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Abstract  

Operational Doppler weather radar networks, such as the WSR-88D radar 

network of the United States, provide the key sources of data for initializing storm-scale 

numerical weather prediction (NWP) models. Because Doppler radars only observe a 

very limited set of parameters and the spatial coverage of radar data is often incomplete, 

advanced data assimilation methods are necessary to fully determine the state of the 

atmosphere. In this dissertation, the ensemble Kalman filter (EnKF) algorithm is 

employed to assimilate radar data for the prediction of convective storms.  

An EnKF data assimilation system is first developed based on the general 

purpose compressible nonhydrostatic ARPS (Advanced Regional Prediction System) 

model including multi-class ice microphysics. Simulated radar radial velocity and 

reflectivity data from a single radar are first assimilated and their relative impacts on the 

analysis and forecast are evaluated. The EnKF works almost perfectly in such perfect-

model OSS (Observing System Simulation) experiments, in which wind, 

thermodynamic and microphysical fields of a supercell thunderstorm are retrieved very 

accurately. The ensuing forecasts remain very good for at least 2 hours. Physically 

consistent background error covariances are obtained which play a crucial role in 

successful estimation of the model state.  

The presence of model error poses a major challenge for real data applications. 

For convective-scale prediction, microphysics parameterization is a major source of 

model error and uncertainty. Parameter estimation via state augmentation using the 

EnKF method is applied to the correction of errors in fundamental parameters common 
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in single-moment ice microphysics schemes, after parameter sensitivity and 

identifiability are examined. OSSEs are performed in which individual parameters are 

estimated separately or in different combinations. The estimation of individual 

parameters is shown to be successful while the level of difficulty increases as more 

parameters are estimated simultaneously. Explanations are given as to why under 

certain circumstances the filter fails to estimate the correct values of parameters. Still, 

the state estimation is generally improved even when estimated parameters are 

inaccurate.  

Finally, our EnKF system is applied to a real case of tornadic thunderstorm. The 

initial storm environment is either horizontally homogeneous as defined by a single 

sounding or three dimensional as obtained from a 3DVAR analysis of all available 

conventional observations. A full suite of model physics is employed in the latter case. 

Radial velocity and reflectivity from either one or two WSR-88D radars are assimilated. 

Analyzed radial velocity and reflectivity fields match the observations well. The flow 

fields show dynamically consistent patterns typical of supercell storms, including strong 

mid-level rotation and updraft, and low-level hock echo. The subsequent hour-long 

prediction maintains the supercell characteristics and propagates in the right direction, 

but the detailed structure and propagation speed of the predicted storm differ from the 

observed ones towards the later part of the prediction. Model errors, in particular those 

related to microphysics and resolution, are suggested as the major source of forecast 

errors, while the lack of low-level radar data coverage may have also contributed to the 

inaccuracy of analysis or model initial condition.  
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Chapter 1                                     
Introduction and Overview 

 

 

1.1 Background and Motivation 
Numerical weather prediction (NWP) is an initial-boundary value problem: given an 

estimate of the current state of the atmosphere, the model predicts its future state. To 

produce an accurate numerical weather forecast, it is very important to have a precise 

representation of current atmospheric state. This is achieved through data assimilation. 

Data assimilation is the process of finding the model representation of the atmospheric 

state that is most consistent with the current and past observations (Lorenc 1995). 

Usually, observations are sparse in space and time and contain errors. They are 

insufficient to completely determine the state of the atmosphere. Additional 

information, in particular, the evolution with time of the atmosphere, can be obtained by 

using a numerical model, which is based on the knowledge of the behavior and structure 

of the atmosphere. The simplest use of the model is to carry information forward in time 

from a past analysis, to provide the background state for a new analysis (Lorenc 1995). 

Therefore, the goal of data assimilation is to find the optimal combination of the model 

forecast background and observations with weights determined by their error 

characteristics. 

Research on numerical weather prediction at the scale of convective storms was 

motivated by the installation of the WSR-88D Doppler radar network and the 
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continuous increase in computing power, which facilitate the use of high-resolution 

nonhydrostatic numerical models (Lilly 1990; Droegemeier 1990; Xue et al. 1996; 

Droegemeier 1997; Xue et al. 2003). Doppler radars provide high-resolution 

measurements of radial velocity, reflectivity and velocity spectrum, with complete 

volume scans every 5 to 10 minutes. They are the only existing instruments that are 

capable of providing routine observations with spatial and temporal resolutions 

sufficient for resolving convective storms. Therefore, to produce accurate storm-scale 

numerical weather forecast, it is necessary to incorporate the radar data into the NWP 

model. The major challenge of initializing storm-scale NWP through radar data 

assimilation is that only radial velocity and reflectivity (velocity spectrum width is also 

available but is not as useful) are measured and they are not the model state variables. 

The assimilation problem now involves the retrieval of unobserved variables. Hence, 

advanced data assimilation methods are needed to successfully analyze the unobserved 

wind, thermodynamic and microphysical fields from Doppler radar observations. 

In recent years, various techniques have been developed for analyzing and 

retrieving atmospheric state at the convective scale from Doppler radar data. These 

methods range from purely kinematic to sophisticated 4D variational method (4DVAR) 

that employs a nonhydrostatic prediction model and its adjoint (e.g., Gal-Chen 1978; 

Sun et al. 1991; Qiu and Xu 1992; Shapiro et al. 1995; Sun and Crook 1997; Gao et al. 

1999; Wu et al. 2000; Weygandt et al. 2002a; Hu et al. 2006a; Hu et al. 2006b). Most of 

the work deals with retrieval and assimilation of radial velocity and/or reflectivity data 

from single Doppler radar because dual or multiple-Doppler coverage is not generally 

available. For the purpose of initializing NWP models, the 4DVAR method (e.g., Sun 
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and Crook 1997; Gao et al. 1998) promises to provide an initial condition that is 

consistent with the prediction model and is able to effectively use multiple volume 

scans from radar. However, the high cost of developing and maintaining an adjoint 

code, especially one that can run efficiently on distributed-memory parallel computer 

systems and the need to include in the adjoint of detailed physical processes, which are 

more important at the convective scale, have limited 4DVAR assimilations of Doppler 

radar and other high-resolution data to relatively simple applications and model settings.  

Ensemble Kalman filter (EnKF) has been introduced as a data assimilation 

method for about a decade. No until recently, it has been applied in storm-scale data 

assimilation with considerable success. Because of the need to run an ensemble of 

forecast and analysis of nontrivial sizes (usually a few tens to a few hundreds), the 

overall computational cost of ensemble-based assimilation methods is also significant. 

Fortunately, a significant portion of the assimilation procedure, including the forecast 

component, is easily parallelizable. There is no need in general for the adjoint of the 

forward observation operators. Therefore, indirect observations with complex 

observation operators, at least those that involve primarily local influences, can be 

easily included. Furthermore, the analysis code is more or less independent of the 

prediction model, just the opposite of 4DVAR method. In addition, the system provides 

valuable uncertainty information on both analysis and forecast, and when combined 

with an existing ensemble prediction system, the incremental cost can be small. 

The EnKF method is, however, not as mature as 4DVAR. The testing of the 

EnKF with real data, especially at the thunderstorm scale, remains very limited. EnKF 

also shares some of the common problems with 4DVAR, including issues with model 
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errors, linear assumption associated with the optimality of solution, and Gaussian error 

assumption. For systems that involve error growth at very different temporal and spatial 

scales, more difficulties may arise. For these reasons, much research is still needed 

before reliable operational implementations of ensemble-based assimilation methods 

can be achieved. 

1.2 Dissertation Outline 

The goal of this research is to develop an EnKF data assimilation system and to 

investigate its ability in radar data assimilation and parameter estimation for storm-scale 

numerical weather prediction. In Chapter 2, the theoretical background of the EnKF is 

presented. The framework of the EnKF and its variations are introduced and some 

issues associated with this method are discussed. 

Chapter 3 describes the EnKF system for Doppler radar data assimilation that 

we developed. It is tested with simulated radial velocity and/or reflectivity data from a 

single Doppler radar for a supercell storm. The simulated radar data used in this chapter 

are assumed to be located on model grid points. Different from earlier radar data 

assimilation work with EnKF, our data assimilation system is based on a general 

purpose compressible nonhydrostatic model with a complex multi-class microphysics 

scheme. The relative impact of radial velocity and reflectivity data on the analysis and 

subsequent forecast are investigated. 

A variant of the EnKF, the ensemble square-root Kalman filter (Whitaker and 

Hamill 2002) is then implemented and applied to studies from Chapter 4. The system 

now couples with realistic radar emulators or forward observation operators, with radar 
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geometry and earth curvature effects taken into account. Simulated radar data can be 

sampled on radar elevation levels. More realistic emulation of radar antenna pattern 

based on a Gaussian power-gain function is included. The system is flexible and permits 

a variety of OSS (Observing System Simulation) experiments examining various issues 

related to optimal radar configurations and scan strategies. The first work related to this 

has been published, in which the impact of data from a standard WSR-88D network 

radar and those from a network of closely-spaced, low-cost short-range radars planned 

for the Oklahoma test bed of CASA (Center for Adaptive Sensing of the Atmosphere, a 

new NSF Engineering Research Center), are examined, for the analysis and forecast of 

a supercell storm system (Xue et al. 2006). The results are not described in this 

dissertation. 

The model state estimation with the EnKF is very encouraging with mostly 

Observing System Simulation Experiment (OSSE) studies. However, the forecast errors 

due to model deficiencies are neglected in most of these studies. There are two types of 

model error: random errors due to the cumulative effect of unresolved processes on the 

resolved flow, and systematic errors due either to parameters not being adequately 

constrained by available observations or to the structure of the model being incapable of 

representing the phenomena of interest (Allen et al. 2003). In Chapter 4 and Chapter 5, 

systematic error resulting from uncertain parameters used in the prediction model is 

considered.  

Since microphysical parameterization is an important source of uncertainty or 

error for convective-scale data assimilation and prediction, we focus on five 

fundamental microphysical parameters that are closely involved in the definition of 
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drop/particle size distributions of microphysical species in a commonly used single-

moment microphysics scheme. The feasibility of using the EnKF method and radar data 

to correct errors in these parameters through simultaneous state and parameter 

estimation is investigated in Chapter 4 and Chapter 5.  

In Chapter 4, sensitivity experiments are conducted to examine the sensitivity of 

pure model forecast as well as model state estimation to the microphysical parameters 

to be estimated. The time scales of forecast response to errors in individual parameters 

are also investigated. The solution uniqueness of the estimation problem that is 

intimately related to parameter identifiability is examined for individual parameters. 

Parameter identifiability is also addressed by estimating the correlations between the 

parameters and the observed variables. 

In Chapter 5, the ensemble square-root Kalman filter is employed for the state 

variable and parameter estimation. The five microphysical parameters are estimated 

individually or in different combinations starting from different initial guesses. The 

identifiability of parameter combinations is further discussed. 

Encouraged by the OSSE results, we move to using real radar data in Chapter 6. 

In the chapter, the ensemble square-root filter is applied to the central Oklahoma 

tornadic thunderstorm case of 29-30 May 2004. This long-lasting tornadic thunderstorm 

swept through central Oklahoma and produced 16 tornadoes. The evolution of the main 

storm was recorded by the Oklahoma City WSR-88D radar (KTLX) and the WSR-88D 

radar to its north at Enid, Oklahoma (KVNX). The data from the two radars are 

assimilated alone or together. The single-radar and dual-radar wind analyses are 

compared with each other. The initial storm environment is either horizontally 
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homogeneous as defined by a single sounding or three dimensional as obtained from a 

3DVAR analysis of all available conventional observations. A full suite of model 

physics is employed in the latter case. The ability of the EnSRF system in producing 

good state estimation for real cases in the presence of various potential sources of errors 

is discussed. Short range forecasts are produced starting from the analyzed states and 

verified against radar observations. 

Chapter 7 summarizes the results of this research and discusses additional issues 

and topics that can be examined in the future. 
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Chapter 2                                                               
The Ensemble Kalman Filter 

 

 

The ensemble Kalman filter was first introduced by Evensen (1994). The search for this 

new data assimilation scheme was motivated by two major problems in applying the 

extended Kalman filter for data assimilation in a nonlinear quasi-geostrophic model and 

the extreme computational cost of standard Kalman filter. The first problem 

encountered was the unbounded error variance growth caused by the closure scheme 

used by the extended Kalman filter, where third- and higher-order statistical moments in 

the error covariance evolution equation are neglected (Evensen 1992). The second 

problem occurred when including open boundaries with the extended Kalman filter, 

which significantly complicates the treatment of the error evolution equation. 

Approximate methods therefore must be used, but they also have potential problems 

(Evensen 1993).  

The theory of stochastic dynamic prediction that describes the evolution of error 

statistics is the basis for both ensemble Kalman filter (EnKFn hereafter) and extended 

Kalman filter (EKF hereafter). The only difference is the approximation method used 

by these two methods. The EnKF is based on the Monte Carlo method and the EKF is 

based on an approximate stochastic dynamic prediction equation. In the following 

sections, the background of the theory of stochastic dynamic prediction and the 

estimation theory, on which the Kalman filter is based, will be described. The equations 
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of the EnKF will then be presented and issues associated with applying this data 

assimilation scheme in meteorology will be discussed. 

2.1 Theoretical background of EnKF 
The material in this section mainly follows Evensen (1994), Evensen and van Leeuwe 

(1996), Evensen (2003), Jazwinski (1970), Houtekamer and Mitchell (1998), 

Houtekamer and Mitchell  (2001), Whitaker and Hamill (2002) and Hamill (2004). 

2.1.1 Error evolution 

2.1.1.1 Theory of stochastic dynamic prediction 

The theory of stochastic dynamic prediction was first introduced by Epstein (1969). 

Here, we explain the basic idea of this theory in terms of the state of the atmosphere. 

The true state of the atmosphere cannot be known precisely, because of the sparseness 

of the measurements, errors in the measurements and uncertainties in the interpolation 

or analysis scheme. Therefore, there is no way to determine for sure whether an initial 

state estimate and its subsequent forecast are right or wrong. Any initial state estimate 

only represents an individual member of an infinite ensemble of possible states that are 

consistent with the data. The state of the atmosphere and its time evolution can, 

therefore, be represented in terms of a probability distribution and its evolution. 

The state of a dynamic system, e.g., the atmospheric system, at a particular time 

t is represented by a vector of state variables n
t ∈ℜx . The state vector can be 

represented by a single point in an n-dimensional phase space ℘. The uncertainty in the 

state vector can be represented by a large ensemble of possible states, with each 



 10

assigned an individual probability. The time evolution of the state vector can be 

described by continuous motion of the point along a trajectory in phase space governed 

by dynamic laws. The ensemble of possible states moves through the phase space 

governed by the same dynamic laws. The density of the ensemble has an associated 

probability, so that the dynamic equations can not only be used to generate predictions 

of the physical state itself, but also the predictions of the probability density, which is  

important for the state estimate, because the probability density contains all the 

statistical information (Evensen 1994). 

The evolution of the state of a continuous dynamical system with a finite-

dimensional state, which is subject to random disturbances, can be represented by a 

stochastic differential equation. Assume we have a nonlinear forecast model M, which 

contains additive white Gaussian errors, the time evolution of the state can be written as 

tttt dtGdttMd qxxx ),(),( +=   ( 0tt ≥ ), (2.1) 

where tq  is a Brownian motion process with covariance ( )t tE d d t dtΤ⎡ ⎤ =⎣ ⎦q q Q  and 

),( tG tx  is the model-error forcing. Here and hereafter, the boldface characters donate 

vectors or matrices and the use of the italicized font donates a scalar. Our notation 

generally follows that of Ide et al. (1997). Eq. (2.1) is a ôIt  stochastic differential 

equation, which describes a Markov process1*. This equation states that an increment in 

time will cause an increment of model states, which in addition, is influenced by the 

stochastic forcing term representing the model error (Evensen 2003). 

                                                 

1 Markov process is a random process whose future probabilities are determined by its most recent values. 
See Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp. page 95 
for the proof. 
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The evolution of the probability density function (pdf) of this process can be 

described by the forward Kolmogorov’s equation or the Fokker-Planckequation: 

( ) 2

, 1

( , )( )( , )( , ) 1
2

n n
t ijt it

i i ji i j

p t G Gp t Mp t
t x x x

Τ

=

⎡ ⎤∂∂∂ ⎣ ⎦+ =
∂ ∂ ∂ ∂∑ ∑

x Qxx . (2.2) 

The derivation can be found in section 4.9 of Jazwinski (1970). The right hand side of 

Eq. (2.2) includes the effects of model error, including flattening the pdf due to model 

uncertainty as well as niose-included drift. If the pdf could be solved from this equation, 

it would be possible to calculate statistic moments (e.g. the mean and the error 

covariances) at different time levels. However, for a model with dimension of more 

than Ο(106), as is typical of atmospheric models, it is not practical to solve this 

equation. 

For a linear system, if the pdf of the initial condition is Gaussian, where the pdf 

is completely characterized by its mean and covariance matrix, the pdf will remain 

Gaussian all the time (see proof on page 111 of Jazwinski 1970). The exact equations 

for the evolution of the mean and the covariance matrix can be derived without solving 

the Kolmogorov’s equation. 

For a nonlinear system, the mean and covariance will not generally characterize 

the pdf. The evolution equations for different statistical moments are coupled (e.g Eq. 

29-30 in Evensen 1994). Even if the pdf of the initial state is Gaussian, it will not 

remain so. However, the mean does determine the mean path and the covariance 

represents the magnitude of the errors in the prediction. In the EKF, the evolution 

equations of mean and covariance are derived based on the linearization of the forecast 

model and all moments with order higher than the covariance are neglected. 
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2.1.1.2 The Monte Carlo method 

Another way to approximate the evolution of error statistics is to use Monte Carlo 

method, which is the basis of the ensemble-based Kalman filters. A large cloud of 

states, that is, points in phase space, can be used to represent a specific pdf. By 

integrating such an ensemble of the states forward in time, it is easy to calculate 

approximate estimates for moments of the pdf at different time levels. When the 

ensemble size, N, increases, the errors in the solution for the pdf approach zero at a rate 

proportional to N1 . For ensemble size of Ο(100), the errors will be dominated by 

statistical or sampling errors, rather than by dynamical errors (Evensen 1994). 

2.1.2 Filter theory and Kalman filter 

2.1.2.1 Filter theory 

The estimation problem is to obtain a best estimate of the true state of a system, given 

observations that contain errors. Suppose tx (n × 1) donates the true state of a stochastic 

dynamic system at time t, the evolution of the state can be described by the stochastic 

differential equation [ e.g., the ôIt  stochastic differential equation (2.1) for a continuous 

stochastic dynamic system ] . Let [ ]1,...,τ τ=Y y y  donates the observations at and before 

τ. The problem of estimating tx , given τY  becomes a filtering problem if t = τ. 

Obviously, the conditional probability density function of tx given tY , ( )|t tp x Y , is the 

complete solution of the filtering problem, because ( )|t tp x Y  embodies all the 
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statistical information about tx , which is contained in the available observations and in 

the initial condition 0( )p x (Jazwinski 1970). 

With the ( )|t tp x Y , the estimate of the state tx̂  at time t could be obtained 

through several approaches. One approach is to define a loss function ( )tL x~ , where 

ttt xxx ˆ~ −≡  represents the error in the estimate, and seek the estimate tx̂  of tx  which 

minimizes the average or expected loss [ ]( )tE L x� . A particular loss function is 

( )L = Τξ ξ Sξ , (2.3) 

where ξ  is an n-vector and S is a n × n positive semi-definite weighting matrix. If S is 

the identity matrix, ( )tL x�  reduces to the sum of the squared error. The estimate that 

minimizes the expectation of the loss function (2.3) is called the minimum variance 

estimate, which turns out to be the conditional mean [ ]|t tE x Y . 

Another approach is by using the Bayes’ rule, 

( ) ( ) ( )
( )

|
| t t t

t t
t

p p
p

p
=

Y x x
x Y

Y
  , (2.4) 

Estimation based on the maximization of the joint conditional posterior probability 

density function is called joint maximum likelihood (Bayesian) estimation. The estimate 

is the mode of the joint conditional density (2.4). If the density is Gaussian or just 

symmetric and unimodal, then the mode coincide with the mean. In that case the 

maximum likelihood estimate is the same as the minimum variance estimate. As noted 

by Jazwinski (1970), the maximum likelihood estimation is of questionable value unless 

the pdf is unimodal and concentrated near the mode. 
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2.1.2.2 The Kalman filter 

The goal of the filter problem, in the context of minimum variance estimation, is to seek 

equations of evolution of the conditional pdf, ( )|t tp x Y , and the conditional mean 

[ ]ˆ |t t tE=x x Y . Under the assumption of linear dynamics with state-independent 

Gaussian model and observation errors, the result of seeking these evolution equations 

is the Kalman filter (See Jazwinski 1970 section 7.2, 7.3 for the derivation), which is an 

optimal filter consists of equations of evolution for the conditional mean tx̂  and 

covariance matrix tP . 

An extension of the Kalman filter to nonlinear problem is the extended Kalman 

filter (EKF, see Jazwinski 1970 section 7.2, 7.3 for the derivation). For a nonlinear 

system described by the statistical differential equation (2.1) and nonlinear observations 

ttt H εxy += )( , (2.5) 

where ( )0,t tNε R∼ , 0 0 0ˆ = +x x e  and ( )0 00,Ne P∼ , the extended Kalman filter 

consists of forecast via 

)(1
a
t

f
t M xx =+ , (2.6) 

11 ++ += t
a
t

f
t QMMPP , (2.7) 

and analysis  

( )a f f
t t t tH⎡ ⎤= + −⎣ ⎦x x K y x , (2.8) 

( ) f
t

a
t PKHIP −= . (2.9) 

with the Kalman gain 
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( ) 1−ΤΤ += t
f

t
f

t RHHPHPK , (2.10) 

where superscripts a and f denote analysis and forecast, respectively. We have omitted 

‘^’ of state vector, which means the estimate of the state, in equation (2.6)-(2.9) for 

convenience and will continue to do so. 
x

M
∂
∂

=
M  is the Jacobian matrix of M and 

x
H

∂
∂

=
H  is the Jacobian matrix of H. The model state evolves with full nonlinear model 

in Eq. (2.6), while in Eq. (2.7), the error covariance evolves through linearizing the 

model about the nonlinear trajectory, with higher-order moments neglected. The 

analysis, a
tx , is estimated then by correcting the forecast (background or prior estimate), 

f
tx , using the observation increment, ( )f

t tH−y x , weighted by the Kalman gain. Eq. 

(2.9) shows the updating of the forecast error covariance to reflect the reduction in 

uncertainty from assimilating the observations.  

An attractive feature of the Kalman filter relative to analysis scheme like 

statistical interpolation and 3DVAR is that the Kalman filter gives a systematical way to 

calculate the time evolution of the forecast error covariance matrix according to the 

model dynamics, so that the adjustment of the background to the analysis is flow-

dependent. However, the calculation of the error covariance evolution of the Kalman 

filter is hard to implement in realistic system because of the extreme computational 

cost. To integrate the error covariance matrix in Eq. (2.7) for a system with dimension 

of n is equivalent to performing Ο(n) tangent-linear model integration, which is not 

acceptable with NWP models with dimension of more than Ο(106). 
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2.2 The ensemble Kalman filter and its variations 
Evensen (1994) proposed the ensemble Kalman filter algorithm for solving the two 

problems of EKF with nonlinear dynamics, i.e., the closure scheme associated with 

linearization, where third- and higher-moments in the error covariance equation are 

discarded, and the huge computational cost associated with the storage and forward 

integration of the error covariance matrix. 

The ensemble Kalman filter begins with a best guess initial condition based on 

information from observations and statistics. An ensemble of initial states is generated 

in which the mean equals the best guess initial condition and the variance is specified 

based on the uncertainty in the first-guess initial state. Evensen (1994) suggested that 

the covariance of the ensemble should reflect the true scales of the system.  

The ensemble Kalman filter integrates the ensemble of model states until 

observations are available: 

it
a

it
f

it M ,,,1 )( qxx +=+  (i=1,…,N), (2.11) 

where i represents the ith member of the ensemble, N is the number of ensemble 

members and ,t iq  is the stochastic forcing accounting for errors in the model. Here, the 

model errors are assumed to be unbiased ( ) 0tE =q  with error 

covariance ( )t t tE Τ =q q Q . a
it ,x  at 0t =  is the ensemble member of the initial guess 

states. Each ensemble member is updated using the prediction equation, but the forecast 

error covariances are calculated from the ensemble forecast 

( )( )Τ
−−=≅ fffff

e
f xxxxPP , (2.12) 
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and the analysis error covariances are calculated from the ensemble of updated model 

states 

( )( )Τ
−−=≅ aaaaa

e
a xxxxPP , (2.13) 

where the overbars denote the expected values. The forecast and analysis error 

covariances are given by matrix P. This is equivalent to a Monte Carlo method for 

integrating the Kolmogorov’s equation, which is the fundamental equation for evolution 

of error statistics. The improvement of the ensemble Kalman filter over the EKF is that 

no closure approximations or linearizations have been applied and the error covariance 

calculations are practical for modest-sized ensembles. The updated ensemble is 

integrated forward until new observations are available again and the sequential data 

assimilation cycle is repeated (Fig. 2.1). 

At the analysis step, the model state update equation can be formed either 

stochastically or deterministically. The most well-known ensemble Kalman filter or 

“EnKF” belongs to the stochastic method, because of the use of the ‘perturbed 

observations’ in the analysis update equation. This ‘perturbed observations’ scheme is 

first implemented by Houtekamer and Mitchell (1998) and later clarified by Burgers et 

al. (1998). Determinist methods, such as ensemble square root filter (EnSRF) (Whitaker 

and Hamill 2002), ensemble adjustment Kalman filter (EAKF) (Anderson 2001) and 

ensemble transform Kalman filter (ETKF) (Bishop et al. 2001), were proposed to 

address the adaptive observational network design problem and to avoid sampling error 

issues associated with the perturbed-observation method, which as demonstrated by 

Tippett et al. (2003) to belong to a broad class of square root filters. 
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Fig. 2.1. Schematic plot of the EnKF. The dot without ‘×’ donates the model state of an 
ensemble member in phase space, with green indicating forecast (or background) state 
and red indicating analysis state. The dot with ‘×’ donates the ensemble mean. The 
circle indicates the spread of the forecast ensemble. 

 

In the following, we only give the update equations of the EnKF with the 

‘perturbed-observation’ method and the update equations of the EnSRF (Whitaker and 

Hamill 2002), because they are the schemes that are used in our study. 

2.2.1 Stochastic update method (EnKF) 

In the stochastic method, observations are treated as random variables having a 

distribution with the mean equaling to the first guess observations, iy , and error 

covariances given by matrix R. Thus an ensemble of observations are obtained by 

ii εyy +=   ( Ni ,...,1= ), (2.14) 

f a
, t 1 , t( )i iΜ+ =x x

( )a f f
i i i iH⎡ ⎤= + −⎣ ⎦x x K y x

observations 

Assimilatio

( ) 1f fH H H
−Τ Τ= +K P P R

Assimilatio

observations 

  

f
ix
a
ix

t=0 t t=t+1 
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and the observation error covariance matrix R, is calculated from the random errors 

added to the observations, as given in Eq. (2.14): 

e
Τ= =R R εε , (2.15) 

where ε is the observation error vector. Evensen (2003) justified the treatment of the 

observations as random variables in two aspects. First, the actual observation error 

covariance matrix is poorly known and the errors introduced by the ensemble 

representation can be less than the initial uncertainty in R if the ensemble size is large 

enough. Second, the errors introduced by ensemble representation of R has less impact 

than the use of the ensemble representation of P, because R only affects the amount of 

adjustment by the background error covariances, f ΤP H , and has no impact on the 

structure of f ΤP H as P does.  

 At the analysis step, each ensemble member is updated by equation 

( )a f f
i i i i= + −x x K y Hx , (2.16) 

( ) 1f f −
= +Τ ΤK P H HP H R , (2.17) 

where iy  are ‘perturbed observations’, defined by Eq. (2.14). H in its standard notion is 

the linearized version of H in a matrix form. H is the observation operator, which 

converts the model states to the observed parameters. It will be shown later that the 

EnKF permits the use of nonlinear H. Expressing the variables as an ensemble mean 

(denoted by an overbar) and a deviation from the mean (denoted by a prime), update 

equation (2.16) can be written in the form of two equations: 

( )a f f= + −x x K y Hx , (2.18) 
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( )'a f f
i i i i′ ′ ′= + −x x K y Hx . (2.19) 

It was shown by Burgers et al. (1998) that by treating the observations as random 

variables, such that Ryy =′′ Τ , the analysis error covariance matrix estimated is 

( )( )Τ
−−= aaaaa

e xxxxP                  

( )( )Τ
−+−−−−+−−−= )()()()( yyKxxHKxxyyKxxHKxx e

ff
e

ff
e

ff
e

ff                   

( ) ( ) ( ) ( )ΤΤΤΤ −+−++−−= HKIDDHKIRKKHKIPHKI eeeeeee
f

ee , (2.20) 

where eD  is the forecast-observation error covariance matrix defined by ΤΤ′′= KyxD f
e . 

When the ensemble size approaches infinite, the gain estimated from the ensemble, eK , 

approaches the true gain, K, and the forecast-observation covariance will become 

negligible, then a
eP  will converge to the analysis error covariance matrix of the EKF , 

( ) ( ) ffa
e KH)PIKRKKHIPKHIP −=+−−= ΤΤ ( . (2.21) 

If unperturbed observations are assimilated in Eq. (2.16), there will be no ΤKRK term, 

so that analysis error covariance will be underestimated and observations will not be 

properly weighted in subsequent assimilation cycles. 

2.2.2 Deterministic update method (EnSRF) 

Whitaker and Hamill (2002) demonstrated that in the stochastic method, when the 

ensemble sizes are finite, the noise added to the observations produces spurious 

forecast-observation error covariances associated with sampling error in the estimation 

of the observation-error covariances, i.e., forecast-observation covariance term, eD , in 
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Eq. (2.20) is not negligible. The methods that correct the background ensemble without 

adding random noise to observations, so that the analysis error covariance matrix 

estimated from the ensemble converges to that of the EKF, are called deterministic 

methods (Tippett et al. 2003; Hamill 2004). One of such methods is the ensemble 

square root filter algorithm (EnSRF) proposed by Whitaker and Hamill (2002), and it 

has been applied in recent convective-scale data assimilation studies with radar data 

(Snyder and Zhang 2003; Zhang et al. 2004; Dowell et al. 2004; Xue et al. 2006). This 

method will be used in our study from Chapter 4. 

Data assimilation cycles are performed in the EnSRF similarly to that in the 

EnKF. The only difference is that the ensemble mean and the deviations of ensemble 

members from the mean are updated separately using different equations. The ensemble 

mean is updated using Eq. (2.18) with the traditional Kalman gain. The deviation of the 

ensemble member from the mean is updated by using a modified Kalman gain, K~ , that 

is reduced in magnitude relative to the traditional Kalman gain K: 

a f f
i i i′ ′ ′= −x x KHx� . (2.22) 

When observations are assimilated serially, one at a time, f ΤHP H and R are 

scalars, KK α=~  with 

1

1 fα
−

⎛ ⎞
= +⎜ ⎟⎜ ⎟+⎝ ⎠

Τ

R
HP H R

. (2.23) 

Here α  is a constant with a value between 0 and 1, which is obtained by requiring that 

the analysis error covariance matches what would be predicted by the EKF. Multiplying 

K by α  reduces the excess variance reduction by using K to update deviations from the 
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mean. In the stochastic EnKF, the excess variance reduction is compensated for by the 

introduction of noise to observations. The computational cost of the EnSRF is no more 

than that of the EnKF, when observations are processed one at a time. Whitaker and 

Hamill (2002) demonstrated  by comparing the EnKF and the EnSRF in a hierarchy of 

models that the EnSRF produces analysis ensemble whose ensemble mean error is 

lower than the EnKF for the same ensemble size. 

2.2.3 Issues associated with the implementation of ensemble-

based Kalman filters 

2.2.3.1 Evaluation of the covariance matrices 

In practice, there is no need to calculate and store the full matrix fP , instead f ΤP H and 

f ΤHP H are estimated directly using the ensemble (Evensen 1994; Evensen and van 

Leeuwen 1996; Houtekamer and Mitchell 1998): 

( )( )
1

1 ( ) ( )
1

N ff f f f
i i

i
H H

N

Τ
Τ

=

≅ − −
− ∑P H x x x x , (2.24) 

and 

( )( )
1

1 ( ) ( ) ( ) ( )
1

N
f f f f f

i i
i

H H H H
N

Τ
Τ

=

≅ − −
− ∑HP H x x x x . (2.25) 

Equation (2.24) evaluates the covariances between forecasted values at analysis points 

and observation points, while (2.25) evaluates the covariances between forecasted 

values at observation points. It can be seen from Eqs. (2.24) and (2.25) that the 

nonlinear observation operator can be used in the evaluation of covariances, which is an 
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advantage of the EnKF compared to the traditional extended Kalman filter for nonlinear 

problems (Evensen 2003).  

Another problem associated with the evaluation of the Kalman gain is the rank 

deficiency problem. The rank of the error covariance matrix fP is less than or equal to 

the number of members in the ensemble. The rank of f ΤHP H  will be the least of the 

rank of fP  and the rank of H. If the number of data is greater than the ensemble size, 

f ΤHP H will be singular. Adding the measurement error covariance matrix R increases 

the rank of matrix f Τ +HP H R , but there is still no guarantee that the system becomes 

well conditioned. The conditioning of matrix f Τ +HP H R  can also be poor due to the 

correlation between neighboring data points (Evensen and van Leeuwen 1996). 

Evensen and van Leeuwen (1996) proposed a way for solving the conditioning 

problem caused by dependent data through data reduction and eigenvalue selection. The 

analysis equation (2.16) can be rewriten as 

i
f
i

a
i bBxx Τ+= , (2.26) 

where f=B HP . Vector ib  can be obtained by solving 

( ) f
i i i+ = −f ΤHP H R b y Hx . (2.27) 

By using eigenvalue decomposition when solving (2.27) and discarding the contribution 

to ib  from noisy eigenvectors corresponding to the least significant eigenvalues, the 

noise resulting from the poor conditioning can be eliminated. However, the data 

reduction in Evensen and van Leeuwen (1996) is actually data thinning, which may be 

only suitable for some large scale problems, because additional information about 
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small-scale structure is discarded. In next section, another data selection method will be 

introduced, which can also help deal with the rank deficiency problem. 

2.2.3.2 Covariance localization 

It was found in Houtekamer and Mitchell (1998) that with limited ensemble size, the 

estimated background error correlations between analysis point and observations at 

large distance is noisy and not reliable. To eliminate those noisy background error 

correlations, only data within a given cutoff radius are used for each analysis point. This 

method for improving covariance estimate from the ensemble is often called 

‘covariance localization’. A better way to filter the small background-error correlations 

associated with remote observations is by using a Schur product of the background error 

covariances calculated from the ensemble and a correlation function with local support 

(Houtekamer and Mitchell 2001). The Schur product of a correlation matrix A with a 

covariance matrix B is a matrix C having the same dimension. By using Schur product, 

the Kalman gain can be rewritten as 

( ) ( ) 1f fρ ρ
−

Τ Τ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦K P H HP H RD D , (2.28) 

where operation ρ D  donates a Schur product (an element-by-element multiplication) of 

a correlation matrix A with the covariance matrix B. Element Ai,j is obtained as a 

correlation function ( , )r Lρ  with local support applied to the 3D distance between 

points ri and rj. The correlation function generally decreases monotonically with 

distance and become zero beyond a pre-specified critical distance L. 

Covariance localization can greatly improve the conditioning of matrix f ΤHP H .  

As soon as the number of ensemble member N exceeds the number of selected local 
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observations, ΤHHP f  (and ΤHP f ) have full rank (Houtekamer and Mitchell 1998). 

The Schur product tends to reduce and smooth the effect of observations at intermediate 

distances, which results in smooth analysis increment. However, covariance localization 

is a heuristic attempt to modify the model of background error covariances so that a 

limited-size ensemble will not represent distant, distinct features as dynamically 

interrelated, while it only appears to be due to limited ensemble size (Hamill 2004). The 

optimal length scale of the correlation function needs to be determined by numerical 

experiments and generally increases with the ensemble size. 

2.2.3.3 Sequential assimilation of observations 

To avoid the need to store and invert very large matrices when solving the Kalman filter 

equations, the observations are organized into batches and are assimilated sequentially 

(Houtekamer and Mitchell 2001). The sequential processing of the observations is valid 

when errors of the observations are independent and uncorrelated with the background 

errors. The analysis obtained by assimilating one batch of observations will be used as 

the background for the assimilation of the next batch of observations. The application of 

the EnSRF algorithm requires that the observations are assimilated serially, one at a 

time (Whitaker and Hamill 2002). When observations are assimilated one at a time, 

ΤHHP f  and R become scalar and the inverse of f Τ +HP H R  is trivial to compute. The 

sequential assimilation of observations combined with covariance localization makes 

the EnKF algorithm feasible for large systems. 
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2.2.3.4 Filter divergence 

The EnKF tends to have systematically underestimated error covariances due to the 

sampling errors in the estimation of fP  for small ensemble sizes. This was first pointed 

out by Houtekamer and Mitchell (1998) as an inbreeding problem: the ensemble is 

updated with a gain calculated from that same ensemble. This problem was further 

analyzed by van Leeuwen  (1999). He found that the negative bias in the estimate of aP  

due to the sampling error in the estimate of fP  is also associated with the nonlinear 

dependency of K on fP , which can compensate for the effect suggested by 

Houtekamer and Mitchell (1998). With the negative bias, the ensemble analysis error 

variance will systematically underestimate ensemble mean analysis error. The buildup 

of the sampling error effect during the assimilation cycles will cause the computed 

background error covariance to be too small. The result is that the EnKF progressively 

ignores new observations in successive cycles, leading to a useless ensemble. 

To deal with the ‘inbreeding’ problem, Houtekamer and Mitchell (1998) 

proposed a double EnKF scheme (DEnKF), in which the covariances estimated from 

one ensemble are used by the other ensemble to obtain the analysis. However, van 

Leeuwen  (1999) suggested that the DEnKF will result in an overestimation of the error 

variance. This was found to be true by Whitaker and Hamill (2002).  

Anderson (2001) proposed a simple method called ‘covariance inflation’ to 

compensate for the negative variance bias, in which the forecast error covariances are 

multiplied by a constant factor slightly larger than one. This is equivalent to increasing 
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the deviation of each ensemble member about the ensemble mean before the first 

observation is assimilated: 

fff
i

f
i r xxxx +−← )( . (2.29) 

Selection of the inflation factor also needs numerical experimentation; large inflation 

factor may cause balance problems. Filter divergence can also be caused by neglecting 

model error term, which will be discussed in the next section. 

2.2.3.5 Model error 

When the Monte Carlo method was first proposed by Evensen (1994) for error 

covariance evolution and estimation, he suggested that the effect of external error 

growth associated with the imperfection of the numerical model must be included to 

give reliable estimates for the evolution of errors. Without taking model error into 

account, the forecast error covariance estimated from the ensemble will miss the model-

error covariance term Q as was shown in Hamill (2004), which also leads to too small 

ensemble spread that can cause filter divergence. However, most early EnKF 

applications did not explicitly include model errors, but simply applied covariance 

inflation to compensate for the small ensemble spread. The problem is that covariance 

inflation can only increase the ensemble spread, it can not change the subspace spanned 

by the ensemble. Without accounting for the external error growth, the ensemble may 

deviates from the subspace that contains the truth, in which situation covariance 

inflation may not be effective. 

When taking into account the model error, the ensemble of model states should 

be integrated forward in time according to the stochastic equation (2.1). In practice, this 
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involves integrating the standard numerical model but with stochastic noise included in 

the prognostic equations. The EnKF allows a wide range of noise models and the 

stochastic term can also be added to poorly know model parameters (Evensen 2003). In 

Evensen and van Leeuwen  (1996), pseudo random fields drawn from a distribution 

having the prescribed error statistics are added to each ensemble member every a few 

time steps. In doing so a component of random walk in phase space is included, which 

increases the variance of the ensemble. Evensen (2003) proposed a way to simulate the 

time evolution of model errors: 

2
1 11k k kβ β− −= + −q q w , (2.30) 

where 1k −w  is a sequence of white noise drawn from a distribution of smooth pseudo-

random fields with mean equal to 0 and variance equal to 1. The coefficient [0,1)β ∈  

determines the time decorrelation of the stochastic forcing. 

Rather than including stochastic noise into the forecast model, Mitchell and 

Houtekamer (2000) added random perturbations to the background fields of each 

ensemble member prior to the assimilation of observations. The perturbations they 

generated have a balanced relationship between different variables, so that the model 

error is similar in structure to the background error of their 3DVAR algorithm. 

Houtekamer et al. (2005) later applied this method in their real data study. 

Use of multiple forecast models is another way to account for model error. This 

method has been reviewed by Hamill (2004) and will not be discussed here. Finally, 

systematic model error caused by uncertain model parameters can be corrected through 

parameter estimation. Anderson (2001) first suggested estimation of poorly known 
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parameters in the model through state augmentation with ensemble-based data 

assimilation algorithm. We explore the possibility of estimating some microphysical 

parameters using the EnSRF and radar data in Chapter 4 and Chapter 5. 
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Chapter 3                                                     
Ensemble Kalman Filter Assimilation of 
Doppler Radar Data with a Compressible 
Nonhydrostatic Model: OSS 
Experiments2 

 

 

This chapter reports on the development of a Doppler radar data assimilation system 

based on the ensemble Kalman filter (EnKF) method. This system is tested with 

simulated radar data from a model generated supercell thunderstorm. As a first 

implementation, we assume that the forward models are perfect and radar data are 

sampled at the analysis grid points. A general purpose compressible nonhydrostatic 

atmosphere prediction model is used with the inclusion of a multi-class ice 

microphysics scheme. New aspects compared to previous studies include the 

demonstration of the ability of the EnKF method in retrieving multiple microphysical 

species associated with a multi-class ice microphysics scheme, and in accurately 

retrieving the wind and thermodynamic variables. Also new are the inclusion of 

reflectivity observations and the determination of the relative role of radial velocity and 

reflectivity data as well as their spatial coverage in recovering the full flow and cloud 

fields. In general, the system is able to reestablish the model storm extremely well after 

                                                 

2 This chapter is an extended version of our published paper: Tong, M. and M. Xue, 2005: Ensemble 
Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS 
Experiments. Mon. Wea. Rev., 133, 1789-1807. 
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a number of assimilation cycles, and best results are obtained when both radial velocity 

and reflectivity data, including reflectivity information outside precipitation regions, are 

used. Significant positive impact of the reflectivity assimilation is found even though 

the observation operator involved is nonlinear. The results also show that a 

compressible model that contains acoustic modes hence the associated error growth 

performs at least as well as an anelastic model used in previous EnKF studies at the 

cloud scale. 

3.1 Introduction 
Since its first introduction by Evensen (1994), the ensemble Kalman filter (EnKF) 

technique for data assimilation has received much attention. A rapidly increasing 

number of studies are appearing that examine its performance for various applications. 

In the field of meteorology, EnKF was first applied to large-scale data assimilation 

problems and observations are treated as random variables that are subject to 

perturbations (Burgers et al. 1998; Houtekamer and Mitchell 1998; Evensen 2003). 

Deterministic methods were developed more recently to avoid sampling errors 

associated with the use of perturbed observations or to address the adaptive 

observational network design problem; these methods include the ensemble square-root 

filter (EnSRF, Whitaker and Hamill 2002; Tippett et al. 2003), ensemble adjustment 

filter (Anderson 2001) and ensemble transform Kalman filter (Bishop et al. 2001), all of 

the three belong to the broader class of square-root filters (Tippett et al. 2003). 

In general, the EnKF and related methods are designed to simplify or make 

possible the computation of flow-dependent error statistics. Rather than solving the 
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equation for the time evolution of the probability density function of model state, the 

EnKF methods apply the Monte Carlo method to estimate the forecast error statistics. A 

large ensemble of model states are integrated forward in time using the dynamic 

equations; the moments of the probability density function are then calculated from this 

ensemble for different times (Evensen 2003). 

Very recently, the EnKF was applied to the assimilation of simulated Doppler 

radar data for a modeled convective storm (Snyder and Zhang 2003; Zhang et al. 2004) 

and of real radar data by Dowell et al. (2004). Very encouraging results are obtained in 

these studies in retrieving wind, temperature and moisture field for convective storms. 

The first two studies assimilated only radial velocity data, while in Dowell et al. (2004), 

the use of reflectivity data is limited to the update of rainwater mixing ratio only. 

Neither of these studies included ice microphysics processes, and the assimilation 

system was based on an anelastic cloud model. Warm-rain microphysics scheme is also 

used in all afore-quoted 4DVAR studies except for Wu et al (2000) in which a 

simplified ice microphysics scheme was used. Dual-polarization radar data were 

assimilated by Wu et al (2000) by first deriving hydrometeor mixing ratios from regular 

and differential reflectivities. 

In this chapter, we report on the development of an EnKF system based on a 

general-purpose compressible nonhydrostatic model, and on the application of the 

system to the assimilation of simulated radial velocity and/or reflectivity data from a 

single Doppler radar. The forecast model employs a complex multi-class ice 

microphysics scheme. The performance of the EnKF scheme in 'recovering' the 

complete state of the model thunderstorms, including wind, temperature, pressure and 
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all water and ice fields are examined. The relative impact of radial velocity and 

reflectivity data as well as their spatial coverage on the analysis are also investigated. 

The use of a compressible model, the inclusion of three-category ice microphysics in 

addition to the liquid water species, and the retrieval of multiple microphysics species 

with and without reflectivity data are aspects that are new compared to previous studies. 

Even though we also performed experiments using ensemble square-root filter, 

we report here only results using the perturbed observation method. The rest of this 

chapter is outlined as follows. In Section 3.2, we describe our EnKF assimilation 

procedure and the design of OSS (Observing System Simulation) experiments. In 

Section 3.3 we present the experiment results. The impact of various analyses on the 

forecast is discussed in Section 3.4. A summary and conclusion section is given in 

Section 3.5. 

3.2 Assimilation system and experimental design 

3.2.1. The prediction model and truth simulation 

In this chapter, we test our EnKF assimilation system using simulated data from a 

classic May 20, 1977 Del City, Oklahoma supercell storm case (Ray et al. 1981).  Such 

simulation experiments are commonly referred to as Observing System Simulation 

Experiments (OSSE, see, e.g., Lord et al. 1997). The forecast model used is the 

Advanced Regional Prediction System (Xue et al. 2000; 2001; 2003). In this study, the 

ARPS is used in a 3D cloud model mode and the prognostic variables include three 

velocity components u, v, w, potential temperature θ, pressure p, and six categories of 
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water substances, i.e., water vapor specific humidity qv,  and mixing ratios for cloud 

water qc, rainwater qr, cloud ice qi, snow qs and hail qh. In addition, turbulence kinetic 

energy is also predicted which is used to determine turbulent mixing coefficients based 

on a 1.5-order turbulence closure scheme. The microphysical processes are 

parameterized using the three-category ice scheme of Lin et al. (1983) and its 

implementation follows Tao and Simpson (1993). More details on the model can be 

found in (Xue et al. 2000; 2001). 

For all experiments, the physical domain is 64×64×16 km3. The model grid 

comprises of 35×35×35 grid points (including points that facilitate the specification of 

boundary conditions), with grid intervals of 2 km in the horizontal directions and 0.5 

km in the vertical. The truth simulation or nature run is initialized from a modified real 

sounding as used in Xue et al (Xue et al. 2001). The CAPE of the sounding is about 

3300 J kg-1.  A 4 K ellipsoidal thermal bubble centered at 48x = , 16y =  and 1.5z =  

km, with radii of 10 km in x and y and 1.5 km in z direction is used to initiate the storm. 

Open conditions are used at the lateral boundaries. A wave radiation condition is also 

applied at the top boundary. Free-slip conditions are applied to the bottom boundary. 

The length of simulation is up to three hours. A constant wind of 3u =  m s-1 and 

14v = m s-1 is subtracted from the observed sounding to keep the primary storm cell 

near the center of model grid. Despite the differences in resolutions, the evolution of the 

simulated storms is very similar to those documented in Xue et al. (2001).  

During the truth simulation, the initial convective cell strengthens over the first 

20 minutes. The strength of the cell then decreases over the next 30 minutes or so, 

which is associated with the splitting of the cell into two at around 55 minutes (Fig. 
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3.1). The right moving (relative to the storm motion vector which is towards north-

northeast) cell tends to dominate the system; the updraft reaches a peak value of 44 ms-1 

at 90 minutes. The left moving cell starts to split again at 95 minutes. The initial cloud 

started to form at about 10 minutes, and rainwater formed at about 15 minutes. Ice 

phase fields appeared at about 20 minutes. 

3.2.2. Simulation of radar observations 

As a first implementation, we assume that the simulated observations are available on 

the scalar grid points. Future work will assume the availability of data in radar 

coordinate. The simulated radial velocity, Vr, is calculated from 

( )cos sin cos cos sinr tV u v w wφ ϕ φ ϕ φ= + + − + a random error, (3.1) 

where φ  is the elevation angle and ϕ  the azimuth angle of radar beams, and u, v and w 

are the model-simulated velocities interpolated to the scalar points of staggered model 

grid. The random error is drawn from a normal distribution with zero mean and 

standard deviation of 1 m s-1. Since Vr is sampled directly from velocity fields, the 

effect of hydrometeor sedimentation does not come into play. 

The simulated logarithmic reflectivity factor (referred to simply as reflectivity), 

in dBZ, is estimated from equations as follows: 

⎟
⎠
⎞

⎜
⎝
⎛= −3610 1

log10
mmm

Z
Z e  + a random error. (3.2) 

The equivalent reflectivity factor, eZ , is made up of three components, 

ehesere ZZZZ ++= , (3.3) 
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where erZ , esZ  and ehZ  are contributions from rain water, snow and hail. The random 

error is drawn from a normal distribution with zero mean and standard deviation of 5 

dB.  Reflectivity relations corresponding to the 10 cm wavelength of WSR-88D radars 

are given below and used in our experiments.  

The rain component of the reflectivity is calculated, based on Smith et al (1975), 

from 

18 1.75

1.75 0.75 1.75
0

10 720( )r
er

r r

qZ
n

ρ
π ρ

×
= , (3.4) 

where 1000rρ =  kg m-3 is the density of rainwater, ρ in kg m-3 the density of air. 

6
0 8 10rn = ×  m-4 is the intercept parameter in the assumed Marshall-Palmer exponential 

rain drop size distribution.  

If the temperature is less than 0 Cº, then the component of reflectivity is, for dry 

snow, 

18 2 0.25 1.75

1.75 2 0.75 2.0
0

10 720 ( )i s s
es

r s i

K qZ
K n

ρ ρ
π ρ

×
= . (3.5)  

Here 100sρ =  kg m-3 is the density of snow and 917iρ =  kg m-3 the density of ice. 

6
0 3 10sn = × m-4 is the intercept parameter for snow. 2 0.176iK =  is the dielectric factor 

for ice and 2 0.93rK =  the same for water. Wet snow, which occurs at temperature 

higher than 0 Cº, is treated in a similar way as rain water, and the equivalent reflectivity 

factor-mixing ratio relation is 

18 1.75

1.75 0.75 1.75
0

10 720( )s
es

s s

qZ
n

ρ
π ρ

×
= . (3.6) 

For hail, the wet hail formulation of Smith et al (1975) is used, i.e., 
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0.9518
1.6625

1.75 0.75 1.75
0

10 720 ( )eh h
h h

Z q
n

ρ
π ρ

⎛ ⎞×
= ⎜ ⎟

⎝ ⎠
, (3.7) 

where 913hρ =  kg m-3 is the density of hail. Hail intercept parameter of 

4 4
0 4 10 mhn −= ×  is used, which is slightly larger than that used in Smith et al (1975), 

implying more hails of saller sizes. The same value is used in the ARPS implementation 

of Lin et al. (1983) microphysics scheme. SI units are used in all equations above. 

Relations similar to the above are used in, e.g., Ferrier (1994). The above equations 

define the observation operator denoted as H in the following section. When creating 

simulated observations for our OSS experiments, we impose a lower limit of 1 mm6m-3 

on the equivalent reflectivity factor to yield a lower limit of 0 dBZ for the logarithmic 

reflectivity factor. 

The ground-based radar is located at the southwest corner of the computational 

domain, i.e., at the origin of x-y coordinate (c.f., Fig. 3.1). For data sampling and 

assimilation, we assume that the observation operators, given by the above equations, 

are perfect. As with most atmospheric data assimilation systems, the prediction model is 

also assumed to be perfect, i.e., no model error is explicitly taken into account. It is 

worth noting here that observation operators for reflectivity factors are nonlinear and 

because of that the error distribution of reflectivity data is likely non-Gaussian. 

Discussions on the non-Gaussian nature of error distributions associated with nonlinear 

observation operators can be found in, e.g., Lorenc (2003). One of the goals of this 

study is to assess the effectiveness of such data given these characteristics that violate 

the basic assumptions used in deriving the optimal EnKF solution. 
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3.2.3. The EnKF data assimilation procedure 

In this chapter, our EnKF implementation is primarily based on the algorithm described 

by Evensen (1994), Houtekamer and Mitchell (1998) and Burgers et al. (1998), which 

uses the perturbed-observation method. In this algorithm, the ensemble mean is 

supposed to be the best estimate of the true state and the spread of the ensemble around 

the mean is a good estimate of the error in the ensemble mean (Evensen 2003). 

As discussed in Section 2.2.3.1, the nonlinear observation operator H is directly 

used in Eqs. (2.24-2.25), H and its transpose are not evaluated directly (the transpose of 

H or the adjoint of the observation operator is needed by variational assimilation 

methods). The underlying assumption of standard extended Kalman filter theory (which 

is the basis of EnKF) is that the forecast model and the observation operator are linear. 

The nonlinearity in the forecast model and the observation operator (such as that of 

reflectivity data) can make the algorithm suboptimal. Strong nonlinearity would also 

render initially Gaussian error distributions non-Gaussian. In this study, the 

performance of the EnKF in such a situation will be examined. 

We start the initial ensemble forecast at the 20 minutes of model time when the 

storm cell developing out of an initial bubble reaches peak intensity. To initialize the 

ensemble members, random noises are added to the initially horizontally homogeneous 

background that is based on the environmental sounding. The random noises are 

sampled from Gaussian distributions with zero mean and standard deviation of 3 m s-1 

for u, v, and w, and 3 K for potential temperature. The pressure, moisture, and 

microphysical variables are not perturbed. The technique of adding initial perturbation 

has been discussed by former studies of Snyder and Zhang (2003) and Dowell et al 
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(2004). They found that adding initial perturbations to the entire computational domain 

would introduce spurious cells in individual members. Limiting the perturbation region 

around the observed storm area helps improve the assimilation result. However, for 

general applications of the EnKF, the ensemble forecast should cover all scales of 

motion. We chose to apply the initial perturbations to the entire domain except for the 

grid points at the lateral boundary to keep the system more general. The open lateral 

boundary condition is sensitive to boundary errors and initial perturbations introduced 

at the boundary were found to trigger spurious storm development within some 

ensemble members. Assimilating reflectivity in clear area region is found to help 

suppress spurious cells in the interior domain, hence allowing a more general 

application of initial perturbations.  

The observations are assimilated every 5 minutes. The first analysis is 

performed at 25 minutes and one hundred ensemble members are used. As mentioned 

earlier, observations are perturbed by adding Gaussian noises, with a standard deviation 

of 1 m s-1 for radial velocity and 5 dBZ for reflectivity. The observation errors are 

assumed to be uncorrelated; therefore, observations can be and are analyzed 

sequentially one at a time, following Houtekamer and Mitchell  (2001). When using a 

small (relative to the degrees of freedom of the analysis system) ensemble to estimate 

the background error covariances, the estimated values between distant grid points are 

not reliable. Therefore covariance localization is necessary (Houtekamer and Mitchell 

1998, 2001; Hamill et al. 2001; Anderson 2001).  

In our earlier study (Tong and Xue 2004), we limited the influence region of 

each observation to a rectangular region with half width of two grid intervals in both 
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horizontal and vertical directions, equivalent to 4 and 1 km in the horizontal and 

vertical, respectively. Some useful information beyond that region of influence was not 

utilized (though the computation was faster). To spatially smooth the analysis 

increments as well as to localize covariances, Houtekamer and Mitchell (2001) 

proposed a method that applies Schur (elementwise) product of the background error 

covariance calculated from the ensemble and a correlation function with local support. 

This method was also used by Dowell et al. (2004). In the same way, we multiply each 

element of the background error matrix ΤPH  with a weight computed from correlation 

function given by Eq. (4.10) of Gaspari and Cohn (1999). The weight decreases 

gradually from 1 at the observation point to zero at an effective cutoff radius and 

remains zero beyond. Through assimilation experiments with cutoff radii ranging from 

4 to 10 km, we found that 8 km worked the best with 100 ensemble members.  This 

value is therefore used in all experiments presented in this chapter. The use of a smooth 

filter function is found to produce significantly better analysis than the sharp cutoff 

function used earlier in Tong and Xue (2004). 

 The EnKF algorithm tends to underestimate the analysis uncertainty owning to 

the use of limited ensemble size. To solve this problem, we tested the double ensemble 

method (Houtekamer and Mitchell 1998), in which the statistics estimated from one 

ensemble is used to update the other. However, this approach overestimated the analysis 

uncertainty in our case and did not help improve our analysis. We also tested the 

covariance inflation approach of Anderson (2001), which did not work well at first. As 

found in Snyder and Zhang (2003), it enhances the spurious cell in ensemble members. 

A modification is then made by applying covariance inflation to the grid points that will 
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be influenced directly during the analysis update by the observations found within the 

precipitation (where observed Z > 10 dBZ) regions. To do this, we check for each grid 

point to see if within 8 km radius (the same radius used by the covariance localization) 

there is at least one reflectivity data greater than 10 dBZ. If it is true, then covariance 

inflation is applied to this grid point. This is found to improve our analysis. The 

inflation factor we used is 1.07 or 7 percent when radial velocity or/and reflectivity data 

in the precipitation region are assimilated. When reflectivity data of complete coverage 

are used, the inflation factor is increased to 1.1 (10 percent). Zhang et al (2004) 

proposed another alternative to the traditional covariance inflation that is to avoid 

enhancing spurious cells but Caya et al (2005) found that the use of the method 

degrades the quality of analysis. 

3.3 The Assimilation Experiments 
Table 3.1 lists eight experiments to be discussed in this chapter. The assimilation 

scheme is first tested by assimilating radial velocity or reflectivity data alone or by 

assimilating both. Further, data coverage tests are performed in which each data type is 

available either in the entire domain or only in regions where reflectivity exceeds 10 

dBZ (referred to as precipitation region). Additional variations have to do with the ways 

analysis variables are updated during the assimilation cycles. The results are discussed 

in the following sections. 

3.3.1. Assimilations using radial velocity data only 

In experiment VrP (see Table 3.1), we assume that the radial velocity data are available 



 42

 
Experiment 

Observation: Radial 
velocity (Vr) and/or 

Reflectivity (Z) 

 
Update qr, qs, qh 

Update u, v, w, qv, 
qc, qi when 
assimilating 
reflectivity 

VrP Vr (Z>10 dBZ) yes  
VrF Vr yes  
ZP Z (Z>10 dBZ) yes yes 

VrZPa Vr & Z (Z>10 dBZ) yes yes 
VrZPb Vr & Z (Z>10 dBZ) yes no 
VrZPc Vr & Z (Z>10 dBZ) yes yes, start from 4th 

cycle 
VrPZF Vr (Z>10 dBZ) & Z yes yes, start from 4th 

cycle 
VrPnoIce Vr (Z>10 dBZ) no  

 

Table 3.1 List of Data Assimilation Experiments 
 

in precipitation regions where reflectivity is greater than 10 dBZ. After only one 

analysis cycle (at t = 25 min), the basic patterns of middle-level horizontal winds 

around the storm appear reasonable (not shown). After three more analysis cycles, i.e., 

by 40 min., the basic structures of updraft and horizontal flow (Fig. 3.1e) as well as 

perturbation temperature (not shown) above the low-level cold pool are reasonably well 

retrieved. The low-level cold pool and the associated divergence are too weak at this 

time (Fig. 3.2e). Some hydrometeors can be retrieved at this time, but their amount and 

locations are not yet accurate. Two more assimilation cycles later, at 50 min., the 

strength of the updraft and the magnitude of the temperature perturbation (except that in 

the low-level cold pool) become reasonably good. 
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Fig. 3.1. Vertical velocity [contours and shading at intervals of 4 m s-1; solid (dash) 
contours represent positive (negative) values] and horizontal wind (vectors, plotted 
every other grid point; m s-1), at level z = 6 km: (a)-(d) truth simulation; analyses from 
VrP (e)-(h), ZP (i)-(l); VrZPc (m)-(p); VrPZF (q)-(t), at t = 40, 60, 80 and 100 min 
during the assimilation period. 
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Fig. 3.2. Horizontal wind (vectors; m s-1), perturbation potential temperature (thick 
black lines for 0 K and thin dashed contours at 0.5 K intervals) and computed 
reflectivity (thin solid contours and shading at intervals of 5 dBZ, starting from 15 dBZ) 
at z = 250 m: truth (a)-(d), EnKF analyses from VrP (e)-(h), VrZPc (i)-(l) and VrPZF 
(m)-(p). 
 

At 60 min., the retrieved microphysical fields also become rather close to the 

truth as seen from the vertical cross-sections (Fig. 3.3 (a2)-(f2)), so do most other fields 

(Fig. 3.1f and Fig. 3.2f). The largest differences at this time are found at the low levels 

(Fig. 3.2f) where precipitation and cooling in the otherwise unperturbed low-level 
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inflow region exist, and near the western boundary. Evaporative cooling due to spurious 

precipitation in some ensemble members was the cause. Much of the error is corrected 

by subsequent analyses and by 100 min. (Fig. 3.2h); the precipitation in the inflow 

region is generally gone except for a small area ahead of the rear-flank gust front. The 

low-level flow and reflectivity patterns as well as the shape of the cold pool now agree 

quite well with the truth (Fig. 3.2h and d); although small differences are still found 

with the exact location of the boundary of rain-cooled regions (as indicated by the zero 

degree θ ′  contours) and in the areal coverage of leading precipitation region on the 

east-northeast side. The agreement at the 6 km level is even better (Fig. 3.1h and d). 

These results indicate that even with radial velocity data in precipitation region only, the 

EnKF system is able to rebuild the model storm remarkably well after a sufficient 

number of assimilation cycles. Analysis of such quality can only be expected of 

methods that make use of multiple radar volume scans effectively and in a way that is 

compatible with the hopefully correct model physics. 

We use the root-mean-square (rms) error of ensemble mean analysis to judge 

quantitatively the quality of the analysis. The rms errors are averaged over the grid 

points where the reflectivity is greater than 10 dBZ. The rms errors of velocities, 

temperature, cloud and hydrometeor variables in experiment VrP are seen to decrease 

rapidly during the first four assimilation cycles (over 20 minutes) and the analysis tends 

to converge at about 70 minutes (Fig. 3.4, black curves). When the analysis converges, 

the rms analysis error for horizontal wind components is generally less than 1 m s-1 and 

about 0.5 m s-1 for vertical velocity. For perturbation potential temperature θ ′ , the 

analysis   error  decreases  to  less  than  0.5 K  at  60  minutes. Such velocity  errors  are  
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Fig. 3.3. The retrieved (a) perturbation qv (solid (dash) contours represent positive 
(negative) values) (b) qc, (c) qr, (d) qi, (e) qs and (f) qh. (contours and shading at 
intervals of 0.5 g kg-1 for qv perturbation, qc, qi and qs, and of 1.0 g  kg-1 for qr and qh.) 
in the x-z plane at y = 29 km that pass through the maximum updraft at t = 60 min: (a1)-
(f1) truth simulation, (a2)-(f2) VrP, (a3)-(f3) VrPnoIce, (a4)-(f4) ZP and (a5)-(f5) 
VrPZF. 

 

similar to or less than the observational errors added to the radial velocity. It means that 

after eight to ten assimilation cycles, the EnKF system is producing a very good 

estimate of the state of the simulated storm. 

In experiment VrF, in which Vr data cover the entire domain, the analysis 

converges more quickly and the analysis errors are smaller (black dotted lines in Fig. 

3.4).  The retrieved winds,  potential temperature,  pressure and water vapor content are  
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Fig. 3.4. The rms errors of ensemble-mean forecast and analysis, averaged over points 
at which the reflectivity is greater than 10dBZ for: a) u, b) v, c) w and d) perturbation 
potential temperature θ ′ , e) perturbation pressure p′ , f) qc, g) qr, h) qv (the curves with 
larger values), qi (the curves with lower values), i) qs and j) qh, for experiment VrP 
(black), experiment ZP (gray) and experiment VrF (black dotted lines). Units are shown 
in the plots. The drop of the error curves at specific times corresponds to the reduction 
of error by analysis. 
 

significantly better than those of VrP case. The retrieved microphysical fields are also 

improved, but not as much as when full coverage reflectivity data are used (results to be 

presented later). For radial velocity data to be available outside the precipitation region, 

the radar has to be operating in high sensitivity mode, which is generally not the case 

with the WSR-88D network when precipitation is present. However, when such data are 

available, our experiment shows clear positive impact of the data. 

In our earlier study (Tong and Xue 2004), we found that when pressure field is 

analyzed (updated by the analysis procedure), the pressure error increases instead of 

decreases after each analysis cycle.  A careful examination of the results reveals that the 

main problem was associated with a domain-wide pressure drift in the forecast that 
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often occurs in simulations using a small computational domain and an open boundary 

condition. The background error covariance between pressure and observations in the 

presence of pressure drift was apparently not correct, causing negative analysis impact 

on pressure field. In all experiments presented here, the pressure detrending option of 

ARPS model is turned on, which forces the domain-mean perturbation Exner function 

to zero after each forecast time step. The model solution, at least in the dry case, should 

be independent of the perturbation Exner function to an arbitrary constant. 

After applying pressure detrending, pressure drift is much controlled and the 

update of pressure by analysis does reduce its error in general, though not as much as 

for other fields (cf. e.g., black curves in Fig. 3.4e and Fig. 3.4c). At 40 min. in the 

current experiment (VrP), the basic pattern of perturbation pressure can be reasonably 

reconstructed (not shown). Noticeable noises associated with acoustic oscillations 

remain at low levels at this time which are reduced by additional assimilation cycles. 

However, it can be seen in Fig. 3.4e (black curve), the forecast error of the pressure 

perturbation starts to increase again at 65 min., and the error is not effectively reduced 

by further analysis. It is found that in this case some positive pressure drift still occurs 

in the ensemble-mean forecast and analysis below 4 km. The positive pressure 

perturbation associated with the cold pool is about 20 Pa higher than in the truth. The 

low pressure below the updraft is not as low as it should be. Such pressure biases appear 

to be preventing the EnKF scheme to work effectively in reducing the pressure errors, 

which is only indirectly related to Vr. It will be shown later that when reflectivity data 

are assimilated, the pressure drift problem is alleviated and the analysis of pressure is 

improved. 
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3.3.2. Impact of assimilating reflectivity data 

Reflectivity is a measurement that is provided by all types of weather radar. In this 

section, we examine if reflectivity data alone is sufficient for the model to reproduce the 

true storm; we also study its value when used in combination with radial velocity data. 

We note that the observation operator for reflectivity is nonlinear and there exist more 

uncertainties with reflectivity operator (because of uncertainties with cloud 

microphysics, effects of attenuation, among others) than with radial velocity. In our 

model, the rainwater, snow and hail mixing ratios, qr, qs, and qh, are directly related to 

observed reflectivity through Eqs. (3.4)-(3.7). Therefore, the experiments further test 

the performance of the EnKF scheme for nonlinear observations.  

In experiment ZP (see Table 3.1), reflectivity (Z) data greater than 10 dBZ are 

assimilated but not radial velocity. Generally, the analysis obtained by assimilating 

reflectivity data only is not as good as the analysis assimilating redial velocity data 

alone. As can be seen in Fig. 3.4 (gray curves), the analysis acts to reduce the rms errors 

in qr, qh, qs, qc, qi, w and 'θ from the third cycle with the reduction of error in qh being 

much larger. Significant reduction in errors of horizontal wind components and in qv did 

not start until after four to five cycles. In fact, during the first two cycles, the update of 

most variables increases rather than decreases the error (see, e.g., the gray curves in Fig. 

3.4d for θ ′  and Fig. 3.4h for qv). Significant reduction in errors of horizontal wind 

components and in qv did not start until after four to five cycles.  

The delay in the reduction of or even increase in the rms errors in variables not 

directly related to Z is related to our initial perturbation method. When the ensemble 



 50

members are initialized, cloud and hydrometeor fields are not perturbed. This is 

reasonable because the location of precipitation region is unknown before observational 

data are introduced. Adding hydrometeor perturbations everywhere in the model is 

undesirable because non-zero values in certain variables like cloud ice should only exist 

under certain conditions. If the initial background contains some information about the 

cloud, then random perturbations can be added to the related fields in a way simiar to 

that for the other fields. Without direct adding initial perturbations to them, it takes the 

model a couple of assimilation cycles to develop cloud and hydrometeors and to 

establish coherent covariance structures for a reliable estimation of error covariances. 

For these reasons, updating indirectly related variables in the first few cycles increases 

their errors. Enough ensemble spread is established starting from the third assimilation 

cycle; from then on, the analysis is able to correct forecast errors in fields including w, 

θ ′ , qc, qr, qi, qs and qh (Fig. 3.4). Reliable covariances between reflectivity and p, qv and 

horizontal wind components are slower to establish and the analysis correction starts a 

couple of cycles later. 

Because of the lack of reliable covariances, the retrieved model fields in ZP are 

not good at 40 min. (Fig. 3.1i). By 45 min., the storm updraft and temperature 

perturbation pattern become reasonable. The locations of the hydrometeors are now 

close to the truth. However, horizontal wind patterns are still not very good at this time. 

From 60 minutes on, the basic structure and the evolution of the storm including the 

split storm cells become rather accurate. The errors in all fields are further reduced in 

the subsequent assimilation cycles (Fig. 3.4), but remain higher than the VrP case by the 

end of the assimilation period (100 min.). 
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Retrieving the model state from the observed variables in the EnKF system 

relies heavily on a good estimate of the flow-dependent multivariate background error 

covariances. Fig. 3.5 shows, for experiment ZP, the forecast background error 

correlations between reflectivity at point 32x =  km, 6z =  km and model variables at 

each grid point in an x-z vertical cross section through the maximum updraft ( 29y =  

km) at 80 min. (the correlation patterns for other experiments at this time are similar). 

As can be seen, for the water and ice fields, significant correlations are mostly confined 

to the regions where their non-zero values are found. For w and θ ′ , the correlation 

patterns also match those of w and θ ′  themselves in general, and significant 

correlations extend through much of the troposphere depth, which is consistent with the 

nature of deep convection. The maximum correlations for w and θ ′  exceed 0.8, 

indicating that they are highly correlated with reflectivity. Generally, positive 

correlations are associated with updraft and high buoyancy; negative correlations are 

found in the recirculation regions. The correlation for θ ′  spreads above the tropopause 

in a wavy pattern to both upstream and downstream, which should be related to the 

gravity wave propagation in the stable stratification there. 

Even for pressure, coherent structures of significant correlation exist. Maximum 

negative correlation is found at the mid levels where perturbation pressure has a 

minimum; maximum positive correlation exists near the cloud top. This correlation 

pattern can be explained by the rotating supercell storm dynamics. Stronger updraft 

rotation produces lower mid-level pressure which promotes stronger updraft therefore 

produces more reflectivity. Stronger updraft, accompanied by larger reflectivity, will 

produce  larger  positive  pressure  perturbations at the cloud top due to both hydrostatic  
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Fig. 3.5. Forecast error correlations estimated from an ensemble at t = 80 min for 
experiment ZP in the x-z plane at y=29 km, which passes through the maximum 
updraft. The error correlation [thick solid (dash) contours represent positive (negative) 
correlations at intervals of 0.2] between forecast reflectivity Z at x=32 km and z=6 km 
(indicated by a black dot) and (a) u, (b) w, (c) θ ′, (d) p ′, (e) qc , (f) qr, (g) qi, and (h) qh. 
The shading and thin solid (thin dashed) contours in (a)-(d) indicate positive (negative) 
values of model fields from the truth simulation with increment of 4 ms-1 for u and w; 2 
K for θ ′ and 40Pa for p ′. The shading and thin contours in (e)-(h) indicate the values of 
mixing ratio of water and ice fields from the truth simulation with increment of 0.5 g 
kg-1 for qc, and qi and 1 g kg-1 for qr and qh. 
 

and Bernoulli effects. These suggest that the error correlations estimated from the 

forecast ensemble are dynamically consistent. It is these valuable correlations that act to 

spread the information from the observation points to the finite domain surrounding 

them and that retrieve the unobserved variables from the observed ones. The results also 

justify our choice of the influence region in covariance localization. Most significant 

correlations within 4 km from the center of the influence region are kept and smaller 

weights are given to the correlations extending up to 8 km. 
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3.3.3. Assimilation of both radial velocity and reflectivity 

In the next set of experiments (VrZPa-c, VrPZF, see Table 3.1), we combine the radial 

velocity and reflectivity data into the assimilation process. Experiment VrZPa is a 

combination of VrP and ZP, in which both the radial velocity and reflectivity in 

precipitation regions (Z>10 dBZ) are assimilated, using the same procedure as in VrP 

and ZP. Compared to VrP (Fig. 3.6), when additional reflectivity data are introduced, 

the analyses of qr, qs and qh are generally improved, especially for qr and qh, as 

indicated by lower errors after each analysis. The forecast error growth in this 

experiment is faster, however, even for those three variables directly related to Z. 

The analysis errors of qv and p' remain higher than those in VrP until 60 and 80 

min., respectively, but become noticeably smaller afterwards. For most part of the 

assimilation period, the wind components are not as accurate as those retrieved by 

assimilating only Vr, but can reach the same accuracy in the last a few cycles. For θ ′ , qc 

and qi, the analysis errors from VrZPa are larger in the first 2-3 cycles, smaller in the 

next few then remain similar to those in VrP case. 

The lack of significant positive impact by the inclusion of reflectivity data, 

especially during the first few assimilation cycles, is due to the reasons discussed earlier 

for ZP. In the first two to four cycles, background error covariances between reflectivity 

and the model variables that are not directly related to Z are not reliable. Updating these 

variables based on reflectivity data and the unreliable covariances hurts the analysis, as 

indicated by the increase of errors in w, θ ′ , qc and qv by, e.g., the second analysis cycle 

(the  error  increase  is  actually  rather  bad  for  qc and qv,  see  Fig. 3.6).  The increased 
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Fig. 3.6. As in Fig. 3.4, but for experiment VrZPa (black) and experiment VrP (gray). 
 

analysis errors lead to less accurate forecast and faster error growth. Despite all this, the 

analyses towards the end of the assimilation period is similar or better for most fields in 

VrZPa than in VrP, indicating significant positive impact of Z when good error 

estimation becomes available. Interestingly, the degradation of the analysis in the early 

cycles by the assimilation of rainwater content is also noted by Caya et al. (2005), 

which includes warm rain microphysics. 

We note that in Dowell et al. (2004) which employs warm rain microphysics, it 

is found that updating qr only when assimilating reflectivity observations help maintain 

a realistic structure of the precipitation core and improve velocity verification score. We 

performed a corresponding experiment, VrZPb (black curves in Fig. 3.7), in which only 

qr, qs, and qh are updated when assimilating reflectivity. As was found in VrZPa, the 

analyses of qr, qs and qh are improved over those of VrP. The analysis of qv is also 

better.  For most of the other variables, the improvement over VrP is generally small, if 
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Fig. 3.7. As in Fig. 3.4, but for experiment VrZPb (black) and experiment VrP (gray). 
 

any (Fig. 3.7). There are also a few cycles in which the retrieved w and qi are not as 

good as those of VrP.  Since it was shown earlier that reflectivity does have significant 

correlations with indirectly related variables (Fig. 3.5), we do not believe it appropriate 

to completely exclude those variables from the analysis update when assimilating 

reflectivity data. A better solution needs to be found. 

From previous experiments, it can be seen that the negative impact of using 

reflectivity to update variables rather than qr, qs, and qh is mainly caused by the 

incorrect background covariances in the first two to three cycles. After that, the 

reflectivity becomes beneficial in retrieving those model fields. To see if we can further 

improve the analysis, in experiment VrZPc (Table 3.1), we apply the update due to 

reflectivity only to qr, qs, and qh before the fourth cycle. Starting from the fourth cycle, 

all models variables are updated. It is shown in Fig. 3.8 that doing so improves the 

analysis overall. The retrieved qv, potential temperature and pressure are improved over 
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VrP more than those in experiment VrZPb. Significant improvement could also be 

found in qc and qs. For velocity components, the improvements are also slightly larger, 

especially in the later cycles.  

The retrieved updraft and horizontal wind field in the middle level are shown in 

Fig. 3.1 in panels m though p. The detailed structures of the updraft of the split cells 

starting from 60 min (panels n through p) are retrieved better than those in either VrP 

(plots f through h) or ZP (plots j through l). At 80 and 100 min., the pattern and strength 

of the left mover, a less organized therefore more difficult one analyze, are clearly 

better retrieved by experiment VrZPc. Fig. 3.2 shows the retrieved low-level cold pool, 

gust front and precipitation pattern by different experiments, in terms of the low-level 

θ ′ , wind vectors and model computed reflectivity. The benefit of using reflectivity data 

can be better seen from this figure. Without reflectivity data (VrP), the retrieved 

precipitation is much less, especially during the early cycles. Spurious echoes are found 

in the clear air region in both cases but much less so in VrZPc (Fig. 3.2). They are 

related to spurious cells in individual ensemble members. The assimilation of 

reflectivity data reduced the spurious echoes. 

In the previous experiments, only reflectivity larger than 10 dBZ is assimilated. 

In reality, reflectivity outside the precipitation regions also contains valid information. 

At least it indicates the absence of precipitating particles there. One can therefore 

assume that the reflectivity data cover the entire region within the radar range, which in 

our current case means the entire computational domain. In our next OSS experiment, 

named VrPZF (Table 3.1), reflectivity information is available everywhere while radial 

velocity data remain available in precipitation (Z > 10 dBZ) regions only. As in VrZPc, 
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u, v, w, θ ′ , qv, qc, and qi are updated starting from the fourth cycle when assimilating 

reflectivity while qr, qs and qh are updated from beginning. 

The complete coverage of reflectivity data can remove spurious cells that would 

otherwise develop in the data void regions. The rms analysis errors in VrPZF (Fig. 3.9, 

thin black curves) are decreased more over those in VrP or VrZPc (Fig. 3.8). The 

retrieved horizontal wind fields, the strength of the updraft (Fig. 3.1), the low-level 

perturbation potential temperature (Fig. 3.2) and the microphysical fields (Fig. 3.3) are 

more accurate than those retrieved by any of the previous experiments. The reflectivity 

computed from the analysis (Fig. 3.2m-p) very closely resembles that in the truth 

simulation with no spurious echoes found in the clear air region. Towards the later 

period of assimilation, the strength of the low-level cold pool can be retrieved very well 

by all of the three experiments (Fig. 3.2). However, only when complete reflectivity 

data coverage is used, as in the case of VrPZF, can the extent of the low-level rain-

cooled air, as indicated by the 0 K contour of perturbation potential temperature, be 

accurately determined. This is actually very important for the subsequent forecast as 

spurious cooling in the inflow region is found in some cases to reduce the CAPE in the 

inflow and adversely affects the evolution of ensuing forecast. VrPZF produces the best 

forecast (more later) among all assimilation experiments, for this and other reasons. 

Finally, we briefly discuss the ensemble spread which is defined as the square 

root of the ensemble variance and plotted in Fig. 3.9 for experiment VrPZF.  Since 

EnKF estimates the forecast error using the ensemble spread, in ideal situation, the ratio 

of the spread of the ensemble to the error of the ensemble mean forecast is equal to 

( )/ 1N N +   (Murphy 1988).  As  we  can  see  from  Fig. 3.9,  the  ensemble  spread  
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Fig. 3.8. As in Fig. 3.4, but for experiment VrZPc (black) and experiment VrP (gray). 
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Fig. 3.9. As in Fig. 3.4, but for experiment VrPZF (thin black curves) and experiment 
VrP (thin gray curves). The additional thick black curves are for the analysis and 
forecast ensemble spread of VrPZF, and the spread is calculated only at the points 
where reflectivity is greater than 10 dBZ, as the errors are. 
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gradually approaches the ensemble mean forecast error for most variables, a favorable 

sign. During the early cycles, the ensemble spread is much smaller than the rms error 

and therefore provides a poor representation of forecast error, a behavior also observed 

by Snyder and Zhang (2003). The ratio increases rapidly during the first 6 to 8 cycles 

for most variables (mainly because of the rapid decrease in forecast errors) then 

becomes more stable. In the last four or so cycles, this ratio starts to decrease again, 

especially for u, v, w, θ ′  and p'. Such a decrease is typically observed as EnKF goes 

through successive assimilation cycles (e.g., Houtekamer and Mitchell 1998) owing to a 

systematic underestimation of the analysis variance. In our case, this decrease in the 

later cycles is mainly due to the faster error growth in the forecast rather than to change 

in the ensemble spread; in fact, the ensemble spread remains essentially constant in the 

later cycles. The faster forecast error growth is, we believe, due to the more transient 

nature of the flow after the storm went through more than two splits.  Snyder and Zhang 

(2003) noted, however, a continued increase in the spread-to-error ratio, and attributed 

the increase to the presence of spurious cells in individual members. A similar behavior 

is also observed in our experiment, VrP, in which spurious cells are not effectively 

suppressed as they are in VrPZF. We further note that in the last few cycles of VrPZF, 

despite the increased forecast errors (Fig. 3.9), the analysis errors do not increase or 

increase very little, indicating that the filter is well behaved. 

3.3.4. Retrieval of microphysical fields 

The microphysics retrieval is an important aspect of convective-scale data 

assimilation. Relatively few previous data assimilation studies have focused on this 
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problem. Most of these studies used only a simple microphysical parameterization and 

the ice phase is usually excluded. The more recent attempt of Wu et al (2000) uses a 

4DVAR system to assimilate dual-polarization radar data into a cloud model. Generally, 

a good bulk ice microphysics parameterization includes ice categories for cloud ice 

(individual crystals), snow (aggregates), and graupel and/or hail. As pointed out by Wu 

et al (2000), such a model will have a complex adjoint model involving many 

nonlinearities, and the 4DVAR system based on such adjoint tends to have poor 

convergence properties. For these reasons, Wu et al (2000) made simplifications by 

using a scheme without the snow category and by merging cloud water and cloud ice 

categories. Such simplifications reduce the degrees of freedom (or the number of 

control or analysis variables), and also reduce the number of, usually highly nonlinear, 

microphysical processes. In addition, in Wu et al (2000), the reflectivity and differential 

reflectivity data are converted first to rain and hail mixing ratios before assimilation, 

rather than being assimilated directly. The differential reflectivity data are necessary for 

such a conversion.  

In our study, the original detailed ice microphysics parameterization of Lin et al 

(1983) is used and only standard reflectivity is assumed available. As a result, our 

problem is more difficult because more water and ice species have to be determined and 

no dual polarization information is available. Yet, the EnKF scheme does not seem to 

have any serious difficulty. Fig. 3.3 shows the distribution of the perturbation water 

vapor and five categories of water substances for the truth run and for selected 

assimilation experiments. It can be seen that the EnKF data assimilation system is able 

to establish detailed microphysical structures that have very high fidelity. The quality of 
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actual analysis does depend on the usage and availability of data, as indicated 

quantitatively by the error plots discussed earlier. 

To better understand the way the EnKF scheme works and the role of updating 

microphysical fields, we performed another experiment, named VrPnoIce, in which ice 

variables qi, qs, and qh are not updated by the analysis and only radial velocity in 

precipitation regions are assimilated. The differences in error between VrPnoIce and 

VrP start to show from the third cycle and increase with successive cycles (Fig. 3.10). It 

can be seen that without the analysis update to these three variables, the rms error of qs 

analysis is greater than even that of the ensemble-mean forecast of experiment VrP. The 

qs field at 60 min (Fig. 3.3 (e3)) exhibits larger spatial coverage in VrPnoIce and is less 

accurate than that of VrP (Fig. 3.3 (e2)). The smaller difference in the earlier period 

reflects relatively weak link (through background error covariance) between Vr and 

these three variables. The link apparently becomes stronger and more effective in 

correcting errors in these fields at the later stage (as in the case of VrP). On the other 

hand, despite the lack of direct correction in VrPnoIce to qi, qs, and qh, the errors in 

these fields are still reduced with time in general. Such reductions are achieved through 

model dynamics; when other model fields are improved, fields that are not directly 

updated have to adjust and become consistent with these fields. This points to the power 

of model-based dynamic data assimilation methods. 

Further comparison of VrP and ZP helps us understand the interactions between 

the analyses of different variables. We see from Fig. 3.4, that the errors in the wind, 

temperature and pressure fields remain much higher in ZP case than in VrP for almost 

the  entire  assimilation  period,  with  the  differences  being  largest  during  the  earlier 
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Fig. 3.10. RMS error of (a) qi, (b) qs, (c) qh for VrP (gray) and VrPnoIce (black). 
 

cycles. During this early period, the assimilation of reflectivity data in ZP is very 

effectively in reducing errors in qh, qs as well as in qr while the generally poor analysis 

of the other fields is causing rapid increases in the forecast error. We note here that the 

fact that qr, qs and qh are directly related to Z does not guarantee a good retrieval of 

them because without the help of error covariances offered by the EnKF scheme, the 

problem is underdetermined. When reflectivity data are combined with radial velocity 

data, very accurate microphysical fields can be retrieved (Fig. 3.2 and Fig. 3.3). With Vr 

data only (the case of VrP), the maximum value of qh in Fig. 3.3(f2) is 5.73 g kg-1 at 60 

min while the true value is 6.63 g kg-1. If the ice hydrometeors are not updated when 

assimilating Vr  (experiment VrPnoIce), the maximum is larger than 1 g kg-1 smaller 

than the truth.  The addition of full-coverage reflectivity data (Fig. 3.3 (f5)) yields a 

maximum value of 6.37 g kg-1 that is closer to the truth. 

3.4 Forecasts from ensemble-mean analyses 
Since the goal of data assimilation is to provide a good initial condition for 

numerical weather prediction, in this section, we look at the quality of forecasts 
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produced from the analyses. Fig. 3.11 shows the truth and two forecasts over a 130 

minute period that are initialized from the ensemble-mean analyses from experiments 

VrP and VrPZF at 80 min. Within the first 20 minutes (from 80 to 100 min), the 

forecast of VrPZF maintains most details of the storm very well, including the strength, 

structure and location of the updraft and the further splitting of the left mover. Within 

the first hour of forecast, the position of the right mover is forecast very accurately by 

experiment VrPZF. After that, the center of the right moving cell is displaced about 4 to 

8 km eastward during its southeastward propagation. The forecast beginning from VrP 

roughly captures the evolution of the storm but not as accurately as in VrPZF. The right 

mover propagates southeastwards even faster than in VrPZF and reaches the southern 

boundary earlier; at 210 min., the structure of forecast storm is rather different from that 

of true one. 

Fig. 3.12 shows the rms errors (averaged over the entire domain) of forecasts 

beginning from the ensemble-mean analyses of different times from experiments VrP 

and VrPZF. Generally, more accurate estimate of the initial condition yields better 

forecast. It can be seen that for all these forecasts, within the first 80 minutes, both the 

forecast error and the forecast error growth rate of VrPZF (black thick curves) is smaller 

than those of VrP (gray thin curves). For the forecasts starting from 80 min., a large 

difference is seen in rainwater at around 120 min between the forecast errors of these 

two experiments (Fig. 3.12c). Within the first 40 minutes of forecast, the qr forecast 

error in VrP grows much faster than in VrPZF. The low-level rainwater was over-

forecast by experiment VrP. For example, at 105 min, the maximum value of the 

forecast rainwater at  250 m AGL is  8.54  g kg-1  for  experiment  VrP, while that of the  
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Fig. 3.11. Vertical velocity (contours and shading at intervals of 4 ms-1) and horizontal 
wind (vectors; m s-1) at 6 km level for (a)-(e) truth simulation and the forecast beginning 
from the ensemble-mean analysis at t = 80 min: (f)-(j) forecast from ensemble-mean 
analysis of VrPZF, and (k)-(o) forecast from ensemble-mean analysis of VrP. Note the 
difference in the plotting domains before and after 150 min. 

 

truth is only 5.91 g kg-1 (not shown). The low-level rainwater was also over-forecast by 

experiment VrPZF, but not as much. The forecast distribution of the rainwater in VrPZF 

is always closer to the truth than in VrP. The comparison of the forecast errors of these 

two experiments further verifies the benefit of assimilating reflectivity data in both 

precipitation and clear air regions. For forecasts starting from the ensemble-mean 

analysis of VrF (not shown here), the errors are smaller than those of VrP, but generally 

bigger than those of VrPZF within the 80 minutes of forecast. 
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Fig. 3.12. The rms errors of forecasts averaged over the entire domain for: (a) w (m s-
1), (b) θ ' (K) and (c) qr (g kg-1). The forecasts begin from ensemble-mean analysis at t 
= 60 min (dot), t = 80 min (dash) and t = 100 min (solid) of experiment VrP (gray thin 
curves), VrPZF (black thick curves).  

 

We note that for the forecasts starting from 100 min, the errors of VrPZF grow 

faster after 175 min and eventually become larger than those of VrP.  This is found to 

be mainly associated with the slower southeastward propagation of the forecast storm in 

VrPZF than the true storm. Usually, phase error increases with the length of forecast. In 
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this case, the center of the updraft forecast by experiment VrPZF is located 2 to 8 km, 

or 1 to 4 grid intervals, north of the true storm during the last 50 minutes. The center of 

the updraft in VrP is closer to the true storm during the later forecast period. However, 

within the last 20 minutes phase error also occurs within VrP. The forecast storm moves 

faster than the true storm and the center of the updraft becomes displaced by 2 to 4 km 

to the south of the true storm. Still, the storm structure in VrPZF is better than that in 

VrP at this stage. 

The success of the forecast depends not only on the accuracy of the analysis of 

storm, but also on the analysis of the storm environment. In our initial tests, in which 

the boundary zone is perturbed at the initial time of ensemble forecast, we obtained 

similarly good analyses. However, the forecasts from some of these analyses 

deteriorated quickly with time. In a forecast starting from analysis at 100 min, the right 

mover quickly decays and moves northeastward. We found in that case the low-level air 

was drier and the CAPE was reduced in the storm inflow region. Spurious cells 

triggered near the boundary in individual ensemble members contributed to this. Not 

perturbing the boundary at the initial time and the use of zero reflectivity information 

outside the precipitation regions helped alleviate the problem.  For general applications, 

other means and data should be employed to ensure a good analysis of the storm 

environment, which for prediction purpose appears to be at least as important as the 

analysis of the storms themselves. 
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3.5 Summary and discussion 
In this study we applied the ensemble Kalman filter technique to the assimilation 

of simulated radar radial velocity and reflectivity data, using a compressible model with 

a complex multi-class ice microphysics scheme. The inclusion of a complex multi-class 

ice microphysics has not been done before in either EnKF or 4DVAR assimilation of 

radar data. Doing so introduces additional model state (ice microphysics) variables that 

impose additional challenges to the retrieval problem. Previously published EnKF 

research did not carefully examine the impact of assimilating reflectivity data either, nor 

has attention been paid to the analysis quality of microphysical variables. Our work also 

represents the first time that a compressible model is used in the context of EnKF 

assimilation at the cloud scale. 

The EnKF method is shown to have great potentials for the assimilation of such 

data and for thunderstorm prediction. Although the observation operator for the 

reflectivity data is nonlinear, which may lead to non-Gaussian error distribution and 

violate the basic assumptions of the Kalman filter algorithm, direct assimilation of 

reflectivity data is shown to provide positive impact overall on the analysis and 

subsequent forecast. 

Flow-dependent forecast error covariances estimated from the ensemble states 

play a critical role in the assimilation process. Through them not only can the wind and 

thermodynamic fields be retrieved accurately, all five categories of cloud and 

hydrometeor variables can also be retrieved successfully. Compared to 4DVAR, the 

EnKF is a much easier yet effective method to obtain microphysical fields that are 

compatible with the model dynamics, thermodynamics and microphysics. Compared to 
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early efforts that insert radar observations directly into numerical models without the 

use of covariance information (e.g., Liou et al. 1991), the EnKF method enjoys a much 

greater success. The importance of spatial covariance information is further supported 

by that fact that worse analysis is obtained when the effective radius of covariance 

localization is too small (results not shown).  

Reliable and dynamically consistent multivariate covariances between the 

observed quantities and the state variables not directly related to them can be obtained 

after a few assimilation cycles, even when the ensemble is started from initial guesses 

made of an environmental sounding plus random perturbations. Spatial covariance 

structures are shown to be dynamically consistent. After the initial two to three cycles, 

useful observational information can be spread in space and to indirectly related 

variables. Delaying the update of indirectly related variables until after first few cycles 

when assimilating reflectivity data produces the best analysis. Using reflectivity 

information in clear air regions is very beneficial in suppressing spurious storms 

(assuming that the radar network provides a complete spatial coverage). The forecast 

initiated from the ensemble-mean analysis using Vr and full coverage reflectivity data is 

shown to be the best within about 80 minutes of all three forecasts presented. We should 

point out here if the EnKF assimilation system is run in a continuously-cycled mode, as 

an operational system should be, or if the ensemble is initialized in a more physical 

way, such as using the breeding method (Toth and Kalnay 1997), then the delay in 

updating indirectly related variables may not be necessary. 

The EnKF data assimilation results reported here used 100 ensemble members. 

We found that 40 ensemble members are enough to produce good analysis result, except 
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that the filter convergence rate is a little slower. With 40 members, the radius of the data 

influence region needs to be smaller. A radius of 6 km is found to produce the best 

result in this case. 

Snyder and Zhang (2003) noted that the results of their EnKF experiments were 

subject to some random variability associated with the specific realizations of the initial 

ensemble and observation errors. In this study, we have repeated some of the 

experiments with different realizations and we did not notice any significant deviation 

from the results reported here in terms of the error characteristics. The larger ensemble 

size used here may account for some of the reduced variability. 

For larger applications, the analysis algorithm needs to be parallelized for 

distributed-memory parallel platforms. For our current application, we used shared-

memory parallelization via OpenMP for the computation of the background error 

covariance f ΤP H , which is the most expensive part of the algorithm. Four processors 

of IBM Regatta (model p-690) give a speedup of 3.5 for the analysis. The ensemble 

forecasts were distributed among a number of processors. 

Finally, we note that caution should be used when interpreting OSSE results. 

Both forecast model and forward observation operators are assumed perfect in the 

current work. The effects of model error need to be studied in the future. Much work is 

still needed in moving us in the direction of real case and real data. We also mention 

that similar set of assimilations using square-root EnKF, which does not perturb the 

observations (as used in, e.g., Snyder and Zhang 2003), has also been conducted with 

generally similar conclusions. 
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Chapter 4                                                
Simultaneous Estimation of 
Microphysical Parameters and 
Atmospheric State with Radar Data and 
Ensemble Square-root Kalman Filter: 
Sensitivity Analysis and Parameter 
Identifiability 

 

 

4.1 Introduction 
The accuracy of numerical weather prediction (NWP) depends very much on the 

accuracy of the initial state estimation and the accuracy of the prediction model. 

Various advanced data assimilation techniques have been developed in the recent 

decades that improve the estimation of model initial conditions. Among these methods 

are the four-dimensional variational assimilation (4DVAR) (Le Dimet and Talagrand 

1986; Courtier and Talagrand 1987) and the ensemble-based assimilation methods 

(Evensen 1994; Evensen and van Leeuwen 1996; Burgers et al. 1998; Houtekamer and 

Mitchell 1998; Bishop et al. 2001; Anderson 2001; Whitaker and Hamill 2002; Evensen 

2003; Tippett et al. 2003), which have the advantage of closely involving a numerical 

model in the data assimilation process. However, errors in the model can directly affect 

the effectiveness of these data assimilation methods.  
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For convective-scale NWP, explicit microphysics schemes are used to predict 

the evolution of clouds and precipitation. Most microphysics schemes use the 'bulk' 

approach of parameterization, in which the particle or drop size distributions (DSDs) 

are parameterized in functional forms. Often, significant uncertainties exist with the 

treatment of the microphysical processes and the microphysical parameters. McCumber 

et al. (1991) tested the sensitivity of tropical convective system simulations to the 

changes in size distribution parameters. Ferrier et al. (1995) also performed a 

microphysical parameter sensitivity study when simulating squall systems in the mid-

latitude and tropical environments. More recently, Gilmore et al. (2004) examined the 

precipitation uncertainty of simulated midlatitude multicell and supercell storms due to 

uncertainties inherent in the parameters defining the hail/graupel distribution. The 

sensitivity of simulated supercell storms to hail size distributions was also investigated 

by van den Heever and Cotton (2004) by systematically varying the mean hail diameter. 

All these studies demonstrate that the structure and evolution of simulated convective 

systems are very sensitive to microphysical parameterizations. Variations in 

microphysical parameters, such as collection efficiencies, DSD parameters and particle 

densities, have profound effects upon the characteristics of precipitation systems and 

their associated dynamical processes. 

Because of many assumptions involved, the microphysical parameterization can 

be an important source of model error for convective-scale data assimilation and 

prediction. Parameter estimation is a common approach to dealing with model error 

associated with uncertain parameters. The inverse problem of parameter estimation 

concerns with the optimal determination of the parameter by observing the dependent 
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variable(s) collected in the spatial and time domains (Yeh 1986). Various methods have 

been used for parameter estimation, among which variational parameter estimation with 

an adjoint model is popular in the literature of meteorology and oceanography (Navon 

1997). The ensemble Kalman filter method has recently been tested successfully for the 

atmospheric state estimation or data assimilation at the convective scale with simulated 

radar data (Snyder and Zhang 2003; Zhang et al. 2004; Tong and Xue 2005a; Xue et al. 

2006) and real radar data (Dowell et al. 2004). The results with simulated data, under 

the perfect model assumption, have been excellent, while the quality of state estimation 

with real data, when model error inevitably exists, is generally not as good (Dowell et 

al. 2004). More recently, Aksoy et al. (2006) used EnKF for the simultaneous 

estimation of state variables and model parameters in a relatively simple two-

dimensional sea-breeze model with encouraging success.  

In this study, we set out to investigate the ability of the EnKF in correcting the 

errors in some of the fundamental parameters in model microphysics, where complex 

process interactions and high nonlinearities usually exist. In the framework of EnKF, 

parameter estimation is realized by treating the uncertain parameters as independent 

model variables and using the covariance information sampled from the ensemble to 

estimate the parameters given available observations (Anderson 2001). Such a 

technique is often referred to as state vector augmentation. Parameter estimation 

through state vector or control variable augmentation can also be performed using 

variational methods, as discussed earlier. Recently, Crook and Sun (2004) applied the 

4D variational method to the retrievals of a multiplier in the rain terminal velocity and 

the rain water evaporation rate. 
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The well-posedness as well as parameter identifiability are the main issues that 

are directly related to the possibility of successful parameter estimation, no matter what 

technique is used. The inverse problem for parameter estimation is often ill-posed 

(Chavent 1974; Yakowitz and Duckstein 1980). As was reviewed by Yeh (1986), the 

ill-posedness is generally characterized by the nonuniqueness and instability of the 

identified parameters. In the case of nonuniqueness, the identified parameters will differ 

according to the initial estimate of the parameters, and there is no guarantee that the 

estimated parameter will be close to its “true” value. The instability of the inversion 

solution stems from the fact that small errors in the observations will cause serious 

errors in the identified parameters. Yakowitz and Duckstein (1980) demonstrated that a 

small sensitivity of the model output in terms of observations to the change of unknown 

parameters (parameters to be estimated) implies identification instability. The problem 

is that a larger difference in the parameter may be manifested by only very small 

changes in the model output of observations, which may be smaller than anticipated 

measurement error.  

As the first part of this parameter estimation study, we investigate the possibility 

of retrieving some microphysical parameters with the EnKF method through a detailed 

sensitivity analysis. The issue of parameter identifiability will be addressed. The results 

will guide us to best design the parameter estimation experiments and will also help us 

validate our parameter retrieval results. The microphysical parameters chosen for this 

study are the intercept parameters of rain, snow, and hail/graupel size distributions, and 

the bulk densities of hail/graupel and snow. These parameters have been shown by the 

sensitivity studies referenced earlier to have significant effect on the precipitation 
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processes and dynamics of convective storms. Other model parameters are assumed to 

be correct. 

This chapter is organized as follows. In Section 4.2, we briefly describe the 

microphysics scheme and its limitations, which partly motivate this study. The 

uncertainties of the chosen microphysical parameters based on previous observational 

studies will also be discussed. Section 4.3 briefly describes the numerical model, the 

simulation configuration for a supercell thunderstorm and the experimental setup for 

sensitivity analysis. Section 4.4 discusses the results of sensitivity analysis. The 

parameter identifiability issue is addressed in section 4.5. Summary and conclusions are 

given in Section 4.6. Results of the parameter estimation experiments will be presented 

in Chapter 5. 

4.2 Microphysics description 

4.2.1 Microphysics scheme 

The ice microphysics scheme in the ARPS (Xue et al. 2000; Xue et al. 2001; Xue et al. 

2003) model used by this study is a 5-class (cloud water, rain, cloud ice, snow and 

hail/graupel) single-moment bulk scheme after Lin et al. (1983, hereafter LFO83). The 

scheme assumes that the drop size distributions (DSD) of rain, snow and hail/graupel 

have an exponential form: 

( ) ( )0 expx x x xn D n Dλ= − , (4.1) 

where x represents r (rain), s (snow) or h (hail), for particular hydrometeor species. The 

same form of exponential DSD is also assumed for non-precipitating cloud water and 
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cloud ice. ( )xn D Dδ  in Eq. (4.1) is the number of drops per unit volume between 

diameters D and D+δD and n0x is the so-called intercept parameter, which is the value 

of nx for D = 0. The slope parameter, which equals to the inverse of the mean size 

diameter of each distribution, is diagnosed as: 

0.25

0x x
x

x

n
q

πρλ
ρ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, (4.2) 

where ρx is the constant particle bulk density, ρ is the air density and qx is the 

hydrometeor mixing ratio.  

With single-moment bulk microphysics schemes, only one moment of the DSD 

functions is predicted. In the LFO83 scheme, as well as almost all single-moment 

schemes, the mixing ratio of each hydrometeor, which is proportional to the third 

moment of the DSD function, is predicted and the intercept parameter n0x is a prescribed 

constant. It can be seen from Eqs. (4.1) and (4.2) that the DSD is a function of two 

adjustable parameters n0x and ρx. For a given mixing ratio qx, the larger is the intercept 

parameter or the density, the more the hydrometeor spectrum is weighted towards 

smaller drops (Fig. 4.1). For model simulations, adjusting these parameters can directly 

impact the bulk terminal velocity and the number concentration of species, which can 

result in the change of the trajectories of the hydrometeors within the cloud and the 

particle growth rates. These changes in the microphysical processes will affect the water 

budgets within the cloud and hence the latent heating and hydrometeor loading, which 

in turn lead to the changes of the buoyancy and subsequent updraft and downdraft 

patterns. 
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Fig. 4.1. (a) Number concentration per mm diameter size and (b) mass-weighted mean 
terminal velocity of rain (for N0r87: n0r =8×107 m-4, N0r86: n0r =8×106 m-4 and N0r36: 
n0r =3×106 m-4), snow (for N0s37: n0s =3×107 m-4, N0s36: n0s =3×106 m-4, N0s16: n0s 
=1.19×106 m-4 and ρs400: 400sρ = kg m-3) and hail/graupel (for N0h45: n0h =4.0×105 
m-4, N0h14: n0h =1.59×104 m-4, N0h44: n0h =4×104 m-4 and ρh400: 400hρ = kg m-3). 
The terminal velocities are calculated for an air density of 1.0 kg m-3. The default values 
of the microphysical parameters are n0r =8×106 m-4, n0s =3×106 m-4, n0h =4×104 m-4, 

913hρ =  kg m-3 and 100sρ = kg m-3 unless otherwise indicated by the curve legends. 
 

With the use of prescribed parameters, typical single-moment microphysics 

schemes generally cannot adequately represent convective clouds within various types 

of precipitation systems. For example, the parameterization of the LFO83 scheme is 

formulated for the intense continental storms with the presence of high-density hails, 

while the somewhat similar scheme of Rutledge and Hobbs (Rutledge and Hobbs 1984) 

is more suitable for oceanic systems. The differences come from either the treatment of 

the microphysical processes and/or the use of different parameters, such as those of 

hydrometeor density and DSD intercept. 
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More sophisticated bulk microphysics schemes try to overcome the above 

limitations by predicting more than one moment of the distribution function and/or 

dividing the hydrometeors into more categories. By predicting two moments (Ziegler 

1985; Murakami 1990; Ferrier 1994; Meyers et al. 1997; Cohard and Printy 2000) or 

three moments (Milbrandt and Yau 2005a, b) of the distribution function, the DSD 

parameters are effectively treated as prognostic variables rather than being prescribed as 

constants. More recently, Straka and Mansell (2005) developed a single-moment bulk 

microphysics scheme with ten ice categories, which allows for a range of particle 

densities and fall velocities for simulating a variety of convective storms with less need 

for parameter tuning. 

Although sophisticated microphysical schemes are attractive and represent the 

future direction of convective-scale modeling and NWP, they are expensive and much 

research is still needed before they can be widely used. The increased number of 

prognostic variables in the model also poses a larger problem for state estimation or 

model initialization. The single-moment bulk schemes are widely used in current 

research and operational models; the ultimate goal of our current line of study is 

therefore to overcome, to the extent possible, the shortcomings of such single-moment 

schemes by constraining uncertain microphysical parameters using data, i.e., by 

estimating the parameters as well as the model state variables using radar observations.  

4.2.2 Uncertainties in the microphysical parameters 

The parameters selected for this study are the intercept parameters of rain, snow 

and hail/graupel DSDs, and the densities of snow and hail. Observational and sensitivity 
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studies indicate that the coefficients associated with the formula for hydrometeor fall 

speeds and the collection efficiency parameters are also uncertain and can affect the 

microphysical processes significantly. In this study, we focus on the density and 

intercept parameters, because they are more fundamental and directly affect a large 

number of processes in the microphysics parameterization. 

As pointed out earlier, with the LFO83 single-moment bulk microphysics 

scheme, the intercept parameters and the bulk densities of snow and hail are assumed to 

be constant in space and time. The default values of the intercept parameters for rain, 

snow and hail size distributions in the ARPS model are 8×106 m-4, 3×106 m-4 and 4×104 

m-4, respectively, following LFO83. The densities of rainwater, snow and hail are 

specified to be 1000 kg m-3, 100 kg m-3 and 913 kg m-3, respectively (see Table 4.1). 

A number of observational studies indicate that the intercept parameters of hydrometeor 

distributions can vary widely among precipitation systems occurring in different large-

scale environments. The observed hail/graupel intercept parameter, hn0 , as reviewed by 

Gilmore et al. (2004), ranges from 102 m-4 to greater than 108 m-4. Observed snow 

intercept parameter, n0s, varies from 105 m-4 to 108 m-4 (Gunn and Marshall 1958; 

Passarelli 1978; Houze et al. 1979; Lo and Jr. 1982; Mitchell 1988; Braham 1990). Joss 

and Waldvogel (1969) found that n0r varies between 106 m-4 and 108 m-4. A number of 

studies have shown a systematic decrease in n0r as precipitation changed from 

convective to stratiform (Waldvogel 1974; Tokay et al. 1995; Tokay and Short 1996; 

Cifelli et al. 2000). 
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Parameter ip  ip  ip  True (control) values 
of parameters, t

ip  
Hail/graupel intercept n0h (m-4) 4×103 4×106 4×104 

Snow intercept n0s (m-4) 5×105 1×108 3×106 
Rain intercept n0r (m-4) 3×106 8×107 8×106 

Density of hail/graupel hρ ( kg m-3) 400 913 913 
Density of snow sρ ( kg m-3) 20 400 100 

 

Table 4.1 A summary of the uncertainty ranges, defined by the lower bound ip  and 
upper bound ip , and the true (control) values for intercept paramters n0h, n0s, n0r, and 
hail and snow densities hρ  and sρ  used in this study. 
 

In the LFO83 scheme, the term hail is used loosely to represent high-density 

graupel, ice pellets, frozen rain and hailstones. According to Pruppacher and Klett 

(1978), the bulk density of hail has been found to vary between 700 kg m-3 and 900 kg 

m-3 and the observed density of graupel ranges from 50 kg m-3 to 890 kg m-3. The term 

snow in the LFO83 scheme is used to represent snow crystals, snowflakes and low-

density graupel particles. Graupel is a densely rimed snow crystal or aggregate and falls 

about 2 times faster than dry snow (Judson and Doesken 2000). Snow density varies 

greatly from one snow event to the next. The density of freshly fallen snow observed in 

literature varies from 10 kg m-3 to approximately 350 kg m-3 (Judson and Doesken 

2000). 

All these indicate that there exist great uncertainties with the values of the 

intercept and density parameters, and assuming same values for all precipitation events 

can lead to significant errors in the prediction model. Estimating their values for 

specific events using data is likely to significantly reduce such errors or uncertainties. 
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4.3 Model and experimental settings 

4.3.1 The prediction model and truth simulation 

The forecast model used in this study and the truth simulation are inherited from 

Chapter 3. Briefly, the ARPS (Xue et al. 2000), a fully compressible and nonhydrostatic 

atmospheric prediction system is used, and the model contains 12 prognostic state 

variables, including three velocity components u, v, w, potential temperature θ, pressure 

p, the mixing ratios for water vapor qv,  cloud water qc, rainwater qr, cloud ice qi, snow 

qs and hail qh, plus the turbulence kinetic energy used by the 1.5-order subgrid-scale 

turbulence closure scheme.  

The truth simulation is for the May 20, 1977 Del City, Oklahoma supercell 

storm case (Ray et al. 1981; Xue et al. 2001). The physical model domain is 64×64×16 

km3. The grid spacing is 2 km in the horizontal directions and 0.5 km in the vertical. A 

sounding of 3300 J kg-1 CAPE is used to define the environmental condition and a 4 K 

ellipsoidal thermal bubble is used to initiate the storm. Open conditions are used at the 

lateral boundaries. Free-slip conditions are applied to the top and the bottom 

boundaries. A constant wind of u = 3 m s-1 and v = 14 m s-1 is subtracted from the 

observed sounding to keep the primary storm cell near the center of model grid. More 

detailed information about the natural run or truth simulation can be found in Chapter 3. 

The actual sounding used by the truth simulation can be found in Xue et al. (2001) and 

the general evolution of the storm is similar to that documented there. The default 

values of the microphysical parameters in the model are predetermined to be the true 

values and are used in the truth simulation (Table 4.1). 
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4.3.2 Experimental design for sensitivity analysis 

In this study, the forward method is used for sensitivity analysis (Crook 1996). For each 

parameter, we perform a set of sensitivity experiments, within which only the parameter 

considered is varied within its range of uncertainty while all other model parameters are 

set to be their true values. The true values of the microphysical parameters are used in 

the control experiment (CNTL). We first examine the influence of each of the five 

parameters on the model simulation. Then we estimate the influence of the parameter 

values on the model state estimation via the ensemble square-root filter (EnSRF, 

Whitaker and Hamill 2002) algorithm and deduce the limits within which the model 

parameters may be estimated. The EnSRF is a variation of the standard EnKF, which 

does not require perturbing the observations. The particular configurations of radar data 

assimilation using the EnSRF algorithm are described in Chapter 5. 

Suppose ( ) ( )1 2 5 0 0 0, ,..., , , , ,r s h s hp p p n n n ρ ρΤ Τ
= =p  is the vector of the uncertain 

microphysical parameters. An admissible set adP  of p based on the parameter range can 

be defined as 

{ }| , 1, 2,...,5ad i i iP p p p p i= ≤ ≤ = , (4.3) 

where ip  and ip  are the lower and upper bounds of the ith parameter. The values of ip  

and ip  applied in this study can be found in Table 4.1. The admissible set Pad of p 

given in Table 4.1 may not span all observed parameter values that might have appeared 

in the literature. For example, for the qh category, we do not chose any value for 

intercept parameter n0h that is larger than 4×106 m-4 (corresponding to small graupel 
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cases).  For the qs category, we do not allow it to represent high-density snow or graupel 

so that the density of snow, sρ , is no larger than 400 kg m-3. Part of the reason is that we 

are not adjusting other related microphysical parameters accordingly, such as the 

coefficients in the terminal velocity equations for the precipitating hydrometeors, and 

we want to keep the parameter values physically reasonable. For the purpose of this 

study, limiting the admissible ranges of some of the parameters, when they are changed 

alone, makes sense. 

The parameter estimation problem consists of finding an estimated value p̂ of p 

from information taken from the observations, the parameter-to-observation mapping, 

and the prior information about the parameters. The problem can often be constructed as 

finding ˆ adP∈p , such that ( ) ( )ˆJ J≤p p  adP∀ ∈p . ( )ˆJ p  here is the output criterion, 

which is generally the minimization of a “norm” of the difference between the 

observations and the model output of observations. Therefore, in this study, we are 

especially interested in the sensitivity of the model output, in the forms of observations, 

to the microphysical parameters. The response function for the sensitivity analysis is 

therefore defined as 

( ) ( )( )2*
2

1

1 M

i i
i

Jη
η

η η
σ =

= −∑p p , (4.4) 

where ( )iη p  and *
iη  are, respectively, the model solution in the form of observation 

and the corresponding observation. The observations in the current case contain the 

simulated observations of radial velocity Vr and/or reflectivity Z. The forward 

observation operators that project the model state to the observations will be described 
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in Chapter 5. The observation errors are included by adding random errors to the ‘error-

free’ observations to give 

( ),t t
r r Vrσ∗ = +V V x p υ , (4.5) 

( ),t t
Zσ∗ = +Z Z x p υ , (4.6) 

where υ  represents the Gaussian random variable vector with zero mean and unit 

standard deviation and Vrσ  and Zσ  are the standard deviations of the observation errors 

added to Vr and Z, respectively. In this study, the relative sensitivity of the model output 

of Vr and Z with respect to the five parameters will be compared, which will help us 

decide the right data to use for parameter estimation. To facilitate the comparison, the 

difference between the model output of Vr or Z and the simulated observation is 

normalized by the estimated observation rms error Vrσ  or Zσ . The summation in Eq. 

(4.4) is over the data points where reflectivity is greater than 0 dBZ. 

The response function defined in Eq. (4.4) is calculated for each sensitivity 

experiment and for the control experiment. For data assimilation sensitivity 

experiments, the ensemble mean of the analyzed model state at each analysis time is 

used to calculate ( )iη p . To reveal the relative effect of model error associated with 

uncertain microphysical parameters on the analysis, the actual response function 

presented for analysis is 

( ) ( ) ( ),
t

cJ J Jη η η∆ = −p p p , (4.7) 

where ( ),
t

cJη p  is the response function calculated from the control data assimilation 

experiment. 
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4.4 Results of Sensitivity Analysis 
In this section, we examine the sensitivity of the pure model prediction and of the 

EnSRF state estimation to the microphysical parameters that we intend to estimate. As 

discussed earlier, a sufficient level of sensitivity is necessary for successful parameter 

estimation. 

4.4.1 Sensitivity of pure forecast to microphysical parameters 

Fig. 4.1 shows the variations of VrJ  and ZJ  against the deviation of the parameters from 

their true values. The response functions are calculated from the output of pure model 

forecast (without data assimilation) every 5 minutes and averaged over the expected 

data assimilation window, i.e. from 25 min to 100 min. These forecasts start from true 

atmospheric state at 20 minutes with parameter errors introduced at the same time. The 

observational data used in calculating the response functions are extracted from the 

truth simulation and are ‘error-free’, i.e., they are ( ),t t
rV x p  and ( ),t tZ x p  defined in 

Section 4.3.2. The microphysical parameters are expressed in logarithmic form since 

most of them can vary by more than an order of magnitude. The symbols on each curve 

represent parameter values sampled from adP . It is stated that Vr or Z is more sensitivity 

to one parameter than the other if the same amount of change in the parameter value 

causes more change in the response function from that of the truth simulation. 
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Fig. 4.2. The variations of the response function J for radial velocity (left panels) and 
reflectivity (right panels), plotted against the logarithmic-form deviations of the 
parameters from their true values for the simulation sensitivity experiments. The 
response functions are calculated using ‘error-free’ observations. 
 

As can be seen from Fig. 4.2, model reflectivity shows a much stronger 

sensitivity to all five parameters than model radial velocity. We note here that in this 

study, the reflectivity formulation is assumed to be perfect, i.e., the correct values of the 

intercept parameters and densities from the control simulation are used in simulating the 

reflectivity data and during the data assimilation. The reflectivity formulation used is 

similar to that used in Tong and Xue (2005) and will be further described in Chapter 5.  
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For the three intercept parameters, at 010log( ) 10xn∆ = , or when the intercept 

parameters are an order of magnitude larger than their control values, ZJ  is larger than 

VrJ  by a factor of 2.1 for n0r, a factor of 3.5 for n0h and a factor of 7.7 for n0s   (Fig. 4.2a, 

b). For the densities of hail and snow, at 10log( ) 2xρ∆ = − , ZJ  is larger than VrJ  by a 

factor of 3. This is not surprising because the microphysical fields are more directly 

affected by microphysical parameterization than the velocity field. The larger sensitivity 

of Z to the microphysical parameters suggests that Z data should be more useful for 

microphysical parameter estimation. 

With respect to the three intercept parameters, both radial velocity and 

reflectivity show the largest sensitivity to the intercept of rain and the smallest 

sensitivity to the intercept of snow. With a change of +5 in the three logarithmic-form 

intercept parameters, which corresponds to 7
0 2.53 10rn = ×  m-4, 6

0 9.49 10sn = ×  m-4 and 

5
0 1.26 10hn = ×  m-4, the variation of ZJ  due to the change in n0r is more than twice as 

large as that due to the change in n0h (Fig. 4.2b) and the corresponding variation of VrJ  

due to the change in n0r is more than 3 times larger than that due to the change in n0h 

(Fig. 4.2a). Both radial velocity and reflectivity show comparable sensitivity to sρ  and 

hρ , when 2.5 10log( ) 0xρ− ≤ ∆ ≤ , and larger sensitivity to hρ  when 10log( ) 2.5xρ∆ < −  

(Fig. 4.2c and d). 
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4.4.2 Sensitivity of the distribution of hydrometeors to the 

microphysical parameters 

To better understand how the model simulated supercell storm is influenced by varying 

the microphysical parameters and how such changes affect reflectivity, which is 

observed, we now examine the variation of the microphysical fields due to the change 

of the parameters. In addition to the control simulation, two sensitivity experiments will 

be presented for each of the five parameters. For each of three intercept parameters, the 

two values are chosen such that 010log( ) 10 and 4xn∆ = = − , respectively. For the 

densities of hail and snow, one sensitivity experiment has 10log( ) 2xρ∆ = − , and the 

other has the lower bound value of hρ   and the upper bound value of sρ , respectively 

(Table 4.2). Fig. 4.3 shows the vertical profiles of the time-averaged hydrometeor 

mixing ratios for the ten forecast sensitivity experiments plus those of the control 

simulation.  

As the hail intercept n0h increases (decreases) or the hail density hρ  decreases 

(increases), the hydrometeor species have a similar trend of variations (Fig. 4.3a, f, d 

and i). The variation in the hydrometeors due to the increase by one order of magnitude 

in n0h is generally larger than that caused by the decrease of hρ  from its upper bound to 

the lower bound. Among the five hydrometeor species, qs and qh have the largest 

sensitivity to hail parameters n0h and hρ . 

Larger hail intercept or smaller hail density results in more qh aloft and less qs in 

the anvil of the storm  (Fig. 4.3a, d and Fig. 4.4e, n).  Also, in both cases, more qr and qi  
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Larger deviation Smaller deviation Parameter 

Expt. ip  ( )1010log ip∆  Expt. ip  ( )1010log ip∆

n0h (m-4) N0h45 4×105 10 N0h14 1.59×104 -4 

n0s (m-4) N0s37 3×107 10 N0s16 1.19×106 -4 

n0r (m-4) N0r87 8×107 10 N0r36 3.18×106 -4 

hρ (kg m-3) ρh400 400 -3.58 hρ 576 576 -2 

sρ (kg m-3) ρs400 400 6 sρ 63 63 -2 

 
Table 4.2. List of the parameters values, ip , and the logarithmical deviations of these 
parameters from their control values, 1010log ( )ip∆ , in the simulation and assimilation 
sensitivity experiments. The parameter that is changed from its control value is listed 
for the corresponding sensitivity experiment while other parameters used the control 
values. 

 

can be found in the storm. It can be seen from Fig. 4.1 that increasing n0h or decreasing 

hρ  results in higher number concentrations and smaller terminal fall speed of hail. 

Reduced terminal velocity results in more qh being suspended aloft. Comparing Fig. 

4.4b with Fig. 4.4e and Fig. 4.4n, we can see that more qh is present at higher altitudes. 

In both experiments N0h45 and ρh400, one more maximum qh center appears at around 

7 km in addition to the maximum center at about 5 km AGL. We can also see that out of 

the updraft core, more qh are horizontally advected into the anvil region. The longer 

residence time of qh aloft results in more collection of snow in the updraft region and 

lower amounts of snow being transported to the anvil region. Because of the slower fall 

speed, less qh and qr within the convective core reach the ground after the storm 

becomes mature. The increase in qr at the low levels (Fig. 4.3a, d) is mainly due to the 
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Fig. 4.3. Temporally and spatially averaged mixing ratios (g kg-1) as a function of 
height for control simulation (thin black curves) and for simulations N0h45 (thick black 
) and N0h14 (thick gray ) (a and f); N0s37 (thick black) and N0s16 (thick gray) (b and 
g); N0r87 (thick black) and N0r36 (thick gray) (c and h); ρh400 (thick black ) and ρh576 
(thick gray ) (d and i); and ρs400 (thick black ) and ρs63 (thick gray) (e and j). Temporal 
averaging was performed upon data output at 5-min intervals from 25t =  to 100 min. 
Spatial averaging was performed horizontally over all grid points in the 64 km × 64 km 
horizontal domain. 
 

increased qh in the anvil region and more hails/graupels are converted to raindrops after 

they fall below melting level from the anvil. Therefore, larger hail intercept or smaller 

hail density results in stronger reflectivity within the anvil precipitation region (Fig. 

4.4c, f, o). The increase of qi at high levels especially for the larger hail intercept case, 

N0h45 (Fig. 4.3f), is probably caused by the depletion of snow by hail/graupel and the 

fact that less cloud ice is accreted by snow. Finally, qw increases (decreases) between 

2.5 km and 7 km, when n0h increases (decreases) or hρ decreases (increases), which is 

mainly due to the increase (decreases) in qh at the middle level. Above 7 km, the 

amount of qw is less sensitive to hρ  than to n0h, mainly because the amount of change in  
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Fig. 4.4. Vertical cross sections of mixing ratios (g kg-1) of hydrometeors and radar 
reflectivity (dBZ) through the maximum updraft at 70t =  min for control simulation (a-
c) ; N0h45 (d-f); N0s37 (g-i); N0r87 (j-l); ρh400 (m-o) and ρs400 (p-r). 
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Fig. 4.4. Continued. 

 

qs due to the change in hρ  is less than that due to the change in n0h. 

Now, we look at the variation of the microphysical fields due to the change in 

snow intercept n0s or snow density sρ . It can be seen from Fig. 4.1a that as n0s or sρ  

increases (decreases), the snow size distribution is more heavily weighted toward 

smaller (larger) particles. However, the trend of variation in the total number 

concentration of snow is different for the trend of variation in n0s or sρ . For a given qs, 

a larger snow intercept results in a larger number concentration, while a larger snow 

density results in a smaller number concentration of snow. The terminal fall speed of 

snow is not very sensitive to the change in snow intercept or snow density (Fig. 4.1b). 
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The species most sensitive to the change in snow parameters are qi and qc (Fig. 

4.3g, j, note the different x-axis scale of Fig. 4.3j from those of Fig. 4.3f, g, h and i). 

The sensitivity of qs to the increase in sρ  up to its upper bound is not as large as that to 

the increase by an order of magnitude in n0s, because the amount of change in number 

concentration in the latter case is much larger than that in the former case (Fig. 4.1a).  

For the same trend of variation in the snow intercept parameter and the snow density, 

the three species qi, qc and qs have inverse trends of variation, while the total amounts of 

qr, qh and qw have the same trend. The amount of qr, qh or qw is less sensitive to n0s than 

to sρ  (Fig. 4.3b and e). 

Three production terms of snow in the LFO83 scheme, namely, the accretion of 

cloud water by snow, accretion of cloud ice by snow and deposition growth of snow, 

are proportional to the snow intercept parameter and inversely proportional to the snow 

density. When the number concentration of snow increases due to the increase in n0s or 

decrease in sρ , more cloud water and cloud ice are depleted by the accretion and 

deposition growth of snow and less qi is advected to the anvil region (c.f., Fig. 4.4a,b 

with Fig. 4.4g,h).  

Fig. 4.4c, Fig. 4.4i and Fig. 4.4r show that the most sensitive region of 

reflectivity to the snow parameters is the anvil precipitation region. Note that the 

reflectivity formulation used here is a function of only qr, qs and qh. Even though qi and 

qc are very sensitive to the changes in n0s and sρ , they do not contribute to the 

reflectivity change. When n0s or sρ  increases, in the anvil precipitation region close to 

the eastern boundary of the domain, the reflectivity below 6 km becomes weaker. This 
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is mainly caused by the decrease in the amount of qh between 3 km and 6 km and the 

decrease in qr below 3 km in that region, which can be seen more clearly by using 

smaller contour intervals (not shown). The interaction between snow and hail/graupel at 

middle levels probably explains the change in qh in that region. For example, the 

accretion of snow by hail/graupel is inversely proportional to both n0s and sρ  in the 

LFO83 scheme; therefore, as n0s or sρ  increases, less qh is produced by accreting snow. 

Less qh at the middle levels results in less qh melting to become qr as hail falls below the 

freezing level. Also note that the reflectivity in the anvil region above 7 km becomes 

stronger as n0s increases, which is primarily due to the increase in qs there. The 

reflectivity in the upper level anvil is less sensitive to the change in snow density 

because qs is less sensitive to sρ  than to n0s. 

Finally, we examine the sensitivity of the microphysical fields to the intercept 

parameter of rain. Fig. 4.3c and Fig. 4.3h show that qr and qi are the most sensitive 

species to the change in n0r while qs is not very sensitive to n0r.  Larger (smaller) n0r 

results in more (less) qr, qi, qh and qw. For the reflectivity field, one sensitive region is 

located within and below the updraft core (Fig. 4.4l). Comparing Fig. 4.4l with Fig. 

4.4c, we can see that larger n0r results in higher reflectivity in that region, because qr 

and qh are enhanced there (Fig. 4.4b and Fig. 4.4k). Also, the reflectivity in the anvil 

precipitation region does not reach the ground when n0r increases. This is because less 

qr is found below 2 km in that region (not shown). 

It can be seen from Fig. 4.1a that larger (smaller) n0r results in higher (lower) 

number concentration of rain and the distribution is more heavily weighted toward 

drizzle (larger raindrops). More small raindrops will enhance the accretion of rain by 
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graupel/hail, which is proportional to n0r in the LFO83 scheme. Therefore, qh also 

increases as n0r increases. The riming growth of hail/graupel results in less hail/graupel 

being transported to higher levels (Fig. 4.4b, k). Thus, the interaction between 

hail/graupel and cloud ice are reduced and more qi is suspended aloft (Fig. 4.4a, j). Fig. 

4.4b shows that the terminal fall speed of raindrops decreases (increases) as n0r 

increases (decreases). As n0r increases, both the increase in the number of small 

raindrops and the decrease in the terminal fall speed enhance the evaporation rate for 

raindrops at the low levels, which leads to less rain reaching the ground below the anvil 

and a stronger cold pool. Among all the five DSD parameters, the minimum 

temperature below 2 km is most sensitive to the intercept parameter of rain (not shown). 

4.4.3 Sensitivity of the EnSRF analyses to microphysical 

parameters 

The sensitivity analyses based on the pure-forecast experiments reveal how much the 

numerical prediction of storms could be affected by the errors in the microphysical 

parameters. Our main goal here is to apply the EnSRF method to simultaneously 

estimate the microphysical parameters and the model state variables. Since the 

numerical model is closely involved in the EnSRF data assimilation process, it is 

important to know how much the model state estimation will be affected by the errors in 

the microphysical parameters. The possibility of estimating these parameters through 

data assimilation depends on how sensitive the analyses of the model state variables are 

to these parameters although the sensitivity to the model simulation is a prerequisite. 
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The details of data assimilation and parameter estimation procedure are 

described in Chapter 5. The initial forecast ensemble is initialized at 20 min, with 

smoothed random perturbations added to a horizontally homogeneous ensemble mean 

defined by the environmental sounding. The data are assimilated every 5 min starting at 

25 min and the assimilation window ends at 100 min. Fig. 4.5 shows the time-averaged 

response function Jη∆  of each assimilation sensitivity experiment, plotted against the 

deviations of the five parameters from their true values. For the control assimilation 

experiment, Jη∆  equal to 0 according to Eq. (4.7). The response functions shown in 

Fig. 4.5 are calculated using observations that are assimilated into the model. The 

standard deviations of observation errors for Vr and Z are assumed to be 1 m s-1 and 3 

dBZ, respectively. 

Similar to what was found in the forecast sensitivity experiments, the analyzed 

radial velocity is less sensitive than the analyzed reflectivity to each of the five 

microphysical parameters. This indicates again that the reflectivity data is more useful 

for estimating the microphysical parameters. Also, the same trends of change in the 

hydrometeor species and in the reflectivity fields due to the changes in the parameter 

values (Fig. 4.3 and Fig. 4.4) are found in the analyzed model fields from the 

assimilation sensitivity experiments (Fig. 4.6 and Fig. 4.7). 

The relative sensitivity of the analyzed Vr or Z to different parameters appears to 

be different from that in the simulation experiments. First, the relative sensitivities of 

the analysis to the three intercept parameters are less symmetric than that of the pure 

forecast.  For  example,  the  sensitivities  of  the  analyzed  Z  to  the  three  intercept  
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Fig. 4.5. The response functions VrJ∆  (a and c) and ZJ∆  (b and d) of the assimilation 
sensitivity experiments against the logarithmic-form deviation of the parameters from 
their true values. 
 

parameters can be listed at an increasing order as ( ) ( ) ( )0 0 0Z r Z h Z sJ n J n J n∆ < ∆ < ∆  

and ( ) ( ) ( )0 0 0Z s Z r Z hJ n J n J n∆ ≈ ∆ < ∆ , when the intercept parameters have positive and 

negative deviations, respectively (Fig. 4.5b). Second, the relative sensitivities of radial 

velocity with respect to different intercept parameters are not always consistent with 

those of reflectivity. For example, Fig. 4.5a shows that the analyzed Vr is more sensitive 

to n0h than to n0s as the two parameters positively deviate from their true values, while 

with the same kind of deviation in the two parameters, the analyzed Z is somewhat more 



 97

sensitive to n0s than to n0h. Different from what was found in the simulation sensitivity 

experiments, the analysis generally has the smallest sensitivity to the intercept 

parameter of rain (Fig. 4.5a and b). In addition, the analysis is apparently less sensitive 

to sρ  than to hρ  (Fig. 4.5c and d) when sρ  and hρ  have negative deviations. 

Fig. 4.7 shows the analyzed reflectivity from the assimilation sensitivity 

experiments, which have the same changes in the microphysical parameters as the 

forecast experiments shown in Fig. 4.4. Without any error in the parameters, the 

analyzed Z from the control assimilation experiment matches that of the truth simulation 

very well (Fig. 4.4c and Fig. 4.7a). The differences in Z at low level anvil precipitation 

region (below 3km) between the control experiment (Fig. 4.7a) and sensitivity 

experiments (Fig. 4.7b, c, d, e and f) are smaller than those in Fig. 4.4. It can be seen 

from Fig. 4.6 and Fig. 4.3 that the estimated qr, qh, and therefore qw below 4 km in 

almost all cases are less sensitive to the changes in the parameters than the 

corresponding  species in the forecast experiments (dash and dash-dot curves in Fig. 

4.6a-e and Fig. 4.3a-e). That is why we see smaller sensitivity of analyzed Z at the low 

levels. Among the five assimilation sensitivity experiments, the analyzed Z from 

experiment N0r87 (Fig. 4.7d) looks most like that of the CNTL. Fig. 4.4l shows that in 

the absence of data assimilation, the error in n0r result in much weaker reflectivity and 

even no reflectivity at the low-level anvil precipitation region. Probably because of the 

more effective correction to qr and qh during the data assimilation process, the analyzed 

Z shows the smallest sensitivity to n0r. 
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Fig. 4.6. The same as Fig. 4.3, but for EnSRF data assimilation sensitivity experiments 
N0h45 (thick black ) and N0h14 (thick gray ) (a and f); N0s37 (thick black) and N0s16 
(thick gray) (b and g); N0r87 (thick black) and N0r36 (thick gray) (c and h); ρh400 
(thick black ) and ρh576 (thick gray ) (d and i); and ρs400 (thick black ) and ρs63 (thick 
gray) (e and j). 

 

Fig. 4.5 shows only the temporally averaged sensitivity of the EnSRF analysis in 

terms of the observed quantities, Z and Vr, to the five parameters. In fact, the time scale 

of the system’s response in terms of measured quantity to the parameters, i.e., how fast 

the model responds to the changes in the parameters, is an important factor that will 

affect the parameter estimation. For sequential data assimilation methods, if the 

response is slow, then it will take a long time and many analysis cycles to correct the 

parameters. For methods with assimilation windows of a limited length, such as the 

four-dimensional variational data assimilation method, the parameter estimation may 

fail completely if the response is weak within the given assimilation window. 
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Fig. 4.7. Vertical cross sections of the ensemble mean of radar reflectivity (dBZ) 
through the maximum updraft at t = 70 min for control data assimilation experiment (a), 
assimilation sensitivity experiments N0h45 (b), N0s37 (c), N0r87 (d), ρh400 (e) and 
ρs400 (f). 

 

The time scale of the system’s response to individual parameters is examined 

through assimilation sensitivity experiments, with one parameter perturbed in each of 

them. To facilitate the comparison among different parameters, the intercept parameters 

are chosen to be an order of magnitude larger than their true values. The hail and snow 

densities are chosen to have their lower and upper bounds, respectively. The five 

experiments are N0h45, N0s37, N0s87, ρh400 and ρs400 (Table 4.2).  

Fig. 4.8 shows the time series of the response functions, VrJ∆ and ZJ∆ , at each 

analysis time from the five experiments. Since the analyzed Z is much more sensitive to  
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Fig. 4.8. Time evolution of (a) VrJ∆  and (b) ZJ∆  from assimilation sensitivity 
experiments N0h45, N0s37, N0r87, ρh400 and ρs400 (c.f., Table 4.2). 
 

the changes in the parameters than the analyzed Vr, we are more interested in the system 

response time in terms of Z. As can be seen from Fig. 4.8b, in most cases, either the 

response functions ZJ∆  are close to or below 0 in the first two assimilation cycles, or 

ZJ∆  decreases to be close to or below 0 from the first to the second cycle. Significant 

and continuous increase in ZJ∆  usually occurs after the first two assimilation cycles. 

The negative values are also found when the response functions are calculated using 

error-free observation data (not shown). Reasonable system response to the errors in the 

parameters should results in positive response functions. The negative values during the 

initial cycles are probably a reflection that the model state estimation is poor at this 

stage therefore the system response is not reliable. 

It is not easy to tell exactly how large the system response in terms of ZJ∆  

needs to be to allow successful parameter identification from the observations. The 

straight line in Fig. 4.8b is our estimation of the minimum threshold for reliable system 

response. This minimum threshold is chosen such that the unreliable responses as 
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indicated by the negative values of ZJ∆  in the first two assimilation cycles are no larger 

than this threshold. Based on the minimum threshold of reliable response given in Fig. 

4.8, the system response time scale can be defined as the time for ZJ∆  to increase over 

and remain above the minimum threshold. 

Fig. 4.8 lists our estimation of the system response time scales for the five 

assimilation sensitivity experiments. Among the five assimilation sensitivity 

experiments examined, the shortest response time is 15 min or 3 assimilation cycles, 

and the longest time is 25 min or 5 assimilation cycles. The time scales of the model 

response to the same amount of change in the intercept parameters can be listed in an 

increasing order as 
0 0 0h s rn n nT T T≤ ≤ . The system also responds more quickly to the 

change in hρ  as it decreases from its upper bound to its lower bound values than to the 

change in sρ  as it increases from the control value to its upper bound, although the time 

averaged response function ZJ∆  of ρs400 has almost the same value as that of ρh400 

(Fig. 4.5d). 

It can be seen from Fig. 4.8b that the times that ZJ∆  curves cross the minimum 

threshold are also the times at which ZJ∆  has a large growth rate from the earlier 

analysis time for all experiments except ρs400. The significant increase in ZJ∆  in ρs400 

occurs between 45 and 50 min, 5 minutes longer than the time scale listed in Table 4.3. 

After the first significant increase, the response function grows more moderately in 

N0r87, ρh400 and ρs400. A large growth in the response function occurs again during 

the later assimilation cycles of N0h45 and N0s37. 



 102

Experiment time Number of 

cycles 

N0h45 15 min 3 

N0s37 20 min 4 

N0r87 25 min 5 

ρh400 15 min 3 

ρs400 25 min 5 

 

Table 4.3. List of the time scales of the system response to the change in one of the 
microphysical parameters in terms of analysis reflectivity for assimilation sensitivity 
experiments N0h45, N0s37, N0r87, ρh400 and ρs400. 

 

4.5 Parameter identifiability 

4.5.1 Parameter identifiability as revealed by the response 

function 

An important issue associated with parameter estimation is the parameter 

identifiability. The concept of identifiability addresses the question of whether it is at all 

possible to obtain unique solutions of the inverse problem for unknown parameters of 

interest in a model from data collected in the spatial and time domains (Navon 1997). 

Various definitions of parameter identifiability can be found in the literature (Kitamura 

and Nakagiri 1977; Chavent 1979; Sun and Yeh 1990). A definition suitable for the 

estimation process using the output least square error criterion was given by Chavent 
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(1979). A parameter is said to be least-square identifiable if the least squares 

performance function for identifying the parameter has a unique minimum in a given 

region and if the minimization is continuously dependent on the measurement errors.  

The response function defined by Eq. (4.4) is actually the performance function 

that is to be minimized if the inverse problem is solved by using the output least square 

error criterion. As shown in Fig. 4.2, the response functions of both Vr and Z against the 

variations of all five parameters in the simulation sensitivity experiments all have a 

concave shape, and there is a unique minimum for each case. This is an indication of a 

unique mapping between the parameters and the model solution in terms of radar 

observations, even though the microphysical process and the observation operators are 

highly nonlinear.  

The response functions ZJ∆  from the assimilation sensitivity experiments also 

show concave shapes (Fig. 4.5), but the curves have more gentle slopes and flatter 

bottoms than the corresponding functions of simulation sensitivity experiments (c.f.,Fig. 

4.2). The minimum of the response functions is not always located exactly at the zero 

deviation point as was found in the simulation sensitivity case, but is always very close 

to that of the control experiment and the minimum is very close to 0. The smaller 

gradient of the analysis response function indicates that the signal of model error is 

weaker when data are used to constraint the model state evolution. The concave shape 

of the response functions and their single minimum indicate a high probability of 

finding the true minimum. These results suggest that the five parameters considered can 

be identified, at least individually, from radar data with a certain degree of accuracy, 

even when they are estimated simultaneously with the model state variables.  
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From the flatness of the response functions near the bottom of their curves (Fig. 

4.5), we can estimate the limit of the accuracy that the parameters can be estimated. Fig. 

4.5a and Fig. 4.5b show that if the three intercept parameters vary within the range of 

010log( ) 1xn∆ = ± , the analysis will not sense the errors in the intercept parameters 

much in terms of Vr and Z. In another word, if the error of the estimated intercept 

parameters is within 010log( ) 1xn∆ = ± , then the parameter estimation is considered by 

the estimation system as successful already. The range of the error allowed by 

'successful parameter estimation' in terms of Vr and Z is 10log( ) 0.5xρ∆ = ±  for the 

snow and hail/graupel densities according to Fig. 4.5c and Fig. 4.5d. 

4.5.2 Parameter identifiability as revealed by the correlation 

between model outputs of observations and parameters 

The uniqueness of the inverse problem for single-parameter estimation can be easily 

revealed by the shape of the response or performance/cost function. However, as the 

number of the estimated parameters increases, it is no longer straightforward to present 

the response function as function of parameter deviations. Another way to examine 

whether it is possible to identify the parameters from the observation information, 

especially when the parameters vary simultaneously, is to calculate the correlation 

coefficients between the parameters and the model output of the observed quantities, 

i.e., cov( , )ipη , from the members of the forecast ensemble. This is especially helpful in 

understanding the ensemble-based parameter estimation, because with such a method 
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the estimated parameter is adjusted according to the covariances calculated from the 

ensemble.  

Several ensemble forecast experiments were performed. For each of the 

ensemble forecasts, the microphysical parameters were perturbed about their means 

individually for single-parameter experiments or simultaneously for multiple-parameter 

experiments. Their control values are chosen to be their ensemble means, except for hρ  

whose mean is set to be 700 kg m-4 to allow for both positive and negative 

perturbations. The standard deviations of the parameter perturbations are roughly half of 

their largest deviations from their control values, i.e., ( )1 max | |,| |
2

t t
i i i ip p p p− − . The 

initial state uncertainty was taken into account by randomly perturbing model state 

variables about their means, which are from the true simulation at 20 min. The standard 

deviation of the perturbations added to each model variable equals to 10 percent of the 

ensemble mean analysis rms error of the control assimilation experiment at the end of 

the data assimilation cycles. The correlation coefficients are calculated at points where 

the reflectivity of the truth simulation is greater than 0 dBZ. 

Fig. 4.9 shows the spatial structures of the correlation coefficients, at selected 

radar elevation levels, between each of the five microphysical parameters and the 70 

min forecast reflectivity fields from the five single-parameter ensemble forecast 

experiments. The reflectivity fields shown in Fig. 4.9 are from simulation experiments 

N0h45, N0s37, N0r87, ρh400 and ρs400 (Table 4.2). Fig. 4.10 shows the spatial 

structure of the correlation coefficients calculated from a 5-parameter ensemble forecast  
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Fig. 4.9. Correlation coefficients calculated from the ensemble members of single-
parameter ensemble forecasts at 70t =  min. The correlation [ thick solid (dash) 
contours represent positive (negative) values at intervals of 0.2 ]  between forecast Z and 
(a) n0h at 1.5°, (b) n0s at 1.5°, (c) n0r at 0.5° (d) hρ  at 1.5° (e) sρ  at 0.5°, (f) n0h at 5.3°, 
(b) n0s at 5.3°, (c) n0r at 4.3° (d) hρ at 5.3° (e) sρ  at 6.2° elevation levels. The shading 
and thin solid contours represent Z from simulations N0h45 (a and f); N0s37 (b and g); 
N0r87 (c and h); ρh400 (d and i); and ρs400 (e and j). 
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Fig. 4.10. As in Fig. 4.9, but the correlation coefficients are estimated from the 
members of 5-parameter forecast ensemble at 70t =  min. The shading and thin solid 
contours represent Z from control simulation. 
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experiment, in which all five parameters are perturbed. The reflectivity field shown in 

the figure is from the truth simulation. 

It can be seen from Fig. 4.9 that in certain regions of the storm, the 

microphysical parameters are highly correlated with reflectivity. The maximum values 

of ( , )icor Z p  for the five single-parameter cases are all greater than 0.9. A large part of 

the storm is dominated by regions where ( , ) 0.6icor Z p ≥ . This confirms again that 

these five individual parameters can be identified from the reflectivity data. 

Comparing the reflectivity fields from simulation sensitivity experiments in Fig. 

4.9 with that of control simulation in Fig. 4.10, we can see that the locations of the 

positive and negative correlation regions are consistent with the variation in reflectivity 

due to the change in parameter value. For example, as n0h increases (experiment 

N0h45), stronger reflectivity is found in the anvil precipitation region (gray shades in 

Fig. 4.9a, Fig. 4.10a), therefore n0h is positively correlated with Z in that region, as 

indicated by positive thick contours in Fig. 4.9a. The reflectivity in Fig. 4.9f and Fig. 

4.9i represents precipitation between 3 km and 7 km, given that the radar is located at 

the southwest corner of the domain. The further the reflectivity echo is away from the 

radar, the higher is the displayed hydrometeors located. As n0h increases (as in N0h45) 

or hρ  decreases (as in ρh400), more qh is transported aloft and less qs exists in the anvil, 

resulting in lager reflectivity at middle levels and smaller reflectivity at higher levels. 

This is why the reflectivity closer to the radar is positively (negatively) correlated with 

n0h ( hρ ) and the reflectivity further away from the radar is negatively (positively) 

correlated with n0h ( hρ ) in Fig. 4.9f and Fig. 4.9i. Another example is that as n0r 
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increases (as in N0r87), less qr falls to the ground from the anvil. Therefore, the 

reflectivity echo in the low level anvil precipitation region close to the east boundary 

becomes weaker (Fig. 4.9c and Fig. 4.10c) and the reflectivity there is negatively 

correlated with n0r.  

Fig. 4.10 shows that as the number of adjustable parameters increases to five, 

the maximum value of ( , )icor Z p  decreases for all parameters and the area with 

significant correlation also decreases. This indicates that as the number of uncertain 

parameter increases, the identifiability of each parameter decreases. From Fig. 4.10 we 

can see some common correlation regions for different parameters, e.g., the negative 

correlation region at lower level anvil precipitation region for n0s, n0r and sρ  (Fig. 4.9b, 

c and e), and the positive-negative correlation pattern at higher level anvil region for n0s, 

hρ  and sρ  (Fig. 4.9g, i and j).  When all the parameters vary simultaneously, the 

correlations in those common regions become very weak (Fig. 4.10b, c, e, g, i and j), 

which implies that the contribution of a particular parameter to the change of 

reflectivity is hard identify if its contribution is similar to those of other parameters. 

However, parameters, such as n0h, whose contribution is different from other 

parameters, are easier to identify. It can be seen from Fig. 4.10a and Fig. 4.10f that as 

the number of uncertain parameter increases, large correlation coefficients still cover a 

larger part of the storm for n0h. 

Comparing the spatial correlation patterns in Fig. 4.9 with those in Fig. 4.10, we 

can see that the positive and negative correlation coefficients estimated from the 5-

parameter experiment are at similar locations as those estimated from single-parameter 
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experiments, even though in certain regions of the storm, significant values of 

correlation coefficient are missing in the 5-parameter case. This suggests that it may 

still be possible to estimate five parameters simultaneously, because the information 

contained in the correlation coefficients remains correct. However, because the 

correlations for some parameters become weaker, whether errors in the observations 

will cause instability in parameter estimation is uncertain. 

To evaluate the relative identifiability of different parameters, we calculate the 

root-mean-square of the correlation between observations and each parameter as 

( ) ( )
1/ 2

2

1

1cov( , ) cov ,
M

i i
m

R p p
M

η η
=

⎧ ⎫⎡ ⎤= ⎨ ⎬⎣ ⎦⎩ ⎭
∑ , (4.8)  

where M is the number of data points where reflectivity is greater than 10 dBZ. Table 

4.4 shows the temporally averaged ( )cov( , )iR pη  calculated from single-parameter and 

multiple-parameter forecast ensembles. The time averaged root-mean-square correlation 

coefficients between radial velocity and each of the five parameters, ( )( ),r iR cor V p , 

are always smaller than the corresponding ones for reflectivity, ( )( ), iR cor Z p . The 

correlations generally decrease as the number of uncertain parameter increases. Among 

the single-parameter experiments, n0h has the highest correlation with either Vr or Z.  

When both n0h and hρ  are uncertain, n0h has a higher correlation with both Vr and Z, 

and the rms correlation for hρ  decreases much more than that for n0h. When the snow 

intercept parameter n0s and snow density sρ  are treated as uncertain, the rms 

correlations between Z and the two parameters have a larger decrease than the 

corresponding correlations for Vr. For the three-intercept parameter case, both Vr and Z 
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have the highest correlation with n0h and the lowest correlation with n0s. As the number 

of uncertain parameters increases from 3 to 5, there is no significant change in the 

correlation level for the common parameters. The additional parameters hρ  and sρ  have 

relatively low correlations with radar observations compared with the intercept 

parameters. For the 5-parameter case, n0h and n0r have relatively high correlations with 

radar observations. The correlation analysis presented in this section helps us further 

understand the parameter identifiability, especially in the multi-parameter cases. 

 

n0h n0s n0r hρ  sρ  Exp. 
Vr Z Vr Z Vr Z Vr Z Vr Z 

 
1-para 0.44 0.61 0.24 0.46 0.35 0.41 0.24 0.43 0.27 0.44 

 
2-para 

( 0 ,h hn ρ ) 
0.42 0.58     0.16 0.19   

2-para 
( 0 ,s sn ρ ) 

  0.23 0.39     0.27 0.37 

3-para 0.42 0.57 0.17 0.24 0.34 0.35     

4-para 0.41 0.54 0.17 0.23 0.33 0.33 0.15 0.19   

5-para 0.40 0.54 0.16 0.22 0.33 0.33 0.16 0.2 0.19 0.2 
 

 

Table 4.4. Temporally averaged root-mean-square of correlations between forecast Z or 
Vr and one of the microphysical parameters as estimated from single-parameter and 
multiple-parameter forecast ensembles. Temporal averaging was performed upon data 
outputs at 5-min intervals from 25t =  to 100 min. 
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4.6 Summary and conclusions 
The possibility of estimating five fundamental microphysical parameters from 

radar observations is investigated by addressing issues associated with parameter 

sensitivity and identifiability. These five parameters are the intercept parameters for 

rain, snow and hail/graupel, and the bulk densities of hail/graupel and snow, which are 

usually pre-specified constants in single-moment bulk microphysics schemes and are 

involved in the definition of drop/particle size distributions. The identifiability of 

individual parameters is examined from two aspects: the sensitivity of the model 

forecast or model state estimation in terms of the observed quantities to the changes in 

the parameter values and the uniqueness of the inverse problem solution for parameter 

estimation.  

Sensitivity analyses were carried out based on pure-forecast and data 

assimilation sensitivity experiments for a supercell thunderstorm case. Within these 

experiments, the microphysical parameters are varied within their observed ranges of 

uncertainty individually. A response function, which measures the difference between 

the observations and the corresponding model state subjecting the parameter 

perturbations, was calculated for each of the sensitivity experiments.  

Both forecast and assimilation sensitivity experiments show that the errors in the 

microphysical parameters have larger impact on model microphysical fields than on 

wind fields. The model radar reflectivity is more sensitive to the microphysical 

parameters than the model radial velocity is. Generally, the larger the sensitivity is, the 

higher is the likelihood of correct parameter identification. Therefore, radar reflectivity 

is preferred over radial velocity for microphysical parameter estimation. Among the 
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three intercept parameters, the pure forecast, in term of Vr or Z, is most sensitive to n0r 

and least sensitive to n0s. It has a similar sensitivity to hρ  and sρ within their common 

ranges of deviation from their true values. The relative sensitivities of the estimated or 

analyzed model state in terms of Vr and Z to different parameters are somewhat 

different from the case of forecast sensitivity. Among the three intercept parameters, the 

analyzed Vr and Z are generally most sensitive to n0h and least sensitive to n0r. The 

analyzed Vr and Z were found to be more sensitive to hρ  than to sρ within their 

common ranges of deviation. The possible reasons of the difference in the responses 

between the two cases require further investigation. It will require an understanding of 

the nonlinear dynamics of the data assimilation process and its interaction with the 

parameter errors. 

Another factor that affects parameter estimation is the time scale of the system 

response to the parameter changes. The shorter the response time, the faster the 

parameters can be corrected through data assimilation cycles. The time series of the 

response functions were presented for five sensitivity experiments, which include an 

increase in the three intercept parameters individually by an order of magnitude and the 

use of the upper and lower bound values for the snow and hail/graupel densities, 

respectively. According to thses experiments, the five parameters can be listed in an 

increasing order of the response time as 
0 0 0h h s r sn n nT T T T Tρ ρ= < < <= . The response 

times are found to be between 15 to 25 minutes or 3 to 5 assimilation cycles. For this 

particular radar data assimilation problem, when the model is perfect, at least 8 

assimilation cycles (40 minutes) are needed to arrive at a good state estimation. Within 
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such a time window, successful estimation of these parameters can therefore be 

expected, although in practice, too small initial parameter errors can slow down the 

estimation process. 

The response functions calculated for the forecast sensitivity experiments for all 

five individual parameters show concave shapes and have unique minima equaling 

those of the truth simulation. The response functions obtained from assimilation 

sensitivity experiments also show concave shapes, but the gradients of the response 

functions with respect to the parameters become smaller, especially, when the 

parameters are very close to their true values. It is most likely that each of the five 

microphysical parameters can be estimated individually from radar reflectivity data. 

From the assimilation sensitivity experiments, we can also estimate the likely accuracy 

of the estimated parameters, which is limited by the flatness of the response functions 

near their minimum. The likely accuracy limit in the logarithmic unit is about 1 for 

intercept parameters or about 0.5 for particle densities. The errors in the parameters 

smaller than the limits should have negligible impact on the model state estimation. 

The identifiability of the microphysical parameters, especially when they vary 

simultaneously, was also evaluated from their correlations with the model output of 

radar observations based on ensemble forecasts. For single-parameter cases, all five 

parameters are highly correlated with radar reflectivity, in terms of the maximum values 

and area coverage of the significant correlations. The correlations with radial velocity 

are lower. The physical meanings of the correlations between the microphysical 

parameters and radar reflectivity can be explained by the hydrometeor changes caused 

by the changes in the parameters. As the number of uncertain parameters increases, both 



 114

the level and the area coverage of significant correlations decrease, which implies that 

the degree of difficulties will be higher with multiple-parameter estimation. 

In Chapter 5, the details of the simultaneous estimation of the microphysical 

parameters and model state variables using the EnSRF algorithm from radar data will be 

presented. The sensitivity analysis and parameter identifiability discussed here will 

guide us with the experiment design and help us understand the results of estimation. 

The parameter identifiability issue will be further discussed based on the estimation 

results. 
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Chapter 5                                              
Simultaneous Estimation of 
Microphysical Parameters and 
Atmospheric State with Radar Data and 
Ensemble Square-root Kalman Filter: 
Parameter Estimation Experiments 

 

 

5.1 Introduction 
Various studies over the recent years have demonstrated that the ensemble Kalman filter 

(EnKF) method (Evensen 1994; Burgers et al. 1998; Houtekamer and Mitchell 1998; 

Evensen 2003) and its variations (Bishop et al. 2001; Anderson 2001; Whitaker and 

Hamill 2002) form a viable approach to atmospheric data assimilation, for both large-

scale (e.g., Houtekamer and Mitchell 2001; Houtekamer et al. 2005) and small-scale 

(e.g. Snyder and Zhang 2003; Zhang et al. 2004; Dowell et al. 2004; Tong and Xue 

2005a; Xue et al. 2006) applications. For the convective-scale radar data assimilation, 

the flow-dependent multivariate background error covariances provided by the 

ensemble-based assimilation method play an essential role, because most state variables 

are not directly observed at the convective scale. It has been shown that dynamically 

consistent wind, thermodynamic and microphysical fields can be retrieved accurately 

using EnKF methods from simulated radar radial velocity and reflectivity observations 

(Snyder and Zhang 2003; Zhang et al. 2004; Tong and Xue 2005a; Xue et al. 2006). 
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Encouraged by these Observing System Simulation Experiment (OSSE) results, 

researchers have been moving towards using real data (e.g., Dowell et al. 2004; 

Houtekamer et al. 2005) and exploring the possibility of operational implementation of 

ensemble-based data assimilation methods (e.g., Houtekamer et al. 2005). 

In most OSSE studies, only forecast errors due to uncertain initial conditions are 

taken into account, while forecast errors due to model deficiencies are neglected. 

However, in real-world applications, significant challenge can be encountered due to 

the presence of model error. With EnKF, the flow-dependent multivariate covariances 

are estimated and evolved through the model evolution of each ensemble member. 

Whether they can be determined correctly depends on whether the model evolutions are 

correct and systematic model errors can cause the ensemble member not being drawn 

from the distribution that produces truth because the model attractor and the system 

attractor differ (Hansen 2002). 

Systematic errors can result from uncertain parameters used in the prediction 

model. One way to account for the model error of this type is through parameter 

estimation, so that the parameters can be more adequately constrained by available 

observations. Different techniques, such as the maximum likelihood method (Dee 

1995), extended Kalman filter (Hao and Ghil 1995) and variational method (Yu and 

O'Brien 1991; Zou et al. 1992), have been applied to the parameter estimation problem 

in meteorology and oceanography. Navon (1997) reviewed the variational approach via 

an adjoint model for parameter estimation and discussed the issue of parameter 

identifiability. Recently, Crook et al. (2004) applied the 4DVAR method to estimate a 

coefficient in a hydrometeor terminal velocity formulation of their cloud model. 
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Anderson (2001) first suggested that the EnKF can be used for parameter 

estimation by including the model parameters as part of the model state and estimating 

them simultaneously with the model state. Annan et al. (2005a) successfully applied the 

EnKF method to simultaneously estimate 12 parameters in a low-resolution coupled 

atmosphere-ocean model with steady-state dynamics. Annan and Hargreavers (2004) 

also successfully applied this method to perform multivariate parameter estimation in 

the presence of chaotic dynamics with the Lorenz model. More recently, they extended 

their results to a realistic intermediate complexity atmospheric GCM with both identical 

twin experiments and reanalysis data (Annan et al. 2005b). However, in contrast to 

weather prediction, the climate forecasts depend strongly on parameterizations rather 

than initial conditions (Annan et al. 2005a). Kivman (2003) found that the EnKF 

performed poorly when applied to simultaneous state and parameter estimation in the 

Lorenz model. He attributed this to utilizing only two statistical moments in the analysis 

step by all Kalman filter-based methods, which are unable to deal with highly non-

Gaussian probability distributions in the parameter space. Experiments assimilating 

simulated surface observations into a parameterized 1D PBL model as well as 

estimating the parameter of soil moisture availability by Hacker and Snyder (2005) 

suggested that the EnKF may help mitigate model error via parameter estimation. 

Aksoy et al. (Aksoy et al. 2006) applied the EnKF method to simultaneous estimation 

of up to 6 parameters and the model state with a two-dimensional, hydrostatic, non-

rotating, and incompressible sea-breeze model. They found that the estimation of single 

imperfect parameters with the EnKF is successful, while the quality of estimation 

deteriorates when the number of estimated parameters increases. 
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Numerical modeling studies for convective systems have demonstrated large 

sensitivity in terms of cloud characteristics, surface rainfall, radar reflectivity structures, 

and downdraft intensity to microphysical parameterization (McCumber et al. 1991; 

Ferrier et al. 1995; Gilmore et al. 2004; van den Heever and Cotton 2004). Errors in 

microphysical parameterization therefore have direct impact on simulation and data 

assimilation for convective systems. The basic assumption for the bulk microphysical 

scheme is that the particle or drop size distributions (DSDs) can be represented in 

functional forms. For single-moment bulk microphysics scheme, a large part of the error 

lies with the uncertain parameters that are used to define the drop size distributions, 

which are usually predetermined constants. In reality, those parameters can vary with 

space and time and among systems in different lager environment. The purpose of this 

two-part study is to examine the impact of the errors in these microphysical parameters 

on the retrieved model state and to correct these errors, when possible, using the EnKF 

method through parameter estimation. To our knowledge, this is the first attempt as 

such.  

The microphysics scheme used in the ARPS model (Xue et al. 2000; Xue et al. 

2001; Xue and Min 2003), on which our EnKF data assimilation system is based, is the 

5-class (cloud water, rain, cloud ice, snow and hail/graupel) single-moment bulk 

scheme after Lin et al. (1983, LFO83 hereafter). Additional information of the 

microphysics scheme can be found in Chapter 4. The microphysical parameters to be 

estimated include the intercept parameters of hail, snow and rain drop size distributions, 

the densities of hail and snow. The sensitivity of the model forecast and estimated state 

of a supercell thunderstorm to these parameters are analyzed in detail in Chapter 4, 
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together with discussions on issues associated with parameter identifiability. In this 

second part, we focus on estimating those microphysical parameters using the EnKF 

method and radar data. 

The remainder of this chapter is organized as follows. Section 5.2 outlines our 

ensemble square root filter (EnSRF) data assimilation system and its configurations. 

The EnSRF can be considered a variation of the EnKF method, which does not require 

perturbing the observations. In section 5.3, we describe our parameter estimation 

procedures. The results of parameter estimation experiments, based on simulated data 

for a supercell storm, are discussed in section 5.4. Parameter identifiability is further 

discussed in section 5.5. Summary and conclusions are given in section 5.6. 

5.2 Data Assimilation Procedure 
As the first attempt trying to estimate uncertain microphysical parameters, OSSEs are 

conducted. The information of the prediction model and the truth simulation for a 

supercell thunderstorm can be found in Chapter 4. The details of the EnSRF data 

assimilation configurations as well as the observation operators are described below. 

5.2.1 The EnSRF data assimilation configurations 

For the control data assimilation experiment (CNTL) using EnSRF, the model is 

assumed to be perfect, i.e., the true values of microphysical parameters are used. In this 

case, only the model state variables are estimated via the EnSRF. The procedure of 

initializing the ensemble is different from our earlier work in Tong and Xue (2005a, 

hereafter TX05) or Xue et al. (2006, hereafter XTD06). Instead of using random 
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perturbations, spatially smoothed perturbations are added to the first guess of the initial 

condition that is horizontally homogeneous as defined by the May 20, 1977 Del City, 

Oklahoma supercell sounding. This way of the initial perturbation construction is 

similar to that of Caya et al. (2005). For each model variable at grid point (l, m, n), the 

spatially smoothed perturbation is calculated as 

( , , )

( , , ) ( , , ) ( , , )
i j k S

l m n E r i j k W i j kε
∈

= ∑ , (5.1) 

where ),,( kjir  is a random number sampled independently from a normal distribution 

with zero mean and unit deviation. ),,( kjiW  is a 3D distance-dependent weighting 

function and E is a scaling parameter for obtaining the right variance of the perturbation 

field. The fifth-order correlation function (Eq. 4.10) of Gaspari and Cohn (1999) is used 

here for W. It is chosen for its closeness to the Guassian function as well as the much 

lower computational cost in its numerical evaluation. The summation is over all the grid 

points that are located within a 3D radius, which is set to 6 km in this study. This radius 

is chosen based on the typical decorrelation length scale of background errors of the 

current type of assimilation problems and is actually the same cut off radius used by the 

covariance localization (more later). 

After the smoothed initial perturbations are obtained, they are rescaled, by 

determining E in Eq. (5.1) so that the standard deviation of each perturbation field is 

equal to a desired value. The standard deviations are, respectively, 2 m s-1 for velocity 

components, 2 K for perturbation potential temperature, and 0.6 g kg-1 for qv, qc, qr, qi, 

qs and qh. For the mixing ratios of hydrometeors, the perturbations are only added in 

regions within 6 km horizontal distance from the observed precipitation. They are 
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further limited to the heights where the particular hydrometeor species are expected. 

Negative values of perturbed mixing ratios are set to zero. The perturbations for the 

velocity components, potential temperature and specific humidity are added to the entire 

domain except at the lateral boundaries. Our previous studies (TX05 and XTD06) show 

that spurious cells that may be triggered by added perturbations in non-precipitation 

regions can be suppressed by assimilating reflectivity data everywhere.  

It is found that by using the spatially smoothed initial perturbations, the 

ensemble spread of most model variables can grow quickly within the first 5 minutes of 

forecast while the grid-point-based random perturbations used in TX05 would initially 

decay significantly in the model, decreasing the spread. Perturbing microphysical fields, 

which was not done in TX05 or XTD06, also contributes to larger ensemble spread in 

microphysical variables. Larger initial ensemble spread results in smaller ensemble 

mean root-mean-square (rms) errors in early assimilation cycles. It is also found that 

with this new method of initial perturbations, updating model variables that are 

indirectly related, via observation operator, to reflectivity no longer, as it did in TX05, 

hurts the analysis during the earlier assimilation cycles. Therefore, in our current 

configuration, we do not withhold the updating of those indirectly-related variables 

when assimilating reflectivity data. 

The same background error covariance localization procedure as used in TX05 

and XTD06 is applied here to avoid the influence of unreliable covariances at large 

distances from the observations. No covariance inflation is applied here, because we 

found that the difference of the analysis rms errors caused by covariance inflation is 

smaller than that caused by different realizations of the initial ensemble members. We 
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do find some sensitivity of the analysis to the realization of the initial ensemble, mostly 

in the first few cycles, but the sensitivity is not as large as that found in Snyder and 

Zhang (2003). The sensitivity of the analysis to the realization of the initial 

perturbations is not as large when the initial ensemble members are created by adding 

grid-point-based random noise. 

Forty or one hundred ensemble members are used in the experiments to be 

reported in this chapter. The first ensemble forecast cycle starts at 20 minutes of the 

simulated supercell storm. Forecast ensemble members are integrated for 5 minutes 

before the first analysis, at 25 minutes. Both radial velocity and reflectivity, including 

reflectivity in non-precipitation regions, are assimilated in all experiments while only 

reflectivity data are used for microphysical parameter estimation. Other settings are 

very similar to those of XTD06. 

5.2.2 Observation operators for radar data 

For OSSEs, simulated observations are collected from a truth simulation or nature run 

(see, e.g., Lord et al. 2001). As in XTD06, the radar radial velocity and reflectivity data 

are sampled from the atmosphere of the truth simulation by using a radar emulator, 

which is also the observation operator used to assimilate the data. The radial velocity 

and reflectivity data are assumed to be available from a WSR-88D radar located at the 

south-west corner of the 64 km × 64 km model domain and the radar operates in the 

standard precipitation mode, having 14 elevations with the lowest elevation at 0.5º and 

the highest at 19.5º. The maximum range is 230 km. The effects of the curvature of the 

earth and the beam bending due to vertical change of refractivity are taken into account 
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by using the simple 4/3 effective earth radius model discussed in Doviak and Zrnic 

(1993).  

Following XTD06, the simulated observations are assumed to be available on 

the original radar elevation levels. On each elevation level, it is assumed that the 

observations are already interpolated from the radar polar coordinates to the Cartesian 

coordinates. The radar emulator does power-gain-based sampling in the vertical 

direction to project the data from the model levels to the radar elevation levels: 

g
e

G z
G z
η

η
∆

=
∆

∑
∑

, (5.2) 

where eη  and gη  are respectively the elevation level and grid point values of either 

radial velocity (Vr) or reflectivity factor (Z in mm6 m-3). ∆z is the depth of the model 

grid layer in which grid point value gη  is found. The two-way power weighting 

function is assumed to be of Gaussian form, 
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following Wood and Brown (1997), where φw is the one degree beam width. φg is the 

elevation angle for the grid point value and φ0 the elevation at the beam center.  

The grid point values of radial velocity involved in the numerator of Eq. (5.2) 

are calculated from 

( )cos sin cos cos sinrg g g g t gV u v w wβφ ϕ φ ϕ φ= + + − , (5.4)
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where gφ  is the local elevation angle (as defined earlier) and gϕ  the azimuth angle of 

the radar beam that goes through the given grid point. u, v and w are the model air 

velocity components interpolated to the scalar point of a staggered model grid and wt is 

the bulk terminal fall velocity calculated at scalar points. The fall velocity is calculated 

from 

tr er ts es th eh
t

er es eh

w Z w Z w Z
w

Z Z Z
+ +

=
+ +

, (5.5) 

where Zer, Zes and Zeh are the equivalent reflectivity factors (in mm6 m-3) of rain, snow 

and hail respectively. wtr, wts and wth are the mass-weighted mean terminal velocities of 

rain, snow and hail. We employ Eqs. (11), (12) and (13) of LFO83 to calculate these 

terminal velocities, which are consistent with those in our assimilation model. In 

XTD06, it was assumed that the terminal velocity effect had already been removed from 

the radial velocity data. Including the terminal velocity effect explicitly adds an 

additional degree of sophistication, and the proper estimation of the terminal velocity in 

the data assimilation process does rely on a reasonable estimate of the hydrometeor 

state variables. 

When Eq. (5.2) is applied to reflectivity, the grid point values of equivalent 

reflectivity, Ze, in mm6 m-3, is calculated from the mixing ratios of rainwater, snow and 

hail, using the formulae found in TX05, except that the reflectivity equation for dry hail 

is now included, following Smith et al. (1975). A transition zone from dry to wet hail is 

defined to be between -2.5°C and 2.5°C. After the values of equivalent reflectivity on 

elevation levels are obtained, they are transformed into the commonly used reflectivity, 
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Z, in dBZ (Z = 10 log10(Ze )). In our data assimilation system, reflectivity Z, in dBZ, is 

directly assimilated. 

The five microphysical parameters to be estimated are also involved in the 

calculation of radar reflectivity and terminal velocity. However, in this study, only the 

errors in the prediction model are considered. The observation operators are therefore 

assumed to be perfect (imperfect observation operators will be considered in a future 

study), i.e. the true values of these parameters, denoted by vector tp , are used in the 

observation operators for all experiments. The default values of microphysical 

parameters in the LFO83 scheme are assumed to be the true values (Table 5.1). The 

‘error-free’ observation data, denoted by vectors ( ),t t
rV x p  and ( ),t tZ x p , can be 

obtained by applying the radar emulator to the truth simulation. The observation errors 

are included by adding random errors to the ‘error-free’ observations to give 

( ),t t
r r Vrσ∗ = +V V x p υ , (5.6) 

( ),t t
Zσ∗ = +Z Z x p υ , (5.7) 

where υ  represents the Gaussian random variable vector with zero mean and unit 

standard deviation and Vrσ  and Zσ  are the standard deviations of the observation errors 

added to Vr and Z, respectively. Here we assume that 1Vrσ =  m s-1 and 3Zσ =  dBZ. 

5.3 The design of parameter estimation experiments 
As mentioned earlier, the parameter estimation with the EnSRF is realized by 

considering the parameters as part of the model state, an approach that is often referred 

to as the state vector augmentation. In the single-moment bulk microphysics scheme of 
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LFO83 used by ARPS, the DSD parameters are spatially and temporally invariant 

constants. The default values of the DSD parameters used by the LFO83 scheme are 

assumed to be their true values. We will first estimate the five DSD parameters 

individually, and then increase the number of estimated parameters gradually from two 

to five. The parameters that are not estimated assume their true values. 

Suppose vector ( )1,..., Lp p Τ=p  is the L-dimensional vector of the unknown 

DSD parameters that are to be estimated, where L varies from 1 to 5 in our study. The 

prior information on the unknown DSD parameters is their range of variations. The 

admissible set of p based on parameter range ( { }| , 1, 2,...,ad i i iP p p p i L
Τ

= ≤ ≤ =p ) has 

been discussed and given in Chapter 4. To investigate the uniqueness of the inverse 

problem that is intimately related to parameter identifiability, our parameter estimation 

experiments start from different initial guesses of p, which are chosen from Pad. An 

initial parameter ensemble is constructed by randomly sampling the parameters from 

their prior distributions, which are assumed to be Gaussian with the means equal to the 

initial guesses of the parameters. The uncertainty associated with the intercept 

parameters can be more than an order of magnitude (see Chapter 4). Initial sampling of 

the parameter ensemble from a broad prior distribution can easily result in unphysical 

negative values. Problems in the analysis can also result in negative intercept parameter 

and density. Therefore, the five microphysical parameters are logarithmically 

transformed and multiplied by 10 before the analysis, and then transformed back in the 

forecast step. The use of the logarithmic form may also improve the Gaussian 

assumption on the parameter error distribution. Table 5.1 lists the true values of the 
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logarithmically transformed parameters and their upper and lower bounds. Working 

with the new parameter vector ( ) ( )10 110log ,..., LP P Τ= =P p , the initial ensemble of Pi is 

drawn from ( )2
0 ,

ii PN P σ , where Pi0 is an initial guess of Pi. Ideally, the initial ensemble 

spread of parameter Pi, i.e., the standard deviation, 
iPσ , of the prior distribution of the 

parameter, should represent the error in the first guess, Pi0. However, the initial error is 

usually unknown in reality. In this study, the ensemble spread of each DSD parameter is 

initialized to be roughly half of its largest deviation from its default values in the model, 

i.e., ( )1 max | |,| |
2i

t t
P i i i iP P P Pσ = − −  (see Table 5.1), for all parameter estimation 

experiments. 

Parameter estimation was found to be sensitivie to the realization of the initial 

ensemble in our initial study (Tong and Xue 2005b). To take into account the effect of 

randomness in the realization of the initial ensemble for parameters as well as model 

state variables, different realizations of the initial ensemble are applied to each 

parameter estimation experiment. Another source of randomness comes from the 

random errors added to the simulated observation data, i.e. the vector υ  in Eqs. (5.6) 

and (5.7). In this study, a total of 32 sets of radar observation data are generated with 

different realizations of υ , so that different observations are used for different 

experiments estimating the same parameter vector P. The first requirement of 

identifiability is that all estimations must converge to the same point tP  regardless of 

the starting point P0 (Sun et al. 2001). However, numerical experiments can only be 

conducted with limited number of starting points  P0.  The  conclusions  taken  from  the 
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Parameter  pi/Pi t
ip  t

iP  iP  iP  
iPσ  

iPσ  

n0h (m-4)/10log10(n0h) 4×104 46.02 26.02 66.02 10 1.0 
n0s (m-4)/10log10(n0s) 3×106 64.77 56.9897 80 7  1.0 
n0r (m-4)/10log10(n0r) 8×106 69.03 64.77 79.03 5  1.0 
hρ (kg m-3)/10log10( hρ ) 913 29.6 26.02 29.6 2 0.5 

sρ (kg m-3)/10log10( sρ ) 100 29.6 13.01 26.02 3.5  0.5 
 
Table 5.1. List of the true value of each microphysical parameter and the true value t

iP , 
the upper bound iP  and lower bound iP  of each logarithmically transformed 
microphysical parameter ( )1010 logi iP p= . 

iPσ  stands for the standard deviation of the 
initial parameter perturbations for iP , and 

iPσ  is minimum ensemble spread of iP  used 
in ensemble inflation. 
 

limited number of numerical trials should be more robust, if the randomness in the filter 

configuration is taken into account. 

At each analysis step, the covariances between the parameters and the 

observations are calculated and used in the update equation of the EnSRF. From the 

sensitivity analysis in Chapter 4 we found that the forecasted as well as the analyzed 

radar reflectivity is more sensitive to the microphysical parameters than radial velocity. 

It was also found that radar reflectivity has a higher correlation with each of the 

microphysical parameters than radial velocity. The microphysical parameters are more 

likely to be estimated from reflectivity data than from radial velocity data. Our initial 

test using radial velocity data alone for parameter estimation was not very sucessful. As 

a result, only reflectivity data greater than 10 dBZ will be considered for parameter 

estimation. 
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A critical problem we were confronted with during the parameter estimation is 

‘filter divergence’. The tendency of filter divergence is much more pronounced with the 

estimation of global parameters than with model state because of two reasons. First, at 

each analysis step, about 400 (in the first cycle) to more than 4000 (in the last cycle) 

reflectivity data are available for updating the few global parameters, while the data 

used to update model variables at certain grid point are limited through spatial 

covariance localization. The parameter ensemble spread narrows quickly by the 

repeated application of the data. Another reason for such continuous narrowing is that 

these parameters are not dynamic; their errors do not grow during the forecast as those 

of state variables do. In our case, without a special treatment that prevents ‘filter 

divergence’, the parameter ensemble becomes useless after only two or three 

assimilation cycles and the parameters can no longer be influenced by observations 

before they converge to their true values.  

To compensate for the infinitely diminishing of the parameter ensemble, a 

similar ensemble inflation procedure as used in Aksoy et al. (Aksoy et al. 2006) is 

employed. A minimum standard deviation 
iPσ  is pre-specified, so that when the 

posterior standard deviation becomes smaller than 
iPσ , the parameter ensemble spread 

is adjusted back to 
iPσ . For successful parameter estimation, the error in the ensemble-

mean should have negligible impact on the state estimation. Based on the sensitivity 

analysis in Chapter 4, the upper bound of the parameter error ( | |t
i iP P− ) allowed by 

'successful parameter estimation' in terms of Vr and Z is 1 for the three intercept 
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parameters and is 0.5 for the snow and hail/graupel densities. These values will be used 

as the minimum ensemble spreads 
iPσ  for parameter ensemble inflation. 

However, our early single-parameter estimation experiments show that if all 

reflectivity data larger than 10 dBZ are used, the minimum ensemble spread 
iPσ  has to 

be much smaller than that given in Table 5.1, otherwise, the estimated parameter is over 

adjusted, which is manifested as large oscillations in the estimated parameter time series 

around the true value (Tong and Xue 2005b). The over-adjustment to the estimated 

parameter is mainly caused by the large number of data used for parameter estimation. 

The correlation information determines the direction to which the parameter should be 

adjusted, while the variance determines the amount of adjustment. As shown in Chapter 

4, the reflectivity in a large part of the storm is highly correlated with the individual 

parameters, which implies that a major portion of the data could provide the right 

direction of adjustment, but constantly inflating the variance can cause over-adjustment. 

In Chapter 4, we also found that the correlations between the DSD parameters 

and the reflectivity decrease as the number of adjustable parameter increases. In certain 

regions of the storm, the correlations become very weak (|r| < 0.2) for some parameters. 

This may explain why the results of our early multiple-parameter estimation 

experiments, in which all reflectivity data are used to correct the values of the 

parameters, are poor, because the data in weak correlation regions can not provide 

reliable direction information. Since not all reflectivity data within the storm are 

effective in correcting the errors in the parameters, in this study we introduce a data 

selection procedure based on prior correlation information. At each analysis time, we 

first calculate the correlation between each estimated parameter and the reflectivity at 
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all data points from ensemble members. We then sort the correlations and pick the data 

points with larger correlations for the corresponding parameter. We fix the minimum 

ensemble spread 
iPσ  to be the upper bound of the ensemble mean error of the estimated 

parameter, which has negligible impact on the state estimation (Table 5.1). The number 

of data to be used for parameter estimation is adjustable. We tested the number of data 

from 20 to 60 based on single-parameter experiments, and finally decided to use 30. A 

smaller number of data leads to a slower convergence rate, while a number of more than 

50 results in over-adjustment to the parameters. There is no significant difference 

between experiments using 30 and 40 data. 

5.4 Results 

5.4.1 Results of Experiments Estimating Single Parameters 

All single-parameter estimation experiments reported here use 40 ensemble members. 

The results of estimating the five microphysical parameters individually (with the other 

four having their true value) are presented in Fig. 5.1. The initial guesses of the 

parameters are listed in Table 5.2.  Fig. 5.1 shows the evolutions of the mean and spread 

of the parameters during the 80 min assimilation period. In each plot, the thick solid 

step-like curves represent the ensemble mean while the thin dashed lines indicate one 

standard deviation (1
iPσ ) ensemble width. The constant values between 20 min and 25 

min indicate the initial distributions. The true values of the parameters are shown by the  

straight horizontal lines. As mentioned earlier, the experiments shown in  Fig. 5.1  have 
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Parameter ip  1
0ip  1

0iP  2
0ip  2

0iP  3
0ip  3

0iP  
n0h (m-4) 4×103 36.02 4×105 56.02 4×106 66.02 
n0s (m-4) 7×105 58.45 3×107 74.77 1×108 80 
n0r (m-4) 3×106 64.77 2×107 73.01 8×107 79.03 
hρ (kg m-3) 400 26.02 700 28.45 750 28.75 

sρ (kg m-3) 50 16.99 300 24.77 400 26.02 
 

Table 5.2. The three initial guesses for each parameter in its original form 0
m
ip  and the 

logarithmical form 0
m

iP  ( 1, 2,3m = ), which are used in single-parameter estimation 
experiments. 
 

different random realizations of the initial ensemble and observation errors. 

It can be seen from Fig. 5.1 that within a few (usually 4 to 5) assimilation 

cycles, the posterior ensemble spread of the estimated parameter decreases to the pre-

specified minimum ensemble spread 
iPσ . The scenario of very successful parameter 

estimation should be that the true value of the estimated parameter is located within the 

1 
iPσ  ensemble width, because 

iPσ  is assigned to be the upper bound of the error that 

has negligible effect on the model state estimation. Generally, all five parameters can 

converge to their true values in these single-parameter experiments, albeit at different 

rates. The estimations of ρh appear most successful (Fig. 5.1m, n, o); the estimated ρh 

converges to the true value after only 5 assimilation cycles. After that, its error remains  

true value, the estimated n0h remains very close to the true value most of the time (Fig. 

5.1a, b, c). One type of behavior is that the estimated parameter closely oscillates 

around the true value (e.g. Fig. 5.1f). In other cases, e.g., for n0r and ρs, even after the 

parameter has approached the true value, deviations from the true value by more than  
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Fig. 5.1. The evolution of the parameter distribution from single-parameter estimation 
experiments through the assimilation cycles for n0h (a)-(c), n0s (d)-(f), n0r (g)-(i), ρs (j)-
(l), and ρh (m)-(n). The three columns are for different initial guesses of the parameters 
which are given in Table 5.2. The straight horizontal lines indicate the true values of the 
parameters, the solid stair-like curves indicate the ensemble mean of the estimated 
parameter and the dashed lines curves indicate the 1 

iPσ  ensemble width. 
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2
iPσ  may still occur, although eventually the error becomes no larger than 

iPσ (e.g. Fig. 

5.1h, i, k).   

The experiments in Fig. 5.1 show that the estimated parameter does not always 

consistently approach the truth from the beginning. In the first 1 or 2 assimilation 

cycles, the parameter can deviate further away from the truth. This has happened to all 

five parameters (e.g. Fig. 5.1a, e, h, l, m). The initially large inaccuracy can generally be 

corrected within the next 1 to 2 cycles (e.g. Fig. 5.1a, m). However, in some cases, this 

initial inaccuracy can significantly affect the convergence rate of parameter estimation. 

For example, the ensemble means of n0s in Fig. 5.1d and ρs in Fig. 5.1l reach beyond 

their admissible values within the first 2 assimilation cycles. It takes several 

assimilation cycles to draw them back to their reasonable and eventually true values. 

At least two factors can affect the convergence rate of the estimated parameter. 

One is the time scale of the model response to the error in the parameter during the data 

assimilation process. The results of the sensitivity experiments in Chapter 4 indicate 

that with the current data assimilation configuration, the model responses to the 

parameter errors are not reliable within the first two assimilation cycles. This probably 

explains why inaccurate estimates of the parameter often occur in the first two cycles.  

Another factor is associated with the random sampling of the initial parameter 

perturbations. Fig. 5.2 shows the effect of the randomness in drawing the initial 

parameter ensemble from a specific distribution function on the results of parameter 

estimation. The estimation of n0h and ρs with first guesses of 4×105 m-3 and 400 kg m-3, 

respectively, are presented. For each parameter, five estimation experiments were 

perform, with the only difference being with the realization of the initial parameter 
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ensemble. It can be seen that different realizations result in different convergence rate of 

the estimated parameter. Even though sensitivity experiments N0h45 and ρs400 in 

Chapter 4 show that the system responses quicker to the corresponding change in n0h 

than that in ρs, the quality of initial sampling can still cause slow convergence for n0h as 

shown by the thick gray curve in Fig. 5.2a. On the other hand, the estimated ρs can 

approach to the truth within 3 assimilation cycles for some cases as shown by the thick 

black curve in Fig. 5.2b. Obviously, the realization of the initial parameter ensemble has 

significant impact on the convergence rate. 

The impact of parameter estimation on the model state is shown in Fig. 5.3. The 

results of experiments ρh400, N0r87, ρs400 (dashed curves), for which the initial 

guesses of ρh, n0r and ρs are 400 kg m-3, 8×107 m-4 and 400 kg m-3, respectively, are 

presented. The corresponding parameter evolutions can be found in Fig. 5.1m, Fig. 5.1i 

and Fig. 5.1l. The results of another set of experiments (ρh400NE, N0r87NE and 

ρs400NE), in which the wrong initial guess of the parameter is kept without parameter 

estimation, as well as the results of CNTL (the perfect-parameter case) are also shown 

in the figure for comparison purposes. The rms errors are shown for the microphysical 

species only because they are more sensitive to microphysical parameter errors. 

For very successful parameter estimations like experiment ρh400 in Fig. 5.1m, 

the errors in the estimated model variables are indistinguishable from those of the 

perfect-parameter (CNTL) case (Fig. 5.3a-e). In the experiment estimating n0r (N0r87), 

parameter estimation definitely improves the model state estimation over the case 

without  parameter  estimation  (N0r87NE, Fig. 5.3f-j).  The errors of the state variables  
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Fig. 5.2. The evolution of the ensemble means of (a) the intercept parameter of 
hail/graupel n0h (a), and the density of snow ρs (b). The five line types represent five 
estimation experiments with different realizations of the initial parameter ensemble. 

 

are very close to those of CNTL most of the time, except for the larger errors in qr 

between 65 and 85 min, which is consistent with the larger error in the estimated n0r 

during that time (Fig. 5.1i). 

The third row of Fig. 5.3 shows the results of a relatively poor case of ρs 

 estimation. With the parameter estimation, the errors in the model state variables are 

even larger than the case of no parameter estimation (ρs400NE) before 60 min. This is 

mainly due to the incorrect estimation of ρs within the first few assimilation cycles; the 

error in the estimated ρs is lager than its initial error before 50 min (Fig. 5.1l). However, 

as the estimated ρs converges to the true value, the errors in the state variables 

eventually become comparable to those of CNTL in the last 3 to 4 cycles. 

Although a limited number of trials are presented here for single-parameter 

estimation, we are confident that each of the microphysical parameter can converge to 

the true value, no matter where they are started from. This is supported by the findings  
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Fig. 5.3. The rms errors of the ensemble-mean forecast and analysis, averaged over 
points at which the reflectivity is greater than 10 dBZ for qc (the 1st column), qr (the 2nd 
column), qi (the 3rd column), qs (the 4th column), qh (the 5th column), for the CNTL data 
assimilation experiment (black), parameter estimation experiments (dashed) and data 
assimilation experiment with imperfect parameter kept throughout the assimilation 
cycles (gray). The experiments shown have (wrong) initial guesses of ρh = 400 kg m-3 

(a-e), n0r = 8×107 m-4 (f-j), and ρs = 400 kg m-3 (k-o), which correspond to the 
experiments in Fig. 5.1m, Fig. 5.1i and Fig. 5.1l. 
 

in Chapter 4 that the response function for each of the microphysical parameter has a 

unique global minimum. 

5.4.2 Results of Multiple Parameter Estimation 

In this subsection, we present the results of the experiments, in which multiple 

microphysical parameters are estimated in different combinations. The parameters not 

estimated are assumed perfect. Firstly, 2-parameter combinations of (n0h, ρh) or (n0s, ρs) 
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that controls the hail/graupel or snow DSD are estimated simultaneously. In other 

experiments, three intercept parameters (n0h, n0s, n0r) are estimated simultaneously. In 

the 4-parameter case, the intercept parameters and the hail density are estimated 

together. Finally, all five parameters start with wrong initial guesses are estimated 

simultaneously. 

To investigate the uniqueness of the inverse solution for multiple-parameter 

estimation and to reduce the chance for the results to be fortuitous in some way, two 

values are picked from the admissible set Pad for each parameter and the combinations 

of the chosen values are used as the initial guesses of the parameter vectors. The chosen 

initial values for each microphysical parameter are listed in Table 5.3. The experiments 

are also repeated by using ‘error-free’ observations for some combinations. 

5.4.2.1 Simultaneous estimation of two parameters 

Fig. 5.4 shows the results of the experiments estimating (n0h, ρh) using imperfect data. 

Four combinations of the initial guesses of these two parameters, namely, (4×105 m-4, 

400 kg m-3), (4×105 m-4, 700 kg m-3), (4×106 m-4, 400 kg m-3) and (4×106 m-4, 700 kg m-

3), are tested (Table 5.3). The four initial guesses represent four qh distributions with the 

mass more heavily weighted toward small graupels than that represented by the true 

values of the two parameters (4×104 m-4, 913 kg m-3). It can be seen from Fig. 5.4 that 

the two parameters converge to their truth values in all four cases. After converging to 

the true values, the errors in the parameters are less than or very close to 
iPσ . 

To further investigate the identifiability of this two-parameter set, we also tested 

another  initial  guess  of  (n0h  = 4×103 m-4,  ρh =  400 kg m-3).  This combination may be  
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Parameter ip  1
0p  1

0P  2
0p  2

0P  
n0h (m-4) 4×105   56.02 4×106 66.02 
n0s (m-4) 7×105  58.45  3×107 74.77 
n0r (m-4) 3×106 64.77 2×107 73.01 
hρ (kg m-3) 400   26.02 700 28.45 

sρ (kg m-3) 50   16.99 300 24.77 
 

Table 5.3. Two initial guesses of each parameter in the original form 0
mp  and the 

logarithmical form 0
mP ( 1,2m = ) used in multiple-parameter estimation experiments. 

 

unphysical because the small intercept parameter indicates that the DSD is typical of 

storm with large hails while the low density is typical of hail therefore their estimation 

starting from such initial guesses may be problematic. In our first test, the two 

parameters could not converge to their true values, as shown by the gray curves in the 

left column of Fig. 5.5. Considering that the initial sampling error may affect the 

estimation of the parameters, five more tests were performed, which used the same data 

but different realizations of the initial parameter ensemble. Their results are shown in 

the right column of Fig. 5.5. In all of these five experiments, n0h and ρh can converge to 

their true values. Fig. 5.5b and Fig. 5.5d show that the two-parameter estimation results, 

in terms of the convergence time of the estimated parameters, are very sensitive to the 

realization of the initial parameter ensemble. In the other four experiments shown in 

Fig. 5.5a and Fig. 5.5c, not only the realizations of the initial ensemble are different, the 

imperfect observation data used are also different, yet there is no problem with the  

convergence  of  these  two  parameters  in  these  cases.  Several  variations  on  the  
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Fig. 5.4. The evolution of the parameter distribution (solid curves: ensemble mean, 
dashed curves: 1

iPσ ensemble width) vs. true parameter values (straight lines) for 
experiments simultaneously estimating n0h (the upper row) and ρh (the lower row). The 
four columns are the results of four experiments with different combination of the initial 
guesses of the two parameters. 

 

 

realization of the initial ensemble have also been performed for the former four initial 

guesses; in all cases, the two parameters converge to their true values. 

Fig. 5.6a-e and Fig. 5.6f-j show the rms errors of the estimated hydrometeor 

mixing ratios from the parameter estimation experiments shown in the 1st and 4th 

columns of Fig. 5.4, respectively. In both experiments, after the two parameters 

converge to their true values, the rms errors of the mixing ratios are very close to those 

of CNTL. Relatively lager differences between CNTL and these experiments are found 

in the two most sensitive species, qs and qh. 
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Fig. 5.5. The evolutions of the ensemble means together with the true values (straight 
line) of n0h(a)-(b), and ρh (c)-(d), from experiments estimating (n0h, ρh) starting from 
(4×105 m-4, 400 kg m-3). The different line types in each column represent different 
experiments. The left column shows the results of experiments using different 
realizations of the initial ensemble and data with different errors. The experiments in the 
right column use the same data as that indicated by the gray curves in the left column 
but with different initial ensemble realizations. 

 



 142

0.0

0.1

0.2

0.3

0.4

0.5

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

20 40 60 80 100

time (min)

0.0

0.2

0.4

0.6

0.8

20 40 60 80 100

time (min)

0.0

0.1

0.2

0.3

0.4

0.5

20 40 60 80 100

time (min)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

20 40 60 80 100

time (min)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

20 40 60 80 100

time (min)

(g
/k

g)
(g

/k
g)

(a) (c) (e)

(g) (i)

(b) (d)

(f) (h) (j)

qc qr qi qs qh

 

Fig. 5.6. The same as Fig. 5.3, but for the two-parameter set (n0h, ρh). The experiments 
shown have initial guess or imperfect value of (n0h, ρh) = (4×106 m-4, 400 kg m-3) (a-e), 
and (n0h, ρh) = (4×106 m-4, 400 kg m-3) (f-j), which correspond to the experiments in the 
1st and the 4th column of Fig. 5.4, respectively. 

 

The results of simultaneous estimation of two snow parameters, (n0s, ρs), are 

shown in Fig. 5.7. The four initial guesses for the two parameters are (3×107 m-4, 300 kg 

m-3), (3×107 m-4, 50 kg m-3), (7×105 m-4, 300 kg m-3) and (7×105 m-4, 50 kg m-3). We 

first performed experiments using 40 ensemble members, which are shown by the gray 

curves in Fig. 5.7. It can be seen that the results are generally not very good. In the four 

cases, either the two parameters converge to the true values slowly (gray curves in the 

1st and 3rd columns), or one or both parameters do not converge to the true values at all 

(gray curves in the 2nd and 4th columns). We repeated these four experiments using 

‘error-free’ data and different realizations of the initial parameter ensemble, but still 

found the results to be generally poor. We then repeated the first four experiments using 

100 ensemble members instead (black curves in Fig. 5.7). The large ensemble generally 
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Fig. 5.7. The evolutions of the ensemble means together with the true values (straight 
lines) of n0s (upper panel) and ρs (lower panel) from experiments simultaneously 
estimating (n0s, ρs) starting from four different initial guesses (one column for each).  
The gray and black curves are from the experiments using 40 and 100 ensemble 
members, respectively. 

 

improved the estimation, as seen, e,g., from the 2nd and 4th columns of Fig. 5.7. 

However, even with 100 members, the estimations of (n0s, ρs) are still not as good as 

those of (n0h, ρh) (c.f., Fig. 5.4), in term of the convergence rate and accuracy of the 

estimation. Consistently, the model state estimations are not as good as compared to 

Fig. 5.6, although improvement is still significant compared to the case of no parameter 

estimation (not shown).  

5.4.2.2 Simultaneous estimation of three parameters 

The results of simultaneously estimating three intercept parameters together are 

presented in Fig. 5.8, for which 40 ensemble members are used. Based on the two initial 

guesses of each intercept parameter in Table 5.3, 8 combinations of initial guesses were 
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used for estimating these three parameters. The experiments were first performed using 

‘error-free’ radar data, and the results are shown in the first column of Fig. 5.8. The 

realizations of the initial ensemble were also different among these experiments. The 

different line types represent these 8 different experiments. 

It can be seen from Fig. 5.8a, Fig. 5.8d and Fig. 5.8g, for the experiments using 

error-free data,  different initial guesses lead to similar ending points that are all close to 

the true values. The estimation of n0h and n0r are better than that of n0s, which has a 

larger variability among different cases. The estimated n0s values also converge to the 

true value slower than the other two parameters. In some cases, the estimated n0s has 

even larger error than its initial guess for a major portion of the assimilation cycles (e.g. 

the thin black curve in Fig. 5.8d). However, even in such a case, n0s still converges to 

the truth in the end.  

The thick black curves in the first column of Fig. 5.8 represent the best case 

among the 8 experiments. In this case, the curve of estimated n0h almost exactly overlies 

the true value line after 6 assimilation cycles (Fig. 5.8g), and the estimated n0r 

converges to the true value after 3 assimilation cycles and remains very close to the true 

value afterwards (Fig. 5.8a). The estimated n0s converges to the true value after 6 

assimilation cycles. Although some deviation from the true value occurs to n0s during 

later cycles, the estimation becomes very accurate by the last two cycles (Fig. 5.8d). 

Encouraged by the results using error-free data, we then repeated the 

experiments using error-containing data, with each set containing random error [ vector 

υ  in Eqs. (5.6) and (5.7)] of different realizations. The results are shown in the 2nd 

column   of   Fig. 5.8.  Even   with   these  imperfect  observations,   the  three  intercept 
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Fig. 5.8. The left and central columns show the ensemble means of n0r (a)-(b), n0s (d)-
(e), and n0h (g)-(h) of the experiments estimating three intercept parameters 
simultaneously. In the right column are the average ensemble-mean absolute errors of 
the experiments in the left column (black solid) and experiments in the central column 
(gray dash) of 10log10(n0r) (c), 10log10(n0s) (f), and 10log10(n0h) (i). The 8 different line 
types represent the experiments starting from 8 different initial guesses of the intercept 
parameters, which are combinations of the values listed in Table 5.3. The experiments 
shown in the left column assimilated ‘error-free’ data while those in the central column 
used ‘error-containing’ data. 
 

parameters still converge to the points close to the true values; again, n0h and n0r are 

better estimated than n0s.  

The 3rd column of Fig. 5.8 compares the ensemble mean absolute errors of the 

three parameters estimated using error-free data (black solid) and error-containing data 

(gray dash),  averaged over the 8 estimation experiments. The largest difference 
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between the two sets of experiments is with n0r (Fig. 5.8c). The error in the estimated n0r 

using error-containing data is most of the time notably larger than that using error-free 

data. The average absolute error of n0r can decrease below 
iPσ  in the last 7 assimilation 

cycles in the error-free data case; it can also decrease below 
iPσ  in later assimilation 

cycles in the imperfect data case. The average error of n0s does not become close to 
iPσ  

until the last two assimilation cycles if error-free data are used. The corresponding error 

in the imperfect data case remains above 
iPσ  (close to 2

iPσ ) even by the end of 

assimilation cycles. The average error of n0h decreases faster in both sets of experiments 

than the errors of the other two parameters and become very close to 
iPσ  during the last 

8 assimilation cycles in both cases. 

We picked two cases, which correspond to the thin black and thick black curves 

in Fig. 5.8, to demonstrate the impact of the estimation of the three parameters on the 

model state estimation. In the first case, n0s approaches to the true value very slowly 

(thin black curves in Fig. 5.8e). As a result, the analyses of qi and qs improved slowly 

(Fig. 5.9c and d). However, as long as the parameters converge to the true values, the 

model state estimation can be as good as that of CNTL in the end (Fig. 5.9a-e). In the 

second case, the three parameters approach the true values faster, but the estimation of 

n0h ends up with a relatively large error in the end. As a result, the analysis error of qs is 

lager than that of CNTL, but still significantly smaller than the case without parameter 

estimation. 
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Fig. 5.9. The same as Fig. 5.3, but for the three-parameter set (n0r, n0s, n0h). The 
experiments shown have initial guesses or imperfect values of (n0r, n0s, n0h) =(0.03 m-4, 
0.007 m-4, 0.00004 m-4) (a-e), and (n0r, n0s, n0h) =(0.03 m-4, 0.007 m-4, 0.00004 m-4) (f-
j), which correspond to the thin black curves and the thick black curves in the 2nd 
column of Fig. 5.8, respectively. 

 

5.4.2.3 Simultaneous estimation of four parameters 

Given the encouraging results of simultaneously estimating three intercept 

parameters, we now move on to the estimation of four parameters, with the hail density 

as the additional one. A total of 16 combinations of the initial guesses of n0r, n0s, n0h, 

and ρh were tested initially using 40 ensemble members. Among the 16 experiments, 

only 3 resulted in the errors that are smaller than 
iPσ  for all 4 parameters at the end of 

the assimilation cycles. Five other experiments approached the true values but the errors 

of some parameters were between 1 
iPσ and 3 

iPσ ; they were generally much smaller 

than the initial errors though. The results from the other 8 experiments were poor. These 
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results indicate increased difficulties when more parameters are estimated 

simultaneously. The use of more ensemble members hopefully will help. 

The estimation of the four-parameter set can indeed be significantly improved 

by using 100 ensemble members (Fig. 5.10). In the two cases shown in the 1st column 

of Fig. 5.10, all four parameters converge to their true values; the resultant errors of all 

four parameters are no larger than 
iPσ . We also see that the convergence rates of the 

four parameters are very good. The parameter that approaches to the true value fastest 

(within 6 to 7 cycles or 30 to 35 minutes) is n0r. Hail density has the slowest 

convergence rate but the convergence still occurs within one hour.  

The 2nd column of Fig. 5.10 shows 2 of 6 cases, in which the 4 parameters 

approach to the true values but the ending errors for some of the parameters are around 

2 
iPσ . The 3rd column of the figure shows 2 of 4 cases, in which two or three parameters 

approach the true values slowly and some of them have errors larger than 3 
iPσ  in the 

end. The relatively poor estimation usually happens to n0h and ρh, and sometimes to n0s. 

The intercept parameter of rain is estimated very well in all cases. 

Fig. 5.11 shows the absolute ensemble mean errors of the four parameters 

averaged over the 16 experiments with different initial guesses. The gray dash curves 

represent the experiments using error-containing data, i.e., those experiments discussed 

above. The average absolute error of n0r decreases below 2 
iPσ  after 5 assimilation 

cycles, and the error reduced below 1 
iPσ  in the last 3 assimilation cycles. The error of 

n0s decreases faster than that of n0h and ρh. At the end of the assimilation cycles, the 

errors of n0s, n0h and ρh are all between 1 
iPσ  and 2 

iPσ . The black curves in Fig. 5.11  
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Fig. 5.10. The same as Fig. 5.4, but for experiments estimating n0r (a-c), n0s (d-f), n0h (g-
i), and ρh (j-l), simultaneously. The results of 6 (2 in each column) of totally 16 
experiments with different initial guesses of (n0r, n0s, n0h, ρh) are presented, with each 
experiment presented by the same type of curves in each column. 

 

are for the errors calculated from the corresponding experiments but using error-free 

data. Although the data are error free, the same error variances for Vr  (1 m s-1) and Z (3 

dBZ) are used during the assimilation. Using the error-free data, the errors of the 

estimated parameters are significantly smaller; they are reduced below 1 
iPσ  for all four 

parameters at the end of the assimilation cycles. 
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The impact of the four-parameter on the state estimation is shown in Fig. 5.12, 

in which the rms ensemble mean errors of the mixing ratios from the 3 experiments 

represented by the black curves in each column of Fig. 5.12 are presented. The rms 

errors from the experiment with successful parameter estimation (black curves in Fig. 

5.10a, d, g and j) are comparable to those of CNTL after 60 min or 8 assimilation cycles 

for all five hydrometeors (Fig. 5.12a-e). The larger errors in the estimated parameters in 

Fig. 5.10b, e, h and k result in larger errors in qr, qi and qs in certain assimilation cycles 

(Fig. 5.12g, h and i) compared to those in Fig. 5.12b, c and d; the state estimation is also 

good, however, and is much better than the corresponding case without parameter 

estimation (the gray lines). For the experiment with relatively poor parameter estimation 

(black curves in Fig. 5.10c, f, i and l), the model state estimation is generally not as 

good at that of CNTL but is also much better than the case with no parameter estimation 

(Fig. 5.12k-o). For this case, we can also see that in the last two assimilation cycles, the 

rms errors of the mixing ratios are very close to those of CNTL, except for qs. This, we 

believe, is because the estimations of n0h and ρh are poor in this experiment (Fig. 5.10i 

and l) and qs is very sensitive to their errors, as indicated by the gray curve in Fig. 

5.12n. 

Several additional experiments were performed with different realizations of the 

randomness in the initial ensemble and observation error for the four cases of poor 

parameter estimation, and we did not find any case that is worse than those shown in 

Fig. 5.10i and Fig. 5.10j. In most of those additional trials, the quality the estimations is 

similar to the two cases shown in the 2nd column of Fig. 5.10, and some cases even end 

up with parameter errors being no larger than 1 
iPσ . 
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Fig. 5.11. The evolution of the average ensemble-mean absolute error of 10log10(n0r) 
(a), 10log10(n0s) (b), 10log10(n0h) (c), and 10log10(ρh) (d), calculated from the 16 
experiments simultaneously estimating (n0r, n0s, n0h, ρh) using error-containing data 
(gray) and error-free data (black). 
 

5.4.2.4 Simultaneous estimation of five parameters 

We present next the results of simultaneous estimation of all five microphysical 

parameters. Using the two values of each parameter in Fig. 5.13 as initial guesses, 32 

combinations of the initial guesses were used for estimating the five-parameter set (n0r, 

n0s, n0h, ρs, ρh). In this case, there are more variations in the success of parameter 

estimtaion across the experiments. According to the quality of parameter estimation, we 

classify the experiments into three classes and present two experiments for each class as 

we did for the four-parameter experiments. 
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Fig. 5.12. The same as Fig. 5.3, but for the four-parameter set (n0r, n0s, n0h, ρh). The 
experiments shown have initial guesses of (n0r, n0s, n0h, ρh) = (0.2 m-4, 0.3 m-4, 0.004 m-

4, 700 kg m-3) (a-e), (n0r, n0s, n0h, ρh) = (0.03 m-4, 0.007 m-4, 0.04 m-4, 400 kg m-3) (f-j),  
and (n0r, n0s, n0h, ρh) = (0.03 m-4, 0.3 m-4, 0.04 m-4, 700 kg m-3) (k-o), which correspond 
to the black curves in the 1st, 2nd and 3rd column of Fig. 5.10, respectively. To be 
consistent, 100 ensemble members are used in the control experiment shown here. 

 

The two cases shown in the 1st column of Fig. 5.13 represent very good 

estimations, in which the five parameters all converge to their true values with the final 

errors for all parameters being no larger than 1 
iPσ . Unfortunately, only 4 of the 32 

experiments result in very successful estimations. The two estimations shown in the 2nd 

column of Fig. 5.13 are still acceptable; one or two parameters end up with errors larger 

than 1 
iPσ  but less than 3 

iPσ . Only 4 of the 32 experiments belong to this class. In the 

remaining 24 experiments, at least one of the five parameters can not converge to the 
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true values. Two of such examples are shown in the 3rd column of Fig. 5.13. Nine more 

poor estimations are similar to the black curve case in this column, for which the 

estimated n0h, n0s and ρh have negative biases (Fig. 5.13f, i and o). The gray curve case 

shown also has the similar biases and the errors are larger during the earlier cycles. 

Similar to what was found in the four-parameter experiments, n0r always converges to 

the true value, no matter how poorly the other parameters are estimated. 

5.5 Discussions 
In this section, we return to the issue of parameter identifiability and discuss 

some factors that might affect the parameter estimation using the EnKF method.  

First, whether the uncertain parameters are identifiable is ultimately determined 

by whether the inverse problem has a unique solution. According to the definition of the 

least square identifiability of Chavent (Chavent 1979), a parameter is said to be least 

square identifiable if the least square performance function for identifying the parameter 

has a unique minimization in a given region and if the minimization is continuously 

dependent on the measurement errors. The EnKF algorithm does not explicitly 

minimize the performance function, which usually measures the difference between the 

model solution and the observations, but the adjustment made to the prior in the EnKF 

is proportional to that difference. If different values of a single parameter or different 

combinations of multiple parameters result in the same model solution or system 

response, then the correct parameter estimation can not be guaranteed because multiple 

possible solutions exist. 
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Fig. 5.13. Same as Fig. 5.4, but for n0r (a)-(c), n0s (d)-(f), n0h (g)-(i), ρs (j)-(l), and ρh 
(m)-(o) from experiments simultaneously estimating the four parameters. The results of 
6 of a total of 16 experiments with different initial guesses of (n0r, n0s, n0h, ρh) are 
presented, with each experiment represented by the same type of curves in each column. 
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Since we have shown that single parameters can always be estimated with good 

enough accuracy, because of the unique global minima of the response functions, we 

further discuss the identifiability of multiple-parameter sets only. The results of four- 

and five-parameter sets suggest that multiple local minima do exist, which is not 

surprising because of the high nonlinearity of the microphysical processes and their 

interaction with the model dynamics. The multiple minima could significantly impact 

the estimation of multiple parameters. What is interesting to us is that in the four 

experiments with poor estimations in the four-parameter case, n0h and ρh always 

converge to values that smaller than their true values in tandem. In two of the four 

experiments, n0s also converges to a value smaller than the true value. As mentioned 

earlier, in 11 of the 24 poor–estimation experiments for the five-parameter case, the 

estimated n0h and ρh are significantly smaller (absolute error 3
iPσ< ) than their true 

values, and in 10 of the 11 experiments, the estimated n0s is also smaller than its true 

values. Further, the evolutions of the estimated n0h, ρh and n0s are similar in those 

experiments, as can be seen from Fig. 5.13f, i and o.  

Fig. 5.14 shows the correlations between radar reflectivity and the five parameters, 

which are calculated from the prior (forecast) ensemble at 70 min. The results shown 

are from single-parameter estimation experiments. The correlation patterns in Fig. 5.14 

are similar to those obtained from ensemble forecast in Chapter 4 and the physical 

meanings of those correlations have already been discussed there. Here, we try to use 

the correlation information to estimate the possible model response in terms of 

reflectivity to the combination of the errors in the five parameters. Comparing Fig. 

5.14a, f with Fig. 5.14d, i, we can see that the correlations are similar in pattern, but the 
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signs are reversed. This means if smaller n0h results in smaller reflectivity in the 

southern anvil region (positive correlations in Fig. 5.14f), smaller ρh can compensate for 

the reduction of reflectivity in that region (negative correlations in Fig. 5.14i). The 

correlation of n0s also shows a reversed pattern with that of n0h in the anvil region. 

Therefore, the increase/decrease in Z in the anvil due to the increase/decrease in n0h can 

be compensated by the increase/decrease in n0s. Similarly, the increase in Z at low-level 

convective region due to smaller ρh (Fig. 5.14d) can be compensated for by smaller n0h 

(Fig. 5.14a). The increase in Z at the southern part of the anvil region due to smaller ρh 

can be compensated for by smaller n0s (negative correlations in Fig. 5.14b). Therefore, 

the errors of n0h, ρh and n0s can be combined in such a way (e.g., with all of them being 

smaller than their true values) that the difference between the model solution and the 

observations is small in terms of Z. In another word, such a combination could result in 

a minimum of the response function for the five-parameter set. Even though the 

correlations are still meaningful and significant, and the filter can adjust the parameters 

in the right directions, the ending values of parameter estimation may not be correct 

because the response function is already at a minimum. 

In other five-parameter experiments with poor estimation, if neither n0h nor ρh 

converges to the true values, they must have the same bias. If neither n0s nor ρs 

converges to the true values, their biases should be reversed in sign.  Based on the 

correlation information, similar explanations can be applied to these situations and to 

the estimation of other multiple-parameter experiments. The three intercept parameters 

can usually be retrieved accurately, especially in the absence of density error.  The 

model responses to the errors in these parameters are apparently more independent of  
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Fig. 5.14. Correlation coefficients calculated from the forecast ensemble at 70t =  min 
from single-parameter estimation experiments. The correlation coefficients [ thick solid 
(dashed) contours represent positive (negative) values at intervals of 0.2 ]  between Z at 
1.5° elevation and n0h (a), n0s (b), n0r (c), hρ  (d), and sρ  (e); and the correlation 
coefficients between Z at 5.3° elevation and n0h (f), n0s (g), n0r (h), hρ  (i), and sρ  (j). 
The shading and thin solid contours represent Z from the truth simulation. 

 

each other. However, the qualities of estimation are not necessarily the same for these 

intercept parameters. The estimation of n0s is generally not as good at those of n0h and 

n0r, although the average correlation for n0s is higher than that of n0r (not shown). This 

isprobably because the model responds less independently to the changes in n0h and n0s, 

as can be seen from Fig. 5.14f and g. 

The identifiability of the parameters depends not only on the uniqueness of the 

inverse solution but also on the quality of observational data. This dependence can be 

clearly seen in Fig. 5.9 and Fig. 5.11. The estimated parameters are closer to their true 

values when the observation error is reduced. It can be seen that the impact of reducing 

observation error is larger when the number of uncertain parameters increases. When 
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using error-free observational data, the number of successful estimations for the four-

parameter set increases to 8 and the number of poor estimation decreases to 1 (not 

shown). We did not perform the five-parameter experiments with error-free data for all 

32 cases, but did so for 6 cases that had poor estimations. Using error-free data, the 

parameters converge to the true values perfectly in 5 of the 6 cases. This indicates that 

the instability of the inverse problem increases as the number of parameters to estimate 

increases. 

Parameter estimation using the EnKF method is found in this study to be very 

sensitive to the random realization of the initial ensemble. For single-parameter 

estimations, different realizations lead to different convergence rates (Fig. 5.2). For 

multiple-parameter estimations, it even affects the success of the estimation (Fig. 5.5). 

Because the random numbers sampled for the parameters do not change during the 

forecast step, they can directly affect the model response and the reliability of the error 

covariances estimated from the ensemble. For example, Fig. 5.15 compares the 

correlations calculated from a sucessful estimation experiment (Fig. 5.15a-d) and a poor 

estimation experiment (Fig. 5.15c-h), for the case of estimating (n0h, ρh). The only 

difference between the two experiments is the realization of the initial parameter 

ensemble. It can be seen that significant correlations are missing in the poor estimation 

experiment (Fig. 5.15e, f, g).  
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Fig. 5.15. As in Fig. 5.14, but for correlation coefficients between n0h and ρh from two 
experiments estimating (n0h, ρh). (a)-(d) are for the experiment corresponding to the 
thick black curves in Fig. 5.5b, d that yields a good estimation, and (e)-(h) are for the 
experiment corresponding to the thick gray curves in Fig. 5.5a, c that has a poor 
estimation.  

 

5.6 Summary and conclusions 
In this study, we investigated the possibility of correcting model errors 

associated with uncertain microphysical parameters used in a popular single-moment 

ice microphysics scheme through parameter estimation using the EnKF method and 

radar data. The parameters we estimate include the intercept parameters of the assumed 

exponential drop size distributions (DSDs) for rain, snow and hail, and the densities of 

hail and snow. Sensitivity analyses were performed for individual parameters in Chapter 

4 to provide guidance to the parameter estimation experiments. Parameter identifiability 

was also discussed. In this chapter, we use the EnKF method to estimate these 
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microphysical parameters individually or in different combinations. The identifiability 

of multiple parameters is further investigated. 

For parameter estimation purpose, only radar reflectivity data are used, because 

the model state is more sensitive to reflectivity than to radial velocity. A data selection 

procedure based on covariance information and an ensemble inflation procedure with a 

pre-specified spread limit were applied, which effectively avoided the problem of filter 

divergence and ensured that the data used could provide useful information. 

To explore the identifiability of different parameters or different combinations 

of the parameters, the parameter estimation experiments started from different initial 

guesses. The experiments showed that when the microphysical parameters are estimated 

individually (with other parameters being perfect), they all can closely converge to their 

true values. The resultant model state estimations are generally as good as that of the 

corresponding control that had no parameter error. This is not surprising because the 

sensitivity analyses in Chapter 4 show that the inverse problems for single-parameter 

estimation have unique solutions. The results of single-parameter estimations also 

indicate that the EnKF can be effectively used in simultaneous state and parameter 

estimation as long as the problem is well posed. 

The results of multiple-parameter estimations are not as good as those of single-

parameter estimations, but the results estimating parameter sets (n0h, ρh), (n0r, n0s, n0h) 

and (n0r, n0s, n0h, ρh) are very encouraging. The estimations of (n0h, ρh) and (n0r, n0s, n0h, 

ρh, ρs) are relatively poor. In a major partion of the five-parameter experiments, some of 

the parameters can not converge to the true values by the end of the assimilation 

window. The problem with such as case is that the model responses to the errors in 
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different parameters can cancel each other. Certain combinations of the multiple 

parameters can result in a good fit of the model solution to the observations. In another 

word, the solution of the inverse problem for multiple parameters can be not unique. 

Further, the results of estimation are also sensitive to the quality of the observational 

data in such a case. 

The quality of parameter estimation, as well as the parameter convergence rate, 

is strongly influenced by the realization of the initial ensemble. This is mainly due to 

the sampling error associated with relatively small ensemble. It was shown that using a 

larger ensemble (100 instead of 40) improves the estimation of especially multiple 

parameters. 

The sensitivities of the analysis and forecast to the microphysical parameters 

and the identifiability of these parameters can be case dependent and may differ for 

different types of convective systems. In this study, we applied the parameter estimation 

to a supercell storm only. Some parameters or combinations of the parameters may be 

more identifiable with other convective systems, such as the squall lines that contain 

both vigorous convection and the stratiform precipitation regions. Other data sources, 

such as those of dual-polarization radar, may be very helpful for microphysical 

parameter estimation because of their information content on DSDs and hydrometeor 

types. At least, the dual-polarization data can provide additional constraints on the 

inverse problem, which hopefully can alleviate the problem of multiple minima. Work 

in assimilating polarimetric Dopple radar data using the EnKF is in progress (Jung et al. 

2005). The estimation of microphysical parameters, such as the fall speed coefficients 
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and collection efficiencies, are worthy of investigations, because they tend to have a 

large impact on the simulation and prediction of convective systems. 

We should point out again that in our current problem we considered only the 

uncertainties in the microphysical parameters in the prediction model. The 

microphysical parameters are actually also involved in the observation operators of 

reflectivity. In this study, this additional complication is not considered; true values of 

these parameters are used in the observational operators. Preliminary tests showed that 

the analysis is very sensitive to parameter errors in the observation operators because 

they directly affect what the model thinks the observational data are. It is necessary to 

investigate how to correct the errors in both prediction model and the observation 

operators, if parameter estimation is to be applied in real world problems. In fact, this 

part of work is in process. 
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Chapter 6                                                            
Assimilation of Real Radar Data for the 
May 29, 2004 Central Oklahoma 
Tornadic Thunderstorm Case 

 

 

6.1 Introduction 
In the OSSE (Observing System Simulation Experiments) studies of Chapter 3 and Xue 

et al. (2006, XTD06 hereafter), the state variables that involve a multi-class ice 

microphysics scheme are analyzed accurately, by directly assimilating both radial 

velocity and reflectivity data, when the forecast model is assumed to be perfect. 

Encouraged by those OSSE results, we move toward applying the EnKF algorithm to 

real radar data in this chapter. 

Compared to studies using simulated data, the number of real data studies with 

EnKF is much more limited. The biggest issue with real data is the presence of and the 

lack of good knowledge about model errors, where the model includes both prediction 

model and the forward observation operator. Uncertainties with data errors contribute to 

additional difficulties. Moreover, the lack of a truth also makes the verification less 

certain. 

Existing studies using real data include that of Keppenne and Rienecker (2002), 

who applied a massively parallel implementation of EnKF to an ocean circulation 

model. For the atmosphere, Whitaker et al. (2004) experimented with the analysis of 
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sub-sampled surface pressure data at a density similar to that at the early nineteenth 

century, and obtained analysis whose 500 hPa analysis errors are comparable to today’s 

2.5-day forecast errors. More recently, Houtekamer et al. (2005) applied their double-

ensemble Kalman filter with perturbed observations to a global primitive equation 

model, and analyzed most of the data used by an operational 3DVAR system. It is 

found that by adding model errors to the forecast background whose covariances is 

proportional to the background error covariances of an operational 3DVAR system, 

innovation statistics that agree with the ensemble-based estimation of innovation 

magnitudes can be obtained. The added model errors are found to dominate the error 

growth but even with the inclusion of model errors, the quality of the 6-hour ensemble 

mean background forecasts is only similar to that obtained using 3DVAR analyses. The 

rather simplistic treatment of model errors is believed to be one of the causes of the 

similarity. The results also suggest that much work is still needed in applying EnKF 

methods to real data. 

At the convective scale, Dowell et al. (2004) is the only currently published 

paper that analyzes Doppler radar data using EnKF method. By assimilating radial 

velocity and reflectivity data from one radar over a 47 minute period, wind fields that 

are of similar quality as dual-Doppler wind analyses were obtained for a supercell 

thunderstorm. The analysis system used is based on the EnSRF algorithm and an 

anelastic cloud model with warm rain microphysics, and was used earlier by Snyder and 

Zhang (2003) and Zhang et al. (2004) for OSSEs. The study also found a relatively 

large sensitivity to the ensemble initialization procedure. The analyzed low-level cold 

pool was too strong and the analysis was ineffective in correcting the cold pool errors. 
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The study focused on the retrieval of wind and temperature fields, with no attempt made 

to produce forecast starting from the analysis. 

In this chapter, the radar data assimilation system (XTD06 and Chapter 4, 5) 

based on the ensemble square-root filter (Whitaker and Hamill 2002) is applied to the 

central Oklahoma tornadic thunderstorm case of 29-30 May 2004. The main storm of 

this case was covered by the Oklahoma City WSR-88D radar (KTLX) and another 

WSR-88D radar to its north (KVNX at Enid, Oklahoma). We performed a set of 

experiments assimilating data from either one or two radars. In section 6.2, we will 

introduce the case and data. In section 6.3, the assimilation experiments using 

homogeneous environment conditions provided by a single sounding are described and 

the results of both analysis and forecast are presented. In Sections 6.4, the results of 

using time evolving environment conditions obtained by a 3DVAR analysis is 

presented. Summary and discussions are given in section 6.5. 

6.2 The 29-30 May 2004 case, data and observation 

operators 

6.2.1 Case description 

In the late afternoon through evening of May 29, 2004 CST (Central Standard Time), a 

long-lasting tornadic thunderstorm swept through central Oklahoma and produced 16 

tornadoes along a long path from Custer County, west-central Oklahoma, to Mayes 

County, northeastern Oklahoma (Fig. 6.1). The first tornado touched down near Thomas 

in  Custer County  at 1729 CST (2329 UTC)  May 29  while  the  last  tornado  from the  
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Fig. 6.1. Storm positions indicated by the area greater than 40 dBZ at the first elevation 
of the KTLX radar with a time interval of 1 hour. The locations of the KTLX and 
KVNX radar are marked by ×. The x and y distances are relative to the KTLX radar. 
The location of the maximum reflectivity is marked by +. The bold rectangular box 
indicates the analysis and prediction domain. The star indicates Oklahoma City. Several 
counties are also labeled. 

 

same tornadic thunderstorm occurred near Murphy in Mayes Country at 0051 CST 

(0651 UTC) May 30. In UTC, the thunderstorm spans across 29th and 30th of May 2004, 

with most of the tornadic activities occurring in May 30. 

The most prominent feature at the surface in the storm environment is a dryline 

which formed in the morning hours in the Texas (TX) panhandle area  and intensified 

by local noon (1800 UTC, Fig. 6.2a) and propagated into western Oklahoma (OK) by 

late afternoon (0000 UTC, Fig. 6.2b). Associated with this dryline is a deep trough with 

a low center moving from the Kansas (KS) and Colorado (CO) border at 1800 UTC 

(Fig. 6.2a) to western KS by 0000 (Fig. 6.2b). The western and central OK was located 

within   strong   southerly   low-level   flows  that   developed   an   easterly   component  
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Fig. 6.2. Surface wind (vectors), mean sea level pressure (black contours, at intervals of 
2.5 hPa) and surface specific humidity (gray contours at intervals of 2 g kg-1) from 
NCEP Eta model analyses at (a) 1800 May 29, and (b) 0000 May 30,  2004. 
 

by late afternoon (Fig. 6.2). At the 500 hPa level is a trough extending from Oregon to 

New Mexico (not shown). In the afternoon of 29 May, CDT, Oklahoma was located 

underneath a broach area of mid-level west-southwesterlies ahead of the trough, and 

this flow strengthened significantly throughout the day. 

At around 1930, 29 May, several small convective cells were triggered along the 

dryline and by 2000 they were lined up near the western border of OK (not shown). 

This line of cells quickly moved north-northeastwards and entered western OK by 2100 

UTC (Fig. 6.1). The cells at the central portion of the line grew the fastest initially but it 

was the smaller cells located at the southern portion of the line that evolved into the 

central OK tornadic thunderstorm later. Between 2230 and 2300, three smaller southern 

cells merged together and became a single strong supercell that continued moving 

northeastwards. The supercell grew very fast from 2300 to 2330 and spawned the first 
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tornado at 2329 in Custer County. During the period, the northern cell dissipated. So, 

central OK tornadic thunderstorm had its origin at the dryline and it took at least two 

hours for it to grow into its tornadic phase. The storm also produced hails, with the 

largest ones produced at around 2325 UTC measuring 120.65 mm in diameter. This 

storm continued its eastward propagation for the next a few hours, passing by 

Oklahoma City on its north side. The storm finally decayed at the east boarder of OK at 

0730 UTC on May 30. 

Fig. 6.3a shows the Norman, OK (OUN) sounding taken 0000 UTC, May 30. 

The sounding carries a moderate CAPE of 2261 J kg-1 and a CIN of 62 J kg-1. 

Temperature and dew point profiles show that the boundary layer was warm and moist. 

The vertical wind veered with height from a southerly of 19 m s-1 at the surface to more 

than 50 m s-1 of westerly at round the tropopause and the vertical shear over the lowest 

6 km was about 25 m s-1. Both instability and shear suggest the potential of tornadic 

supercells. 

6.2.2 Radar data and forward observation operators 

The WSR-88D radars, KTLX and KVNX, collected PPI volume scans in precipitation 

mode on the tornadic thunderstorm when it passed through central Oklahoma. In this 

study, we choose an assimilation window between 2355 of 29 May and 0100 of 30 

May, which is during the mature and tornadic stage of the storm. During the data 

assimilation period, the KTLX and KVNX radars provide some dual-Doppler wind 

coverage,  although  at  relatively  long   ranges.   Scanning   in   the   standard   Volume  
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Fig. 6.3. (a) The observed Norman, OK (OUN) sounding at 0000 UTC, May 30, and  
(b) the modified sounding used in data assimilation experiments. 

 

 
Coverage Pattern 11 (VCP 11), these radars complete a full volume scan with 14 

elevations in about 5 minutes, with the elevations ranging between 0.5° and 19.9°. The 

range resolution is 250 m for radial velocity (Vr) and about 1 km for reflectivity and the 

azimuthal resolution is about 1°. 

Quality control and interpolation of the data are performed before they are 

assimilated into our model. In the quality control process, undesired radar signatures, 

such as ground clutter are removed and aliased radial velocities are unfolded. Within 

each elevation level, quality-controlled data are interpolated to the locations of model 

grid columns from the nearest four polar-grid observations. Since the data remain 

within the PPI surfaces, no vertical interpolation is performed. In another word, the data 

that are assimilated are located on constant elevation levels but at the locations of model 

vertical columns. The horizontal interpolation helps keep the horizontal resolution of 

the data more uniform while potentially large errors associated with vertical 
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interpolation, especially at longer ranges, is avoided. Similar data processing is done in 

earlier studies (e.g., Sun and Crook 2001; Dowell et al. 2004), and is also assumed by 

the simulated data in XTD05. To simplify the assimilation of radar data, we preprocess 

the data, through temporal interpolations of the data at the same elevation levels, for 

them to be valid at the whole 5 minutes. Assimilation cycles of 5 minute intervals are 

therefore performed. 

The observation operators used to obtain the radial velocity and reflectivity on 

the elevation angle levels from forecasted model state variables are the same as those in 

Chapter 5. 

6.3 Assimilation experiments using homogeneous 
environmental conditions provided by single 
sounding 

 

6.3.1 The EnSRF assimilation system and experiments 

6.3.1.1 Model configurations  

Our EnSRF data assimilation system is based on the ARPS (Advanced Regional 

Prediction System) model (Xue et al. 2000; 2001; 2003). The ARPS is compressible 

and nonhydrostatic. It contains 12 prognostics variables, including velocity components 

u, v, w, potential temperature θ, pressure p, the mixing ratios for water vapor qv,  cloud 

water qc, rainwater qr, cloud ice qi, snow qs and hail qh, plus the turbulent kinetic energy 

used by the 1.5-order subgrid-scale turbulent closure scheme. The modified three-

category ice scheme of Lin et al. (1983) is used for our assimilation experiments. 
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As our first attempt to assimilation real radar data, we use the APPS model in a 

simple cloud model mode. The analysis and forecast domain covers an area of 180 × 

120 km2 (The rectangular box in Fig. 6.1), at a 1 km horizontal resolution. The vertical 

grid is stretched with the grid spacing increasing from 100 m near the surface to 700 m 

at the top of the domain. The domain is 16 km deep with 40 physical layers. Open 

boundary condition is applied at lateral boundaries. The top boundary is a rigid lid with 

a 4-km deep Rayleigh relaxation layer; the lower boundary is free slip. Surface physics 

and radiation processes are not included in current experiments. 

6.3.1.2 The EnSRF assimilation experiments 

Data from either KTLX radar alone (single-radar analysis) or from both KTLX and 

KVNX radars (dual-radar analysis) are assimilated. We start our initial ensemble 

forecast at 2355 UTC of 29 May and perform the first analysis at 0000 UTC of 30 May. 

Over the 65 minutes assimilation period from 2355 of 29 May to 0100 of 30 May, the 

storm was located at distance ranging from 125 to 83 km to the KTLX radar, and from 

115 to 105 km to the KVNX radar (Fig. 6.1).  At 0000 UTC, the radar beams that cover 

the main storm were close to 90° angles from the two radars whereas by the 0100 UTC, 

the angles were about 135°; therefore there was a good dual-Doppler coverage on the 

main storm during this period (Fig. 6.1). All experiments use 40 ensemble members. 

As an initial study with real data, we assimilate observational data from Doppler 

radar only, while defining the environmental conditions of the storm using a single 

sounding. This is the same as in the study of Dowell et al. (2004). To start off the 

assimilation cycles, the first guess of the initial condition is horizontally homogeneous 
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and is defined by a modified Norman sounding valid at 0000, 30 May. In fact, this 

sounding is extracted from a 3DVAR analysis valid at this time, at a location north of 

the tornadic storm. The modifications include weakening the stable layer between 800 

mb and 700 mb and increasing the humidity in the dry layer between 800 mb and 600 

mb. The 3DVAR analysis follows the procedure of Hu et al. (2006a) and includes both 

rawinsondes and surface observations, including those from the Oklahoma Mesonet. 

The sounding actually used is plotted in Fig. 6.3b. This sounding has a higher CAPE 

(3750 J kg-1) than the Norman 0000 UTC sounding (Fig. 6.3a) and has zero CIN. 

Despite the lack of CIN, a layer with strong stability is evident between 830 and 700 

hPa. The presence of this stable layer imposes a less favorable condition for promoting 

convection within a cloud model, compared to the soundings used in most existing radar 

data assimilation studies [e.g. Dowell et al. (2004) and Sun (2005)]. In the absence of 

any mesoscale forcing, convection may be difficult to develop with a cloud model when 

a low-level stable layer exists. This is also the reason that modifications to observed 

soundings are often necessary for cloud-model simulations. 

An ensemble of 40 initial model states was generated by adding random 

perturbations to the first-guess state. An initial attempt to add random noise to the 

environment state as what was done in Chapter 3 resulted in a poor analysis. The 

problem of populating the initial ensemble with random noise is that the random noise 

has no spatial correlations and can be easily damped by numerical diffusion in the 

model during the first few forecast steps. Therefore, the spatial correlations and 

correlations between different model variables that could be built up through the 

ensemble forecast are very weak and the initial ensemble spread is very small. The large 
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discrepancy between the background error and the ensemble spread makes the 

correction to the model state by the observations insufficient. The underweighting of 

observations can feed back on itself and become more serious in subsequent 

assimilation cycles, whereby leading to filter divergence. 

The analysis is improved when spatially smoothed perturbations are used to 

generate the initial ensemble members. The spatially smoothed random perturbations 

are generated in the same way as in Chapter 5 (see Section 5.2.1), which contain larger 

spatial scales and correlations. The standard deviations of the perturbations are, 

respectively, 3 m s-1 for u, v and w, 3 K for perturbation potential temperature, 1.0 g kg-1 

for qv, qc, qr, qi, qs and qh. For the five hydrometeors, the perturbations are added only at 

the points within a distance from where precipitation is observed, and this distance is 

equal to the cutoff radius used in the covariance localization function. Their 

perturbations are further limited to the levels where the corresponding hydrometeors 

can be expected. For qc, the perturbations are confined to 1 to 9 km level, for qr, from 

surface to 5 km, for qi, between 5 and 14 km, for qs, between 4 to13 km, and for qh from 

surface to 12 km. Negative perturbations for the hydrometeor mixing ratios are set to 

zero. The perturbations for velocity components, potential temperature and specific 

humidity are added in the entire domain, because there are uncertainties associated with 

these fields even outside the observed precipitation region. Spurious cells that may 

develop in the non-precipitation regions can be suppressed by assimilating reflectivity 

everywhere. 

Covariance localization is applied to reduce the influence of the poorly 

estimated distant error covariances due to the limited ensemble size. The same 
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covariance localization procedure used here is the same as that used in Chapters 3, 4 

and 5. The cutoff radius for the covariance localization is 6 km in all three directions, in 

the experiments that are presented in section 5.4.  

Radar scan volumes are assimilated at five minute intervals. At the beginning, 

the ensemble members are integrated for 5 minutes before the first scan volume is 

assimilated. Both radial velocity and reflectivity are assimilated in all experiments. To 

save computational time, reflectivity data at every other model column is assimilated in 

the clear air regions. The observation errors are assumed to be uncorrelated and 

observations are assimilated serially one at a time. All model variables are updated 

when assimilating both radial velocity and reflectivity. It was found in Chapter 3 that 

when assimilating reflectivity, updating variables that are not directly related to 

reflectivity via the observation operators, i.e., updating u, v, w, θ ′ , p′ , qv, qc and qi 

hurts the analysis in the first few cycles. Random initial perturbations were used in 

Chapter 3. By applying the smoothed initial perturbations introduced in Chapter 5, 

updating these indirectly related variables during the first few cycles no longer hurts the 

analysis. For this reason, we update all analysis variables when assimilating reflectivity 

starting from the first cycle. However, this does not exclude the possibility that model 

errors and errors in the observation operator in the real data experiment cause a similar 

adverse effect. Some sensitivity studies will be performed to test the effect of 

assimilating reflectivity in this context. 

In ensemble-based data assimilation methods, the forecast and analysis 

uncertainties are often systematically underestimated due to small ensemble size as well 

as model error. Too small an ensemble spread could lead to filter divergence, which has 
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already been found in our initial tests. Increasing the ensemble size significantly is an 

impractical solution here because the computational cost is already rather high. It will 

not necessarily overcome the model error problem either. Covariance inflation is one 

way to counteract the tendency of filter divergence. We experimented with inflation 

amounts between 10% and 50% and found that 20%-30% inflation give better analysis. 

Further increase the inflation amount to 50% causes some prediction members to fail, 

however. 

A limitation of the covariance inflation approach is that it can not change the 

subspace spanned by the ensemble, although it increases the variance.  Hence, if model 

error projects into a substantially different subspace, the covariance inflation may not be 

effective. One example is when all members fail to predict a convective disturbance 

where it is observed, the inflation will not create any spread that is initially zero.  

Too small an ensemble spread can also be, and is often, caused by ignoring the 

model deficiency, or ignoring the model error covariance term when estimating the 

background error covariances from the forecast ensemble. This problem can become 

rather serious when we deal with real data. For example, Houtekamer et al. (2005) 

found that the model error they add to their system dominates the error growth while 

neglecting model error results in too smaller an ensemble spread. 

We actually experimented with adding assumed model errors to each ensemble 

member before or after the analysis, and the same spatially smoothed random 

perturbations used when generating the initial ensemble are used here, except that the 

magnitudes are different. Filter divergence can be alleviated by doing so, but we 

haven’t found any advances of this way to deal with filter divergence over covariance 
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inflation in this case. More researches are needed on how to parameterize the additive 

model errors. In Section 6.3.2, we only show the results using covariance inflation. 

6.3.1.3 Verification of EnSRF analysis 

Unlike OSSEs, the real truth is unknown for real cases. Even the observations 

can not be completed trusted because they also contained errors. The verification of the 

assimilation results requires careful considerations. 

For both single-radar and dual-radar cases, we calculate the fit of the analysis to 

the observations, from KTLX and KVNX radars. This is measured in terms of the root-

mean square differences (RMSD) between the observations and the analysis projected 

to the observation points using the forward observation operators: 

2

1

1RMSD ( )
M

a
mm

m
H y

M =

⎡ ⎤⎡ ⎤= −⎣ ⎦⎣ ⎦∑ x , (6.1) 

where the overbar represents the ensemble mean and M is the total number of 

observations used in the verification at a particular time. For reflectivity, M is the 

number of observations that are greater than 0 dBZ.  The above equation is applied to 

the reflectivity and radial velocity observations separately. 

In the case of single-radar assimilation experiment, the observations from the 

radar that are not assimilated form an independent data set for verification. For the wind 

field, the radial velocity data from the other radar often represent a significant portion of 

the cross-beam component of wind that is not measured by the assimilated radar. In the 

case of dual-radar assimilation, the above calculations measure the fit of analysis to the 

observations. 
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We further verify the analyzed wind fields against the analysis that use radial 

velocity (Vr) and reflectivity (Z) data from both KTLX and KVNX radars. To reduce the 

computational cost assimilating both radars, the data on every other model column are 

assimilated. 

In addition, innovation statistics are used to check the behavior of the EnSRF. 

The innovation is the difference between the observation and the background forecast: 

( )fH= −v y x , (6.2) 

where y is the observation vector, and xf is the state vector on the model grid, and H is 

the observation operator that projects xf  to the observation space. The overbar denotes 

ensemble mean. v is the innovation vector that can also be expressed as 

o f= −v ε ε , (6.3) 

where oε  is the observation error vector defined by )( to H xyε −=  and fε  is the 

forecast error vector defined by ( ) ( )f f tH H= −ε x x , with xt being the true state vector. 

The rms (root-mean square) of the innovation is calculated with respect to each of the 

two radars, and the quantity measures the fit of the prior (forecast) model state to the 

observations. The following relationship can be derived from (6.3) according to Dee 

(1995), 

( ) fE Τ Τ= +vv HP H R , (6.4) 

where H, P and R are, respectively, the Jacobian of the observation operator H, the 

forecast and observation error covariance matrices; E is the expectation operator. 

 Considering only the diagonal of (6.4), then 

2 2 2
v f o= +σ σ σ , (6.5) 
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where 2
vσ , 2

fσ  and 2
oσ  are the variances of the innovation vector, the observation error 

and the forecast error, respectively. This relationship is often used to check the 

consistency between the background error covariance and the ensemble spread [e.g., 

Dowell et al. (2004) and Houtekamer et al. (2005)]. From Eq. (6.5), the forecast error 

variance is calculated from the observations according to  

2 2 2
f v o= −σ σ σ , (6.6) 

 while the forecast error variance estimated from the forecast ensemble is 

2

1

1ˆ ( ) ( ) ( ) ( )
1

N
f f f f

f
n

H H H H
N

Τ

=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦− ∑σ x x x x , (6.7) 

When the ensemble spread properly reflects the forecast error, 2
fσ  calculated from (6.6) 

and 2ˆ fσ  from (6.7) should be equal. Here, the expectation operator 〈 〉 represents the 

average over all, or M number of observation points. Since we assumed global 

observation errors for Vr and Z, the variance of the observation errors are simply the 

square of the standard deviations of the assumed errors. We calculate the variance of the 

innovation according to, 

( )( )Τ−−= vvvvσ2
v . (6.8) 

6.3.2 Results 

6.3.2.1 Dual-radar analysis 

Although the typical spacing between the WSR-88D radars generally precludes dual-

Doppler analysis, in this case, as pointed out earlier, the KTLX and KVNX radars 
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provide good dual-Doppler coverage of the main storm of interest during our data 

assimilation period. At the early assimilation period, the two radars observe the main 

storm at almost right angle. Hence, we expect a good wind analysis when data from 

both radars are used, at least in the regions where coverage is available from both 

radars. 

For the dual-radar analysis the assumed observation error is 1 m s-1 for radial 

velocity and 3 dBZ for reflectivity. Covariance inflation is 30%. Fig. 6.4 compares the 

analyzed radial velocity and reflectivity against the radial velocity observations from 

both radars and the reflectivity observations from KTLX radar. We can see that both the 

analyzed radial velocity and reflectivity match the observations very well within regions 

with observation coverage. It can be seen from Fig. 6.4b and Fig. 6.4d that two 

inbound-outbound couplets of radial velocity exist, and are located on the northwest and 

east side of the hook echo, respectively. Interestingly, two couplets can also be evident 

in the analyzed radial velocity fields (Fig. 6.4a and Fig. 6.4c). The intensities of the 

analyzed and observed storms are comparable, in terms of the maximum reflectivity; 

regions with reflectivity greater than 60 dBZ exist in both analysis and observations and 

the reflectivity patterns also match rather well (Fig. 6.4e and Fig. 6.4f) 

The solid black curves in Fig. 6.5a–d indicate the fit of the dual-radar analysis to 

the observations of KTLX or KVNX radar. It can be seen that the difference between 

the analyzed and observed radial velocity fields with respect to either radar is about 2.5 

m s-1 and about 5 dBZ for reflectivity, through the assimilation cycles. The rms 

differences between the ensemble forecasts (dashed black lines in Fig. 6.5a–d) and the 

observations are much larger, however, but generally decrease with time. The  
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Fig. 6.4. (a) Dual-radar analyzed radial velocity as viewed from KTLX radar at the 
1.25° elevation and (b) the corresponding observation; (c) analyzed radial velocity as 
viewed from KVNX radar and (d) the corresponding; (e) ensemble mean analysis of 
reflectivity in the 1.25° elevation plane of KTLX radar and (f) the corresponding 
observation, valid at 0100 UTC, May 30. The analysis shown is the ensemble mean. 
 
  
differences with respect to KTLX radar are generally smaller than those with respect to 

KVNX radar. After 25 minutes, or 5 analysis cycles, the forecast rms differences in 

reflectivity remain at or below 8 dBZ, close to the 5 dBZ or so of the analyses, while the 

forecast differences in radial velocity remain above 5 m s-1 with respect to KTLX radar,  
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Fig. 6.5. Diagnostics and scores for the dual-radar analysis. (a) radial velocity rms 
differences with respect to the KTLX observations for ensemble mean analysis (solid 
black), ensemble mean forecast (dashed black), horizontally uniform wind from the 
sounding (dotted gray) and the ensemble spread (standard deviation) of the prior 
(forecast) radial velocity (solid gray). (b) The same as (a) but with respect to the KVNX 
radial velocity. (c) The same as (a) but with respect to the KTLX reflectivity. (d) The 
same as (c), but with respect to the KVNX reflectivity. 
 

 

and above 6 m s-1 with respect to KVNX. These are much higher than the 2-3 m s-1 in 

the analyses (Fig. 6.5a–b). 

The fact that the radial velocity rms differences for the prior forecast states are 

much larger than those of analyses while reflectivity rms differences are much close for 

the forecasts and analyses suggest that the errors in the velocity fields grow much faster 

in the forecast than those in the microphysical fields. This may be because the velocity 

fields contain more small scale features that have larger growth rates than the 
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microphysical variables, or because the velocity responds to errors in other state 

variables, such as pressure and temperature (which directly affects buoyancy). Since we 

do not have any direct observations of pressure or temperature, we do not have any 

means to quantitatively access their quality; the analysis of these variables depend very 

much on the cross-covariance derived from the forecast ensemble and on the dynamic 

adjustment during the forecast. Of course, errors in the model and in the storm 

environment specified using the initial sounding can also cause forecast error growth. 

As a reference, the rms differences calculated against the horizontally 

homogenous base state defined by the initial sounding are also calculated and plotted in 

dotted gray. It can be seen that the model forecast state does become better than the 

homogeneous environment after the first volume of radar data is assimilated (Fig. 6.5a–

d), and even more so for the reflecivity. 

The curves in Fig. 6.6a and Fig. 6.6b represent ratio 2 2 2ˆ( )o f v
−+σ σ σ  from dual-

radar analysis, which should be close to 1 if ensemble variance 2ˆ fσ  properly presents 

forecast error variance 2
fσ . The calculated ratio for the radial velocity data of KTLX is 

around 0.4 and that for the KVNX radar decreases from the initial value of 0.6 to 0.3 in 

the end. The ratio for the reflectivity data of KTLX increases from the initial value of 

0.5 to values greater than 1 and that of KVNX is smaller than but close to 1. The ratios 

of the prior state estimate are generally better for reflectivity data than for the radial 

velocity. The smallness in the ratios for radial velocity implies that either the ensemble 

spread or the assumed radial velocity observation error variance is too small or both. 
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Fig. 6.6. Ratio ( )2 2 2/o f vσ σ σ+  from dual-radar analysis corresponding to (a) KTLX 
radar and (b) KVNX radar; and from single-radar analysis corresponding to (c) KTLX 
radar and (d) KVNX radar for radial velocity (black) and reflectivity data (gray). 
 
 

More discussions on the consistency between the actual innovation variance and the 

ensemble estimated innovation variance will be given in later sections. 

Overall, the very good fit of the analyzed winds to the observed radial velocities 

from both radars indicate the analyzed wind fields are rather accurate. The fits of both 

analyzed and forecast reflectivity to the observations of both radars are good. In the 

next section, we will compare the single-radar wind analysis against the dual-radar wind 

analysis obtained in this section. 
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6.3.2.2 Single-radar analyses  

In this section, we examine the results assimilating data from a single Doppler radar. 

The analyzed fields, especially the winds, are compared with those of the dual-radar 

analysis obtained in the previous section. In the single-radar experiment presented here, 

the assumed rms error of radial velocity observations is 3 m s-1 and that of the 

reflectivity is 5 dBZ. The covariance inflation factor used is 20%. This experiment is 

one of several single-radar experiments that we performed, which gives a better forecast 

result. 

While we have performed experiments that assimilating either KTLX or KVNX 

radar, we report only results assimilating KTLX radar in this prospectus. Fig. 6.7 shows 

the ensemble statistics for the single-radar control experiment that assimilates KTLX 

radar data only. It can be seen from Fig. 6.7a and Fig. 6.7c that the analyses of both 

winds and reflectivity fit the KTLX observations very well, which can also be seen in 

Fig. 6.8. The analysis rms differences for radial velocity range from 2 m s-1 to 3 m s-1. 

The analysis rms difference for reflectivity is decreased to about 4 dBZ and remains at 

that level after two volumes of data are assimilated (Fig. 6.7c). The analyzed reflectivity 

field in Fig. 6.8e also looks very close to the KTLX observation, except that the region 

with reflectivity greater than 50 dBZ is smaller than in the observation. The fit of the 

analyzed reflectivity to the independent KVNX observations is also good, even though 

the rms difference of reflectivity with respect to KVNX is about 2 dB larger than that 

with respect to the KTLX data (Fig. 6.7d). However, the retrieved velocity fields do not 

match the observation of KVNX well. Fig. 6.7b shows that the match of the retrieved 

wind fields to the KVNX observations (solid black curve) is barely as good as the fit to  
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Fig. 6.7. The same as Fig. 6.5, but for the single-radar analysis that assimilates KTLX 
radar data only. 
 
 
the horizontally homogeneous wind field defined by the sounding (dotted gray curve), 

at some times the fit is even poorer. Compared with the prior state (dashed black curve), 

the analyzed radial velocity as vewied from KVNX radar shows little improvement 

between 0015 UTC and 0030 UTC and some, though still small, improvement from 

0035 UTC onward. In the analyzed field, the two radial velocity couplets are invisible 

from KVNX radar (Fig. 6.8c). These results suggested that the cross-beam component 

of winds is not well analyzed, at least those associated with small-scale structures. The 

reason of this failure is under investigation.  For the reflectivity field, the fit to the 

homogeneous background, which is zero, is of course very poor (dotted gray curves in 

Fig. 6.7c and Fig. 6.7d). 
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Fig. 6.8. The same as Fig. 6.4, but for the single-radar control experiment that 
assimilates KTLX radar data only. 

 
 

The ensemble-based variance ( 2 2ˆo f+σ σ ) with respect to the reflectivity of KTLX 

is overestimated compared to the innovation variance, 2
vσ . The ensemble-based 

variances for radial velocity of both radars are still significantly lower than the actual 

innovation variances, as was the case with dual-radar radar analysis, even though the 

assumed standard deviation of radial velocity observation errors has been increased 

from 1 to 3 ms-1. The ratio for the radial velocity generally decreases with time (black 
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curves in Fig. 6.6c, d), while the actual observation innovation variance (the dominator 

of the ratio) also decreases with time (not shown); this implies that the ensemble spread 

(the second term of the numerator of the ratio) decreases with time faster than the 

innovation variance because the observation error variance does not change. Fig. 6.6c 

and Fig. 6.6d suggest that the ensemble spread of the KVNX-viewed radial velocity 

decreases more than the spread of KTLX-viewed radial velocity. Too small ensemble 

spread in the unobserved wind component may be one of the reasons for the failure in 

analyzing the component. However, simply increasing the inflation factor did not 

improve the result. The limitation of covariance inflation is that it only increases the 

error variance and has little effect on the cross-covariances, which play a critical role in 

retrieving unobserved model state variables. 

The analyzed 1.5 km and 4 km height-level horizontal velocity and reflectivity 

fields from the dual-radar and single-radar analysis experiments are shown in Fig. 6.9, 

at the middle (0030 UTC) and the end (0100 UTC) of the assimilation window. Note 

that the storm is in its tornadic stage during the assimilation period. An F2 tornado was 

observed at Blaine County from 0017 UTC to 0038 UTC and this F2 tornado crossed 

into Canadian County at 0038 UTC and remained on the group until 0111 UTC (c.f., 

Fig. 6.1). 

The hook echo structure at the 1.5 km level can be see from both the dual-radar 

and single-radar analyses (Fig. 6.9a, c, e and g). At 0030 UTC, the strong southeasterly 

flows into the storm can be seen clearly at the region of weak reflectivity in both cases. 

The flow along the south flank of the storm is mainly southerly in the single-radar 
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analysis, while there exist westerlies at the south side of the hook in the dual-radar 

analysis (Fig. 6.9a and c).  

At 0100 UTC, a cyclonic circulation can be seen within the hook at the 1.5 km 

level in both analyses (marked by 'c' in Fig. 6.9e and g) while that of dual-radar analysis 

is clearly better defined. In the dual-radar analysis, on the east side of the circulation is a 

strong southeasterly inflow while the south edge of the hook is dominated by a surge of 

outflow. The appendage of the hook-shaped reflectivity is clearly associated with this 

inflow-outflow pattern and the cyclonic circulation. In the single-radar analysis, the 

flow west of the circulation center is mainly southwesterly, while in the dual-radar 

analysis, the flow is northwesterly and there exists a weaker anticyclonic circulation 

(marked by 'A' in Fig. 6.9e) west of the cyclonic circulation.  

At the mid-level (z=4km), two cyclonic circulation centers can be seen in the 

dual-radar analysis (Fig. 6.9b and f) at both 0030 and 0100 UTC. The two circulations 

are consistent with the two observed radial velocity couplets revealed by Fig. 6.4b and 

Fig. 6.4d. The circulations can be seen more clearly in the perturbation (from the 

sounding-defined base state) horizontal wind fields (Fig. 6.10). However, only one 

cyclonic circulation center, rather than two, is found in the single-radar analysis at the 4 

km level (Fig. 6.10c).  

With the winds between the two circulation centers being mostly in the 

southwest-northeast directions, it is difficult for them to be analyzed accurately, using 

data from KTLX, because these winds are mostly in the cross-beam direction. The 

smallness of these flow structures and the distance of the radar from these features 

(about 83 km) probably have also contributed to the inaccuracy of single-radar analysis.  
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 Fig. 6.9. Horizontal velocity vectors (m s-1) and reflectivity contours (at intervals of 10 
dBZ starting from 10dBZ, with the 40 dBZ contours highlighted) of ensemble mean 
analyses at 0030 UTC (a - d) and 0100 UTC (e - h) from dual-radar analysis experiment 
(a, b, e and f) and the single-radar analysis experiment (c, d, g and h). The left and right 
columns are for the 1.5 km and 4 km height levels, respectively. 'C' in the figure marks 
the circulation centers and ‘A’ marks the anticyclonic circulation center. 
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Fig. 6.10. Storm-relative horizontal wind vectors and reflectivity contours (at 10 dBZ 
intervals starting from 10 dBZ) for dual-radar (upper panel) and single-radar (lower 
panel) analyses at z = 4km (left panel) and z=8km (right panel), at 0100 UTC, 30 May 
2004. 
 
 

At the higher 8 km level, a cyclonic-anticyclone vortex couplet can be seen in 

both dual-radar and single-radar analyses (Fig. 6.10b and Fig. 6.10d), which can be 

explained by the tilting of environmental horizontal vorticity by the storm updraft. 
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Fig. 6.11. Same as Fig. 6.9, but for vertical velocity (color shading at intervals of 2.5 m 
s-1) and reflectivity (contours at intervals of 10 dBZ starting from 10dBZ). 
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The analyzed w fields at the 1.5 and 4 km levels are somewhat noisier. At the 

1.5 km level, the updrafts are generally found in the inflow region, towards the kink of 

the hook echo while downdrafts are mostly found at and around the southeastward 

extruding appendage of the hook echo.  At the leading edge of this extruding appendage 

lies the low-level rear-flank gust front. Signs of weak forced upward motion is found 

along this gust front (Fig. 6.11a and c). The dual-radar analysis of w contains more 

small-scale structures than the single-radar analysis, presumably associated with the 

stronger small-scale horizontal convergence/divergence analyzed with radial velocity 

data from both radars. 

At the 4 km level, the broader structures of the w fields exhibit a spiral pattern, 

with a band of negative and a band of positive vertical velocities converging towards 

the center of mesocyclone. At the finer scales, the small circulation centers identified 

earlier at this level are generally located inbetween the upward and downdraft couplets, 

indicating the important role played by tilting and the associated stretching in creating 

the vertical vorticity.  

The analyzed vertical vorticity fields at the surface and at the 1.5 km level are 

plotted in Fig. 6.12. At the 1.5 km level, the vorticity and vertical velocity fields are 

positively correlated. The vorticity is generally stronger in the dual-radar analysis than 

that in the single-radar analysis. In the single-radar analysis, the vorticity become 

stronger at 0100 UTC, with a positive maximum greater than 1×10-2 s-1 at the weak 

echo region and extends from 1.5 km down to the surface, which may be a signature of 

tornado. The surface vertical vorticity in the dual-radar analysis also increases between 

0030 and 0100 UTC (Fig. 6.12a and Fig. 6.12e). 
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Fig. 6.12. The same as Fig. 6.9, but for vertical vorticity (thick contours at intervals of  
0.003 s-1) and reflectivity (thin contours at intervals of 10 dBZ starting from 10dBZ) at 
the surface (left column) and at the 1.5 km height level (right column). 
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The fields close to the surface are more difficult to retrieve because of the lack 

of radar coverage there due to the effects of radar beam elevation and the earth 

curvature. The difficulty in retrieving low-level cold pool was found also in Weygandt 

et al. (2002b) and Dowell et al. (2004). Dowell et al. (2004) found that the 

characteristics of the retrieved cool pool are mainly associated with the integrated effect 

of evaporative cooling in the model rather than the result of assimilating velocity 

observations. In their study, warm rain microphysics scheme is used and only the radial 

velocity observations are assimilated. In this study, we use an ice microphysics scheme 

and attempt to analyze the state variables, especially the unobserved variables, from 

both radial velocity and reflectivity observations. While the ice microphysics and extra 

data should in principle improve the results, they also introduce additional uncertainties 

that are associated with the microphysical processes; both the forward operator for 

reflectivity data and the microphysics parameterization depend on the assumed drop 

size distribution. It is known, through sensitivity experiments, that the simulated cold 

pool is sensitive to the intercept parameters used in the assumed drop size distributions 

for the hydrometeors. 

Fig. 6.13a-b shows the analyzed wind, perturbation potential temperature and 

reflectivity fields at the surface for the single-radar analysis experiment. The hook-

shaped reflectivity appendages are not as pronounced as those at 1.5 km level. In our 

early test, when only 10% covariance inflation was used, the echo at the surface was 

much weaker and narrower than that in Fig. 6.13, which was found to be due to the loss 

of ensemble spread in microphysical fields. At 0030 UTC, a convergent cyclonic 

circulation can be clearly seen northwest of the southeasterly inflow. The coldest air is  
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Fig. 6.13. Surface horizontal velocity vectors (m s-1), perturbation (from sounding-
defined base state) potential temperature (shaded dashed contours at 2 K intervals) and 
reflectivity (only 10dBZ contour is plotted and highlighted) from ensemble mean 
analysis of single-radar analysis experiment at (a) 0030 UTC and (b) 0100 UTC; of 
dual-radar analysis experiment at (c) 0030 UTC and (d) 0100 UTC. 
 

found to the northwest of the cyclonic circulation and at the forward flank of the storm. 

The minimum perturbation potential temperature is less than -8 K. At 0100 UTC, the 

cold air outflow behind the rear flank gust front becomes stronger and spreads towards 

the southeast, south and southwest directions, leading to a stronger gust front. The 

coldest air is now shifted towards the rear flank of the storm behind the gust and 

stronger convergence can be seen alone the gust front and near the occlusion region. 

Although it is hard to say whether the cold pool and the gust front are retrieved 



 196

accurately, they are dynamically consistent with the development of a typical supercell 

thunderstorm. The retrieved surface wind fields are noisier in the dual-radar analysis. 

The analized reflectivity echo is even smaller than that of single-radar analysis at 0300 

UTC and hook echo are also not well defined.  

 

6.3.2.3 Forecast starting from single-radar analysis 

We performed a two-hour forecast, starting from the ensemble mean analysis of the 

single-radar assimilation experiment at 0100 UTC. During this period, seven actual 

tornadoes were observed. 

Comparing Fig. 6.14 and Fig. 6.15, we can see that the forecasted storm 

propagates eastwards as the observed storm did, but at a higher speed than the observed 

one. After one hour of forecast, at 0200 UTC, the center of the predicted storm has 

reached to the center of Logan County (c.f., Fig. 6.1), while the observed storm was still 

at the west border of this county. After two hours of forecast, at 0300 UTC, the main 

body of the predicted storm has moved out of our model domain, while the observed 

one reaches the east border of Logan County. The position error at one and half hours of 

the forecast is about 20 km. 

The low-level features of the forecast storm, during the first 40 minutes, are very 

typical of a supercell at its tornadic stage (Fig. 6.16). The hook echo shape remains 

pronounced but the high reflectivity region becomes more concentrated and does not 

extend to the forward flank of the storm as in the observed one. The low-level updraft 

becomes more organized in the forecast, with a continuous band of updraft forming 

along the rear flank gust front. A stronger cyclonic circulation develops and can be seen  
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Fig. 6.14. Reflectivity as viewed from KTLX radar at the 1.25° elevation of the 
predicted storm initialized from single-radar ensemble mean analysis at 0100 UTC at 
(a) 0115 UTC, (b) 0130 UTC, (c) 0145 UTC, (d) 0200 UTC, (e) 0230 UTC and (f) 0300 
UTC of 30 May 2004. 
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Fig. 6.15 The radar reflectivity observed by KTLX radar on the 1.25° elevation level at 
(a) 0115 UTC, (b) 0130 UTC, (c) 0145 UTC, (d) 0200 UTC, (e) 0230 UTC and (f) 0300 
UTC of 30 May 2004. 
 

clearly at 0120, 0130 and 0140 UTC, and the strengthening of the circulation is partly 

due to the intensification of eastward pushing cold outflow behind the gust front. At the 

mid-level,  the  mesocyclone  circulation  continues  (not shown).  At  later  times,  the  
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Fig. 6.16. Horizontal velocity vectors (m s-1), vertical velocity (color shading) and 
reflective (contours at intervals of 10 dBZ starting from 10dBZ) at z=1.5 km from 
ensemble mean forecast initialized from single-radar ensemble mean analysis using 
KTLX data at 0100 UTC at (a) 0110 UTC, (b) 0120 UTC, (c) 0130 UTC, (d) 0140 
UTC, (e) 0150 UTC and (f) 0200 UTC of 30 May 2004. 

 

northwesterly and westerly outflow behind the gust front become even stronger, pushes 

the gust front and the associated updraft region into a mostly north-south orientation. 

The reflectivity appendage expands and the hook echo feature is gradually lost. The 

minimum perturbation potential temperature at the surface is less than -10 K after 0110 

UTC. The too fast eastward propagation of the forecast storm suggests that model cold 



 200

pool is probably too strong, and possible errors in the microphysics may have been 

responsible for this too strong a cold pool. 

6.4 Assimilation experiments using inhomogeneous 
environmental conditions provided by 3DVAR 
analysis 

 

The results in Section 6.3.2 with a homogenesous storm environment defined by a 

single sounding suggest that the EnSRF analysis and the subsequent forecast are 

substantially affected by possible errors in the forecast model and/or in the storm 

environment. There are different sources of error that are usually hard to identify for 

real cases, where exact truth is unknown. In this section, we try to improve the analysis 

and prediction results by reducing/removing some of the uncertainties.  

 First, the assumption of a horizontally homogeneous storm environment with 

the vertical profiles defined by a sounding is problematic because of the inherent 

uncertainties. Several experiments we performed with somewhat different soundings 

show that both the analysis and forecast are sensitive to the prespecified environmental 

conditions. An example is that the forecast storm initialized from an analysis, in which 

the vertical profiles contain a dry layer found in the observed 0000 UTC OUN (Norman 

Oklahoma) sounding between the 800 hPa and 600 hPa levels, decays faster than the 

true storm and propagates northeastward rather than eastward as the true storm did. 

Errors in the environment condition can have a similar effect on model storms as 

systematic model error, in that they affect the evolution of each ensemble member 

during the forecast step and result in a biased analysis. One way to reduce the 
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uncertainty in the environmental condition is to let it be sufficiently constrained by 

observations. Skamarock and Snyder (presentation at the 2004 NCAR EnKF workshop) 

tried to tackle this problem by treating the mean profiles of the model state as uncertain 

parameters and retrieve them simultaneously with the model state, in a similar way as 

our microphysical parameter estimation in Chapter 5. However, the limitation is that the 

large-scale environment is still assumed to be horizontal homogeneous. Our way to 

reduce the uncertainty with the storm environment is to use 3-D dimentional 

environmental conditions provided by a 3DVAR analysis using all conventional 

observations and try to predict the temporal changes in the environmental condition. 

Except for the microphysical processes, no other physical processes were 

included in the experiments presented in Section 6.3. In the experiments of this 

subsection, full model physics are used, including the land-surface processes that 

include surface heating, moisture and momentum fluxes, and the radiation processes. 

By doing so, the environmental condition of the storms will evolve in time, in response 

to the physics. It is therefore expected to be more accurate during the later times of 

assimilation and prediction. 

6.4.1 Experimental design 

The model configurations are the same as those in Section 6.3.1.1, except that 

full model physics are included and external boundary condition is applied at lateral 

boundaries. The external boundary conditions are obtained from the ARPS forecast 

initialized from a 3DVAR analysis using soundings, wind profiles, surface 
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observations, and Oklahoma Mesonet data at 0000 UTC and this forecast used a 3 km 

horizontal resolution. 

Forty ensemble members are initialized the same way as in Section 6.3.1.2, 

except that spatially smoothed perturbations are added to the horizontally 

inhomogeneous initial guess provided by the 3DVAR analysis at 0000 UTC of 30 May. 

The first analysis is performed at 0005 UTC. The data assimilation window spans 0000 

through 0100 UTC. The radar scan volumes are assimilated at five minute intervals. 

Data from either KTLX radar alone (single-radar analysis) or from both KTLX and 

KVNX radars (dual-radar analysis) are assimilated. Radial velocity data from single or 

both radars, and reflectivity data from KTLX, are assimilated.  

In the experiments that will be shown in the following section, the estimated rms 

observation error is 2 m s-1 for Vr and 3 dBZ for Z. The cutoff radius for the covariance 

localization is 4 km. We still apply covariance inflation to prevent filter divergence. The 

inflation amount applied is 35% in the single-radar analysis and 50% in the dual-radar 

analysis. 

6.4.2 Results of analysis 

The rms differences as indicated by the black solid/dash curves in Fig. 6.17 

measure how well the ensemble mean background forecasts and analyses match the 

observations of the two radars whose data are assimilated. Similar to what was found in 

Section 6.3, the analyses match the observations very well, with the rms differences of 

Vr remaining at around 2 m s-1 and those of Z below 5 dBZ compared to KTLX radar 

and  below  6  dBZ for  KVNX  radar.  The  EnSRF  is very effective in constraining the  
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Fig. 6.17. Diagnostics and scores for the dual-radar analysis. (a) radial velocity rms 
differences with respect to the KTLX observations for ensemble mean analysis (solid 
black), ensemble mean forecast (dashed black), Environmental state obtained from the 
forecast initialized from 3DVAR analysis (dashed gray). (b) The same as (a) but with 
respect to the KVNX radial velocity. (c) The same as (a) but with respect to the KTLX 
reflectivity. (d) The same as (c), but with respect to the KVNX reflectivity.  
 

model state toward the observations. However, the analyzed velocity fields quickly 

deviate from the observations within just 5 minutes of forecast of each cycle as 

indicated by the large gap between the rms differences for the forecasts and the analyses 

(Fig. 6.17a and b). Again, the gap is smaller for reflectivity (relative to the initial gap) 

than for radial velocity. For single-radar analyses, the analyzed reflectivity fields fit the 

observations of both radars very well (solid black curve in Fig. 6.18c, d) even though 

reflecitivity data from KTLX only were assimilated. As was found earlier with the 

single sounding case, the radial wind component as seen by KVNX radar is not well  
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Fig. 6.18. The same as Fig. 6.17, but for single-radar case. 
 

retrieved (Fig. 6.18b). The forecast background radial velocity fields of KVNX are 

barely improved by the analysis. 

To more quantitatively evaluate the performance of the EnSRF, innovation 

statistics are calculated for both dual-radar and single-radar analyses. It can be seen that 

there are general discrepancies between the standard deviation of the innovations and 

the corresponding ensemble estimate in both cases (compare thick solid black and thin 

solid black lines in Fig. 6.19 and Fig. 6.20). The ensemble spread is generally too small 

(the dashed curves in Fig. 6.19 and Fig. 6.20), especially for radial velocity. The large 

discrepancy for the radial velocity of KVNX in single-radar analysis is believed to 

contribute to the poor estimation of the wind component seen by KVNX radar (Fig. 

6.20b). 
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Fig. 6.19. Innovation statistics for the dual-radar analysis. (a) Observed innovation std 
dev vσ (thick solid black), rms observation error oσ  (solid gray), rms ensemble spread 

fσ  (dashed black), and predicted innovation std dev 2 2
o fσ σ+ (thin solid black) 

corresponding to KTLX radar for radial velocity. (b) The same as (a) but corresponding 
to KVNX radar for radial velocity. (c) The same as (a) but for reflectivity. (d) the same 
as (b) but for reflectivity.  

 

Fig. 6.21a and Fig. 6.21c show the retrieved wind fields and analyzed 

reflectivity at 4 km height level at 0055 UTC and 0100 UTC, respectively. The mid-

level updraft is located within the broad mid-level cyclonic circulation with some 

downdrafts found to its west and southwest. Some finer structure can also be seen, 

including the two smaller cyclonic circulations indicated by ‘c’ in Fig. 6.21c, which 

corresponds to the two outflow-inflow couplets in Fig. 6.8b, d. In the single-radar 

analysis, such finer structures are hard to identify, however (Fig. 6.23b). At the 1.5 km 

height level, a very strong updraft (> 20 m s-1) is found at the weak reflectivity region  
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Fig. 6.20. The same as Fig. 6.19, but for single-radar analysis. 
 

next to the reflectivity appendage in the dual-radar analysis (Fig. 6.22a, c). The updraft 

at the same level is much weaker (< less than 10 m s-1) in the single-radar analysis (Fig. 

6.23a). At the surface, the retrieved cold pool is very strong and the hook echo feature is 

less pronounced in both cases than at the 1.5 km, suggesting an underestimation of 

rotation features near the surface, presumably due to the lack of radar data coverage at 

the low levels. The lowest elevation is about 0.5° for both radars. At 0100 UTC, when 

the storm is closest to both radars during the data assimilation period, the center of the 

storm is at a distance of 80 km from the KTLX radar and of 105 km from the KVNX 

radar (Fig. 6.1). According to radar geometory (c.f., Fig. 2 in XTD06), data at the 

distance of 80 to 105 km from the radar on the first elevation level are distributed 

between 1 to 1.5 km. The atmosphere below 500 m is not observed by the two radars. 
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Fig. 6.21. Vertical velocity [contours and shading, solid (dash) contours represent 
positive (negative) w] and horizontal storm-relative winds (vectors, plotted every other 
grid point) and reflectivity (contours at intervals of 10 dBZ starting from 10dBZ, with 
the 40 dBZ contours highlighted) at 4 km MSL from dual-radar analysis experiment. (a) 
ensemble mean analysis at 0055 UTC (b) ensemble mean forecast of dual-radar analysis 
at 0010 UTC (c) ensemble mean analysis at 0100 UTC 
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Fig. 6.22. The same as Fig. 6.21, but for the ensemble mean analyses and forecast at 1.5 
km MSL. 
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Fig. 6.23. The same as Fig. 6.21, but for single-radar ensemble mean analysis at (a) 4km 
and (b) 1.5 km. 
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Fig. 6.24. Surface horizontal storm-relative velocity vectors (m s-1), perturbation 
potential temperature (shaded dashed contours at 2 K intervals) and reflectivity (only 
10dBZ contour is plotted and highlighted) from (a) dual-radar ensemble mean analysis 
and (b) single-radar ensemble mean analysis at 0100 UTC. 
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Although dynamically consistent patterns typical of supercell storms, including 

strong mid-level rotation, updraft and low-level hook echo, can be retrieved from the 

radar data, such structures are not maintained well during the forecast step (Fig. 6.21b 

and Fig. 6.22b). As we can see that after 5 minutes of forecast, the low-level updraft 

becomes much weaker and the hook echo is becomes less well defined (Fig. 6.22b). The 

reason why the model fails to maintain seemingly dynamically consistent features 

during the short-time 5-minute forecasts needs to be investigated, by, for example, 

examining the low-level convergence and time series of pressure perturbation to see if 

mass contunity appears to be satified and if significant flow adjustment occurs in the 

forecast, which will help us identify the source of error. The fact that fine-scale 

structures, such as the cyclonic circulation within the reflectivity appendage at the low 

levels and the small circulations at the middle level, disappear quickly during the model 

integration suggests that the current 1 km resolution may still be insufficient, leading to 

poor fit of the forecast to observations. 

6.4.3 Results of forecast 

Two-hour forecasts staring from the ensemble mean analyses at 0100 UTC are 

performed for both dual-radar and single-radar assimilation experiments. The predicted 

reflectivity fields mapped to the 1.25° elevation of KTLX radar are shown in Fig. 6.25 

and Fig. 6.26 for the two cases, respectively.  

The predicted storms in both cases propagate in the right direction, but at a 

much higher speed (15.5 versus 11.1 m s-1) than the observed storm (Fig. 6.15), similar 

to the single sounding case discussed in Section 6.3.2.3. The strong low-level cold pool  
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Fig. 6.25. Reflectivity as viewed from KTLX radar at the 1.25° elevation of the 
predicted storm initialized from the dual-radar ensemble mean analysis at 0100 UTC at 
(a) 0115 UTC, (b) 0130 UTC, (c) 0145 UTC, (d) 0200 UTC, (e) 0230 UTC and (f) 0300 
UTC. 
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Fig. 6.26. The same as Fig. 6.25, but the forecast is initialized for single-radar analysis. 
 

at the initial time is believed to be at least partially responsible for the fast propagation 

speed. Including surface friction in current cases does not seem to help reducing the 

propagation speed of the predicted storm. 

During the forecast period, the shape of the storm changes significantly and 

becomes more south-north oriented. Spurious cells start to pop up to the west of the 
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predicted storm from 0130 UTC. The hook echo feature is barely seen in both cases. 

Although the retrieval of the wind fields is significantly improved when radial velocity 

data from both radars are used, this improvement does not, unfortunately, lead to better  

forecast in this case. A summary and discussions on these and earlier results will be 

offered next. 

6.5 Summary and discussions 
In this chapter we applied the EnSRF to the assimilatation of real radar data for a 

tornadic supercell thunderstorm that produced 16 tornadoes along its way through 

central Oklahoma on May 29-30, 2004. The storm at its mature stage was observed by 

two WSR-88D radars (KTLX from Oklahoma City and KVNX from the Vance Air 

Force Base, Kansas) at distances ranging from 126 to 80 km. We performed EnSRF 

analyses using either single (KTLX) and both (KTLX and KVNX) radars. 

In our first attempt to assimilate these data, the storm environment is assumed to 

be horizontally homogeneous as defined by a modified observational sounding. The 

ARPS model is used in a simple cloud model mode. The analyzed radial velocity and 

reflectivity from both single- and dual-radar experiments match very well the 

observations from the radar(s) that are directly assimilated. For the single-radar 

analysis, the analyzed radial velocity does not fit the independent radial velocity 

observations from the KVNX radar very well, however. In the analyzed velocity fields, 

two cyclonic circulations are found at the mid-level in the dual-radar analysis, which 

correspond well with the two inbound-outbound radial velocity couplets found in the 

observations from both radars, while only one cyclonic circulation is found in the 
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single-radar analysis. The velocity component of KVXN radar at the location of the 

storm is almost perpendicular to that of KTLX in the early period of the assimilation 

window. The EnSRF depends on the estimated error covariances between observed 

radial wind component and the unobserved wind components in retrieving the latter. 

The relatively poor quality of analysis of the latter suggests that the background error 

covariances were not estimated accurately. 

Although several aspects of the analysis need to be improved, especially of the 

cross-beam wind components, the results of current single-radar analysis are still 

encouraging. Key features of supercell thunderstorm are captured by the analysis, 

including a mid-level mesocyclone accompanied by rotating updrafts and a pronounced 

hook echo. The retrieved low-level features are typical of a supercell at its tornadic 

stage. The predicted storm maintains the characteristics of a supercell for more than one 

hour and propagates in the right direction, though at too fast a speed. The analyzed gust 

front and cold pool appear to be too strong and become even stronger during the 

prediction period, which appears to be responsible for the position error of the predicted 

storm. Both model error and errors in the initial condition may be responsible for this 

propagation speed error. 

We then tried to improve the EnSRF analysis by using a hopefully better 3D 

environmental condition provided by a 3DVAR analysis of all conventional 

observations. Full model physics are also included so that the environment can properly 

evolve with time. However, the general results of the analysis and forecast are no better 

than those of the single-sounding case. A number of additional experiments were 

conducted by adjusting the cutoff radius of covariance localization, the amount of 



 216

covariance inflation and the magnitude of the estimated observational error. Still no 

significant improvement was found in either analysis or forecast. The results suggest 

that model errors, most probably those related to microphysics and resolution, dominate 

the inaccuracy of the analysis and forecast.  

Experiments were also conducted by tuning the microphysical parameters 

according to the sensitivity study in Chapter 4. For example, we tried decreasing the 

rain water intercept parameter by an order of magnitude; the minimum perturbation 

potential temperature at surface was only decreased by less than 2 K, however, and this 

change did not help reduce the propagation speed error durig the forecast. We also 

tested another single-moment microphysics scheme from the WRF (Weather Research 

and Forecasting) model. In this case, the forecast results were even worse; the model 

storm quickly disintegrated during the forecast. It appears that neither scheme, with 

their currently parameter setting at least, are suitable for the current case, contributing to 

significant model errors. 

Inadquate accounting for model error also leads to too small an ensemble 

spread, which is indicated by the innovation statistics. It was found that this problem 

can not be solved by simply increasing covariance inflation, suggesting the presence of 

model bias. 

The lack of low-level radar data coverage due to the relatively large distances of 

the storm from the two radars might have also contributed to the inaccuracy of analysis. 

The impact of data coverage on the analysis can be further investigated by returning to 

OSS experiments and examining the dependency of the error covariance estimation on 

the data. 
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In the future, more research should be performed on the best ways for dealing 

with model error. More careful analysis and understanding of our current results are 

also necessary in helping us identify the main sources of error. 

Finally, we note that for this particular case, observations from two mobile 

Doppler radars located much closer to the storm were collected, which, if available to 

us, can help answer some of the questions that we raised above. 
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Chapter 7                                                     
Summary and Future work 

 

 

7.1 Summary 
The original ensemble Kalman filter (EnKF) method was introduced as a data 

assimilation method about a decade ago and several variations of EnKF have been 

developed in recent years. A number of attractive properties of EnKF made it very 

popular in recent years. First of all, the method provides a flexible as well as practical 

way for explicitly calculating and evolving the forecast error statistics. With flow-

dependent error covariances calculated from the forecast ensemble, observational 

information can be properly spread in space and used to update unobserved state 

variables. Compared with the four-dimensional variational (4DVAR) data assimilation 

method, the current method of choice by operational NWP centers, EnKF is easier 

implement, because the analysis code is independent of the forecast model and the 

algorithm does not require the adjoint code of either the forward observational operators 

or the prediction model. The development of such adjoint codes, especially for 

numerical weather prediction (NWP) models that contain complex physical processes, 

is a very labor intensive task. More over, an ensemble based assimilation system can 

provide, in addition, probabilistic information on the analysis, and a set of initial 

conditions that can be used to create ensemble forecast. 
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Initializing short-range NWP models at the convective scale using Doppler radar 

data is a challenging task, because the state variables are not directly observed by the 

radar. The advantages of the EnKF method make it an attractive candidate for this task. 

In this dissertation, we investigated the ability of the ensemble Kalman filter (EnKF) 

and its variant, the ensemble square-root Kalman filter (EnSRF), in assimilating 

Doppler radar data for thunderstorm initialization and prediction.  

As our first implementation of the EnKF method, the simulated observations of 

radial velocity and reflectivity for a supercell thunderstorm are directly assimilated 

(Chapter 3), using the original EnKF algorithm that involves perturbed observations. 

The EnKF method is found to be able to retrieve accurately the wind and 

thermodynamic fields, as well as multiple microphysical species associated with a 

multi-class ice microphysics scheme, an area that 4DVAR techniques and all other data 

assimilation methods have had difficulties. The assimilation of reflectivity data, not 

explored by earlier EnKF work, is shown to also have a positive impact on the analysis 

and subsequent forecast. The relative roles of the radial velocity and reflectivity data 

and the best way of utilizing them are also carefully evaluated and quantified. The 

cross-covariances are found to play an important role in retrieving variables indirectly 

related to the observations. The prediction of the storm initialized from the best 

analysis, in which radial velocity and full coverage reflectivity data are used, remains 

very good for at least 2 hours. This represents the first time that multiple microphysical 

species associated with a complex ice microphysics scheme are accurately retrieved. It 

is also the first time that the EnKF algorithm is coupled with a compressible NWP 
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model, the Advanced Regional Prediction System (ARPS). The main results of this 

study have been published in Tong and Xue (2005a). 

The ensemble square root Kalman filter (EnSRF) is then implemented in our 

EnKF framework. We first applied this algorithm to test the potential impact of the 

Oklahoma testbed radars of CASA (Center for Collaborative Adaptive Sensing of the 

Atmosphere, an NSF Engineering Research Center). The results have been published in 

a journal article and are not detailed in this dissertation. 

We then explored the ability of the EnSRF algorithm in correcting model errors 

associated with uncertain model parameters through simultaneous state and parameter 

estimation. Five fundamental microphysical parameters are selected for this purpose, 

which include the intercept parameters of rain, snow and hail drop/particle size 

distributions and the densities of snow and hail. The possibility of estimating such 

parameters from radar observations is first investigated for a model-simulated supercell 

storm by examining parameter sensitivity and identifiability (Chapter 4). Both forecast 

and assimilation sensitivity experiments show that radar reflectivity observations are 

preferred over radial velocity data for microphysical parameter estimation because of 

their larger sensitivity to the microphysical parameters. The time scales of forecast 

response to errors in individual parameters are also investigated. The results suggest 

that a successful estimation of the parameters can be expected within the typical lengths 

of assimilation window that are needed to obtain a good state estimation. The response 

functions calculated for the forecast as well as assimilation sensitivity experiments for 

all five individual parameters show concave shapes and unique minima equaling or 

being very close to those of truth simulation; therefore true values of these parameters 
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can be retrieved at least in those cases where only one parameter contains error at a 

time. The identifiability of multiple parameters together is evaluated from their 

correlations with the model forecast. Significant levels of correlations are found that can 

be interpreted physically. As the number of uncertain parameters increases, both the 

level and the area coverage of significant correlations decrease, which implies that the 

degree of difficulties will be higher with multiple-parameter than single-parameter 

estimation.  

The results of parameter estimation experiments using the EnSRF method and 

simulated radar data are reported in Chapter 5. In these experiments, individual 

parameters are estimated separately or in combinations. A data selection procedure 

based on correlation information is introduced, which, combined with variance 

inflation, effectively avoids the collapse of the parameter ensemble hence filter 

divergence. Our parameter estimation results demonstrate, for the first time, that the 

EnSRF method can be used to correct model errors resulting from uncertain 

microphysical parameters through simultaneous state and parameter estimation, using 

radar observations. When error exists in only one of the microphysical parameters, the 

parameter can be successfully estimated without exception. The results of multiple 

parameter estimation are generally less consistent than the results of single parameter 

estimation, mainly because the identifibility of the parameters become weaker and the 

problem might have no unique solution. The parameter estimation results are found to 

be very sensitive to the realization of the initial parameter ensemble, which is mainly 

due to the use of relatively small ensemble sizes (typically less than 100). Increasing 
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ensemble size generally improves the analysis. The quality of parameter estimation also 

depends on the quality of observation data. 

The ultimate application of the ensemble Kalman filter is the initialization of 

realistic NWP models using real data. In Chapter 6, we apply the EnSRF method to a 

tornadic thunderstorm case that occurred on May 29 - 30, 2004 near Oklahoma City. A 

long lasting supercell produced sixteen tornadoes over a period of several hours. Radial 

velocity and reflectivity data from one or two WSR-88D Doppler radars are assimilated, 

in which the storm environment is, at first, defined by single sounding and the 

prediction model, the ARPS, is used in a simplified cloud model mode. The analyzed 

radial velocity and reflectivity fields match assimilated observations well. The flow 

fields show dynamically consistent patterns typical of supercell storms, including strong 

mid-level rotation and low-level hock echo. Predicted storm maintained supercell 

characteristics for more than 1 hour, but was generally weaker and propagated too fast. 

The cross-beam component of wind is, however, not analyzed well when using data 

from single radar. 

To improve the results, better an environmental condition is then used, which is 

provided by a 3DVAR analysis of all conventional observations. Also a full suite of 

model physics is used so that the storm environment evolves with time. The surface 

friction effect is also properly included which might affect the storm propagation. 

However, no significant improvement is found with the analysis and forecast, compared 

to the corresponding single sounding cases using either single and two WSR-88D 

radars. Various tuning of the EnSRF including adjusting the cut-off radius of covariance 

localization, the amount of covariance inflation, or the estimated observational error did 
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not significantly improve the forecast results. This suggests that model errors, most 

probably those related to microphysics and resolution, dominate the inaccuracy in 

analysis and forecast. The lack of low-level radar data coverage due to the large 

distances between the storm and the radars might have contributed to a poor estimation 

of the low-level atmospheric state including cold poor and gust front, which affects 

subsequent forecast. 

7.2 Future work 
Our current results demonstrate that the ensemble-based Kalman filter 

algorithms are very promising for radar data assimilation, but much research is needed 

to improve the application of these algorithms to real case using real data. 

First of all, model errors should be sufficiently taken into account in the 

analysis. This is, however, a very challenging task, which includes both identifying the 

sources of the errors and correcting them. As suggested by the results of Chapter 4, 

microphysical parameterization can significantly affect the structure and evolution of 

storms and leads to biased estimate. A possible way to deal with this type of model 

error is through parameter estimation, which is investigated in Chapter 5 through 

OSSEs. The possibility of incorporating parameter estimation in real cases, where many 

unknown sources of errors may exist, needs much further investigation. Another 

possible way of accounting for model errors or uncertainties is to apply multiple 

microphysics schemes to different ensemble members. The purpose is to increase the 

space spanned by the ensemble members in phase space. The results in Chapter 6 

suggest that resolution is also a potential source of model error while recent studies by 
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e.g., Bryan et al (2003), suggest that resolutions as high as 100 meters may be needed 

by explicit thunderstorm forecast. The resolution error can be partially alleviated by 

using higher resolutions, but the available computing resources will always be a 

limiting factor. The dual-resolution approach proposed by Gao and Xue (2006) might 

be a good way of minimizing the resolution-related error at a reasonably computational 

cost. It can be tested with real cases in the future. 

Without properly accounting for the model error in the prognostic equations, the 

estimated error covariance will be missing the model error covariance term in the 

Kalman filter equations, leading to a major discrepancy between the spread of the 

background forecast ensemble and the true background error. The background error 

covariance estimated from the ensemble can therefore be unreliable. Including 

parameterized model errors into the model equations is another approach to dealing 

with the filter divergence problem and to improve the filter performance. This is 

important area of research. 

Previous studies on limited-area modeling have shown that errors in lateral 

boundary conditions can result in large forecast errors. Nutter et al. (2004a; 2004b) 

show that ensemble boundary conditions must be properly perturbed to prevent the 

ensemble forecast from losing its variance for increasing leading time. Like early 

ensemble Kalman filter studies with limited-area models, our current experiments 

included no boundary condition perturbations. This does not seem to be a significant 

problem for our experiments with relatively short forecast ranges and relatively large 

domains. Still, a proper treatment of lateral boundary perturbations for the forecast 
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ensembles is needed  and several methods proposed recently by Torn et al. (2006) can 

be evaluated for small-scale nonhydrostatic systems. 

For the microphysical parameter estimation, it is expected that additional 

parameters obtained by polarimetric radars, including the differential reflectivity and 

specific differential phase that contain DSD information, are helpful in reducing and/or 

avoiding the non-uniqueness of the solution, and improve the results of parameter 

estimation. In fact, initial results obtained so far by our research group are encouraging. 

The additional information provided by polarimetric measurements can hopefully also 

improve the state estimation of microphysical species. 
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Nomenclature 

Roman Symbols 

A   Correlation matrix 

,i jA   Element of matrix A  

B   Covariance matrix 

C   Schur product of correlation matrix A with covariance matrix B 

xD   Particle diameter 

eD   Forecast-observation error covariance matrix 

0e   Initial state error vector 

E   Expectation operator 

E   Scaling factor for smoothed initial state perturbations (Chapter 5) 

G   Model error forcing (Chapter 2) 

G   Two-way Gaussian power weighting function (Chapter 5) 

H   Observation operator 

H   Jacobian matrix of observation operator H 

I   Identity matrix 

J   Response function 

iK   Dielectric factor for ice 

rK   Dielectric factor for water 

K   Kalman gain 

K�   Modified Kalman gain used in the EnSRF  
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L   Loss function operator (Chapter 2) 

M   Forecast model 

M   Jacobian matrix of forecast model M 

0hn   Intercept parameter of hail/graupel size distribution 

0rn   Intercept parameter of rain size distribution 

0sn   Intercept parameter of snow size distribution 

0xn   Intercept parameter of drop size distribution 

N   Ensemble size (number of ensemble members) 

p   probability density function (Chapter 2) 

p   Pressure (Chapter 3, 4 and 6) 

p′   Pressure perturbation 

ip   Model parameter (Chapter 4, 5) 

t
ip   True (control) value of parameter ip  (Chapter 4, 5) 

ip   Upper bound of parameter pi 

ip   Lower bound of parameter pi  

0
m
ip   The mth initial guess of parameter ip    

p   Model parameter vector 

tp   True model parameter vector 

p̂   Estimate of parameter vector p 

adP   Admissible set of parameter vector p 

iP   Logarithmically transformed microphysical parameter 
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0
m

iP   The mth initial guess of logarithmically transformed parameter iP  

t
iP   True value of logarithmically transformed parameter iP  

iP   Lower bound of logarithmically transformed parameter iP  

iP   Upper bound of logarithmically transformed parameter iP  

P   Logarithmically transformed parameter vector 

0P   Initial guess of logarithmically transformed parameter vector P  

tP   Covariance matrix at time t 

a
tP   Analysis error covariance matrix at time t 

f
tP   Forecast (background) error covariance matrix at time t 

a
eP   Analysis error covariance matrix estimated from ensemble 

f
eP   Forecast error covariance matrix estimated from ensemble 

cq   Mixing ration for cloud water 

hq   Mixing ration for hail 

iq   Mixing ration for cloud ice 

rq   Mixing ration for rainwater 

sq   Mixing ration for snow 

vq   Water vapor specific humidity 

tq   White Gaussian model error vector 

Q  Model error covariance matrix 

r   Correlation inflation factor (Chapter 2) 
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r   Gaussian random number (Chapter 5) 

r   Correlation coefficient (Chapter 5) 

R   Observation error covariance matrix  

S   n × n positive semi-definite matrix (Chapter 2) 

t   Time 

0 xnT   Time scale of model response to intercept parameter 0xn  

x
Tρ   Time scale of model response to particle density xρ  

u   Horizontal velocity in the x direction 

v   Horizontal velocity in the y direction 

v   Innovation vector 

rV   Radial velocity 

w   Vertical velocity 

tw   Bulk terminal velocity 

thw   Mass-weighted mean terminal velocity for hail 

trw   Mass-weighted mean terminal velocity for rain 

tsw   Mass-weighted mean terminal velocity for snow 

w   White noise vector (Chapter 2) 

W   Distant-dependent weighting function (Chapter 5) 

x, y  Horizontal coordinates 

tx   State vector at time t 

tx̂   Estimate of tx  
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a
tx   Analysis state vector at time t 

f
tx   Forecast state vector at time t 

,
a
t ix   Analysis state of ensemble member at time t 

,
f
t ix   Forecast state of ensemble member at time t 

ax   Ensemble mean of analysis state 

fx   Ensemble mean of forecast state 

tx�   Error in estimate tx̂  

tx   True model state vector (Chapter 4) 

ty   Observation vector at time t 

iy   The ith perturbed observation vector 

tY   Observation matrix before time t  

τY   Observation matrix before time τ  

z   Vertical coordinate 

Z   Reflectivity (factor) 

eZ   Equivalent reflectivity factor 

ehZ   Equivalent reflectivity factor for hail 

erZ   Equivalent reflectivity factor for rain 

esZ   Equivalent reflectivity factor for snow 
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Greek Symbols 

α   Coefficient of modified Kalman gain in EnSRF  

β   Time decorrelation coefficient for stochastic forcing 

ε   Smoothed random perturbation (Chapter 5) 

tε   Observation error vector at time t (Chapter 2) 

iε   Perturbed observation error vector (Chapter 2) 

oε   Observation error vector (Chapter 6) 

fε   Forecast error vector (Chapter 6) 

φ   Radar elevation angle 

gφ   Radar elevation at model grid point  

0φ   Radar elevation at beam center 

wφ   One degree radar beam width 

η   Radar observed quantity rV or Z 

eη   Elevation level value of radar observed quantity 

eη   Grid point value of radar observed quantity 

η∗   Error-containing radar observation (Chapter 4) 

ϕ   Azimuth angle of radar beam 

xλ   Slope parameter of drop size distribution 

θ   Potential temperature 

θ ′   Perturbation potential temperature 

ρ D   Schur product  
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ρ   Density of air  

xρ   Bulk particle density 

hρ   Density of hail/grauel 

iρ   Density of ice 

rρ   Density of rainwater 

sρ   Density of snow 

rVσ   Standard deviation of observation error for radial velocity 

Zσ   Standard deviation of observation error for reflectivity 

iPσ   Standard deviation of initial parameter perturbations 

iPσ   Minimum ensemble spread of parameter for ensemble inflation 

2
fσ   Variance of forecast error vector 

2ˆ fσ   Variance of forecast error vector estimated from ensemble 

2
oσ   Variance of observation error vector 

2
vσ   Variance of innovation vector 

τ   Time 

υ   Gaussian random error vector 

ξ   n-vector 

nℜ   Euclidean n-space 

℘  Phase space 
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Acronyms 

ARPS   Advanced Regional Prediction System 

CASA   Center for Adaptive Sensing of the Atmosphere 

CAPE   Convective available potential energy 

CDT   Central Daylight Time 

CIN   Convective inhibition 

CST   Central Standard Time 

DEnKF  Double ensemble Kalman filter 

DSD   Drop size distribution 

EAKF   Ensemble adjustment Kalman filter 

EKF   Extended Kalman filter 

EnKF   Ensemble Kalman filter 

EnSRF   Ensemble square root filter 

ETKF    Ensemble transform Kalman filter 

GCM   General Circulation Model 

NCAR   National Center for Atmospheric Research 

NWP   Numerical Weather Prediction 

OSSE   Observing System Simulation Experiment 

PBL   Planetary boundary layer 

pdf    probability density function 

PPI   Plan position indicator 

rms   Root-mean-square  

RMSD   Root-mean-square difference 
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UTC   Coordinated Universal Time 

VCP   Volume Coverage Pattern 

WSR-88D  Weather Surveillance Radar 88 Doppler 

3DVAR  Three-dimensional variational method  

4DVAR  Four-dimensional variational method 

 




