 

considered thresholds of KDP due to erroneous broader coverage in EXP_S that overlaps the 586 

observations and the displacement error in EXP_D. KDP coverage is significantly less than either 587 

Z or ZDR; AUC is particularly sensitive to the probability of detection and therefore EXP_D scores 588 

are poorer. Additionally, the significant high bias in KDP in EXP_S is not accounted for at these 589 

thresholds chosen based on observed values; the AUC threshold limit is set to 1.5 ° km-1 because 590 

few observations exceed this value. KDP is poorer qualitatively in comparison to EXP_D, but 591 

limitations in the quantitative scores used lead to poor and misleading results.   592 

 Due to the large impact of spatial error on the quantitative skill scores for the dual-pol 593 

variables, other quantitative methods of evaluation not reliant on location are useful. Domain-wide 594 

histograms of the simulated dual-pol variables can be used to identify significant biases in the 595 

forecast. Histograms of the simulated values from all members of EXP_S and EXP_D as well as 596 

the observed values are plotted in Fig. 14. The values from EXP_S and EXP_D are normalized by 597 

the size of the ensemble for comparison to the observations. For observed Z, values associated 598 

with the widespread stratiform precipitation lead to a peak between about 30 to 35 dBZ throughout 599 
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the experiment period (Fig. 14a-c). The EXP_D ensemble forecast Z values match the observed 600 

distribution in this range better than EXP_S during the first two forecast hours. Both experiments 601 

over-forecast the geographic extent of the convective precipitation, and over-forecast the intensity 602 

of Z in part due to a delayed model melting layer relative to the 0º isotherm and excessive size-603 

sorting in EXP_D, leading to a higher number of Z > 50 dBZ values compared to the observations, 604 

though this high bias is slightly greater in EXP_S than in EXP_D in the 1- and 2-hour forecasts.  605 

 Differences between EXP_S and EXP_D are readily apparent in histograms of the 606 

predicted dual-pol values (Fig. 14d-i). Observed ZDR values (Fig. 14d-f) peak at about 1.0 to 1.5 607 

dB due to the broad coverage of moderately-sized raindrops in the leading stratiform region. 608 

EXP_D over-forecasts the coverage of the leading stratiform precipitation, leading to an overall 609 

high-bias in the ZDR histogram, and slightly over-forecasts the location of the histogram peak in 610 

ZDR values, but the overall histogram pattern is similar to that of the observations. EXP_S, on the 611 

other hand, has a uniform distribution of ZDR values throughout the forecast period, with no 612 

evidence of the peak seen in the observations and in EXP_D, due to the lack of broad coverage of 613 

stratiform precipitation in EXP_S. EXP_S also has a larger number of very high values (ZDR > 614 

3.0dB) resulting from the unorganized region of intense convection in the center of the system. 615 

Relatively little bias is noted in the KDP histograms for EXP_D, producing histograms similar to 616 

that produced by to the dual-pol observations (Fig. 14g-i). EXP_S over-forecasts the total coverage 617 

of non-zero KDP values, again suggesting a high-bias in liquid water content overall compared to 618 

the observations. This substantial high-bias in liquid water content in convective precipitation 619 

skews EXP_S towards high values, with grid volumes exhibiting KDP > 3.0 ° km-1, particularly in 620 

the 1-hour forecast (Fig. 14g).  621 
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4. Summary and conclusions 622 

 Ensemble forecasts initialized from cycled EnKF ensemble analyses are produced for a 623 

mesoscale convective system (MCS) that occurred over Oklahoma and northern Texas on 8-9 May 624 

2007 using single-moment (SM, Lin et al. 1983) and double-moment (DM) microphysics 625 

(Milbrandt and Yau 2005b) schemes. Qualitative and quantitative probabilistic methods are used 626 

to examine the MCS structure and precipitation distribution for the SM (EXP_S) and DM 627 

(EXP_D) experiments. Additionally, predicted dual-polarization (dual-pol) radar variables and 628 

their probabilistic forecasts are also evaluated against available dual-pol radar observations, and 629 

discussed in connection with model predicted microphysical states and structures. The current 630 

study expands on the work of Putnam et al. (2014) which focused on the EnKF data assimilation 631 

and the deterministic forecasting aspects of the same two experiments that used SM and DM 632 

microphysics schemes, respectively. This paper focuses on ensemble probabilistic forecasting of 633 

reflectivity and the simulated dual-pol radar variables associated with the 8-9 May 2007 MCS. 634 

 Both qualitative and quantitative evaluations of the probabilistic forecasts show that 635 

EXP_D predicts the MCS with high confidence. EXP_D predicts the overall precipitation coverage 636 

of the system (considering a threshold region of Z > 20 dBZ) with very high probabilities 637 

throughout the forecast period, particularly for the stratiform precipitation region. EXP_S predicts 638 

similarly high probabilities for approximately half of this region and includes a large area of 639 

moderate probability of Z > 20 dBZ outside of the observed region. EXP_D has higher forecast 640 

skill, measured in terms of the area under the relative operating characteristic curve (AUC), for 2 641 

and 3-h forecasts of the stratiform precipitation and leading convective line comprising the 642 

northern portion of the MCS. EXP_D also provides ensemble forecasts with greater sharpness, as 643 

well as one in which the highest precipitation probabilities match regions of observed precipitation 644 

at a higher frequency.  645 
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EXP_D better represents the microphysics-related features in the MCS throughout the 646 

forecast period. This is notable in terms of ZDR values, where the dual-moment ensemble forecast 647 

shows a clear distinction between the convective and stratiform precipitation regions, similar to 648 

that seen in the final EnKF analysis in Putnam et al. (2014), which continues throughout the 649 

forecast period. Additionally, EXP_D implies more realistic liquid water content in the convective 650 

region than EXP_S, where unrealistically high KDP values suggest the liquid water content has 651 

been over-forecast, associated with the unorganized system structure and precipitation 652 

development in the forecasts. When evaluating a DM ensemble, the increased computational 653 

expense cost of a DM over a SM scheme should also be considered. Previous studies have shown 654 

that DM schemes can increase computation time by 10-30% depending on the scheme used 655 

(Morrison et al. 2005; Milbrandt and McTaggart-Cowan 2008; Morrison and Gettelman 2008; Lim 656 

and Hong 2010). However, future increases in available computing resources will make the 657 

operational use of DM schemes increasingly feasible, and current operationally-oriented research 658 

projects, such as the 2016 Storm Scale Ensemble Forecasts (SSEF) produced by the Center for 659 

Analysis and Prediction of Storms (CAPS, Kong 2016), as part of the NOAA Hazardous Weather 660 

Testbed Spring Experiment, are already using DM MP schemes successfully in real time. 661 

Producing meaningful probabilistic forecasts of dual-polarization (dual-pol) variables 662 

proves challenging. Dual-pol signatures are often produced by physical processes within 663 

convective systems with very small spatial scales; often less than a few kilometers. These small-664 

scale structures are smeared when probabilistic forecasts are generated using neighborhood-665 

methods or a probability-matched ensemble mean. When individual ensemble members are 666 

examined, though, EXP_D maintains a better quality in the predicted dual-pol fields compared to 667 

EXP_S, as in the final EnKF analyses noted in Putnam et al. (2014). There is a notable arc of high 668 

ZDR along the leading convective line in the MCS, resulting from size-sorting processes that are 669 
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not represented in EXP_S, where ZDR shows a monotonic relationship with Z. Probabilistic 670 

forecasts of ZDR for EXP_D, while not particularly accurate in matching the location of the 671 

observations, still indicate the presence of this arc of large raindrops along the leading convective 672 

line and the general direction and speed of motion of the convective updrafts of the line. The 673 

EXP_D ZDR forecasts also show higher skill based on AUC calculations compared to EXP_S. For 674 

KDP, the EXP_S forecasts show higher skill. However, this is due to spatial displacement in 675 

EXP_D and significant erroneous coverage of KDP in EXP_S; the AUC is more sensitive to the 676 

probability of detection. The low probabilities and spatial displacement errors associated with both 677 

of these variables indicate how uncertain the forecast of intense, convective updrafts and excessive 678 

rainfall can be. Understanding and increasing the skill in predicting intense rainfall rates has the 679 

greatest broader impact on forecasting potential flash flood events.  680 

 This is the first study to consider explicit ensemble-based probabilistic forecasting of 681 

simulated dual-pol radar variables, and it highlights several challenges for future work. Even on 682 

high resolution grids capable of resolving microphysical patterns that occur on small spatial scales, 683 

quantitative verification scores for dual-pol signatures that usually have very small spatial scales 684 

(even compared to convective storms) suffer from a double penalty: forecasts of precipitation 685 

variables not only miss the location of the observations (a ‘miss’), but also occur in a nearby 686 

location where the event was not observed (a ‘false alarm’). This was also noted in a recent study 687 

evaluating storm-scale forecasts using different DM MP schemes (Putnam et al. 2016). Some 688 

probabilistic neighborhood-based metrics are used in this case, including the AUC, to help account 689 

for spatial errors, but the distance and orientation of patterns in the simulated variables still presents 690 

a challenge when using such methods. Scores for dual-pol variables, specifically KDP, are poorer 691 

as the threshold considered increases, despite the neighborhood radius of 5 km used, due to both 692 

the small spatial scale of the patterns being considered and discrepancy in the range of forecast 693 



30 

 

values versus observed values. Although using a larger neighborhood may alleviate to a larger 694 

extent the effect of spatial error, the probabilistic forecasts produced using progressively larger 695 

neighborhood radii will be more and more smoothed, losing the resolution necessary to capture 696 

small-scale features and negating their intended purpose.  Additional methods of quantitatively 697 

evaluating dual-pol variables include histograms, which can provide information on general biases 698 

without considering spatial error. In such histograms produced for this case, high biases in the 699 

number of large drops and overall liquid water content, as suggested by the high biases in predicted 700 

KDP values, are identified in EXP_S, likely due to the representation of convective precipitation 701 

within EXP_S. Possible future quantitative verification methods for dual-pol fields include object-702 

based methods (e.g. Davis et al. 2006, Johnson et al. 2013, Zhu et al. 2015) that match similar 703 

storm features in observations to those in the forecasts to compare better dual-pol variable patterns; 704 

this, and other forecast evaluation methods for dual-pol fields, remains a promising area for future 705 

research endeavors. The methods used in this paper can be applied to storm-scale ensemble 706 

forecasts, such as the Storm Scale Ensemble Forecasts (SSEF) run as part of the NOAA Hazardous 707 

Weather Testbed Spring Experiment (e.g., Kong 2016), to evaluate similar issues over multiple 708 

cases. Putnam et al. (2016) represents the first effort in that direction. More studies evaluating and 709 

improving microphysics parameterizations and the dual-pol radar simulators are also needed (e.g., 710 

Johnson et al. 2016; Putnam et al. 2016). 711 
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and simulated specific differential phase (° km-1) values. The values in EXP_S and EXP_D 1006 

are normalized by the size of each ensemble. 1007 
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Fig. 1. Mosaic of observed reflectivity (dBZ) from KAMA, KDYX, KFWS, KLBB, KTLX, and 

KVNX at 0200 UTC at about 2 km above ground. The locations of all radars assimilated are 

marked. Also, notable MCS features including the line end vortex (LEV), leading convective line, 

leading stratiform region, and trailing stratiform region are given. Reproduced from Putnam et al. 

(2014). 

 

  



2 

 

 
 

Fig. 2. Mosaics of observed reflectivity (dBZ) as in Fig. 1 from (a-c) 0300 UTC to 0500 UTC as 

well as probability matched ensemble mean reflectivity for (d) EXP_S and (g) EXP_D at 0300 

UTC/1-h forecast, (e,h) 0400 UTC/2-h forecast, and (f,i) 0500 UTC/3-h forecast. 
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Fig. 3. Probability of reflectivity exceeding 20 dBZ at 2 km AGL for EXP_S at (a) 1-h, (b) 2-h, 

and (c) 3-h forecast times and (d-f) EXP_D. The thick black line outlines observed reflectivity 

exceeding 20 dBZ. 
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Fig. 4. Probability of reflectivity exceeding 40 dBZ at 2km AGL for EXP_S at (a) 1-h, (b) 2-h, 

and (c) 3-h forecast times and (d-f) EXP_D. The thick black line outlines observed reflectivity 

exceeding 40 dBZ. 
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Fig. 5. Area under the relative operating characteristic curve (AUC) for EXP_S (red line and 

shading) and EXP_D (blue line and shading) at (a) 1-h, (b) 2-h, and (c) 3-h forecast times at 2 km 

AGL for the full experiment domain and also (d-f) a subdomain covering Oklahoma. 

  



6 

 

 

 

 
 

 

Fig. 6. Reliability diagrams calculated for reflectivity exceeding 20 dBZ for EXP_S (red line) and 

EXP_D (blue line) at (a) 1-h, (b) 2-h, and (c) 3-h forecast times at 2 km AGL for the full experiment 

domain and also (d-f) a subdomain covering Oklahoma. 
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Fig. 7. Sharpness diagrams calculated for reflectivity exceeding 20 dBZ for EXP_S (red) at (a) 1-

h, (b) 2-h, and (c) 3-h forecast times and (d-f) EXP_D (blue) at 2 km AGL for the full experiment 

domain and also (g-l) a subdomain covering Oklahoma. 
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Fig. 8. (a) Observed reflectivity (dBZ) and simulated reflectivity from (b) EXP_S and (c) EXP_D 

at 0300 UTC/1-h forecast at a 0.5° tilt from KOUN, as well as (d-f) differential reflectivity (dB) 

and (g-i) specific differential phase (° km-1). 
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Fig. 9. As in Fig. 8 but at 0400 UTC with 2-h forecast results. 
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Fig. 10. As in Fig. 8 but at 0500 UTC with 3-h forecast results. 
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Fig. 11. (a) Observed reflectivity (dBZ) and simulated reflectivity from (b) EXP_S member 14 

and (c) EXP_D member 39 at 0400 UTC/2-h forecast at a 0.5° tilt from KOUN, as well as observed 

(d) and simulated (e-f) differential reflectivity (dB). 
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Fig. 12. Probability of differential reflectivity exceeding 2.3 dB at a 0.5° tilt from KOUN for 

EXP_S at (a) 1-h, (b) 2-h, and (c) 3-h forecast times and for (d-f) EXP_D. 
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Fig. 13. Area under the relative operating characteristic curve (AUC) for differential reflectivity 

(dB) for EXP_S (red line and shading) and EXP_D (blue line and shading) at (a) 1-h, (b) 2-h, and 

(c) 3-h forecast times at a 0.5° tilt as well as for (d-f) specific differential phase (° km-1). 
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Fig. 14. Histograms of observed (black) KOUN and simulated reflectivity (dBZ) values from 

EXP_S (red) and EXP_D (blue) at (a) 0300, (b) 0400, and (c) 0500 UTC at a 0.5° tilt as well as 

(d-f) observed and simulated differential reflectivity (dB) values and (g-i) observed and simulated 

specific differential phase (° km-1) values. The values in EXP_S and EXP_D are normalized by 

the size of each ensemble. 

 


