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ABSTRACT

A nonhydrostatic mesoscale numerical model is developed and s mulations of various
mesoscal e phenomena using this model are described.

The model is based on a quasi-nonhydrostatic equation system in the normalized
pressure —s coordinates. The system is free of vertical sound waves but contains Lamb
wave modes which are however significantly retarded in nonhydrostatic regime. An inte-
gration time step comparable to that of an anelastic model system can be used when grid
length is around a few kilometres. The current model includes also parameterized micro-
physical processes.

The solution procedure of the model is analogous to that of an anelastic system in
terrain-following height-coordinates. Anelliptic equation has to be solved for the geo-
potential height perturbation. Conventional finite differencing techniques are used except
in the advection of thermodynamical variables, where the flux-corrected transport scheme
(FCT) is employed. FCT eliminates the problem of 'negative water' generation and
significantly improves the model accuracy. Radiative conditions are applied at the lateral
boundaries, and at the upper boundary radiative condition is simulated by an absorbing
layer. Subgrid scale turbulence is parameterizd using the deformation and Richardson
number dependent formulation. Three water phases, i.e. water vapour, cloud water and
rain water, are present in the model with Kessler's microphysics parameterizations being
adopted.

A number of two dimensional mesoscale problems are studied using the model. They
include, dry and moist gravity waves and related phenomena in stratified air streams
flowing over a 2-D ridge, long-lived squall line systems and deep orographic convection.

Firstly, the model solutions of small amplitude mountain gravity waves in various
regimes are verified against analytical solutions and good agreement is found. The model
is then used to simulate the 1972 Boulder severe downslope windstorm and the results
lend further support to Smith's nonlinear flow transition mechanism of severe downslope
winds. Two events of mountain lee waves which occurred over the west of the British
Idesare aso studied. The lee wave patterns observed from satellite are well reproduced,
and furthermore, the effects of mountain height and scales, orography spectrum and
moisture condensation on the formation and evolution of trapped lee waves and
associated clouds are examined.

A seriesof simulations of long-lived squall lines is performed which demonstrate in
particular the role of the interaction between cold pool outflow and low-level ambient
inflow, and the mechanism by which such an interaction determines and maintains an
optimal state of squall line convection. It is shown that it isthe momentum rather than the



vorticity in the inflow that plays the key role. An optimal condition for the most intense,
long-lasting squall linesis proposed based on the propagation speed of the cold pool. The
sengitivities of convection to the use of FCT scheme, to spatial resolution and to diffusion
are also examined.

Deep orographic convection is aso studied using the s-coordinate model. The Big
Thompson storm that remained quasi-stationary on the upwind slope of the Front Range
of the Rocky Mountains and caused flash floods is smulated. An intense and quasi-
stationary storm is obtained when an isolated orography profile is used. A plateau type
mountain is found to produce fast-moving storm systems which is explained in terms of
the cold outflow strength. Experiments showing the effect of modifications to an ambient
sounding are also presented and finally the restrictions of two-dimensionality on the
storm simulations discussed.



Table of Contents

CHAPTER ONE

General Introduction and the Quasi-Non-Hydr ostatic

Equation SyStem . ... 1
1.1 General introducCtion ...t i 1
1.2 Quasi-non-hydrostatic (QNH) equation system...................... 4
1.2.1 BASIC QUL ONS. ...uuitie ettt et eaes 5
1.2.2 Quasi-non-hydrostatic (QNH) equationsin p and s-coordinates.......... 6
a) The equation system in pressure coordinates..............c.cccceuuennnnn.. 6
b) The quasi-non-hydrostatic equationsin s-coordinates.................. 11
1.2.3 Solution procedure of the QNH equation system.............cccceeeee.e. 12
1.3 Some properties of the quasi-non-hydrostatic system............... 14
IS 700 R [ 11 700 1 1o o P 14
1.3.2 ENEIgeLICS. . 14
1.3.3 Physical wave modesin the QNH system...........ccccoeeeiiiiiiinnnnne, 17
1.3.4 Other conservation properties of QNH system and discussions.......... 18

CHAPTER TWO

Model Equations and Numerical Formulation of
Dynamic Processes21

2.1 Model equations . ...t 21
2.2 Model grid and finitedifferencing .............c.cooiiiiiiiiiiiann.. 26
2.3 Time filtering and stability requirements................ccooevvinenns 31



2.4 Boundary conditions for the prognostic equations .................. 35

2.4.1 Lateral boundary conditionsS...........coceuiiiiiiiiiiiiieieeeea 35

a) The radiative boundary conditions of OrlansKi................eeeeenn.. 36

b) Implementation of radiative boundary conditionsin the moddl......... 37

2.4.2 Top and bottom boundary conditions.............ccccoveveuiieeiiineeennnn. 40

2.5 Solution of the elliptic equation for F'.......... ... .cooiiiitt. 42

2.5.1 Methods of solution for elipticequations..............ccccvviiiiiennnns 42

2.5.2 Boundary conditionsfor theequationfor F'...............ccooiiiiiiinnn. 46
2.5.3 Direct solution of Poisson equation using Cosine Fourier

T AN ST O M 50

CHAPTER THREE

Thermodynamics, Cloud Microphysics and

Subgrid Scale MiXIiNg. ... 54
3.1 Moist thermodynamics and Microphysics parameterizations........ 54
a) CoNServation EQUELIONS ......... ettt ettt 55
b) Microphysics parameterizations...........ccooveeiiiiniiiiiiieiee e 56
C) Condensation and evapOration ..............eeeiueeiuineiieeiie i eeeaeaeaaenes 58
d) Adjustment ProCedUre.........coouiieiiiiiii e 60

3.2 Flux-Corrected Transport advection scheme and its

application inthemodel .......... ... i 60
a) Flux-corrected transport algorithm............cooooiiiiiiii e, 62
b) Implementation of FCT inthemodel..............ccoooiiiiiiiiiiiis 64
3.3 Subgrid scale mixing and numerical diffusion....................... 66
3.3.1 Deformation and Richardson number dependent formulation............. 66
3.3.2 The model implementation.............ccooveiiiiiinii e 68
3.3.3 Analternative formulation of subgrid mixing ..............c.coovviiinnn. 72
3.3.4 Some computational considerations of diffusion/ damping............... 73



CHAPTER FOUR

Dry and Moist Flow over 2-D Orography:

Mountain gravity waves and severe downslope winds................... 76
4.1 Internal gravity waves in a stratified rotational flow................ 77
a) The governing equationsS............ocueuiiiiiiii e eae e 77
b) The dispersion relation...........c.ooviiiiiiiii e, 79
4.2 Mountain gravity WaVesS. .. ...ouuiii et eeiiiee e ennns 80
4.2.1 Linear solutions of mountain gravity Waves.............cccccceeeeeeeeennns 80
4.2.2 Momentum and energy flux in linear mountain waves..................... 82
4.2.3 Flow over abell shaped mountaininvariousregimes..................... 83

4.3 Model simulations of linear mountain waves and comparison

with analytical solutions. ... e 91
4.3.1 MOdel SEE UP...veiiiiiiiii e 91
4.3.2 Modd verification with linear mountain waves:

Control eXPerimeNntsS.......cc.cuiini i 92

4.3.3 Model verification with linear mountain waves: Sensitivity tests......... 99
a) Direct comparison between analytical and numerical solutions......... 99

b) Hydrostatic formulation of model..............c.c.cooiiiiiiii, 100
c) Mountain waves of finiteamplitudes..................cooooiiiiiinne. 104

4.4 Large amplitude mountain waves and sever e downslope winds....106

4.4.1 Introduction to severe downslopewinds............cccooevvveieiiininnnn.n. 106
4.4.2 Numerical simulations of the 11 January Boulder severe windstorm:

Time evolution and mechanism of amplification................cccccc..... 112

4.5 Trapped mountain waves: Dry and moist leewaves................. 132

4.5.1 Introduction to trapped lee Waves............cccoevveveiiieeiiieiiieeieee, 132

4.5.2 CaseA: Leewave experiments with the 20/4/84, Va entia upper

AT SOUNAING. .. e 137

a) Dry and moist lee waves forced by asingleridge.........c.............. 137

b) Interaction between waves produced by two separate ridges........... 142

4.5.3 Case B: Lee wave experiments with the 8/3/85 Valentia sounding.......146



@) CONIOl FTUNS .. .. e 146
b) Sensitivities to the mountain scale and height................ccccceeee. 148
c) Effects of moisture on thelee waves...........cccooevviiiiiiiiininennnnen. 150

CHAPTER FIVE

Strong, Long-lived Squall Lines:

Two Dimensional Numerical Experiments ..., 157
5. INtr OdUCTI 0N . 157
5.2 2-D moist thermal convection in a zero-wind environment ......... 162
a) Control eXPErTMENT ... 164
b) Sensitivity to spatial resolution...........cccccvviiiiiiiiiiiee e, 167
C) Sensitivity to advection SCheMES..........cc.vvieiiiiiiiiiee e, 169
d) Sengitivity to turbulent MiXing. ...........cooiiiiii e 171
€)  SUIMIMAIY ..ottt ettt ettt eens 172
5.3 Experimental design for squall line simulations..................... 172
5.4 Results of the squall line experiments..............coovviiiiiiiinn.ns 176
541 SEPLyPeINfIOW ...c.vneeieii e 176
a) Experiment SLELC.......ccooiiiiiiiii e 181
b) Experiment SLELIB........cc.oviiiiiiiie e 186

c) Comparison of experiments with step inflow:
What determines the tilt of updraught?................coooviiiiiiinn. 189
5.4.2 Shear type infloW..... ..o 194
5.4.3 Jettypeinflow .......cooeeinii 199
5.5. The optimal conditions for intense, long-lived squall lines........ 200
5.6. Sensitivity of squall line simulations to diffusion.................. 205
S SUMMAT Y . et e e e 210

CHAPTER SIX

Deep Orographic Convection:
Numerical Study on The Big Thompson Storm.............c.ocvivinnnns 212

Vi



0.1 I NErOdUCTI ON .o e e e e 212

6.2 Experimental design.......ooiiiiii i 217
6.3 Results of experiments. ... e 220
6.2.1 Experiments with standard sounding.............cccccovvviiiiiiiiiiiinnenns 221
6.2.2 Experiments with modified moisture sounding..............ccccoeeeeeenn. 231
6.2.3 Orographic convection over lower mountains............cccccceeeeeeeennnn. 237
6.4 Summary and diSCUSSIONS ........iuiuir i, 240

CHAPTER SEVEN

Conclusions and DiSCUSSIONS ... e 243

Appendix A A brief description of the leapfrog-trapezoidal

transport algorithm...........oo 249
R  Br BN C S 250
List Of Symbols . ... 255
Acknowledgement. . ... 258

vii



Chapter One

General Introduction and
the Quasi-Non-Hydrostatic Equation System

1.1 General introduction

The purpose of this research is to develop a mesoscale numerical model based on a
new equation system, i.e. the quasi-nonhydrostatic system in pressure-based sigma
coordinates (Miller and White, 1984), to explore and exploit the unique features of this
model and to study problems in relation to various types of orographic forcing and
nonhydrostatic convective processes.

Essentidly al limited area and global scale weather forecasting models use pressure
or normalized pressure s as the vertical coordinate. The use of a pressure-based
coordinate system circumvents the difficulties in determining air density which is not
routinely observed, and facilitates the use of observational data generally made on
pressure levels. On the other hand, ailmost al nonhydrostatic meteorological models are
based on height coordinates. The anelastic equation system derived by Ogura and Phillips
(1962) is the foundation of most of these models. More recently, the fully compressible
eguation set in height coordinates has also been used in formulating small-to-mesoscale
numerical models (e.g. Klemp and Wilhelmson, 1978).

However, Miller (1974) demonstrated that a quasi-nonhydrostatic equation system
could also be obtained in pressure coordinates, and a numerical model using this system
of equations was developed (Miller and Pearce, 1974) and was later on successfully used

in modeling studies of convective storms. This equation system was further extended to



s-coordinates by Miller and White (1984) so that irregular bottom terrain can be treated
similarly as in large scale s-coordinate system. In pressure based coordinates, the
thermodynamic calculations are more straightforward since pressure itself is a state
variable. Based on such a coordinate system, a nonhydrostatic mesoscale model will have
the same advantages as its hydrostatic counterpart, moreover, it is potentially

advantageous to nest with large scale numerical models.
The s-coordinate quasi-nonhydrostatic equation systemis introduced in the rest of

this chapter and the properties of the system are discussed in some detail.

Chapter two deals with the numerical solution of dynamical processes in the model.
The solution procedure of dynamical processes is analogous to that for the anelastic
system in terrain-following height coordinates but there are extra complications due to the
time dependence of the surface pressure. A complicated elliptic equation has to be solved
for the geopotentia height perturbation. The numerical aspects of finite differencing, time
integration, boundary conditions and the methods to solve the elliptic equation are
discussed and described in detail.

Chapter three is devoted to the thermodynamical, microphysical and diabatic
processes. An accurate, shape-preserving (positive definite for positive scalars) advection
scheme (FCT) is used to advect the thermal and water quantities and itsimplementationin
the model are described first. The current model includes three water phases, namely,
water vapour, cloud water and rain water. The treatment of microphysical processes
including evaporation and condensation of water vapour, auto-conversion and accretion
to rain water and the rain water evaporation and sedimentation are presented. Finally in
this chapter, the parameterization of sub-grid scale turbulence and formulations of
numerical diffusion are discussed.

Chapter four is a study of a variety of dynamical problems of flow over mountain
ridges. It starts with a review of theories of mountain gravity waves, followed by a
section of model experiments of basicaly linear mountain waves in various wave

regimes. The comparison of these results with analytical solutions serves as a verification



to the model dynamics. At the same time, the procedure of model initialization and the use
of the hydrostatic version of thismodel are discussed. The section that follows deals with
mountain gravity waves with large amplitudes. An introduction to severe downslope
winds associated with these large amplitude waves are given, and then simulations of the
11 January 1971 Boulder severe downslope wind storm using our model are reported. A
final state of flow that has a surface drag ten times that of the linear prediction and three
times that of the value obtained by previousinvestigators (e.g. Peltier and Clark, 1979) is
obtained. The flow field at this stage very closely resembles the observed field and the
nonlinear solution of Smith (1985). The mechanism of wave amplification is clearly
demonstrated. Section 4.5 describes a series of dry and moist numerical experiments of
mountain lee waves with two observed soundings. The observed lee wave clouds are
well reproduced, and further the effects of atmospheric structure and the condensation of
moisture on the lee wave formation and evolution are studies. Certain theoretical
explanations are provided.

In Chapter five are numerical studies on long-lived convective system - squall lines.
A review isfirst given on the current understandings on the development and evol ution of
sgquall lines, especially those in two dimensional framework. A set of experiments with
idealized wind profiles and afixed thermodynamic sounding are designed to examine the
role of the interaction between the rain-induced outflow from the system and the low-level
inflow and also the mechanism by which such interaction determines the fate of squall
lines. The role of vorticity versus momentum in the inflow is discussed. A criterion or
optimal condition for long-lived squall lines is suggested. In this chapter, we also
examine the sensitivities of convection to model resolution and diffusion formulations.

Deep orographic convection is studied in Chapter six. This is where the potential of
the current model is explored to the largest extent. The study attempts to simulate the Big
Thompson storm that occurred over the Big Thompson Canyon, Rocky Mountains and
caused flashfloods in the river drainage on 31 July to 1 August, 1976 (Caracena, et al.

1979). A pre-storm sounding is used as the model input and different types of mountain



profiles are used. Thequasi-stationary Big Thompson storm is successfully simulated in
certain experiments. The effects of the mountain shape and height and the modification to
the moisture profile are examined

Finally, Chapter seven gives a brief summary on the results of thiswork and draws a

number of interesting conclusions.

1.2 Quasi-non-hydrostatic (QNH) equation system

Pressure has been widely used as a vertical coordinate in modeling and theoretical
studies of large-scale hydrostatic flows ever since the pioneering work of Eliassen
(1949). The advantages of using pressure coordinates in meteorological applications are
generally recognized. The use of pressure as the vertical coordinate, together with the
hydrostatic relation, eliminates from the governing equations the density of the air, which
isaquantity that is not routinely observed in meteorology. Moreover its use simplifies the
mass continuity equation. The further transformation into s-coordinate that was first
introduced by Phillips (1957) circumvents the difficulties with the lower boundary, which
is often not a surface of constant pressure. However pressure ( or normalized pressure s
) coordinates were not used for non-hydrostatic flows until Miller (1974) and Miller and
Pearce (1974), who derived and used for cumulonimbus studies a quasi-non-hydrostatic
set of equationsin pressure coordinates. This set of equations has since been extensively
used in numerical simulations of cumulonimbus and related studies (e.g. Miller and
Pearce (1974), Moncrieff and Miller (1976), and Thorpe, et. al. (1982)). Miller and
White (1984) presented a more vigorous derivation of the equation set of Miller (1974) by
performing systematic scaling analysis and power series expansion. A sigma-coordinate
(defined as pressure divided by the surface pressure) equation set was obtained by direct
transformation from the pressure coordinate counterpart. The energy conservation of the
approximated equation systems and the existence of physical wave modes in them are

discussed in their paper.



1.2.1 Basic equations

The primitive equation set governing the motion of air as a perfect gas consists of the
momentum, mass continuity, and thermodynamic equations. For simplicity the friction
termsand diabatic terms are neglected for the moment, but will be included later. These

equations in geometric height coordinates on an f-plane are:

du __19p
F VT (1.2.1)
dv _1p
g u=-+ Ty (1.2.2)
dw _ 11p g
oYz (1.2.3)
fu v w_ d
W+ﬂ_y = Ht(Inr) (1.2.4)
dg _
=0 (1.2.5)
k
Py T
=T\ — =— 1.2.6
or ()t w2s

where the non-dimensional pressure
D \K
Po(=—
(2)
and the substantial derivative is defined as

d_1, T, 71, 1

a:ﬁ UW-I-Vﬂ_y-I-Wﬂ—Z

All the partia differentiationswith respect tot, x and y are carried out at constant height z.

Following meteorological conventions, u = (u, v, w) is the velocity vector in
Cartesian coordinates (X, y, z) and equations (1.2.3), (1.2.4) and (1.2.5) are the
momentum equations for the three components. f=2Wsinf (f isthe earth latitude) is the

Coriolis parameter. Eq.(1.2.4) is the mass conservation equation and (1.2.5) the



thermodynamic equation. q is potential temperature which is defined by (1.2.6) where
k® R/Cp with R being the gas constant for dry air, Cp the specific heat of dry air at
constant pressure, and pp=1000 HPa. The pressure p, density r and temperature T
satisfy theideal gaslaw p=r RT.

For mesoscale flows, the Rossby number is of order unity so that the Coriolis terms
are important. However, for simplicity the Coriolis effects are not included in the rest of
this chapter when we derive briefly the Quasi-non-hydrostatic equation system. This
effect can readily be included in the equation system obtained, and it is included in the
actual numerical model aswill be seen in chapter three. And for the same reason, we will
be discussing the equation system in a two dimensional frame work (independent of
coordinate y), but the extension into three dimensions is straightforward. The simplified

equation set isthen

du_ 19p

T T X (1.2.7)

w_ 1 E g (1.2.8)

T o 2.
(SetA) e

‘Hu ‘ﬂw

W - ( Inr ) (1.2.9)

dg _

e 0 (1.2.10)

The numerical model is formulated in two dimensions as a first attempt, but it is
formulated such that the extension into a three dimensional form is straightforward.

Issues related to the three dimensional formulation of the model are addressed where

appropriate.

1.2.2 Quasi-non-hydrostatic (QNH) equationsin p and s-coordinates

a) The equation system in pressure coordinates



Following the notation of Miller and White (1984), we define the quantity
ldw -2 d g/ dF
e’ g 9 Gt ( ot )
which isthe ratio of the vertical acceleration to gravitational force where F = gh, being
the geopotential height. Equations (1.2.7)-(1.2.10) can then be transformed to pressure

coordinates (X, p, t) as

du _ 1E

G- (1+e) 0 (1.2.11)
RT 1E

—=-(1+e) 1.2.12
p fp (1212
fu w _d

W+ﬂ_p_at[ln(1+e)] (1.2.13)
dg _

e 0 (1.2.14)

Here,
w= @ , istheveocity in p-coordinates, and

t

o T 1 1
a ﬁ"‘UW'FWﬂ—p

isthe substantial derivativein pressure coordinates. All the partial differentiations with
respect to x and t are performed at constant p.

Equation (1.2.12) establishes an un-approximated relation between geometric height
and pressure. This relation is used for the coordinate transformation. This relation also
implies that the non-hydrostatic system isfeasible in p-coordinates asfar as| e| < 1 holds
so that pressure is always a monotonic function of height. The non-hydrostatic
contribution comes in as merely a deviation from this function without violating the
monotonicity. If e<<1, and all terms multiplied by e are neglected then the above equation

set approximates to the usual hydrostatic pressure coordinate one.

The vertical coordinate s isdefined here as:



<= pP-P _PB
pSUI’f - pt Px

where pgrf 1S the surface pressure, pt is the pressure at the top boundary which is a
specified constant and p+ the pressure difference between the surface and top boundary.

The equation set in s-coordinates (X, s, t) can be obtained by direct transformation form

equations (1.2.7)-(1.2.10) or from (1.2.11)-(1.2.14),

% =-(1+ e)‘l%—i - Rp;l' 1111% (1.2.15)
? :-(1+e)1111—: (1.2.16)
%+¥_§:-%(Inp*)+%[ln(l+e)] (1.2.17)
%%:o (1.2.18)

Here s = ds/dt isthe vertical velocity in s-coordinates. The substantial derivative is

defined as
1 1 1

d :
—9% _+y—+S —

dt qt X s

and all the partial differentiations with respect to x and t are carried out at constant s.

The equation sets (1.2.11)-(1.2.14) and (1.2.15)-(1.2.18) are the exact
transformations of the height coordinate equation set (1.2.7)-(1.2.10). They support all
the physical wave modes including acoustic waves and are too cumbersome so that
approximations must be made to them before they can be put into practical use.

Similar to the way in which the anelastic equation set was obtained by Ogura and
Phillips (1962), Miller (1974) expanded equations (1.2.11)-(1.2.14) around areference

state of no motion, namely

F=F(p)+F' (X pt)
(1.2.19)



q=0a(p)+q (x,pt)

Here the subscript 's denotes the reference state while primed variables represent
deviations from the reference state. The reference state should be in hydrostatic balance
therefore

k
o, R (o)
dp p P (1.2.20)

Substituting the above into the equations (1.2.11) - (1.2.14) and then neglecting various

small terms asimplified equation set is obtained in which the vertical acceleration term
1 dw
g dt

IS approximated by

where r g is the reference state density. Miller and White (1984) formally justified these
approximations by performing a systematic scaling and power series expansion in a small

parameter they identified as

(1.2.21)

the fractional change of the potential temperature of reference state over a typical
convective scale depth. For our applications the assumption that a << 1 is amost always

valid. The zero order balance of the equations expanded in small parameter a turns out to

be exactly equivalent to that obtained by Miller (1974). These equations are:

du _ F'
T (1.2.22)
dw__ TF' . q

= rs_ + g —_—
. " A (1.2.23)
E +ﬂ_VV =
T Tp (1.2.24)



df 9 -
it = ES N2 w (1.2.25)
§ RT
o wg—;=-‘r’—z (1.2.26)
where
_gp
O s = RT (1.2.27)
S
and
2_ 915 Y
s q_ﬂ_p (1.2.28)

isthe static stability of the reference state.

In the above equations potential temperature is used as a dependent variable instead
of temperature asin the original equations. Notice here that the vertical acceleration term
is retained only in the vertical momentum equation while its contribution is neglected
elsewhere. This is analogous to the quasi-geostrophic theory in which the ageostrophic
contribution only comesin through divergence term while geostrophy is assumed for all
the other terms.

To integrate forward in time the equation system (1.2.22)-(1.2.25), a diagnostic
equation for the geopotential perturbationF' is required. It can be readily obtained by
applying a divergence operator on the momentum equations and making use of the

continuity equation (1.2.24), that is, performing
1 1
— {1222}y +—{r_ (1223
(1222} + o {1, (12.23)}
which resultsin

T2 _ g, 0w
+ (i) =23, (uw)- ﬂp[rsgq_s_r_sd_p] (1.2.29)

T7F
x2

inwhich J xp, is the Jacobian with respect to x and p,

-10-
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Equation (1.2.29) is eliptic and can be solved given appropriate boundary conditions.

b) The quasi-non-hydrostatic equations in s-coordinates

The equivaent quasi-non-hydrostatic equation set in s-coordinates can be obtained by

directly transforming from equationsin pressure coordinates. The resulting equations are:

du_ F .S TR T
X R X Ts (1.2.30)
w_g pIF, a

dt  RT_p. qs q, (1.2.31)
drp. fu s _

g ' [ + s (1.2.32)
dg’ _ qs 2 -
T35 NS w (1.2.33)
"‘O . dp* /
we - (p*S+sF) r (1.2.34)

inwhich the static stability parameter
qp. s

(1.2.35)

and rg is as defined before. All the partial differentiations are carried out at constant s
here. The quantity W , the same as that in equation (1.2.26), can be regarded as the
approximated vertical velocity. As will be shown in next section W contributes to the
kinetic energy in aconsistent manner.

It should be pointed out that the reference state is no longer only a function of the

vertica coordinate s, but also dependent on x. For the reference state to be in hydrostatic

bal ance the following relations must be satisfied:

-11 -
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Tk
s

S

+

s)pz_

VX

(

RT_p.

p

1F

2),+

X

S

s Tp. Tk,

p, T 'ﬂs

(1.2.37)

(1.2.36)

HereF=F¢(p)=F4X, s, ).
These relations are used later to calculate Fs and F' at s=1. i.e. a p=psuri(X, 1),
which are required as the lower boundary conditions for the diagnostic equation for F'.
The diagnostic equation for F' in s-coordinates is obtained by transforming from the

p-coordinate equation (1.2.29),

PF 25 TP PPF 1(211!3) (1ﬂp*)l(32£
™2 P X xIs TS R IxX 7 qs fis
STRIF L WAGw 1 10 u
B x2 9s X 9 p. WX 95

T ( q ~21S

— (so—- psw’=)

0 q, 0 (1.2.38)

o W _Ts

Here RTsp* P, ! (1239)

and it has the dimension of H-1, i.e. that of the inverse scale height. It can be shown that
this equation is elliptic and in any case an equation should not change its property after

transformation.

1.2.3 Solution procedure of the QNH equation system

In the set of equations (1.2.30)-(1.2.34), there are six variables: u, W, s, q, F
and p., whereas we have only five equations as the diagnostic equation is merely a

derived equation from equations (1.2.15), (1.2.16) and the continuity equation (1.2.32).

-12 -



However it should noted that variable p, is special becauseit isonly a boundary variable.

One more relation can be obtained by extracting information from the lower boundary
conditions. We have
s=0as=0ands =1,

manipulating the continuity equation and integrating it from the surface to the top

boundary resultsin

‘HIO*_ iﬂp*u
@ Oo_ﬂx ds (1.2.40)

which states that the surface pressure variation is a result of mass convergence/
divergence in the column directly above the surface. Without extra source and sink terms

Egs. (1.2.30)-(1.2.34) and (1.2.40) now constitute a closed equation set.

If at atimetp, u, w, F', q', and p, are given, then the solution procedure would be:

1) integrate prognostic equations (1.2.30), (1.2.31), (1.2.33), (1.2.40) for
u, w, q' and px at time to+Dt,

2) calculate sat time tg+Dt from diagnostic relation (1.2.34) in
which term fp«/1lt is substituted for using (1.2.40),

3) solve elliptic equation (1.2.38) for F' with the right hand side of the
eliptic equation being known at t=tg+Dt. Up to now the fields at
the new time are all known, the same integration cycle can then be

repeated.

Note that in the above procedure, the continuity equation is not explicitly solved but it
isimplicitly involved in the eliptic equation. The solution of the later should ensure mass
continuity. In the numerical model a method after Harlow and Welch (1965) is adopted to
improve the solution in this aspect.

A different procedure of solution can be taken which does not solve the vertical

momentum equation explicitly but integrates the continuity equation (1.2.32) instead
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for s.Vertical velocity W is then calculated from (1.2.34). This approach is closer to
the way the hydrostatic s or p-coordinate equations are solved, and was used by Miller
and Pearce (1974) as afirst version of their 3-D pressure coordinate cloud model. The
model described in this thesis follows the first procedure of solution as we feel that the
vertical and horizontal components of momentum are better to be treated in a similar way,
especialy for small-to-mesoscale flows in which both components are comparable in

magnitude.
The dlliptic equation in s-coordinates is complicated by the presence of cross-

differentiation terms on the left hand side. It is therefore no longer a standard Poisson
equation and can not be solved by direct methods. However, as will be show later, this
equation can still be solved efficiently through combined use of direct methods and

iterative techniques.

1.3 Some properties of the quasi-non-hydr ostatic system

1.3.1 Introduction

We presented in the previous section the approximated gquasi-non-hydrostatic
equation sets in p and s coordinates. It is worthwhile to look at their conservation
propertiesin order to be certain of the dynamic consistency of these equation sets. In the
subsections that are to follow, the conservation of the total energy is examined. Further
moreit is equally important to understand the physical wave modes that are supported by
the system. In another subsection the results of the analysis of Miller and White (1984)

on these wave modes are summarized and some discussion are included.

1.3.2 Energetics

In this section we examine the energy conservation of the equation system in s-

coordinates. The analysis of the conservation in p-coordinates is similar and is not
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presented.
We define the quantity % w 2 asthe contribution to the kinetic energy by the vertical

component of motion. Performing operation

p.U. eq.(1.47) +p,w . eq.(1.48)

and incorporating eg.(1.2.32) results in the kinetic energy equation

P = dt )]
__[ f(p.uF) Mp.SF) 1 q(F's) TP eo gl
7s )5t 9 @l

An equation for total perturbation potentia energy (the sum of the internal energy and
potential energy) can be derived from the thermodynamic equation, noting that from

definitionsq'=T'/P and q=T4/P,

d g 2 p* R-I-I
p, =\ C.T )=p.,CP N-w+ w
dt( P ) Porgs ® p

- 9N v

The two terms on the right hand side represent respectively the extraction of total potential
energy from the reference state and the conversion between the total potential energy and
kinetic energy.

Adding (1.3.1) and (1.3.2) together yields

d

o LA B

*F' *.F' ! * -
_[ﬂ(pu )+ﬂ(ps )]_ﬂsF fip. ) g .2
s 1t S

After a series of manipulations an equation for the total energy is derived from (1.3.3) as:
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d

dt —(u *w )+CpT]:

P =

] [ M(p. uF ) . T(p.sF )] sk Tn.

s PR (1.3.4)

Equation (1.3.4) isthe same asthat in Miller and White (1984) and is similar to the total
energy equation implied by the usual hydrostatic s-coordinate equations except for the

extra contribution of % w 2 tothe kinetic energy.

Written in aflux form equation (1.3.4) becomes

T(p.E) __[ Tp.u(E+F) | ﬂp*sl(E+F)] _1sF fp.

where the total energy

1 2 =2
o
E(u +w )+CpT,

Upon integrating the total energy equation (1.3.5) over the whole domain of a model

atmosphere we obtain an energy budget equation

[O)u(E+F)ds] d |S_1ﬂ;t*]

(1.3.6)

1 1%

Here E:d\ﬁ(p*E)dxdyds
0 0xy

isthe total energy of the air inside the integrated domain. In the y direction the integration
range is chosen as unity since the flow isindependent of y.

The above energy conservation suggests that the derived equation system is
dynamically consistent. At the same time the energy budget calculation is a good

diagnostic tool in checking the fidelity of the computer program.
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1.3.3 Physical wave modesin the QNH system

The physical wave modes that are supported by an equation system are always of
major concern to numerical modelers because meteorologically insignificant fast waves
like acoustic waves impose atoo strong limitation on the integration time steps that can be
used without inducing numerical instability. However physically important waves should
be treated properly by the model.Miller and White (1984) performed a detailed analysis of
the quasi-non-hydrostatic (QNH) equations linearized around an isothermal reference
state. It isfound that the system supports no vertically propagating sound waves, either in
pressure or in s-coordinates.Gravity waves are (and should be) retained with no change
of vertical structures and only a dlight changes of phase speeds (the hydrostatic set
produces much larger changes of gravity wave phase speeds). Lamb waves, i.e. the
horizontally propagating sound waves, are present in the system, but can be eliminated in
pressure coordinates by imposing the lower boundary condition w=0 at p=pg. This is not
difficult to understand because the Lamb waves have maximum amplitudes at the lower
boundary but decay exponentially away from the boundary. The above-mentioned
boundary condition suppresses any disturbances that could have existed. Lamb waves
exist aso in the s-coordinate system but they can not be removed in the same way. The
lower boundary condition isin this case applied at s=1, i.e. at p=psyrf hence the condition
is non-linear and the surface pressure pgyf itself contains the ingredient of Lamb wave
oscillations. It isimportant to note that Lamb waves exist in the hydrostatic s-coordinate
system as well, but their presence is sometimes overlooked as the limitation on the
integration time steps s attributed to the fast external gravity waves. Implicit or semi-
implicit techniques are usually employed to treat the fast wavesin large scale models (e.g.
Simmons and Hoskins (1975)) so that reasonably large time steps are permitted. The
same techniques are difficult to implement with our equation system, however the
problem is not as serious asit appearsin the first instance because the Lamb wave modes

found in the QNH system are significantly retarded! The phase speed of the Lamb waves
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isgiven by Miller and White (1984) as.

C =% JRT,(1-G(b) (1.3.7)

where G(b) is the fractional reduction on phase speed, with b=2p/kHg, k being the
horizontal wave length and g=1.4. It is found that the retardation of the Lamb waves is
considerable. It is more than 50% for awave of horizontal wave length 2Hg and 10% for

awave with L=16Hg. The numerical experimentsin alater chapter confirm these resullts.

1.3.4 Other conservation properties of QNH system and discussions

Johnson (1978) studied the vorticity properties of the quasi-non-hydrostatic
pressure-coordinate system. He found that there exists an analogue of Ertel's potential
vorticity theorem. White (personal communication) extended the origina Miller's
equation system to include the horizontal mesoscale variations of the reference state and
demonstrated the existence of the equivalent conservation theorem also in the extended
system as long as the vorticity is suitably defined. These conservation properties are
equally true of the s-coordinate system asit is directly transformed from the p-coordinate
equations. The existence of the equivalent Ertel's potential vorticity theorem again lends
support to the dynamic consistency of the QNH system and it aso consolidates the
theoretical background for further devel opment of numerical models based on this system

of equations.

The QNH equation set (1.2.22)-(1.2.25) is the pressure coordinate counterpart of the
anelastic equation set in height coordinates obtained by Ogura and Phillips (1962). They
are both valid for describing small scale deep convection, however they are not exact
transformations of each other. Their similarities and differences can be better understood
by examining the approximations made to obtain them.

Equation (1.2.12) can be rewritten as:
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rdz=— 1 (-dp)
g(1l+e)

where ( dz ) and ( -dp ) are the vertical displacement in height and pressure coordinates
respectively.
The quantity 1/g(1+€) can be regarded as an analogue of density r in pressure

coordinates since

1  rdzdxdy _ mass

g(1l+e) -dpdxdy ~ dlement volume

From the continuity eguation in height coordinates or from the first principle of mass

continuity, the continuity equation in p-coordinates is obtained as.

d Tw
-Etln(1+e) (_x+‘|1_p)
Since In(1+e)=e+O(e?), then
u Tw
IS A R

The term de/dt, i.e. the change in the equivalent density due to vertical acceleration, is

neglected in the QNH system, and it is the neglect of this term that rules out the possible
acoustic oscillationsin the vertical.
Recadlling the derivation of the anelastic equations, the continuity equation before any

approximation is

' ‘I]Inr
3t|(1+r—s)+w E+ﬂ »0

fz  x Ty

wherer &=r g(2) isthe density profile of the reference state whiler * is the deviation from

it. A similar approximation yields

dthr
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Scale analysis shows that the density perturbation can be neglected and it is this that
renders the approximated set anelastic, i.e. sound proof. The contribution of perturbation
density is neglected too in other equations except in the vertical momentum equation.

The above analysis illustrates that the approximations made to obtain the QNH
system and the anelastic system are analogous, but they are not identical! The QNH
system il supports Lamb waves because the horizontal motion of air (oscillation) islittle

affected by the approximations made in obtaining the system.
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Chapter Two

Model Equations and

Numerical Formulation of Dynamic Processes

2.1 Model equations

In chapter one a quasi-non-hydrostatic equation System in pressure or sigma
coordinates was established after Miller and White (1984). Equations (1.2.30), (1.2.31),
(1.2.33), (1.2.34), (1.2.38), and (1.2.40) form a closed set for adiabatic and frictionless
air motion. This equation set lays the foundation of our s-coordinate numerical model and
its general solution procedure was discussed in section 1.2.3. In this section we present a
more compl ete equation set which includes the moist diabatic, frictional processes and the
effect of earth rotation, and it is expressed in a form close to that of the numerical

formulation of model. These equations are listed as follows:

To.u qF" . qF:
T_-UFLUX-p* S ” +p, fv+p,D, (2.1.1)
fp.v

g = VFLUX - p.fu+p,D, (2.1.2)
Tp,w ' ' '

=-WEFLUX + p*SE +p,0 [ a. 0.61q,-q.- qr] +p.D,,
it Ts dg
(2.1.3)

p.g’

= -TFLUX - p.a N> w /g +p, Q/(cpP) +p.M +p.D (2.14)
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p. iﬂp*u

=- d

o O()ﬂ_x s (2.1.5)

p.q, _ VFLUX +p, (M_ +D

T =-Q p. (M +D, ) (21.6)

P9 _ CFLUX +p. (M_+D 2

T =-Q P, ( o oc) (2.1.7)

e, _ RFLUX +p. (M_ +D

=" Q p. (M +D,) (2.1.8)
‘HIO* o,

§=-sw-S[- O— SHUS ] (2.1.9)

F o 2s o IR F Tinp, \2 TF'
ﬂ2 S 1 ﬂ(z‘ﬂ)( )ﬂ(z )

o P X s

p* ﬂXZ ﬂs

(2.1.10)

Four additional equations are included in the above equation set. They are the
equation for y-velocity v, and the equations for the conservation of water vapour, cloud
water and rain water. Ice phase is not included in our model at the moment. Variables gy,
gc and g, are the specific humidity of water vapour, cloud water and rain water
respectively. The momentum equations (2.1.1) to (2.1.3), the potential temperature
equation (2.1.4) and those for the conservation of water quantities (2.1.6)-(2.1.8) are

written in the flux form. Flux terms can be formally expressed as:

To.uy 9fp.Sy
+

FFLUX =
U Ix Qs

where y denotes any of the quantitiesu, v, w, @', Qy, Jc or qr. Terms Dy in the
equations represent subgrid-scale mixing processes and/or numerical diffusion. Hereafter
these terms are usually referred to in general as the diffusion terms, the formulation of

which will be given in next chapter. Terms My in the equations are the contributions of
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cloud microphysics and their formulation will aso be given later.

The equation of state of moist air is

p=r RT (1+0.61qy)
=rRTy (2.1.11)
where T,=T(1+0.61qy) isthevirtua temperatureand r the density of the moist air, R is
the gas constant for dry air. The potential temperature defined in terms of temperaturewill

be referred to as the virtual potentia temperature, which is

Qv = T\//P .
We split the specific humidity of water vapour aso into two parts, one for the

reference state and the other for the deviation fromiit.

Qv =0Ovs*+ Qv
and we require
p=rsRTs(1+0.61qys)
=rsRTys . (2.1.12)

The hydrostatic relation that should be satisfied by the reference state is then

ﬂl:s + RTvs P. _

=0
s ) ) (2.1.13)
It can then be shown that
&»q—+0.61q;/ ,
qVS qS

and including the loading of liquid water (cloud water and rain water), the net buoyancy
appears as the third term on the right hand side of the vertical momentum equation

(2.1.3). In equation (2.1.4) the term Q represents the possible heat source or sink.

Apart from the prognostic equations for u, w, q', p«, Qv, gc, and g, there are two

diagnostic equationsfor s and F'. After the prognostic variables are predicted for the
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new time, s can beeasily calculated from relation (2.1.9) and F' is solved for from the
elliptic equation (2.1.10). This €lliptic equation is obtained by directly applying a

divergence operator on the momentum equations, i.e. by performing
l l
—[(211)]+—[-S(21.3
o [ (21D] T [-S(213)]

After alengthy derivation we obtain equation (2.1.10), the right hand side of which is the

forcing function Fg in the following,

9 1 Tp. K
P. F= - g5 (UFLUX-p.D) + o o (157 o) (UFLUX - p.D, )
ﬂ 1 ﬂp* 1-[pv\'
+ _S[S(WFLUX -p.D)] + (U+S— (= o K )

\l

ﬂS[QS(—+061q -q.-q,)]

S

ﬂp*s +s ﬂu ﬂp* dp* ] ﬂp*
1s s Tx W T

+p[(ps+s

q Tp. ‘Hp*u+ﬂp*8'
W™ e ) (2.1.14)

No further effort is made to simplify the above formulation, especially for the flux
terms, as was done in equation (1.2.38). The current form is preferable because the
advection or transport terms in the discretized form are better treated in the same way as
they are in the momentum equations. The last term of Fg vanishes in a strict sense,
however it is retained in the model formulation, because the continuity equation is not
explicitly solved. The procedure after Harlow and Welch (1965) helps to improve the

mass continuity in the model. If we define,

fp. Tp.u Tp.s
+ +

db°

i.e. theresidual error in the mass continuity, and assume the current timeist (the time at
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which Fs iscalculated), then

[%dD] =L@, -w@d) _ o).

Hoping that dD vanishes at the next time step, we demand that ( dD )+pt = 0, so that
[idD] =-(dD) _ /2Dy
qt t t- Dt '

With term {p+/1it being substituted for using equation (2.1.8), the right hand side of the
elliptic equation, Fg, can be calculated at the new time step. Given appropriate boundary

conditions, it can then be solved. The details of the solution will be found in section 2.5 .

Suppose the terms representing the microphysics and subgrid scale processes are
known or have functional relations with the other variables (asthey are in our case), then
eguations (2.1.1) to (2.1.10) again form a closed set for the flow of moist air and it can
be solved using a similar procedure to that discussed in section 1.2.3. The procedure is

presented here in steps of the time integration:

1) Initialize the model variables, for both the reference state and the
perturbations. In the case when the initial fields are merely a function
of p, iterations have to be performed in order to satisfy the given
requirements (e.g. the hydrostatic balance).

2) Integrate equations (2.1.1), (2.1.2), (2.1.3) and (2.1.5) forward by one
time step for p,™1, (p,u)"*1, (p,v)"*1, (p,w)"*1 hence also un+l,
vi*tland wn+1 where the superscripts denote the time levels.

3) As will be shown in the next chapter, the microphysics terms in
equations (2.1.4) and (2.1.6)-(2.1.8) are implicitly dependent on the
predicted quantities at the new time, therefore two steps have to be
taken in the time integration of these equations, that is to:

a) integrate equations (2.1.4) and (2.1.6) - (2.1.8) without the micro-

physics terms for a temporary value of each of the predicted
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variables,

b) adjust these temporary values according to the thermodynamic and
microphysical constraints, to get the final updated values q'"+1,
v, gL, gL This aspect of model will be described in next
chapter.

4) Calculate $n*1lthe s-coordinate vertical velocity, from equation
(2.1.9).

5) Compute the right hand side of equation (2.1.10) Fg from the
predicted values at time level n+1, and solve the elliptic equation for
Fr+l

6) Update the variables. When the reference state variables are
dependent on the surface pressure, they should also be updated in
principle.This effect is however minimal.

7) Finally go back to step 2), repeat cycle 2)-6).

In the rest of this chapter we will be concentrating on the numerical formulation and
solution of the dynamic (dry) processes while leaving the microphysics and other

processes to the next chapter.

2.2 Model grid and finite differencing

The model to be described is two-dimensional, hence we need only consider the grid
in the vertical plane. Arakawa and Lamb (1977) studied a number of grids and showed
the grid C, which is later on widely referred to as Arakawa C-grid, gave the best
performance in terms of the internal gravity wave representation and some computational
properties. We adapt this C-grid for use in the vertical plane. Fig. 2.1 illustrates a typical

grid box and the staggering of grid variables.
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Fig. 2.1 lllustration of atypical grid box and the staggering of grid variables. The
state variables ¢, F', g, etc. locate at the centre of the box, and normal velocity
components at the respective sides. The velocity in the third directiony is located at
the same point as the temperature in two dimensional formulation.

The state variables q', F' and variables of the water quantities are defined at the
centre of the box, whereas the normal velocity components are defined on the corres-
ponding sides of the box, i.e. u to the right and the I€eft of the state variablesand w, s
on the upper and lower sides of the box.The velocity in y-direction v coincides with g'.
Herei and j areindices of the grid vertices and Dx, Ds are constant grid intervalsin x and

s directions respectively. The coordinates at the centre point of the box are

xi = (i-12)Dx, fori =0, NX +1
(2.2.1)

Sj=(j-Y2)Ds, forj=0,NS+1
where Dx=XL/NX, Ds=1/NS, and XL is the horizontal length of the integration
(physical) domain. uisdefined at points (i + /2, j) andw, s at points(i, j = 1/2), i.e.
ucu(i£12,j)
w e w(i,j+12), (2.2.2)

$9§(i,j+12) .

and
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y =y(i,j)
where y represents any of the state variablesq', F', gy, gc, Or and gs, Fs and the y-

velocity v. For the surface pressure,

Pyt Ps © Pgys s P (1) (2.2.3)

The second order centred difference schemeisused for all spatial finite differencing,
except when the flux-corrected transport scheme is used, the latter is a weighted average
of alower order and a higher order scheme, in our case the first order upstream forward
scheme and the second order |eapfrog-centred difference scheme. In order to be able to
apply the centred differencing also at the boundary, extra assumptions are made to
extrapolate the variables to beyond the actual boundary.

Becauseimplicit or semi-implicit timeintegration schemes are not practical for our
equation system, we use the explicit leap-frog time differencing with respect to all but the
diffusion terms, for which the explicit forward scheme is used for the diffusion terms
because the leapfrog-forward scheme is absolutely unstable for parabolic equations.

We employ the Shuman type notation:

da=(a(stDs2)-a(sDs2))/Ds

] (2.2.4)
a®=(a(stDs’2)+a(sDs2))/2,

from which we deduce that

da’=(a(stDs)-a(sDs))/(2Ds)

where scould beany of x,s ort.

Thefinite differencing of equations becomes straightforward based on the grid, and
variables that are not available at required points due to grid staggering are linearly
interpolated from their adjacent grid points. Using Shuman type notations the equationsin

finite difference gpproximations are:
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t — XS

=X n —X —X,_n1 =X
d (p. u) =-UFLUX" -p, dXF'+stp*dSF' +p, (D, +fv)
(2.2.5)

t_ n =X n-1
d(p.v ) =-VFLUX"-pfu +p, D, (2.2.6)

d{p W) =-WFLUX" +p, §° dF’

S

+p.g[ (L) +0617°-5°-5°] +p.0}" (2.2.7)

9%
t .
d(p. a') =-TFLUX" - p.aNw/g+p. M) +p. D) +p.Q/(C,P)
(2.2.8)
—t b
dp. =-a d(p. u)Ds (2.2.9)

=1

d (p. g ) =- QFLUX" +p, ( Mg + Dg‘l) (2.2.10),(2.2.11),(2.2.12)

gIS

. S — XS —X

S—-SW-E[ u dp-a dx(p*U)DS] (2.2.13)
j=1

where the water substance conservation equations are expressed in a single equation and
g could be any of gy, qc, Or g In the above equations the 'tilde’ over the approximated
vertical velocity W is omitted and will continue to be omitted for convenience of
notation, since from now on we will be mostly looking at vertical velocity of the QNH
system.

The right hand side of the elliptic equation Fg given by equation (2.1.14) can be
differenced in a similarly straightforward fashion, and will therefore not be given here.
One only hasto note that the flux or advection term UFLUX or WFLUX is treated as a
whole when being differenced and they are defined at the same point as u or w. The

formulations of the advection terms for the momentum in flux form are
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X —X

UFLUX"=d ( b, u u)+d(sp, )

VFLUX"=d (P, uV )+ d (p. V") (2.2.14)

-S

n —X =5 =X . —S
WFLUX" =d (p, u w )+ds(p*s W)
and the potential temperature advectionis

X

TFLUX"=d (5. uq' )+d (p.sq" ). (22.15)
A general form for the advection of water substancesis
QFLUX"=d (P uT ) +d (p. S ) (2:2.16)

which represents terms QVFLUXN, QCFLUXM or QRFLUX" for water vapour, cloud
water and rainwater respectively. In the above the thermodynamic and water quantity
conservation equations are all differenced using the leapfrog-centred scheme. When the
flux-corrected transport scheme is used to advect these scalar quantities, TFLUX and
QFLUX would then be the corrected fluxes and Egs. (2.2.8) and (2.2.10)-(2.2.12)
would be replaced by the corresponding equations to be given in next chapter.

Lilly (1964) showed that the advection terms formulated as above conserve the
quadratic quantities as well as the quantities being advected. Therefore the kinetic energy
and the potential temperature variance will be conserved in the advective process. This
conservation property rules out any spurious generation of energy and momentum and
considerably suppresses the non-linear instability due to wave spectrum aliasing.
(Haltiner and Williams, 1980). Numerical tests show that the model thus formulated is
free of non-linear instability even without any numerical diffusion. The numerical
formulations of the microphysics and diffusion termsin the above equations will be given

in the next chapter.
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2.3 Timefiltering and stability requirements

Itis commonly known that the solution of an advection equation obtained using the
leapfrog finite differencing scheme contains two modes, one is the physical mode and the
other isreferred to as the computational mode. The latter arises from using a second order
difference equation to approximate afirst order equation. The computational mode shows
itself as atwo time step oscillation and travels in the opposite direction to the physical
mode (Haltiner and Williams, 1980). Successive use of the leapfrog scheme will therefore
cause time splitting i.e. the growing of two time step wavesin the solution. This difficulty
can be tackled by periodic use of another scheme, e.g. either the Euler backward or the
Matsuno scheme, between a certain number of leapfrog steps. In our model it is required
that the time differencing of the momentum equations and that employed in deriving the
finite difference analogue of the diagnostic equations for F' should be consistent.
Therefore we avoid using the above-mentioned technique, whereas we employ the Robert
timefilter (Robert 1966), which was discussed in detail by Asselin (1972), with a small
parameter at every time step of integration in order to achieve a smooth filtering effect.

Assumey ™1 and y " represent functiony at time levels n-1 and n, where y "1 has
been averaged, i.e. has been applied with the time filter. Then from the prediction
eguation, y at next timelevel is obtained,

n+1

_"n1 Ty n
y "=y +2Dt(W .

The averaged value of y N is then computed as follows,

y =yMra(y™ -2y +y™ (2.3.)
At the time of updating the variables, y Nis stored in place of y ™1 and y *1 in place of y N
and the integration procedure is repeated.

The time filtering has an effect on the computational stability criterion; increasing a
requires progressively smaller Dt, at the same time, repeated use of the time filter with

relatively largea will strongly damp high frequency physical waves, therefore a small
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value of a is preferable. A value of 0.05 is currently used in the model and the filter is
applied to variables explicitly predicted by the leapfrog scheme.

The leapfrog scheme s conditionally stable for advection equations, but is absolutely
unstable for parabolic equations. The forward time integration scheme instead is used for

the diffusion terms. Formally the integration equations can be written as,

n+1

y™ =y oDt D;'l + (other terms)' ]

where Dy represents the diffusion term.

Assume asimple formulation of adiffusion term in one dimension,
2
D =K M
y ‘ﬂx2
and use the centred scheme for the spatial differencing, the stability criterion required by
the diffusion processisthen (Pielke, 1984, page 285),

2 Dt 1
<

(Dx)2 4’ (2.3.2)

note here the actual time step used for the diffusion term is 2Dt. Despite the above
reguirement, the limitation on the length of time step by the diffusion process is generally
much weaker than that by advection processes.

For an advection equation, the computational stability of the leapfrog scheme is

subject to the well known Courant-Friedrichs-Levy (CFL) condition, which is

|C_Dt <1,
Dx

where C is the speed of advective flow or the phase speed of propagating wave
disturbances. This condition is modified when the wave equations are represented on a

staggered grid. Suppose one dimensional gravity waves are governed by equations
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where F is the geopotential height, F1/2 gives the phase speed of the gravity waves.

Haltiner and Williams (1980, page 142) showed that when the grid is staggered with u
and F on aternate grid points, the stability criterionis

| sin (kDx/2)) (U cos(kDx) + F¥2) (Dt/Dx) | £ 1/2

or more strictly, |(uxF¥2)(Dt/Dx) | £ 172 (2.3.4)

where Dx is the grid spacing between two points of the same variable. This condition
implies the maximum time step is halved for the staggered case than the unstaggered, or
aternatively the effective grid spacing is Dx/2 for the CFL condition of the gravity wave
equations.

As was discussed in the previous chapter the fastest propagating wave in the QNH
system are the Lamb waves. The stability condition for Lamb waves is similar to that for
gravity waves; it is the same condition (2.3.4) except the gravity wave phase speed F 1/2
thereisreplaced by C, the phase speed of Lamb wave. This point can be illustrated by

considering a simple system of equations in height coordinates linearized around a

reference state of no motion and of constant density r o. They are

% ¥ jTi = 0 (2.35)
% ' % " % . (2.3.6)
%+%+rgzo (2.3.7)
% ~wg=C? % (2.3.8)
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where FOp'/r g, r°r'/r g and C2=gRT, the others follow the convention.

Eliminatingr from (2.3.6), (2.3.7) and (2.3.8), we obtain

= 2, u w. _
o WerC (g )=0

17 & T 9% 9.
e A TR

Since we are interested in Lamb waves that have no vertical motion, we set

w° 0,

and obtain an equation set for Lamb waves,

fu TF _

R i (2.3.9)
Tk 2 fu

e T (2.3.10)
T I 9,_

(6 +§)—0 (2.3.11)

From equation (2.3.11) we obtain the vertical structure distinguishing the Lamb waves,

F(2=exp(-&), G° g/C2

It is clear that equations (2.3.9) and (2.3.10), which govern the horizontal structure of
Lamb wave solution, are analogous to equations in (2.3.3) for gravity waves. The

computational stability criterion isthen equivalent to (2.3.4), that is
| (u£c,)Dt/Dx | £ 12 (2.3.12)

where U is a background advective flow speed if not zero.
The above analyses show the maximum time step that can be used is the one that

satisfies conditions (2.3.2), (2.3.4) and (2.3.12).



2.4 Boundary conditions for the prognostic equations

Mesoscale models all have a limited domain, and therefore have to be artificially
enclosed by boundaries. The values of variables on these boundaries, i.e. the boundary
conditions, are required in order to solve the model equations in time. In our model only
the lower boundary is physical while the top and lateral boundaries are required for purely
computational reasons. The boundary conditions best suited to the physical problems that
this model is designed to deal with will be discussed separately in the following sub-

sections, and separately for the lateral boundary and the top and bottom boundaries.

2.4.1 Lateral boundary conditions

The boundary conditions on the lateral sides of a numerical model are usually the
most difficult to specify, because it is frequently required that the disturbance propagate
freely in and out of the boundary without generating spurious wave motions which would
serioudy contaminate the interior solutions. A solution to this is to remove the boundary
as far as possible from the area of interest so that their fields are little affected by the
erroneous disturbances reflected back from the boundary. Nevertheless this solution is
obviously unnecessarily expensive and is often limited by computational resources
available.

Several types of lateral boundary conditions are possible. The first is the specified
inflow, gradient outflow condition, in which the value of dependent variables at the
inflow boundary (defined in terms of the flow direction) are assumed unaffected by the
downstream disturbances. The values at the outflow boundary are simply those passed on
from the immediately interior grid points. This procedure, as we can expect, is incapable
of correctly handling the disturbances propagating to and from the boundaries. Another
type of condition is the periodic boundary condition, which implies that disturbances that
propagate out of the model domain at one boundary will enter the domain again at the

other boundary. This assumption is only acceptable for certain situations. The most
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commonly used is the type usualy referred to as the radiative boundary condition (RBC),
which is designed to minimize the reflection of outward propagating disturbances back
into the model domain. The radiative boundary conditions due to Orlanski (1976) are
implemented in our model. Finally the sponge type boundary conditions are also often
used, incorporating near the lateral boundary a region of enhanced filtering to damp out
the disturbances propagating towards the boundary; in other words, to absorb the wavy
disturbances that get into the sponge zone. Such an effect can be achieved either by
increasing the coefficient of diffusion or by applying a Rayleigh friction type damping
with a gradually increased coefficient. The former is effective in removing short scale

waviness and the latter tendsto relax the variable field towards a given state.
a) Theradiative boundary conditions of Orlanski

The radiative boundary condition of Orlanski is based on the'Sommerfeld’ boundary
condition. Assume the disturbance propagation is described by a ssmple one dimensional

wave eguation

L tC—= (2.3.13)

wherey could be any variables and c is aveocity which includes both wave propagation
and advection. Several procedures have been introduced to implement this type of
condition, including those of Orlanski (1976), Klemp and Lilly (1978). The following
discussions closely follow Orlanski.

Without losing generality we consider the right boundary. Equation (2.3.13) is
approximated by the finite difference equation

n+1 n-1

ypt=yptoe(ypt +ypt-2yp ) Dt/Dx (2.3.14)

where n denotes the time level and b the index of grid point at the boundary. Equation
(2.3.14) employs the leapfrog scheme in time and one-sided difference in space with a

time average on the boundary value of y to damp out the computational mode. The key of

the problem is the proper estimation of speed c. If equation (2.3.14) is applied at the
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immediately interior grid point b-1, for the previous time step, then

n-2 n
o= Y17 Yp1 Dx

n n-2 n-1
Yp1+ Vo1 2Yp, Ot

(2.3.15)

this value of phase speed is extrapolated to the current time level n and approximates the
phase speed at the boundary b. For the right boundary, the inflow is definedas c £ O,
for which the value of dependent variabley at the boundary is kept unchanged, i.e. ¢ =0
for prediction equation (2.3.14). When ¢ > 0 the boundary is defined as outflow
boundary, at which the boundary condition extracts information from the interior grid
points. Since atoo large value of ¢ can results from the small gradient in'y according to
equation (2.3.15) and will cause computational instability, an upper bound is imposed on

its value following Orlanski (1976). As aresult the formula of ¢ becomes

o>

=Min[ Dx/Dt, Max(0, ¢ ) ]

= Max[-Dx/Dt , Min( 0, ¢ ) ] (2.3.16)

o>

and

for the right and the left boundary respectively, with the c inside the brackets given by
eguation (2.3.15). Equation (2.3.14) is then the prediction equation for variabley at the
boundary, with € calculated from (2.3.16).

A number of modifications are possible to the above procedure. For example it is
sometime better to estimate € at further interior grid points where the solution is less
sengitive the boundary condition specified. Klemp and Lilly (1978) simply choose € as a
constant, with the value of a dominant internal gravity wave. Miller and Thorpe (1981)
proposed possible improvements to the above procedure and tested a similar procedure

using the upstream-forward scheme. We will not go into details here.

b) Implementation of radiative boundary conditions in the model

In thismodel, the radiative boundary condition is applied, in asimilar way to Miller
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and Thorpe (1981), to the normal velocity component u, y-velocity v, surface pressure p«
and potential temperature q'. It is also applied to the variables of water substance,
although thisis not essential. Simple boundary conditions which, say, specify the value
or gradient at inflow boundary and use one-sided advection at outflow boundary may be
good enough and may have a better control over the moisture fields at the boundary. The
vertical velocity is calculated from the continuity equation with u being known already. In
order to conserve the total mass inside the model domain, the mass fluxes through two
lateral boundaries are kept fixed with an initial value or made equal to each other. To do
this the normal velocity determined by the radiative boundary conditions are adjusted
accordingly: aconstant velocity difference is added at all levels to the original values.
There may be better ways of maintaining the total mass. A sponge type boundary zone
may be included into the model with Newtonian type damping to relax the velocity profile
near the boundary back to an initial profile. In this way both the mass flux and the
velocity profile can be maintained.

Figure 2.2 illustrates the arrangement of variables in horizontal relative to, for

example, the left boundary.

-® Interior
F b I:Ib+1
Rp1 Ya p,, Uy Pepra Yo L

0 ot o—

. . S

Sy Sp1
—— DX —=

L eft boundary

Fig. 2.2 Arrangement of variables relative to the physical boundary. The boundary
for uis at the physical boundary but that for p, , F', § etc. ishalf agrid outside.

The boundary for normal velocity u coincides with the physical boundary while the

boundary for state variable such asp+, F' and s ishalf agrid interval outside. As we can
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see later the forcing function of the elliptic equation (2.1.14) is calculated up to grid point
i=b+1 (i.e. half agrid inside the physical boundary), this requires the value of UFLUX at
the u boundary. It is possible to calculate UFLUX using one-sided differencing but we
decide to retain the standard formulation of centred differencing while introducing an
extra grid point i=b-1 for u, a which u is also predicted by the radiative boundary

condition (RBC). Similarly px -1 at the extragrid point is a so calculated from the RBC.

1
Mo\l Tp.uyn+l
" (=) +O——), ds=0
Py | ReC | P o, et | TE7P Od Tx 7P
--® B ) ] [ (S ®
n+1 n+2 ﬂt b . . .
Ps -1 Px 1 continuity constraint
1
g (TP - 2
N+l n+l b it /b N+l Uy b
--® ub'l_ub'1+dub'1 ------ ."."""."® Sh --® n+1 ® L ®
continuity equation U, b-1
2 n+1
A (p.u), ~=MFLUX
fp,u \(n+1
S n+2_ n+2 * . .
------------------- ® u “=u “+du  |-® for dliptic equation
mass flux constraint b ™ b ( fit )b PRCE

--®| end of onecycle, back to begining | - -®

Fig. 2.3 The flow chart for the implementation of lateral boundary conditions. First the
RBC is used to predict the surface pressure at and outside the physical boundary, therefore
tendency of p+ isobtained. u at b-1 is then adjusted under continuity constraints. Next the

vertical velocity at the boundary is diagnosed. RBC is again used to predict u at and outside
the boundary, the former is adjusted immediately subject to the constraint.onthe mass flux
through the boundary. The tendency of p+u can then be obtained for the elliptic equation

and one cycleisended.

The procedure for the implementation of boundary conditionsisillustrated in Figure

2.3. This procedure isimplemented when the values of dependent variablesin the interior
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have been obtained for time level n+1 from time integration of the prognostic equations
and variables at the boundary have aso been predicted by the R.B.C. at this time level.
The vertical velocity is then diagnosed and the R.B.C. used to predict p. and u for next
time level n+2. The sensitivity tests in chapter four concerning mountain gravity wave
problems show the lateral boundaries thereby formulated are reasonably transparent to

wave disturbances and the interior solution islittle affected by the boundary.

2.4.2 Top and bottom boundary conditions

The depth of the Earth atmosphereislarge, whereas the model atmosphere has to be
bounded at certain level. For mesoscale models, the domain seldom goes beyond the
lower stratosphere. In some cases only the lower troposphere or even the planetary
boundary layer is modeled. Therefore an artificial boundary is again needed at the top of
the model. The top boundary of our model is a surface of constant pressure p=pt, or a
zero sigma surface (s=0) in sigma-coordinates. The vertical velocity vanishes there by
definition, but the height of the boundary varies. External gravity waves are supported at
this free surface, but they are the 'deep water' approximation to the external waves, are
therefore slower than the 'shallow water' waves (Miller 1974). The bottom boundary of
the model is at p=pgyrf, i.€. S=1, which isaphysical boundary. pgf is the pressure at the
ground surface z=h(x). Again due to staggering of the grid, some grid levels are located
beneath the bottom or above the upper boundary. In Fig. 2.4 is a schema of the model

domain with relative positions of grid points at the boundaries.
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Fig. 2.4 The variable arrangement at the boundary. The bold box represents the
boundary of physical domain. The u-points are at the lateral boundaries and w-points
at the top and bottom boundary. At top and bottom boundaries the u and F -points
are half a grid interval outside and so are the w and F-points at the lateral
boundaries.

Free-dlip boundary conditions are assumed at the top and bottom of the domain, i.e.
the normal gradient of tangential velocity vanishes at the boundary. Based on the

definition of velocity components and the above assumption, we can write the conditions

as,
At s=0, s =w=0 and fu/fs =0 (2.4.1)
. dp,
At s=1, s=0, w=- = /(p*S) and Tu/Ys=0 .
In discrete form, they are
|s—o - |s:o - |s— Dsi2 |s— Ds/2
(2.4.2)

. 1 dp.
S |s:1 =0, Wlszl - (p_S Tdt )s:1 ’ uIs:1+Ds/2 - ulszl— Ds/2

At s=-Ds and s=1+Ds, s is diagnosed from the continuity equation and w from its

definition given the value of s. This procedure will reduce to the mirror type symmetry
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boundary conditions when the pressure at the boundary is constant.
For the potential temperature equation, we assume the zero gradient boundary (non-

conductive) condition, i.e.

g’ _ - ' =q'

E—O as=1 or (¢ |s:1+DS/2_q |s:l-DS/2

la" _ - ' =q'

E_O as=0 or q |S:_DS/2—q |s:DS,2 , (2.4.3)

but conditions as such are relevant only in the calculations of the turbulent heat fluxes
through the boundaries, because the advective flux through the boundary would always
vanish where $=0. For particular applications, the turbulent heat fluxes will have to be
specified or parameterized using a selected scheme. Similarly the moisture fluxes at the
ground are also set to zero for our experiments. The momentum drag (wind stress) at a
flat ground surfaceis set to zero, but again aformulafor it can be readily incorporated
where required.

The boundary conditions of the éliptic equation for F' at both the lateral and the top
and bottom boundaries need careful consideration, these will be found in next section,

together with the method of solution for the equation.

2.5 Solution of the elliptic equation for F'

2.5.1 Methods of solution for elliptic equations

Elliptic partial differential equations frequently arise in geophysical fluid problemsin
connection with steady state solutions or diagnostic equations. Written in a general form,
an dliptic equationis

G(P)=F
where G is an elliptic operator, F is a known forcing function and P is the dependent

variable to be solved for. To solve this equation over a domain, either (1) the dependent
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variable P, (2) its normal derivative, or (3) a combination of both must be known on the
boundary enclosing the domain. These three boundary specifications are referred to as
respectively the Dirichlet, Neumann and mixed condition.

A simple dliptic equation is a Poisson equation defined over arectangular region

L(P)=F

where L isa 2-D or 3-D Laplacian operator N2. A number of efficient direct methods
have been introduced to solve discretized Poisson equations (e.g. Buzbee et a., 1970;
Sweet, 1977, Swarstranber, 1977). These 'fast Poisson solvers are based on cyclic
reduction, matrix decomposition, or a combination of both; and many make use of the
Fast Fourier Transform (FFT) agorithm. Although highly efficient for Poisson
equations, they usualy can not be extended to more complicated problems, such as
equation (2.1.10) to be used here, in which the elliptic operator involves cross derivatives
and variable coefficients. Iteration methods such as SOR (Successive Over Relaxation)
and ADI (Alternating Direction Implicit) are generaly more flexible and simple to use,
however they suffer from progressively slow convergence with the increase in resolution
and the increase in the number of data points that are involved in the discretized operator.
Recognizing that the Fourier modes responsible for the slow convergence of a simple,
say Gauss-Seidal relaxation, are the lowest wave-number modes; these modes could be
adequately approximated on a coarser grid with much less work, the multi-grid methods
(seereview by Futton et al. 1986) are introduced, which use multiple overlapping grids
of varying mesh sizes with cycling between them to accelerate the convergence of the
overal relaxation. While able to solve more complicated problems and efficient in terms
of operation counts, the optimal implementation of the multi-grid method is rather
complex. Some general software hasto be available at least.

The élliptic equation (equation (2.1.10)) in our model is complicated in its form,
however a close look at it reveals that not all terms on the left hand side are equally
important. The coefficients of all but two terms are proportiona to the fractional variations

in the surface pressure or accurately the pressure difference between the ground surface



and the top. Since generally

dp.
P,

D
=0(=) <<1
only terms
o .

are dominant! The other terms are present due to the variation in the surface pressure.
Recognizing this fact we chose to move the lessimportant terms to the right hand side of
the equation and treat them explicitly. Then we will be solving a nearly standard Poisson
eguation. An acceptable accuracy can be reached by performing severa iterations, each
time the terms on the right hand side are updated using new value of F'. Furthermore
noting the coefficient S2 is only weakly dependent on x, again through the variation of
pressure in horizontal, we approximate it using its horizontal average performed at
constant s. The averaged coefficient is now a function of s only. Based on the above

ideas equation (2.1.10) isformulated as
T 1(21 o1 b
—+—(S — F =L (F")+F 251

where L1 is an operator representing terms 2, 4 and 5 of the left hand side of equation
(2.1.10), the superscript 'p' denotes the pyy, iteration. The prime of F' is omitted here and
in the rest of this subsection for convenience of notation.

If we further write
FP = P4+ DFP, (25.2)

equation (2.5.1) then becomes

2 —
[L .0 % )] DFP =R (2.5.3)

x> s

where



R™® -L(FP)+F_

istheresidua function of the elliptic equation with the p, approximation of F, and L is
the unapproximated full operator asin equation (2.1.10). It isclear that at the limit where
the iteration converges, DF P*1 and therefore RP vanishes, then FP is the true solution to
elliptic equation (2.1.10). We will refer to (2.5.3) as the correction equation for F'.

Now assume the boundary condition is
Ly (F )=Fg (2.5.4)

where Lg isalinear operator and Fg alinear function of F defined on the boundary.

If the first guessF P (starting from p=0) satisfies the above condition, i.e
Py—
Lg (F7)=Fg
then by demanding that FP*1 satisfies the same condition we obtain a homogeneous

condition for DF P*+1,

L, (DFP) =0 (2.5.5)

The problem is then to solve equation (2.5.3) with a homogeneous boundary
condition given by (2.5.5). Such an equation can be efficiently solved by a direct method
making use of Fast Fourier Transform (FFT) and Guassian elimination algorithms. We
will see more details on the solution method in section 2.5.3, while in the next section we
will give the precise formulation of the boundary condition that is formally given by
(2.5.4).

Finally the criterion of convergence of iterationsis
le) [o]
a |DFipj+1|/a |F!Oj |<e
i i ’

with e = 10 -6 being used in the model. In the tests with dry convections, on average 2
iterations are sufficient without topography and a few more are otherwise required

depending on the aspect ratio of the orography.



2.5.2 Boundary conditions for the equation for F'

At the lateral boundaries, the norma gradient of F' can be deduced from the

horizontal momentum equation. Re-formulating equation (2.1.1) gives

B ﬂ U S ﬂp* ﬂF'
__-__-UFLUX/D*+EWE+W+DU (2.5.6)

This equation is applied at the left and right boundary. The first term on the R.H.S at the
current time level is given in the boundary calculations shown in the flow chart in Fig.
2.3, the second and the fourth term can also be readily calculated. The contribution of the
third term is relatively small and so for the same reason as before, this term is treated
explicitly using the value of F' of previous iteration. With the right hand side known the
conditions on the lateral boundaries are expressed as

fiF

WlB =F2(s) (2.5.7)

In discrete form, it becomes

» ptl — , ptl _ o]
F |x: -Dx/2 F |x: Dx/2 DX FBlXZO
(2.5.8)
v ptl  prl p
= +
F |x=XL+ Dx/2 F |x:XL - Dx/2 DX I:B |x= XL

Obvioudly these are all Neumann boundary conditions.

On the top boundary, vertica velocity vanishes, we have from the vertica

momentum equation (2.1.3) that
ALl P Fel (2.5.9)
ﬂS s=0 s=0 0.
where

To.sw ' ,
FBL:O:{[ = P g(g_ +0619, -9.-9,)-p, D, | /(p. s)} -
S
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and at the current time level it isreadily calculated. Again expressed in a discrete form
Eq.(2.5.9) becomes

ptl _ ~.ptl

s=-Ds/2 s=Ds/2 Ds Fy s=0 (2.5.10)

The bottom boundary is the only physica boundary of the model, where the
geopotentia height isrelated to the surface topography. Since the lower boundary of the
model is the ground surface, which has a topography profile

z=h(x)
we have

— +F'| :gh . (2511)

|S:l Slp: Psurf s=1

However, the geopotential height of the reference state F s is defined as a function of
pressure p, its value at s=1 has to be found. To do so, we notice that the reference state
variables satisfy relations (1.2.36) and (1.2.37) in section 1.2.3. By substituting equation

(2.2.37) into (1.2.36) and differentiating the resulting equation with respect to x at

constant s=1, we obtain

T”:S _ RT ﬂp*)
? s=1 Poyr X 7 (2.5.12)

AssumeF =0 at areference pressure p=po, then from the hydrostatic relation

Psurt

F(P=Pg,) =

(2.5.13)
Po

and suppose (2.5.13) can be evaluated at boundary points x=0 and x=XL, then we have

et w0 = Fed PO

. 1 o = Pl PaXD)1 (2.5.14)

The discrete approximation to equation (2.5.12) is atridiagonal linear equation set,
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and can be directly solved using Gaussian elimination, given the boundary values as in
equation (2.5.12). In three dimensional case the corresponding equation is then a Poisson
equation, though slightly complicated, it can still be directly solved using,say, the FFT
techniques.

With F 5 being known, the formula

Frl,_, =oh-F . (2.5.15)

s = =1

from (2.5.11) givesthe value of F' at the ground surface.

Equation (2.5.15) is crucially important in the model. It builds up a direct relation
between the geopotential height field (therefore the pressure gradient force field) and the
surface pressure, which is areflection of the mass convergencein the column above, and
only by which can the pressure gradient force interact with the mass convergence field.

However, because of the grid staggering, relation (2.5.15) can not yet be directly
used as the boundary condition for the F' equation. Extrapolation is required to obtain the

value of F' at s=1+Ds /2. To do thiswe derive from the vertical momentum equation that

TF Tp.w q .
—|.,={l g *WFLUX - p.g(o -+ 0,61, +0:+ ) -, D, ]

Ts
[(p.5)} |S:1 (2.5.16)

A smple but reasonable approximation is to assume the hydrostatic balance at the lower
boundary by neglecting the vertical acceleration term, which is smal anyway.
Experiments with dry convection showed the above approximation was reasonable as far
asthelocal solution is concerned, In (2.5.16) WFLUX is available but the local tendency
term is unknown. It could possibly be calculated using backward time differencing or
simply approximated by its value at early time step. However it is found the solution
becomes unstable immediately after the local tendency term in equation (2.5.16) is

included, but stable when excluded, unless w itself is approximated by



WL:]_: -u%/(p*s)]szl (2517)

i.e. the contribution of the time tendency of local variation in the surface pressure is
neglected. Again this approximation involves neglecting alocal time tendency term. The
analysis and numerical experiments show that the term fp«w/flt is (2.5.16) is difficult to
accurately calculate on the lower boundary but on the other hand the solution is extremely
sensitive to the inherited error. Therefore we decided to omit this term, on the grounds
that its magnitude is small and so will not affect the solution too much. No approximation

ismadetow at s=1asin (2.5.17). Now we have

E =F |
ﬂS s=1 B s=1 (2518)

where

Foloos ={ [wrLux-p. 9 (3—' +0,61q, -d,-q,)-p. D, ]/(0. 9 } o1

S

(2.5.19)
Finally the lower boundary condition of the elliptic equation for F' is the Dirichlet

condition

F |s:1+Ds/2= Floi* 5 0 -, (2.5.20)

inwhichF' |s:1 and TF'/qIs |S:1 are given respectively by (2.5.15) and (2.5.19).

In summary, the operator for boundary condition (2.5.4) is defined as

% O£ s£1, x=0and x=XL
|
:
|_Bo.|'._ﬂ1]; s=0, O0ExXE£1 (2.5.21)
|
T3 s=1, OE£XEXL

In the model calculation, the first guess of F' is naturally taken as its value of the

previous time step, with its value on the boundary modified to satisfy (2.5.8) (2.5.10)
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and (2.5.15). Aswas discussed in last section, the boundary conditions for thecorrection
equation (2.5.3) are all homogeneous, of Dirichlet type at the lower boundary and of
Neumann type at the other boundaries. An unique solution of this elliptic equation exists

and can be found using FFT techniques presented in next section.

2.5.3 Direct solution of Poisson equation using Cosine Fourier

Transform

In this section we pick up equation (2.5.3) from section 2.5.1 and try to solve it

using FFT techniques. Equation (2.5.3) can be written as

AR e~ - 25.22
[ﬂx2+‘ﬂs(S ﬂs)]y R ( )

in simplified notations, where y° DFP*l and RCRP. The boundary condition for

(25.22)is
Ly(y)=0 (2.5.23)

with L g defined by (2.5.21).
According to the definition of the model grid in section 2.2, variable y is defined at

grid points xj, sj, which arein turn defined by (2.1.5) in that section. That is
y;; 0y i)y ((-12)Dx (-12)Ds)
Of£i£ NX+1, O£j£NS+L (2.5.24)

Function y defined on the grid can be expanded in a finite eigenfunction series that
satisfies condition (2.5.23). The boundary conditions in x-direction are homogeneous
Neumann conditions (zero gradient), but defined in-between the respective two outermost

grid points due to grid-staggering, that is

0, ] 1,

Therefore we have a even data sequence for which the following holds,
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Y=Y, 0d Y (o TY axeie (2.5.26)

fori=0,1,...,NX-1 and agiven|.

For a data sequence that has the above property, a non-standard Fourier cosine
expansion as used by Williams (1969) has to be used here. Assuchy isexpanded in aset
of harmonics - the cosine functions, in another word data series yjj istransformed from

X-gpace to a spectrum space with the spectrum coefficients being Y k. Hence we have:

NX-1
N :
Y =\/ NX ka_-on H (1) (2.5.27)
where the harmonics
oy k(i-12)p
H.(i)=b, cosT

(2.5.28)
for k=0,1,....NX-1, with bx=2-Y2 for k=0 and by=1 otherwise. Hy are actualy the
eigen-functions that satisfy boundary condition (2.5.25).

The period of this expansion is essentially 2NXxD x, with the other half of the series
assumed to be the even symmetry of the given datathat are defined on the grid. For such
an expansion, no sine terms remain and the number of expansion (or spectral) coefficients
equals the number of grid points so that the series uniquely matches the data. Similarly,

the forcing function R is aso expanded into such a series

Substituting series (2.5.27) and (2.5.29) into the finite differenced equation of (2.5.22),

we obtain
2 _
ds( S dSY O Y =Q (2.5.30)
for k=0,1,...,NX-1, where the difference operator is as defined before, and

2
| k:[&gn(%)] (2.5.31)
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is the eigen-values of the discrete operator dyyx corresponding to eigenfunction Hg, and

they satisfy
d H +1 H =0 (2.5.32)

The boundary condition required by Eq.(2.5.30) for Y i are obtained from (2.5.22)
that
Yy,

— =0 and Yk

0. (2.5.33)
ﬂs s=1

s=0 B

Equation (2.5.30) is an ordinary difference equation in s, which, when discretized,
forms a tridiagonal linear system and a unique solution exists given the boundary
conditions as in (2.5.33). An algorithm for solving this directly can be found in
Richtmyer and Moton (1969), which is superior to the usual Gaussian elimination method
because of better computational stability. With the coefficients Y  aready obtained, the
synthesis of these spectral components is performed according to (2.5.27) for y, the
solution of elliptic equation (2.5.22). In the actual model computation, the only
transforms performed are this synthesis and the analysis of the forcing function R for the

spectral coefficients Qk
2 g .
A=/ 7% Ia_o R H, (1) (2.5.34)

Since the solution of the eliptic equation accounts for a considerable portion of the
total model computations, the optimal computer coding of this part is of significance.
Since standard FFT subroutines are usualy for complex transforms, certain pre- and
post-processing is necessary, in order to achieve a maximum efficiency. Cooley at. a.
(1970) developed appropriate pre- and post-processing algorithms for data with three
basic boundary conditions on non-staggered grid. In a way similar to Cooley et. dl.,
Wilhelmson and Erichsen (1976) provided the formulae for real data on staggered grid

with Neumann boundary conditions. These are implemented in the model so that a
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maximum efficiency in the discrete Fourier transform is achieved.

Finaly to mention briefly, for the three dimensional version of this model, §2/1x2 in
equation (2.5.22) becomes a 2-D Laplacian. To solve this equation one only has to
perform a further similar transform in y-direction. The resulting ordinary difference
equation would appear exactly the same as equation (2.5.29) except that in which |  is

replaced by,say, L |, the eigen-value of the full 2-D Laplacian.

-53-



Chapter Three

Thermodynamics, Cloud Microphysics
and Subgrid Scale Mixing

In many mesoscal e systems such as mesoscal e convective rainbands and squall lines,
phase changes of water occur as mesoscale and/or subgrid scale circulationslift air above
its condensation level and when the condensed water falls out or detrains from the clouds
and evaporates. The presence of these water phases and the conversion between them
requires separate conservation equations such as (2.1.6), (2.1.7) and (2.1.8) for each
phase and the source/sink terms in these equations to be properly represented. In this
chapter the procedure to include the effects of these phase changes of water on both
model resolvable scales and subgrid scalesis discussed.

Dueto computational constraints, it is usually not possible for mesoscale numerical
models to resolve turbulence processes. The effects of subgrid scale turbulence can be
taken into account through parameterization. The last section of this chapter will consider
the formulations of the subgrid scale mixing terms. Some sensitivity experiments on the
mixing processes can be found in later chapters.

Furthermore, the implementation of the Flux-Corrected Transport (FCT) advection

scheme and the impact of its use on the solutions are also discussed in this chapter.

3.1 Moist thermodynamics and Microphysics parameterizations

The moist processes in a mesoscale model essentially consists of two parts: the

explicit condensation and evaporation on model resolvable scales, and the cloud



microphysics that are of subgrid scales and have to be parameterized. In this model water
is categorized into three parts. the water vapour, cloud droplets and rainwater. The
raindrops differ from cloud water in that they sediment at a parameterized terminal speed.
The fall-out of the rainwater from the cloud in which it forms is recognized as a major
factorin the growth and decay of a cloud system as the cloud is thereby freed of liquid
water loading and the evaporative cooling induced downdraught plays a key role in
organizing long-lasting convection. Ice phase is currently not present in the model. The
inclusion of it would in general change the distribution of the water quantities to some
extent and the freezing and melting would provide an extra heat source and sink.
However models without ice phase are still able to capture the essential dynamics of some

convective systems (e.g. Thorpe et al. 1982, Klemp and Wilhelmson 1978).

a) Conservation equations

Equations (2.1.6), (2.1.7) and (2.1.8) are the conservation equations for the three

water quantities. Symbolically they are written as

dg _
= =Mg* D, (3.1.1)

with g representing either gy, dc or gr. Mg represents parameterized microphysics and
explicit condensation / evaporation. Dg denotes subgrid scale mixing. The heat
source/sink due to phase changes of water in the thermodynamic equation (equation

(2.1.4)) isrepresented by term Mg. Rewritten hereit is

dg' _ dgNg

Q
—_ w+M +D +
dt g q q CpP (3.1.2)

The last term represents all other diabatic sources/ sinks. The presence of water has other
effects including the modification to the air density by water vapour and the drag imposed
upon the air by liquid water loading. These effects show themselves in the net buoyancy

term in vertical momentum equation (2.1.3).
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The microphysical processes can be briefly summarized in the following way. The
small cloud droplets are formed when the air becomes saturated and condensation occurs.
Raindrops arethen formed in a conversion process (named auto-conversion) from these
cloud droplets and are then allowed to collect smaller cloud droplets (accretion) as they
fall through them at aterminal speed. When cloud droplets are present in unsaturated air
they are evaporated until saturation of the air or until they are exhausted before saturation
isreached. Raindrops will evaporate in a subsaturated environment at a rate depending on

their amount and the saturation deficit. The microphysics terms in the conservation

equations are expressed as
da
quz T +E (3.1.3)
dq
Mo =~ - A~ C (3.1.4)
M =- 1 (SV.q)-E +A +C
q E ¢ Y r T T (3.1.5)

and the related diabatic heating in (3.1.2) is
M = L(—dqs+E)/(CP) 3.1.6
q dt p (3.1.6)

Theabove notation closely follows Klemp and Wilhelmson (1978). Here L is the latent
heat of condensation, gs the specific humidity of saturation. dqgg/dt istherate of change in
specific humidity of air due to condensation or evaporation from cloud water. Terms Ay,
Cy and E; represent respectively auto-conversion and accretion from cloud dropletsto rain
water and the evaporation of rain water. V¢ is the terminal speed of rain water

sedimentation.

b) Microphysics parameterizations

Kesder's parameterizations (Kessler, 1969) are used to determine the rates of auto-
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conversion (Ar) and accretion (Cy), where C, is based on the Marshall-Parmer distribution

of cloud drop spectrum. The formulae are

A =k, (9, -9) (3.1.7)

_ 0.875
C =k,q.q (3.1.8)

where qgrit is athreshold for the auto-conversion to occur. The form of ky is complex and
isin particular dependent on air density and collection efficiency. Constant values are

chosen for these parameters after Soong and Ogura (1973). They are

a3 1 _ -1
kl—lo s, k2—2.25

.3
Oerig = 10~ kg/kg . (3.1.9)

The evaporation rate of rain water can be simply given by
E =b(qg,-q,) (3.1.10)

as was used by Miller and Pearce (1974), by which the rate is proportional to the
saturation deficit. The typical value of b is10-3 s, a value of 0.5" 10-3 s1 was used by
Miller and Pearce in their smulations. A more accurate formula was given by Ogura and

Takahashi (1971) and isused in thismodel, which is

0.525
1 (1-q,/05)C(rgq,)

— 3.1.11
r 208 104958 10/(paq,) ( )

where C isthe ventilation factor given by
C=16+30.39(r q ) """ (3.1.12)

A formulafor V¢ (positive downwards) in equation (3.1.5) was derived by Soong and
Ogura (1973) from an empirical formula relating the rainwater content and the rainfall
intensity given by Marshall and Palymer (1948). It was later adjusted to take into account

the mean density variation as discussed in Beard (1977),
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0.1346 ¢ T 12
V,=14.34( _q) ( - ) s (3.1.13)
0

wherer 0 is the reference state density at the ground. In equations (3.1.7)-(3.1.13), the
Sl unit system is used, namely V¢ in m/s, specific humidity g in kg/kg, density r in
kg/m3, and pressure p in Pa.

A reatively ssimple formula of termina speed was used by Miller and Pearce,

V =bq?'2

; (m/s) (3.1.14)

Here b= 5.32 s typicaly. A modified value of 10 s'1 was used Miller (1978) in a
simulation of areal cumulonimbus system, considering that the modification may reflect
the weighted average of the fall speed of rain drops and hailstones. The timing of therain
falling onto the ground was improved with this modification. Formula (3.1.13) is being

used here

c) Condensation and evapor ation

The saturation vapour pressure can be obtained by integrating the Clausius-
Clapeyron equation (see e.g. Wallace and Hobbs, 1977, page 95). For reasonable values
of temperature and pressure within troposphere, the Teten's semi-empirical formula

gives agood approximation, which is

Pq- 273 )

e = 61llexp(a
> ( Pg-b

where
a=17.27 and b=355 for Pq3 273K,

a=21875 and b= 75 for Pg< 273K (3.1.15)

Here aand b take different values for temperature above or below freezing level since the
saturation vapour pressure es is different with respect to water and ice. This difference

originates from that between the latent heat of condensation and of freezing (sublimation).
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In al the simulations to be discussed later, a and b take those values for positive
temperature Celsius. Thisis thought to be consistent with the assumption that no effect of
freezing is taken account of in absence of ice phase. The neglec of this effect generally
tends to underestimate the total amount of latent heat rel eased.

Making use of equation (3.1.15), the saturation specific humidity is then

exp (a9 273 )

Q.= —p 378 . ma-b (3.1.16)

The condensation or evaporation is assumed to occur instantly or say within one time
integration step, and the process is assumed to be isobaric. Let dg, dgy be the change to
g and gy respectively because of the phase changes between water vapour and cloud

water. From thermodynamic equation,
-Ldg,=C_ P dq (3.1.17)
Because the condensation or evaporation occurs to restore the exact saturation, we have
q,+dq, =q,(g+dq,p) (3.1.18)

Itisclear that the calculation of gy involves the pressure. In models using height as
the vertical coordinate, the determination of pressure demands knowledge of temperature
which is related to the rate of latent heat release, therefore to gs again. The relations
between the thermodynamic variables are therefore implicit, as was first pointed out by
Ogura and Phillips (1962). However Wilhelmson and Ogura (1972) showed by
comparison tests that the pressure p in the equation can be justifiably approximated by its
reference statevalue. Despite this argument, models using pressure or pressure based
coordinates still have the advantage of eliminating the problem completely.

To solve equations (3.1.17) and (3.1.18), gs given by (3.1.16) is expanded into a
Tayler's seriesin dq around the current state (g, p). Only terms up to second order in dq
are retained and a quadratic algebraic equation is solved for dq, following Miller and

Pearce (1974). The solution is
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dg=[-a+(a - 483, "1/ (2a,) (3.1.19)
in which
(o) OCpP 01
% G0, & T+qsx’ &, ?qu(X-Pq_ )
a(273-b)
and 0 —————
(Pg-b)

with aand b being givenin (3.1.15). Finally from equation (3.1.17), we have

dg,=-—— dq (3.1.20)
k
hereP = (X)X,
where (po)
The solutions can be checked against equation (3.1.18) for accuracy, and where not

satisfactory, iterations are performed using the updated values. In the vectorized computer

code of the moddl, this calculationis carried out at al the grid points with two iterations.

d) Adjustment procedure

The numerical integration of the conservation equations for water quantities follows
the commonly used adjustment procedure, which can be divided into two stages. First,

temporary values of q and q are obtained by integrating the conservation equations

without the terms relating to the phase changes, then these terms are evaluated using the

obtained values according to equations (3.1.3)-(3.1.6), with Ay, C;, E; and dgy in them
given respectively by (3.1.7), (3.1.8), (3.1.10) and (3.1.20). The temperature and
specific humidity for water quantities are then adjusted by the amount cal cul ated.

3.2 Flux-Corrected Transport advection scheme and its application in the

model
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It is well known that 'negative water' is constantly generated in numerical models
using conventional high order advection schemes (e.g. the leapfrog or Lax-Wendroff
scheme) to solve conservation equations. This problem can be avoided by resorting to the
first order upstream-forward (one-sided) scheme, but suffers from excessive implicit
numerical diffusion. This drawback makes the scheme unsuitable for use especially when
sharp gradients in the fields are to be maintained. Clark and Hall (1979) introduced a
hybrid-type scheme using a Crowley advection scheme (Crowley, 1978) as a higher-
order scheme and an upstream scheme as the low-order scheme. The negative values
produced by this scheme is reasonably small but the numerical diffusionisstill relatively
strong. In this model we apply the flux-corrected transport scheme (FCT) that was first
developed by Boris and Book (1973) and generalized by Zaesak (1978) to multi-
dimensions. Thisis applied to the conservation equations for water quantities and to the
thermodynamic equation as an option. In addition to the mass conservation property of
conventiona algorithms, the FCT scheme strictly maintains the positivity of actual mass
density being transported (advected), and is particularly capable of handling steep
gradients and inviscid shock solutions.

Fig. 3.1 is taken from Boris and Book (1973) and shows the solutions of tests
performed on density square waves traveling with a constant speed ¢ using four different
schemes. A small amount of diffusion was used in the leapfrog and Lax-Wendroff tests
to reduce overshooting. No undershoots are visible in the one-sided (upstream-forward)
calculation because of the massive diffusion. The one-dimensional FCT calculation
(SHASTA) shows remarkably good agreement with the exact solution and is clearly far

superior to the other three basic methods shown in Fig. 3.1.
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Fig. 3.1 Square wave test comparisons at two times during the caculation (time
step Dt=0.2Dx/c). The solid line is the analytic solution, the dots are computed
values. It is clear the solution of FCT scheme is superior to all the others.

(Reproduced from Boris and Book,1973).

a) Flux-corrected transport algorithm

The following gives a brief account of FCT as defined by Zalesak (1978).

Consider asimple transport equation in one dimension,

fr  9f _

T + [ 0 (3.2.1)
(For water substance conservation eguations in this model r=p<q, f=p«qu, g=p+gs, ¢
hereisthe flux in the other dimension).

The finite difference approximation to equation (3.2.1) in flux form can be written as

(=1 - [F.,, - Fy, 1Dt/Dx (3.2.2)

i i i+1/2

Herer and f are defined at the spatia grid points x; and temporal points t" and Dxj=(Xj+1
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-Xj-1)/2. The Fj+1/2 are called transportive fluxes. The functional dependence of F on f
defines the integration scheme. In its simplest terms, FCT constructs the net transportive
flux point by point (nonlinearly) as aweighted average of aflux computed by alow-order
scheme and a flux computed by a high-order scheme. The weighting is done to ensure
that the high order flux is used to the greatest extent possible without introducing ripples
in the solution. The weighting procedure is referred to as "flux-correction” or "flux-

limiting". Formally the procedure is as follows,

1) Compute FLi+1/2, the transportive flux given by some low order scheme
guaranteed to give monotonic (ripple free) solutions;
2) Compute FHi+1/2, the transportive flux given by some high order scheme;

3) Define the "anti-diffusive flux"

H L

A i+1/2 Fi+1/2

o F (3.2.3)

i+1/2
4) Compute the updated low order ("transported and diffused") solution:

L L

=1, - [Fy - R

= ] Dt/Dx, (3.2.4)
5) Limit the Aj+1/2 in amanner such that r*+1 as computed in step 6) below is free

of extremanot found in rtd or rn:

C

Az = Ci+1/2 At 0f Ci+1/2 £1 (3.2.5)

6) Apply the limited anti-diffusive fluxes:

Cc

f =0 - AL

C
A, 1Dt/Dx (3.2.6)

The crucial step in the above is obviously step 5). It is clear that in absence of the
flux limiting step, i.e Gi+1/2° 1, then r"*1 would be simply a high order solution, whereas
if cj+1/2° 0, then the scheme would reduce to the lower order one. This flux-correcting
step is pursued under the requirements that the anti-diffusive stage should generate no

new maximaor minimain the solution nor should it accentuate already existing extrema.
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More specifically, the anti-diffusive flux Aj+1/2 is limited such that ACj+1/> acting in
concert with AC;_1/> will not allow ri"*1 calculated by (3.2.6) to exceed some maximum
value rimaX nor fall below some minimum value r;Mn. These maximum and minimum

values are chosen in our calculations as

d

r?:max(rin, rit)

max a

fi —max(rll, i’ |+l) (3.2.7)
b : td

I :mln(rin, )

min _ . b b

ooEmin(rg L G fy )

This choice looks back to the previous time step as well as at the transported and diffused
solution for upper and lower bounds on ri"*1, We will not give further details of the
formulation of flux limiter, but they can be found in Zalesak (1979).

The high-order scheme used for the FCT in this model is a leapfrog-trapezoidal
scheme of second order in both space and time. The low order scheme is the upstream (or
the donor cell as is referred to sometimes) scheme plus a zero order diffusion term with

coefficient 1/8 (see appendix A for details).

b) Implementation of FCT in the model

With the leapfrog-centred schemereplaced by the FCT Scheme, equations (2.2.7)
and (2.2.9)-(2.2.11) are replaced by

nC _ P. qs S W
d,oyp (PO’ ) =- TFLUX" 3 +p*(M +D ) +p*Q/(C P)
(3.2.8)
n n
d,,py,( P @) = - QFLUX" “ap, My +Dg) (3.2.9)-(3.2.11)

where di+py2 a = [ a(t+Dt)-a(t)]/Dt by definition. TFLUXN.C and QFLUXN.C arethe

fluxes corrected according to the procedure described in the early part of this section.



When FCT is used the diffusion terms are evaluated at the current time level. As is
pointed out in appendix A, the second step of the leapfrog-trapezoidal scheme strongly
damps the computational mode generated in the leapfrog step, the time filtering discussed

in section 2.3 istherefore unnecessary for the variables thus predicted.

The flux correcting procedure [step 5) of the FCT algorithm in part @) ] in this model
implements Zalesak's multidimensional flux limiter (Zalesak, 1978) in 2 dimensions (X
and s), and it incorporates a 'pre-limiter' step utilizing the strong 1-D limiter of Boris and
Book (1973).

Apart from the advection term, the rainwater sedimentation in the rainwater
conservation equation is also treated by the FCT scheme, for which the 1-D algorithm of
Boris and Book (1973) is used.

The restriction on the time step by the FCT scheme is from the speed of theadvective
flow, which is however smaller than the phase speed of the fastest wave in the system.

It will be shownin chapter 5 that the use of the FCT scheme significantly improves
the conservation of thermodynamic quantities along an air parcel, therefore improves aso
the simulated circulation of, for example, amoist thermal convection, whose devel opment
relies on the buoyancy of therising air, in excessive of its environment.

In principle, the FCT scheme can also be applied to momentum equations. In the
model, velocity is predicted before advecting the thermal and moisture variables, so that a
trapezoidal step can be included in the high order scheme for FCT (see Appendix A). The
sameis certainly not true when advecting velocities. However 1-D calculations show that
with asingle leapfrog step in the high order scheme the FCT scheme can perform as well,
and the time splitting is well suppressed in the flux-correcting process. The FCT scheme
has been implemented in the numerical model but has not been fully tested. The potential
impact of its use is an improvement in the model accuracy, especially when predicting

fields containing sharp velocity gradients, such as those in an intense frontal zone.

-65-



3.3 Subgrid scale mixing and numerical diffusion

As was pointed out at the beginning of this chapter, the turbulence processes in
models for mesoscale flows are usually not negligible. The turbulence acts on subgrid
scales to transfer momentum, heat, and other quantities, and their effects can only be
parameterized. Although a number of formulations of parameterization have been devised
and some of them have even become more or less standard, problems as to the
dependency of turbulent activities on the grid resolution and the extent to which the
turbulent processes influence the solution on model resolvable scales are still not very
well understood. The extensive investigation of this aspect is beyond the scope of the
current work of model development, we only outline here the formulations of these

mixing terms and possible variations from them for particular problems.

3.3.1 Deformation and Richardson number dependent formulation

Smagorinsky (1963) suggested a formulation for the subgrid scale mixingcoefficient
in a two-dimensional general circulation model that depends on the amplitude of
deformation tensor and the grid interval. Lilly (1962) extended thisfor use in his two-
dimensional convection model to take into account the contribution of the convective
available potential energy through the dependency of the coefficient on Richardson
number. This formulation is since used by quite a number of modelers including Clark
(1976), Durran and Klemp (1983). According to this, the terms representing turbulent
momentum transfer are expressed in terms of a Reynolds stress tensor which is then
parameterized by afirst order closure method. The two-dimensional formulation of the

mixing termsin height z coordinatesis as

= 1-“:11 1Ttl3
O U 2
D = Mg, My, (33.12)
w fix 9z

The stresstensor is symmetric, i.e. tjj=tj; and it isrelated to the deformation tensor Dj;
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through momentum diffusion coefficient Ky, such that

L = Kn by (3.3.13)

and in two dimensions the e ements of the deformation tensor are

_ _ fu Tw
D11"D33‘W'ﬁo
U Tw,
Dis= Dy =gz * 4 °B (3.3.14)

where the subscripts 1 and 3 denote x and z coordinate respectively.

The formulation of the first order closure scheme for Ky, suggested by Lilly (1962)

is
K, =Kk’ Dx Dz|Def|" [ Max(1- " Ri,0)1" (3.3.15)
Km
1 2 2 2 2 52
where |Def|°§(D11+D33)+D13 =A"+B
(3.3.16)
is the magnitude of deformation and R; is the Richardson number defined as
; g%/lDeﬂ2 for q, < q
R =i (3.3.17)
i

fing
gTe/|Def|2 for g,3 q

in which the moist Richardson number is used in regions of saturation. k=0.21 as
suggested by Deardorff (1971).

The therma mixing term in the thermodynamic equation is

_ 1 Ta, | f9
D, = 7 (Kug ) * iz (Kuz) (3.3.18)

and similarly those for the water contents gy, qc, qr are as

o= Lk, 1@

a Ix

al
Nz

19

) (K, E) (3.3.19)
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Generally KgKh. Kn/Km=Pr-1, Pr is the turbulence Prandtl number- the ratio of eddy
viscosity to the eddy conductivity. Deardorff (1972) suggested Ky/Km=3, which allows
the turbulence to set in when Ri falls belows 1/3, a value dightly greater than the
commonly accepted critical value Ri=1/4. Other values are assumed sometimes by
different modelers such as Ky/Km=1 was used by Clark (1976) in the mountain gravity

wave experiments. We leave this parameter to be determined in later ssimulations.
3.3.2 The model implementation

In our model the formulations presented in the proceeding section are transformed
into (x,s) coordinates with approximations in the transformation consistent with those
made to obtain the quasi-non-hydrostatic system, that is, the non-hydrostatic contribution
is only retained when the vertical acceleration is concerned and the variables as the
coefficients in the equations are approximated by their reference state values. The

formulae for transformation are

(W )z:const. i (W )s:const. i E fix %
Ll
© E (3.3.20)

and f is any dependent variable. The hydrostatic relation for the reference state gives

p.RT )
dz> - — Sds=- ST ds (3.3.21)

therefore Dz=Ds /S is substituted for in (3.2.15) where Ds isthe grid interval.
The mixing terms of the second order derivatives are rather complicated after the
transformation. We calculate A defined in (3.3.14) at the temperature grid pointsand B at

the vorticity grid points shown as the corners of the grid box in Fig. 2.1. Then

—X — XS
A=du-sdp, /p.du +Sdw
S S

—_X — XS _X
B=dW-sdp,/p, dW -Sdu (3.3.22)
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Coefficient Kiy, isevaluated at the same grid pointsas A. i.e. the temperature grid points,

at which

—XS 2

R=-gsd.q /la (A+B"?%)] (3.3.23)

Here g=ge When >0, i.e. saturation is reached at al points involved in calculation of
static stability, Ky is calculated according to (3.3.15) and K=K n/Pr. Finally the mixing

(diffusion) terms are calculated as follows

—_X — XS XS =X — XS
D,=d (K A)-s(dp /P )d (R A")-Sd (R 'B)

_ — XS -X — XS -5
D,=d (K _B)-s(dp./p)d (K B )+S d(K_A)
(3.3.24)

Note that in a finite difference form, the above formulations are not exactly
conservative since they are not in the flux form. These terms can therefore introduce
spurious source or sink in the interior of model domain. However, in the case where the
diffusion / mixing terms are of secondary importance and the spatial resolution is
reasonably high, this effect should be unnoticable. The fact that the isentropes represent
very well the flow trgjectories in later experiments of e.g. dry mountain waves lends
support to the above argument. Meanwhile, there may be formulations that are more
accurate to be found out.

For the turbulent mixing of heat, we evaluated

E=d g -s(dp/p) dst_qxs (3.3.25)

at u-points and

G=-Fdg (3.3.26)

at w-points. And we refer to H1=Kn E as the horizontal and H3=K G as the vertica

turbulent hesat flux. Then the thermal mixing is

—X =X —q —=XS —
D, = (K E) -s(dp, /) d (K, E)-Sd (K}, G) (3.3.27)
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The mixing terms for water substances are calculated exactly the same as for temperature,

S0 that

Dq:dX(R: E)-s(d,p. /p.) d (R Ey) - sd (K Ga) (3.3.29)

where Eq and Gq are defined for water quantities corresponding to the E and G for
temperature.

As we can see, an average over grid points is frequently required in the above
calculations. If Ky, isevaluated also at the vorticity points, many of these averages can be
removed, but thisis achieved in the cost of more computations. In viewing that these
averages are not necessarily harmful to the solution, we chose to use the current
formulations.

Since the mixing terms are of second order derivatives, boundary conditions are
required for the momentum stress and turbulent fluxes of heat and water quantities. A
proper treatment of these conditions is necessary since the turbulent fluxes are acting
together with the advection terms at the boundary to change the budget of momentum,
heat and water quantitiesin the model domain.

At the top boundary s=0 the momentum stress and heat flux are assumed zero, i.e

o=t

11 's=0 13 's=0

0 _ - 3.3.29
H?. |s:0 H3 |s:0 - O ( )

The same istrue for the fluxes of other scalar quantities.

At the bottom boundary s=1, assume thereis a surface drag which acts to exchange

momentum with the ground surface, then

tpl_, =t bu 2] =0 (3.3.30)

and for the turbulent heat flux, we have

=0 and Hy=H, (3.3.31)
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Herety and Hgyr are either specified or related to other dependent variables. The surface
heat and moisture fluxes have important contributions in problems such as those in
relation to the land/see breeze and boundary layer processes, only that they are not the
main interests of the current research. If no surface drag is included and no heat flux
exists at the surface, then ty=Hg,f=0. The boundary conditions for the moisture flux is
similar to (3.3.31). ty=Hg,f=0 isto be assumed in al of our later experiments.

On the lateral boundaries, velocities outside the boundary are known from the
boundary conditions discussed in Section 2.4.1, the stress terms can therefore be

calculated as usua up to the boundary, but we need to specify

tll |x= - Dx/2 = t11 | x= Dx/2

t11 |x: XL+Dx/2 t11 |x =XL- Dx/2 (3.3.32)

The turbulent fluxes (different from the advective fluxes) of heat and water quantities

through the lateral boundaries are set to zero, at least for our purposes. Therefore

H, |x:0 = Hilexe =0 . (3.3.33)

Furthermore because the forcing function of the elliptic equation for geopotential [
Fg in (2.1.14) ] involves derivatives of even higher order, momentum mixing terms Dy

and Dy are required outside the boundary. The following assumptions are made,

u |s= -Ds/2 - DU |s= Ds/2 ’ DU |s=1+Ds/2 - DU |s=1— Ds/2

DW Ix= - Dx/2 a DW |x= Dx/2 ' DW Ix= XL+Dx/2 DW Ix=XL- Dx/2 (3'3'34)

so that the normal gradient of mixing vanishes at the boundaries. And also the mixing

terms on the boundary is set to equal their values on the immediately interior grid points.

| I D, | I
Wis=0 Wlils=Ds , Wis=1 W ls=1- Ds

Dul Xx=0 = Dul x=Dx ’ Dul x=XL = DU|X=XL- Dx * (3335)
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3.3.3 An alternative formulation of subgrid mixing

In the proceeding sections, we discussed the deformation and Richardson number
dependent formulation of subgrid scale mixing after Lilly (1962). Although it is
comprehensive and can be regarded as a reasonable parameterization of subgrid scale
turbulences, there are circumstances to which this formulation is not best suited.
According to this formulation, very strong mixing will occur in regions of strong shear,
but such mixing might be unwanted for a particular problem. In such cases one may wish
to specify the mixing coefficients to suit his purpose. Therefore we incorporate in this
model as an option another formulation of mixing (to be referred to as formulation two
while the previous one as formulation one), while the second can be considered a reduced
version of the previous one.

The momentum mixing terms in z-coordinates are then

_T
DU_W( mﬂX) ( mﬂZ)
w ﬂX ( m ﬂX ) ( m ﬂZ ) (3.3.36)

and those for scalar quantities are of the same form
_ T
Dq'ﬁ( H‘"X) Z( Hﬂz) (3.3.37)
_T

Here the coefficients Ky, Ky and Kq are usually constant or specified function of
independent variables, and the ratio K /K m, isthe inverse Prandtl number Pr-1 as before.
The formulae for the scalars are unchanged from those of formulation one while
momentum mixing termsin (3.3.36) are the reduced version of (3.3.12) when Ky, is
constant. By this formulation the components of momentum are treated in the mixing
process relatively independent of each other and in away more like scalars are, which

follows the rule of down-gradient transport. This formulation provides only a crude
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representation of subgrid scale turbulent mixing, but it enjoys the simplicity in
computation and offers greater flexibility for numerical experiments. A number of
sensitivity experiments concerning the squall lines were conducted and will be reported in
later chapters.

In this model, formulae (3.3.36)-(3.3.40) are as before transformed into the (x,s)
coordinates and are implemented in largely the same way as those of formulation one.
The same boundary conditions are specified for these mixing terms only that here the

definition of stresstensor is different, e.g. now t ;=K nfu/{z.

3.3.4 Some computational considerations of diffusion / damping

As was pointed out in Section 2.2, the conservative formulation of this model
effectively suppresses the non-linear numerical instability due to wave spectrum aliasing.
In most circumstances such as the simulation of free convection and mountain gravity
waves, the model can be run stably without any artificial diffusion or turbulence mixing
parameterization. However in practice the numerical diffusion is required in order to
remove the roughness that is almost inevitable in numerical solutions (see Fig 3.1, for
example, ripples are produced by the second order finite difference schemes in the
solutions of a ssimple square wave advection, although they are nearly absent in the FCT
solution) as well asto combat with other artifacts of the model such as the false reflection
from the boundary. Such diffusion is either added separately to the model equations or
included in the mixing terms. In fact, the mixing terms also to some extent play a similar
role as the numerical diffusion.

Both formulations imply the mixing on full quantities like momentum, full potential
temperature and specific humidities. The mixing has therefore a tendency to destroy non-
constant fields specified for the ambient or reference state, which in many model
experiments is to be maintained during the time integration. For these reasons, we

incorporate in the the model an option for the mixing to operate either on the full variables
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or the perturbations only, and include an additional term that represents background
diffusion. Thisterm has a same formulation as the mixing term, only that its coefficientis
usually asmall constant, and it always operates on perturbations only.

Let D (y;K) represent amixing term of either formulation given in preceding sections
which operates on variable y with parameter K being the diffusion coefficient, then the

actual diffusion term Dy, in the model is expressed as

By =D (aky+(1-ak)y'; Ky) +D (y'; Kp) (3.3.41)
wherey' isthe deviation of full variabley (being u, v, w, g, g, etc.) from areference
state, ak is a switching parameter which takes value 1 or 0 for mixing on full or
perturbations. Ky isthe coefficient for turbulent mixing while Kg (2 0) is a coefficient for
a background diffusion.

It should be noted that when D  represents momentum mixing of formulation one
[see EQ.(3.3.12)], more than one momentum components are involved in the stress

calculations, and y here then symbolizes several momentum components.

The top of the model is an artificial boundary that reflects wave disturbances
approaching it. The remova of such reflection is essential, especially for problems
concerning gravity waves. An absorbing layer is included near the top boundary, with
enhanced damping gradually increased from a certain height to the top. Two types of
damping are possible, one takes a form of viscous friction whereas the other is in the
form of Rayleigh friction. The friction in both cases is applied in the absorbing layer to
the perturbations of variable and is added to the right hand side of the equations for u, v,
w, d', Qv, Jc and qr.. The damping terms of the viscous friction type before being
transformed into s-coordinates are expressed in agenera form:

|
D—W(K

’ ﬂ)+%(K ﬂ)

0T o1 (3.3.42)

where y' is any of the variables U, v, W', q', dvy, gc and gr while the damping

coefficient profileis specified after Klemp and Lilly (1978) as
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Z-7; )

| - for z £z £ z
Ko = an (3.3.43)

(S otherwise

ap cosz(fz-’

where z is the average height of the top boundary and z,, the height of the bottom of the
absorbing layer. z=F /g and p=3.14159. ap ischosen in the actual simulations so that
the dominant wave modes are absorbed most effectively. Klemp and Lilly (1978)
suggested that, for linear hydrostatic waves, the minimum depth of the absorbing layer is
approximately one vertical wavenumber. In this s-coordinate model the vertical levelsare
stretched with height, the model levels in an absorbing layer of a given depth are
therefore relatively fewer, this makes the model calculation relatively economic.
Alternatively, Rayleigh friction can be used in the absorbing layer (e.g. Clark 1977),

anditisgiven as

D'y =-KRY' (3.3.44)
where the inverse of Kr (/KR) isthe e-folding time of damping. KR is specified to have
asame profileas Kp givenin (3.3.43), only that ap isreplaced be ar.

The viscous friction damps disturbances by redistributing anomalies in the fields,
while maintaining the overall conservation (not exactly on certain irregular grid) and it is
more selective than Rayleigh friction. However the calculation of the former is much
more complicated than that of the latter, especially in transformed coordinates. Moreover,
the Rayleigh friction has the tendency of relaxing the fields back to a given reference
state, and often appears more effective in removing disturbances of whatever scalesin the
solution. In the later experiments, Rayleigh type damping is more frequently used.

Different from the approach of absorbing layer, Klemp and Durran (1983) designed
anew type of radiation upper boundary condition, which determines the pressure at the
upper boundary of a compressible model from the Fourier transformed vertical velocity.

The applicability of such a condition to the current model seems worth exploring.

-75-



Chapter Four

Dry and Moist Flow over 2-D Orography
-Mountain gravity waves and severe downslope winds

In this chapter, a number of problems relating to air flow over two dimensional
mountain ridges are studied, using the numerical model developed in the previous
chapters. In the first two sections, fundamental theories (mainly linear) on mountain
gravity waves are briefly reviewed, this provides the materials for the model verifications
in the next section and the general background towards the understanding of gravity wave
dynamics. Readers who are already familiar with mountain wave problems may skip
these two sections, but may refer back occasionally while reading subsequent text.
Section 4.3 contains a set experiments of mountain waves in various wave regimes
(corresponding to various mountain scales). The results are compared with analytical
solutions presented in section 4.2 and very satisfactory agreement isfound. A hydrostatic
version of the model is also tested. The section that follows is devoted to a further
modeling study of the 11 January 1972 Boulder severe downslope windstorm. The
results of our model simulation are presented after a brief review of existing theories. Our
simulations are extended beyond the time reported in previous studies, and show that the
surface pressure drag triples once more after this time. The resulting flow pattern
suggests strongly that the mechanism of flow transition below a region of wave breaking
as suggested by Smith is the one responsible for the flow acceleration on the lee slope.
Other aspects of the greatly amplified wave system are also addressed. Finally in section

4.5 we describe a series of experiments of dry and moist lee waves based on two

- 76 -



observed soundings. Problems on the formation of lee waves and the effects of moist
condensation on them are studied and a number of informative results are obtained. The

details will be found in the appropriate sections.

4.1 Internal gravity wavesin a stratified rotational flow

In this section, the general solutions of linear internal gravity waves are briefly
reviewed, the application of these solutions to mountain gravity wave problems will be

discussed in next section.
a) The governing equations

The anelastic set of equationsin height coordinates (Ogura and Phillips 1972) is used
on a f-plane to describe the flow in two dimensions, i.e. the perturbations are
independent of coordinate y. The dependent variables are expressed as the sum of the
reference state value and the perturbation part, with the reference state being in
hydrostatic and the thermal wind balance. This set consists of the horizontal and vertical
momentum equations, and the equations for thermodynamics and mass continuity. When

linearized around the reference state with abalanced basic flow U(z), these equations are

written as
- du 1
(; +U :llTD()u+wdz-fv:-r_:|"1§() (4.1.1a)
T 0w +tu=0 (4.1.1b)
qt *Y 1 1.
T .07, _ 1Tp T
Ty ulyw=-=1_" 4.1.1
To Iy =of 2w (4.1.1d)
Tt ' = g 1.
fu fw _ 1dr
5= v (4.1.1¢)
with the basic state satisfying
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y
dp _ -
and @Z- "9
2 _ dinr g, @ dq
where N =-g W"’z)—g—z

isthe Brunt-Vaisalafrequency of the reference state and _CZ:R:I'g, g=Cp/Cy. All variables
are in conventional notation and the over-barred variables represent the reference state
whereas the others represent the deviations from that state. On obtaining the above
eguations, a term representing the contribution from acoustic waves to the density
changes is neglected.

If the Boussinesq approximation is made, the dependence of equations on the density
of the reference state is eliminated. However this approximation is not justified for deep

flows. Thisdifficulty is circumvented by introducing new variables
(UV,W)e (F/ro)¥2 (uv,w)

Po (r/rg)V2p
where r g is the constant density at the ground surface. The sgquare of the transformed
velocity is proportional to the wave kinetic energy. In terms of these new variables

eguationsin (4.1.1) become

- du 19P
(% +U %)U+W5-fv +r0111><:0 (4.1.249)
T 1 _
(gf +U gV +fU=0 (4.1.2b)
T .00 1T ofP_
(‘ﬂt +U 'ﬂx) W + N2W + ; 0(.”Z ) 0 0 (4.1.2¢)
%J,%J,GN:() (4.1.2d)

Equation (4.1.2c) is obtained by combining Egs. (4.1.1c) and ( 4.1.1d) so as to

eliminated r from the system. In the above G % d(lj—nzr isastratification parameter. When
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the Boussinesqg approximation is made, G= 0.

A single equation for vertical velocity W is derived from equationsin (4.1.2) as:

1 — 1 2ﬂ2 ﬂ2 21'[2 2ﬂ2W
T do 1 -1 TwW_
"R 9w Gt R O (@13

This equation, and its variations, will play acentral role in the analysis of free and forced

mountain gravity waves.
b) The dispersion relation

We consider here an atmosphere with a uniform basic flow and stratification, i.e. U,

N2 and Gare al constant. The last term in equation (4.1.3) then disappears. We can then

write one of the Fourier components of the wave solution as

W = Wg expl[i(kx+mz-wt)] (4.1.9)
where k, m are the wavenumbers and w the frequency.
Substitution of the solution into equation (4.1.3) gives us a dispersion relation for

internal gravity wavesin rotating fluid,

(W - UK)2 = [f2(m2+@?) + N2k2]/(k2+m2+GR). (4.1.5)

Various assumptions can be made depending on the relative magnitude of each term to
simplify thisrelation. When considering steady waves in afixed frame of reference, w=0;
when the vertical scale of the waves is much smaller than the density scale height, the
Boussinesq approximation can be made, i.e. m?»@& so that G is neglected; furthermore,
non-rotating, hydrostatic assumptions can be made in appropriate wave regimes.

The phase speed and group velocity can be worked out easily from the dispersion
relation, and they are very useful in understanding the properties of each individual wave
mode. We will not going further into details but the discussions on these can be found in

Gill (1984).
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4.2 Mountain gravity waves
4.2.1 Linear solutions of mountain gravity waves

Mountain gravity waves have attracted much attention because they have both local
and far-reaching effects on the atmospheric flow. Large amplitude waves can produce
severe downslope winds of destructive force, turbulence can be generated as a result of
mountain wave breaking, low-level trapped lee waves can reach considerable amplitudes
and produce spectacular lee wave clouds. The transport of momentum by mountain
waves to high levels and the subsequent feeding of such energy into the atmosphere has
been known to have an important effect on the atmospheric momentum distribution, even
arather crude representation of the drag in association with the mountain wave breaking
hasresulted in noticeable improvement in the performance of general circulation models.
Linear analyses of mountain gravity waves have been carried out by many authors and
excellent reviews were made by Alaka (1960) and Smith (1979). Wewill here give only a
brief account of the most relevant parts of these theories.

Following Queney (1948), we consider a semi-infinite, uniformly stratified
(N2=const.) two dimensional flow with a unperturbed speed of U. The steady state
solution is sought, therefore §/9t=0. In this case equation (4.1.3) reduces to
2

1-[2
@ (Wxx +sz )+ ﬁ

N2
(W, GW) = -G)W,_ =0. (421
An even simpler equation is obtained when f=0, i.e. rotation is negligible, by integrating
equation (4.2.2) with respect to x twice, so that

WXX + sz+ | 2W =0 (422)

where
| 2(2) © N—z - @, (4.2.3)
U2

with | being known as the Scorer parameter for constant flow. This is an important
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parameter which determines whether awave of a particular wavenumber can propagate in
thevertical. Asthe flow at the ground level is required to follow the lower boundary at

z=h(x), the linearized lower boundary condition is written as

— dh
Wx0=U a z=0 (4.2.4)

Since the system is linear, the solution is a Fourier synthesis of the wave components as

givenin equation (4.1.4) (herew=0 for steady waves), i.e.,

¥
W(x,2) = ReOON (k,m) exp[ i (kx+mz) ] dk (4.2.5)
in which the wave amplitude W is determined from lower boundary condition
W (k,m) =W (k) =i Uk h(k) . (4.2.6)
Here ﬁ(k) isthe Fourier transform of the mountain profile h(x),
L ¥
h()== h(x) exp( -ikx) dx. (4.2.7)
P -y

It is moreconvenient to look at the problem in terms of the displacement of the air-

stream due to wave motion. Let h be the streamline displacement, since

fh

W:UW,

(4.2.8)

using equations (4.2.5), (4.2.6), (4.2.7) and (4.2.8), we have the solution:

o2
h(x,z):[F_] Req(k) expli (kxtmz) ] k. (4.2.9)

The dispersion relation (4.1.5) is now written as
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2 (N? - K°T?) K2 + (- TP) @
- K202 - f 2
1A+ T

k2 - 2/ 4%

(4.2.10)

where | 2 is as defined in (4.2.3). This relation can aso be obtained directly by
substituting solution (4.2.5) into equation (4.2.1). The particular case of the solutions of
gravity waves forced by a bell shaped mountain of various horizontal scales will be

examined in section 4.2.3.

4.2.2 Momentum and energy flux in linear mountain waves

We consider here the steady state , non-rotating, waves forced by an isolated

mountain ridges, therefore the wave disturbances would tend to zero as x® ¥ if the
solution is not resonant.

The vertical flux of wave energy is defined as

¥
Fo=(Qpw dx. (4.2.11)
-¥

For non-rotating, steady state flow, the linearized horizontal momentum equation

(4.1.18) becomes

Fpfu,f,dU_ Tp
FUGt Wi = 1 (4.2.12)
¥
By performing integral ¢dx on this equation and making use of the remote conditions
-¥
one obtains
p=F U (u+hU,) (4.2.13)
. . - fh . I . .
inwhichw =U X isused. Substituting thisinto the energy flux yields
¥ ¥
opwdx =-T U guw dx , (4.2.14)
-¥ -¥
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¥
ouw dx (4.2.15)
-¥

-

in which Fm=

is the vertical flux of horizontal momentum. It is clear that in a layer where U is
everywhere positive, the vertical flux of wave energy and of momentum are of opposite
sign, i.e. if wave energy is transferred upwards, the momentum is transferred
downwards. This is actually the case of mountain waves in which the mountain is a
source of wave energy but a sink of wave momentum, the latter is due to the mountain
pressure drag acting on the flow.

At the mountain surface the pressure drag is defined as
¥

D=F 9 p(x,z=h) . (4.2.16)
¥

By using (4.2.13), D can be written as

¥
D=-T guw dx, (4.2.17)
-¥
which is exactly the amount of momentum lost by the flow at the mountain surface.
It is shown by Eliassen and Palm (1961) that the vertical flux of horizontal

momentum is constant with height for linear mountain waves, except at levels where U

=0, this can be expressed as
- ¥ -
I 3uw dx = constant when U? 0.
-y

4.2.3 Flow over a bell shaped mountain in various regimes

It has now become a standard practice (after Queney,1947) to consider a bell-shaped

mountain (Witch of Agnesi) given by

h(X)= hm/(1+x2/22) (4.2.18)

Here hy, isthe height of the mountain and ais a scale parameter, commonly known as the
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half-width of the mountain. This profile has a simple Fourier transform

h(k)=hm eka (4.2.19)
Substituting (4.2.19) into (4.2.9), one can see that parameter kg=1/a represents the
characteristic wavenumber in the solution because waves are rapidly damped when their
wavelength falls shorter than 2p/ko=2pa
For convenience of analysis, the Boussinesq approximation is made in the
following, so that G=0, and the Scorer parameter is | =N/U. Three scale parameters can

beidentified in the system, they are

ks=N/U =1, the Scorer parameter representing the intrinsic vertical scale of the
given flow,
ke = f/U, theinertial scale of theflow, and

ko = 1/a, an external scale given as the half width of the bell-shaped mountain
that determines the characteristic horizontal wave number in the

system.
The dispersion relation (4.2.10) is now simply

2 2.2
m2 (ks - K ) K
T 4.2.20
7 (4.2.20)
If N islarge (typicaly of the order 10-2s'1) relativeto f (~ 10-4s1), five wave regimescan
be distinguished (Queney 1948), they are discussed in the following.

a) Potential Flow Regime

When a«<U/N, then for characteristic wave number k~ko, k»k ook so that m=i\k2- 12
from (4.2.20), here the positive sign is chosen for the sguare root to avoid h® 0 when

Z® ¥ . The solution is then



¥
h(x,2) = [%]1’2 Re (), expl ka- [/ (k™19 z] ok
0

_ [r0]1/2 ha(a+z)
P (a+z)2+x2

(4.2.21)

Thedisturbance in this type of flow is evanescent in vertical and symmetric around
the mountain peak. Stratification has little effect on the flow and the solution is irrota-
tional, like the solution of apotential flow in a homogeneous fluid. No net work is done

by the mountain on the flow, and no energy istransported vertically by the disturbance.
b) Nonhydrostatic Wave Regime

In the case that a~U/N=1/, i.e. ko~Ks, rotational effects are usually small, i.e. k«kp.

Therefore

m =1/l 2-k2 when k2« 2,
and, m = iV k2-12 when k2»| 2. (4.2.22)
Here the signs of the square roots are chosen to ensure wave energy is directed upwards
and be away from the mountain forcing source for the former situation and to remain
finite in the non-propagating case.

The evaluation of the integral (4.2.9) is not straight forward in this case. Queney
(1947) presented the results using the asymptotic properties of Bessel functions whereas
Sawyer (1960) evaluated this by numerical integrations. The far-field characteristics of
the waves were discussed by Smith (1979) by employing the asymptotic techniques of
the stationary phase. The example solution given by Queney (1947) isreproduced here in
Fig.4.1(a), in which a=U/N=1km and hy,=1km. The vertical scale (wavelength) of the

waves are shown in the figure as related to scae parameter U/N to be LS=2pU

/N=6.28km.
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Fig. 4.1. Waves generated by flow with uniform velocity (U=10m/s) of a uniformly

stratified (N=O.Ols'1) fluid over bell-shaped ridges of various half-widths a [form
Queney (1948)]. The mountain profile is given by (4.2.18) and the solutions are
based on linear theory. Case (@) is for a=U/N=1km and typifies the nonhydrostatic
wave regime. Case (b) is for a=10km and typifies the hydrostatic wave regime in
which rotation is not important. Case (c) is for a=U/f=100km and typifies the wave
regime in which rotation is important. The upper part of each diagram shows the
vertical displacements of air particles, i.e., their trgjectories in the vertica plane
normal to the ridge. the dashed lines show where the vertical displacement is zero.
The scale Lg is defined by L=2pU/N and is a good measure of the vertical
wavelength found in all three cases. The scale L is defined by Li=2pU/[f|, wheref is

the Coriolis parameter, which is given the value of 10451 The lower panels of (a)
and (b) show the ground-level pressure and wind variations associated with the
waves. The lower panel of () shows aplan view of the particle trajectory and of an
isobar at ground level. Amplitudes are based on a maximum height of the ridge of
1km.

A distinguishing feature in this solution is the existence of the "trailing waves' at the
upper levels to the lee of the mountain. This is due to the dispersive effect of the
nonhydrostatic wave components. A clear physical interpretation in terms of the group
velocity can be found in Smith (1979). As can be seen the phase lines tilt upstream,
which allows the energy to propagate upwards, but the tilt decreases as we move

downstream for shorter waves. The wave amplitude decreases with the height because of
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the progressive dispersion of wave energy into awider horizontal area.

The ground level wind and pressure are aso shown in the figure. The wind is a
maximum &t the crest of the mountain ridge whereas the pressure has a minimum there.
The asymmetry in the surface pressure indicates a net force asserted on the mountain, the

genera formulation of thisdrag will be given later.
c) Hydrostatic Non-rotational Wave Regime

If a»U/N=1/l, the mountain is broad compared with the intrinsic vertical scale of the
flow, then the flow can be treated as hydrostatic. Given the typical values in the
atmosphere, N=10-2s'1, f=10-4s1 ,U=10m/s, and the mountain half width a=10km, we
have ko«ks, but kg»ks. Thisisthe casein which the horizontal scale islarge for the flow
to be hydrostatic but not large enough for rotation to important. In fact this scale is most
typical of the mountainsin the atmosphere.

In this case we have

m=Kkg=| (4.2.23)
from relation (4.2.21). The sign here is determined for the same reasons as before.
Integral (4.2.9) is readily evaluated in this case for a bell-shaped mountain, which turns

out to be

r 1/2 - i
h(x2) = [ 2] hma"J‘COS‘:'IZZ)+ :ana 9, (4.2.24)

The corresponding vertical and horizontal velocity are

W= U#_: _ [%] UZUhma -2ax cos( 2) - (& - x?) sin(1 2)

()7 (4.2.25)
and
y= 0 Th _op a[g]”z(galthxl ) cos(12) - (xg/ 2RT - al ) sin(1 2)
r 1z mo & + X2
(4.2.26)

Solution (4.2.24) shows clearly that the disturbances have a vertical wavelength of 2p/l |

- 88 -



whilein the horizontal thereis no wave solution and the disturbances decays away from
the mountain peak at arate proportional to 1/k. And due to the scaling by density the
wave amplitude grows infinitely large at high levels as the density of the atmosphere
approaches zero.

Fig.4.1(b) shows an example solution of (4.2.24) with a=10km, U/N=1km and
hm=1km, and with Boussinesgq approximation made. These mountain waves are
hydrostatic and non-dispersive, and have a group velocity component only in the vertical.
They are clearly seen in the picture as purely vertically propagating waves and their
amplitudes fall off quickly up- and down-stream of the mountain peak. The vertica
wavelength is as predicted [see (4.2.24)] LS:ZpU/N =6.28km and wave amplitudes are
constant here without the density scaling (the Boussinesq approximation is made in the
solution shown). The figure of the ground level pressure and wind speed shows min-
imum pressure and maximum wind on the lee slope, indicating a net pressure force acting
on the mountain (or in another word a momentum drag acting on the atmosphere) and
suggesting a possible explanation for strong downslope winds (Klemp and Lilly 1975).

The net pressure force on the mountain is written as
¥

N dh
D= (Qp(x, z=0) 4 dx (4.2.27)
- ¥

which can aso be expressed in terms of the vertical flux of horizontal momentum in the

wave motion,
¥

D=r (2 Quw' dx (4.2.28)
-y

In the hydrostatic wave regime and for a bell-shaped mountain, the drag per unit length of
y-direction is calculated to be

D =} r oNUhn2 (4.2.29)

Thisflux is as seen non-divergent, i.e. constant with height (cf. Eliassen and Palm 1961).
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d) Hydrostatic Rotating Wave Regime

Thisisacase in which a~U/f. i.e. ko~ks, therefore kg«ks. The solution is as before

given by (4.2.9), but with
m = kkg\/K2 - ki2. (4.2.30)

Fig.4.1(c) shows the solution for a=U/f=100km after Queney (1948). The wave
energy is seen to propagate upward and downwind. The vertical scaleis of the order of U
)IN asin the previous cases, whereas the horizontal scale is of the order U/f. The wave
motion is again asymmetric about the mountain peak.

A general formulation of the pressure drag is given in Bretherton (1979), which

takes account of both the rotation and the nonhydrostatic effects,
N/U
N 2 9 2
D=pr_ QINK FLIN*T KT K- )" k. (4231
f/U

The lower and upper bounds of the integral reflect that the contribution comes only from
vertical propagating wave regimes.

In the hydrostatic rotating wave regime,

¥

2,1/2

D =pr NW2& (Y U K- )" exp(-2ka) ck

iU (4.2.32)

In case (b), i.e. for the nonhydrostatic waves,

N/U
D=pr ()Uzhia2 Ok [ (ND)? - K2 12 exp(-2ka) dk
0 (4.2.33)
and clearly in non-rotating hydrostatic wave regime formula (4.2.31) gives the same
result as equation (4.2.29).

The pressure drag given in formulation (4.2.31) is plotted for a bell-shaped mountain
as afunction of the half-width aand is shown in Fig.4.2. The drag is seen to increase as
aincreasesuptoalimit p/4r ONU hm2, the value for hydrostatic waves, it then falls off
with further increasein scale a. i.e. the non-rotating, hydrostatic mountain waves have a

maximum drag, with the other parameters being the same.
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Fig.4.2. Wave drag per unit span in y-direction on a bell-shaped ridge of the form
h=hn1/[1+(x/L)2]. The Brunt-Vaisalafrequency N and flow speed U are uniform and

the Coriolis parameter f is chosen to have a value of 0.01N (Reproduced from Gill
1984).

e) Quasi-geostrophic Flow Regime

When a»U/f, i.e., a~103%km for typical atmospheric values, the solutions are again
evanescent in the vertical. The streamline displacement can be shown to be

ha(a+z)

T (atze)2
(4.2.34)

which isin exactly the same form asthat for the potential flow in case (a), except z there

isreplaced here by zs, where zs° N/[f|. The flow is aso symmetric around the mountain

peak so that the net pressure drag vanishes.

4.3 Model simulations of linear mountain waves and comparison with
analytical solutions
4.3.1 Model set up

The model formulation has been described in the previous chapters (chapter 2 and 3
mainly). Aswas pointed out in chapter one, the reference state of the model atmosphere

isin hydrostatic balance, hence the reference state is, in the absence of baroclinicity, a
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function of pressure only. In thiss-coordinate model, the pressure at as-level isrelated
to surface pressure, which in turn is dependent through the hydrostatic relation on the
(virtual) temperature in the air column directly above. In the presence of irregular
orography, the state variables on s-levels are generally functions of height or pressure.
For our experiments the temperature and humidity variables of the initial (or reference)
state is specified as a function of height z. To initialize the model, the temperature and
humidity are first given an initial guess on the model grid (s-levels) and then iterations
are performed based on the hydrostatic relation until the difference between the values
after two consecutive iterations become negligible. A similar initializing procedure to this
was used by Anthes and Warner (1978) in their hydrostatic s-coordinate model.

Different methods have been used in the literature to set up cross-mountain flow. For
our mountain wave and orographic convection experiments to be described, the initia
flow isdirectly specified as afunction of height, the geopotential height is diagnosed with
al initial time tendencies set to zero. The flow is then allowed to evolve as the time
integration proceeds and such a starting up procedure is found adequate enough, even in
some severe situations (e.g. when the mountain is rather steep) and the initial adjustment

seems to be no slower than that using the 'grow-mountain’ technique.

4.3.2 Model verification with linear mountain waves: Control

experiments

In this section, three control runs of gravity waves forced by a small amplitude bell-
shaped mountain with various horizontal scales are described and detailed comparisons
are made between the model results and the corresponding analytical solutions that have
been discussed in the previous section.

In all of the three runs, the atmosphere is isothermal with T=250K, and a constant
wind of U=20m/s. The Brunt-Vaisala frequency N and parameter G are therefore

constant, given by
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2
N2= 97 G=-9_.
C,T 2RT

In the model runs, we do not make the Boussinesq approximation, but because the
contribution from G is relatively small, we can still compare qualitatively the model
solutions with the example solutions given in section 4.3.1. Table 4.1 summarizes the
parameters of the three control experiments.

Table 4.1 Summary of parameters for the control experiments
of linear mountain wavesin different wave regimes

Experiment| Waveregime Scale alkm)hm(m) (NX,NS) Dx(km) Dt(s) f(sh

LMW1 Non-hydro. 2.0 1.0 (257,41) 04 30 0.0
LMW2 Hydro.,NR 10.0 1.0 (129,41) 20 80 0.0
LMW3 |Rotating,Hydro. 100.0 100 (129,41) 200 25.0 104

The mountain height is chosen so that hp/a«l, the model solutions are therefore
effectively linear. Clearly, for experiment LMW1 d ~1, falU«l; for LMW2 al »1, falU
)«1; and for LMW3 falU~1, a »1, with the given parameter values so that they fall into
the nonhydrostatic, hydrostatic-non-rotating and the rotating hydrostatic wave regimes
respectively, and the characteristic wave patterns were shown previoudly in Fig. 4.1 (a),
(b) and (c).

The solutions for these experiments are rather smooth, the conventional |eapfrog-
centred differencing is accurate enough for the time integration, which is therefore used
here for the temperature equation instead of the more expensive FCT scheme. The model
domain is(NX-1)Dx by 900mb, with the pressure at the top boundary at p=100mb. 41
(NS) levelsare used in vertical with Ds=1.0/(NS-1). The time step for each run is listed
in Table 4.1 and is close to the maximum possible time step under the criterion discussed
in section 2.3.

It is seen from table 4.1 that the relation between the Dt used and Dx is not linear,

with relatively large time step for small Dx. According to the CFL condition [see
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(2.3.12)], the speed of fastest propagating waves in the system is less that 100m/s when
Dx=0.4km, whereas for Dx=20.0km, the corresponding speed is dightly greater than
300m/s whichis roughly the speed of isothermal acoustic waves. These results confirm
the analysis by Miller and White (1984) [(see dso Eq.(1.3.7)] which shows that the
nonhydrostatic Lamb waves are significantly retarded. When the horizontal grid lengthis
large so that the Lamb wave modes are rendered hydrostatic, their speed then approaches
that of the normal sound waves accordingly.

The experiments described includes a weak background diffusion to remove
numerical noise with the deformation and Richardson number dependent diffusion having
no effect since the Richardson number is also large. These experiments also incorporate a
sponge layer from 12km to 18km height with the Rayleigh type damping as described in
section 3.3. The damping coefficient profileis as given in (3.3.38) and the e-folding time
of damping at the top of the sponge layer (z=18km) is 60s, 300s and 3000s respectively
for LMW1, LMW2 and LMWa3. It is found this sponge layer effectively simulates the
radiative upper boundary condition at a reasonable cost.

The fields from the experiments are plotted on a non-dimensiona horizontal scale
(X=x/a) from -5 to 10, and are shown at non-dimensional time that is scaled by the
advectivetime scalea/U. For the display purpose, the fields are multiplied by a certain
factor so that they correspond to the linear solutions for a 500m height mountain, the
mountain profile shown is aso amplified accordingly.

Fig.4.3 depictsthefieldsof u, w, q' and q from LMW1 at several model time. The
waves are forced by a narrow ridge with half width a=2km. The solution in the figures
shows clearly the typical trailing dispersive nonhydrostatic wave trainsto the lee of the
mountain, with larger amplitudes higher up. The time sequence of u and w fields signifies
the propagation of wave energy in the upwards-downstream direction in the cross section,
and the energy flux is clearly convergent at early times until a steady state solution is
reached. The solution at T=30 is quasi-steady, the isentrope fields in Fig.4.3(h) displays

awave pattern agreeing very well with the analytical solution in Fig.4.1(a).
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Fig.4.3. Fields in x-z plane from experiment LMW1. In (&), (c) and (€) are the perturbation x-
velocity u' at non-dimensional time T=tU/a=10, 20 and 30 respectively. In (b), (d) and (f) are the
vertical velocity w at T=10, 20 and 30. In (g) the perturbation potential temperature g and (h) the
total potential temperature q at T=30. Dimensional parameters a=2km, U=20m/s and N» 1051,
thereforea ~1, the flow falls into the nonhydrostatic wave regime. The wave pattern depicted in
(h) can be compared with the analytical solution of streamline displacement in Fig.4.1(a).
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Fig.4.4. As in Fig.4.3 except they are fields for experiment LMW2. In this experiment, the
dimensional parameters a=10km, U=20m/s and N» 10251 hence al»1 while the Coriolis effect is
negligible. The flow is then in the hydrostatic wave regime. The solution shows the mountain
waves are non-dispersive, vertically propagating, with phase lines tilting upstream, and have a
constant vertical wave length of about 6.6km. The isentropes in (h) are to be compared with the
analytical solution in Fig.4.1(b).
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Fig.4.5. Asin Fig.4.3 except (g) isthefield of v, the velocity iny direction and the fields are for
experiment LMW3. The mountain is broad in this case with a=100km, the other parameters are

U=20m/s, N»10"%s1 and f=10"4s"L, hence falU~1, d »1, the waves are in the hydrostatic rotating
regime. Thetrailing inertial wave trains to the lee of mountain ridge are evident in the solution.
Theair trgjectories depicted by (h) are to be compared with Fig.4.1.(c).

-97 -



The solutions of waves in the non-rotating hydrostatic regime from LMW?2 are
shown in Fig.4.4. The waves are seen in the pictures as pure, vertically propagating,
with phase lines tilting upstream. The vertical wavelength is determined from the solution
(see e.g. w field at T=30) to be approximately 6.6km, which is rather close to the
predicted value L=2p/l »6.45km, given the fact that the model does not make the
Boussinesq approximation. The magnitudes of the waves are seen to increase with
height, due to the scaling by density. Such an amplification would eventually induce
wave breaking at very high levels in the real atmosphere therefore affecting the basic
flow. The wave patterns shown in Fig.4.4(h) is to be compared with the streamlines

shown in Fig.4.1(b).

The experiment with rotating hydrostatic mountain waves (LMW3) is shown in
Fig.4.5. The mountain half-width in this case is 100km. Apart from the vertica
propagation of the wave energy as in the pure hydrostatic case, the wave energy is aso
dispersed downstream due to rotation, generating atrailing wave train downstream of the
mountain range. The horizontal wavelength of the inertial oscillation at the downstream

surface are shown in the v-field to be again close to the prediction Ly=2p U/f»1256Km.
The wave amplitude does not increase with height as much as in LMW2 since much of
the wave energy is dispersed downstream. The wave patterns shown by the isentropes in

Fig.4.5(h) qualitatively agree with the analytical solution shown in Fig.4.1(c).

The vertical transport of horizontal momentum by the mountain waves is defined in
Eq.(4.2.17), and its value is given in (4.2.31). The flux is non-divergent in the vertical
for non-dissipating waves as long as the wave amplitudes are small (Eliassen and Palm
1960). We plot in Fig.4.6(a) the profiles of the momentum flux calculated according to
(4.2.17) for LMW?2, at ND-time from 10 to 50 with an interval of 10. The profile of flux
calculated in the same way but using the analytical solution of u and w in Egs.(4.2.25)
and (4.2.26) is aso plotted (in bold) and the average of which over one vertical
wavelength (2p/l) is used to normalize the numerical values afore-mentioned. Using this

averageinstead of that directly given by (4.2.29) (although both values are rather close)
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will focus any possible discrepancy onto the time integration aspects of the model,
without including possible source of error as that due to the Boussinesq approximation
and that in the evaluation of integral (4.2.17). The time sequence of profilesin Fig.4.6a
shows the flux at higher levels gradually converges towards the analytical value, and
reaches about 95% at the height of one vertical wave length (~6.4km) by T=40. A similar
converging rate was reported by Durran and Klemp (1983) in their tests with a
compressible mountain wave model. In summary, the model solution of linear mountain
waves are on the whole very satisfactory, given the fact that the momentum flux is a high

order quantity, and is therefore more sensitive to possible inaccuracies.

Fig. 4.6. The profiles of the vertical flux of horizontal momentum transported by
hydrostatic mountain waves, at ND-time T=10 to 50 with an interval of 10. The fluxes are
normalized by the analytical values shown by the profile in bold. (a) the results from
experiment LMW1, in which the mountain waves in hydrostatic regime are simulated
using the nonhydrostatic version of model. (b) the results from LMW2, which uses the
reduced hydrostatic version of model.

4.3.3 Model verification with linear mountain waves: Sensitivity tests.

a) Direct comparison between analytical and numerical solutions

For the purpose of comparison, the analytical solution of hydrostatic waves over a
bell-shaped mountain given in (4.2.25)-(4.2.26) are calculated on the same grid and using

the same parameters asin LMW?2. The solutions of u' and w are plotted in Fig.4.7 as (a)
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and (b). In the same figure, pictures (c) and (d) are the numerical solutions of u' and w
from LMW?2. The comparison shows the two sets of solution match each other very well,
although the maxima and minima in the numerical solution are slightly underestimated.
The damping of the upward-propagating wave energy due to numerical diffusion is

suspected to be the main source of error.
b) Hydrostatic formulation of model

One of the specia features of this model is that it can be easily switched to its
hydrostatic version. In the hydrostatic case the vertical acceleration is omitted from the
vertical momentum equation which then degenerates to a hydrostatic relation. The elliptic
equation (2.1.10) is then redundant and the F' is calculated directly from the hydrostatic
relation (a ballance between terms two and three on the right hand side of Eq.(2.1.3)). In
doing so, the value of F' at the lower boundary is obtained in the same way as in the
nonhydrostatic version of model, i.e. F' at s=1iscalculated according to Eq.(2.5.15).
For the vertical velocity, S isfirst obtained by integrating the continuity equation inthe s
direction and then w is diagnosed from relation (2.1.9). This procedure of solution is
similar to the one employed in hydrostatic s-coordinate models and is considerably
simpler than that for the nonhydrostatic version. On the other hand, the time step required
by the hydrostatic version of mode! isusually smaller (especially when the grid length is
small) than that required by the nonhydrostatic counterpart because hydrostatic Lamb
wave modes propagate at a normal speed of sound. In hydrostic case, averaging of the
pressure gradient terms in momentum equations over three time levels of integration can
be made which will permit larger time steps. This technique is used by Anthes and
Warner (1978) in their hydrostatic s-coordinate mesoscale model and can be easily
implemented in our model. It is not used here since we are performing only avery limited

number of experiments using the hydrostatic version.
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Fig. 4.7. Fields of u' and w of hydrostatic mountain waves. (a) and (b) are the analytical
solutions given by (4.2.25) and (4.2.26). (c) and (d) are solutions from experiment LMW2,
and (e), (f) for experiment LMWA4.
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Experiment LMW4 (see table 4.2 for list of parameters used) is conducted with all
othersthe same as in LMW2, except the hydrostatic version of model is used. The time
stepis3s. Theu and w fields at time T=30 are shown in Fig.4.7(e), (f). It can be seen
that the difference in the solutions from experiment LMW4 and LMW?2 is very small,
reflecting that the waves themselves are effectively hydrostatic, and the nonhydrostatic

contributions in the model are consistently negligible.

Table 4.2 Summary of parametersin experiments LMW4, LMWS5 and LMW6.
Hydrostatic version of model isused for LMW4 and LMWS5.

Experiment |Wave regime Scale(km) hm(m) (NX,NS) Dx(km) Dt(s) Mode version

LMW4 | Hydro.,NR  10.0 10 (129,41) 20 30 Hydro.
LMWS5  |Non-hydro. 2.0 10 (25741 04 05 Hydro.
LMW6 |Non-hydro. 2.0 500 (257,41) 04 3.0 Non-hydro.

The profiles of the vertical flux of horizontal momentum from LMW4 are plotted in
Fig.4.6 (b), which can be compared with those in the left panel (a) for LMW2. It can be
seen the profiles of both experiments have a similar convergence rate towards the steady
state which has a zero divergence of the horizontal momentum flux in the vertical. The
profiles at T=40 for both runs are almost exactly the same.

However when the hydrostatic version of model is used to simulate waves of smaller
scales, i.e waves which are nonhydrostatic in nature, they are distorted. Shown in
Fig.4.8 arethe u', w, ' and q fields at T=30 from experiment LMWS5, which solves for
the steady state for a flow over a narrow mountain just as in experiment LMW1, but
using the hydrostatic version of model. Mathematically, making the hydrostatic
approximation is to distort the waves by neglecting term k2 (relative to m2) in the
dispersion relation k2+m?2=kg? [deduced from (4.2.19)] so that m=I, which is essentially
the dispersion relation for hydrostatic waves. As aresult the mountain waves given in the

solution are purely vertically propagating. The distortion of the waves are evident in the
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numerical solution in that the dispersive wave trains to the lee side visible in the solution
from nonhydrostatic calculation LMW1 disappear completely, and the wave energy is
forced to propagate completely in vertical, resulting a wave pattern just like that of

hydrostatic mountain waves.

Fig.4.8. Fields of u', w, g and g from experiment LMWS5, at a nearly steady state. The
solutions shown are those of distorted nonhydrostatic mountain waves, due to the use of a
hydrostatic model.

Fig. 4.9 showsthe vertical flux of horizontal momentum as a function of height from
experiments LMW1 (a) and LMWS5 (b). It can be seen that the undistorted nonhydrostatic
mountain waves transport only three quarters of the horizontal momentum in the vertical
(a) asthe equivalent hydrostatic mountain waves do. This result is consistent with the
analytical result depicted in Fig.4.2. On the other hand, the distorted nonhydrostatic
waves transport in an exactly the same way as the hydrostatic waves [compare (b) with

Fig.4.6(a)].
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Fig. 4.9. The profiles of the vertical flux of horizontal momentum transported by
nonhydrostatic mountain waves, at ND-time T=10 to 50 with an interval of 10. The fluxes
are normalized by the that for corresponding hydrostatic waves (shown in bold). (a) the
results from experiment LMW1, which uses the fully nonhydrostatic version of model. (b)
the results from LMW?2, which uses the reduced hydrostatic version of model.

c) Mountain waves of finite amplitudes

Experiment LMW1 isre-run but using a 500m height mountain (named as LMW§6).
With a mountain of such a height, the small amplitude assumption is no longer valid.
However, in case that U and N are constant and the flow is steady, Long (1953) found
that the equation for the streamline displacement is linear in form, which , for a
Boussinesq fluid, is

hyx + hzz+N2/U h =0 (4.3.1)
This equation appears exactly the same asthat for the linear small amplitude wave motion

[see Eq.(4.2.2)]. Nevertheless, the lower boundary condition

h(x,h) = h(x) (4.3.2)
isstill nonlinear and is applied at z=h(x). This gives rise to an implicit relation between
the boundary condition and the interior solution. Long circumvented this problem by

solving (4.3.1) first with a linearized boundary condition and then determine the finite
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amplitude mountain profile by solving (4.3.2) for h. The maximum height the mountain
thus obtained is lower than the prescribed height, implying that the effective forcing by a
mountain in linearized solution is less than the actual nonlinear forcing, i.e. the
linearization of lower boundary condition tends to underestimate the height of mountain.
Fig.4.10 showsfields at time T=30 of u', w, q' and q from LMW&6. The linear solution
isweaker than the corresponding nonlinear one; in fact, the lowest streamline in the linear
solution [see Fig.4.3(h)] cuts through the topography profile, indicating that the air

stream is being forced by a mountain lower than the prescribed one.

Fig.4.10. Fields of u', w, g and g form experiment LMW, at a nearly steady state. The
solutions shown are those of finite-amplitude nonhydrostatic mountain waves.
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4.4 Large amplitude mountain waves and sever e downslope winds

4.4.1 Introduction to severe downslope winds

Severe downslope windstorms are generaly related to particular geophysical
locations. During the occurrence of such events wave disturbancesin an air stream over a
mountain range greatly amplify to produce a downslope flow of damaging force. After
many years of active research in this area, many insights have been gained on the
dynamics of severe downslope winds, but the mechanism of their development is still not
thoroughly understood.

One of the best documented and well studied severe downslope windstorms occurred
over the Continental Divide of the Rocky Range on 11 January 1972, which is know as
the 1972 Boulder Windstorm [Lilly and Zipser (1972), Lilly (1978)]. On this day
Boulder, Colorado, experienced one of its most severe downslope windstorms with
surface winds gusting as high as 55m/s. Two periods of several hours each contained
frequent gusts over 45m/s. Fig. 4.11 [reproduced from Lilly (1978)] shows the isentrope
field and the isopleths of constant horizontal velocity observed by instrumented aircraft
during the course of the windstorm. The isentropes can be considered equivalent to
streamlines as long as dissipation in the wave system is weak. It can be seen clearly from
the isentropes in Fig.4.11(a) that the waves are of enormous amplitude - the vertical
deflection of isentropes is on the order of 3 times of the maximum mountain height! The
oscillating streamlines to the lee of the mountain peak at low levels indicate the presence
of trapped waves that are nonhydrostatic in nature. Fig.4.11(b) shows that the horizontal
wind has a maximum speed of as high as 60m/s located at about 1km above the lee slope,
with the speed on the slope exceeding 50m/s. The picture shows also the presence of a
region of nearly stagnant air directly above the lee slope from mid-troposphere to the
tropopause, this stagnation region is understood to have been caused by the breaking of

greatly amplified waves there.
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Fig. 4.11. (a) Isentrope and (b) horizontal wind field observed for the 11 January
1972 Boulder severe windstorm (after Lilly, 1978). The heavy dashed linein (a) is a
line separating the observations made a few hours apart.
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Many studies have been carried out on this particular event, among them the
numerical smulation performed by Peltier and Clark (1979) is particularly worth noting.
A two dimensional, nonhydrostatic, nonlinear numerical model formulated in terrain-
following coordinates was used in the study. The sounding profile of Grand Junction,
Colorado, about 300km west of Boulder at the time of the event was used as the model
input [as was used by Klemp and Lilly (1975), (1978)], the potential temperature and
wind profiles are depicted in Fig.4.13. The isentrope and u-velocity fields at 8000s of
their time dependent simulation are reproduced here in Fig.4.12, they bear a close
resemblance to the observed fields - the deflection of isentropesis as large as 5km and the
horizontal wind maximum on the lee slopeisin excess of 60m/s. Similar results were
also obtained by Durran and Klemp (1983) using a 2-D compressible model in terrain-

following coordinates.

Fig. 4.12. Results of the nonlinear nonhydrostatic numerical simulation of the Jan. 1972
Boulder severe windstorm from Peltier and Clark (1979). @) Potential temperature contours
(interval 5K) and b) horizontal velocity contours (interval 8m/s) at 8000 seconds of
simulation. The maximum wind in the lee isin excess of 60m/s.

In spite of the considerable success in reproducing such a spectacular event, a full
understanding of the dynamics of severe downslope windsis not a easy task. Klemp and
Lilly (1975) proposed, based on linear analyses of hydrostatic waves, that large

amplitude waves may result from constructive reinforcement of vertically propagating
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modes which are partialy reflected owing to variations of stability and winds of the
ambient flow. Analysis of the optimal structure for a simple, multi-layer atmosphere
emphasize the importance of a low-level stable layer (as that existing in the upstream
sounding of the Boulder storm) and indicated the large amplitude waves are generated
when the phase shift of the waves across the tropopause is close to one half wavelength.
When the sounding profile for the Boulder storm was used as input, a considerably
strong response was predicted. The linear approach has the advantage that it can easily
accommodate realistic sounding profiles, but its validity is obviously limited by the small
amplitude assumption when applied to finite amplitude mountain problems. In fact linear
theory can under certain circumstances seriously under-predict the flow response to
mountain forcing, even when the mountain height is rather low. One of the numerical
experiments of Durran (1986) showed the nonlinear response of an atmosphere with a
two-layered structure was 3 times as strong as that of equivalent linear prediction when

Nhy/U was only 0.3.

Given the enormous amplitude of disturbances that are observed, nonlinearity is
almost certain to have an important roleto play. To explore this aspect, one would either
resort to anumerical model or rely on simplified analytical model like that described by
Long's equation. Klemp and Lilly (1978) first performed nonlinear simulations of the
1972 Boulder windstorm using a hydrostatic model in isentropic coordinates. A large
response was again found in the solution, with maximum surface velocity in the lee
reaching 55m/s. However due to the incapability of the model in dealing with isentrope
overturning, the simulation did not capture the important stage of amplification
subsequent to wave breaking at the tropopause, the wave structure obtained was rather
similar to the linear solution in Klemp and Lilly (1975). The crucial role of wave breaking
was first identified by Peltier and Clark (1979), who showed through nonlinear, time
dependent numerical experiments that, although the surface wave drag is already well in
excess of linear prediction, it is the additional nonlinear effects which occur when the

wave breaks that transforms the wave fields completely and thereby leads to the formation
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of anintense downslope windstorm. The wave breaking occurs in the Boulder case at the
level of the first supercritical overturning of isentropes, specifically at the height z. such
that the integral phase shift between it and the ground is 3p/2 in accordance with the
WKB theory of linear analysis (Zc»11km in this case, i.e. roughly at the height of
tropopause). Peltier and Clark (1979) proposed a mechanism that leads to the
amplification after wavebreaking. Theregion of wave breakdown (where the Richardson
number is small) is thought to act as a self-induced critical level that reflects waves
incident onto it from below, forming a cavity between it and the ground in which wave
disturbances amplify by wave resonance. Clark and Peltier (1984) further explored the
resonance hypothesis by studying numerical solutions of mountain waves propagating in
an ambient flow that has a pre-specified zero wind line. They found the drag induced by
the wave, or in another word the flow response, is a sensitive function of the height of
the imposed critical level, with high-drag states occurring in the vicinity of a discrete set
of preferred values of critical level height. The selective response is explained as the
resonance associated with the total wave reflection from the critical level. This would
leads to linear theory singularities at Z¢m=(1/2+n)p, n=0,1,2,xxx (m being the vertical
wavenumber in the flow beneath Z), if the reflection is from a 'free' constant pressure
boundary with areflection phase shift of p. The experiments of Clark and Peltier (1984)
predicted strong responses at Zgm=3p/2 and 7p/2, but weak response at ZJm=5p/2.
Zm=p/2 was not examined there. The disagreement of the response found for certain Z
implies an objection to the resonance amplification mechanism. The assumptions on how

the waves are reflected also need further justification.

Different from the theory of Klemp and Lilly and that of Clark and Peltier, who all
attribute the amplification process to wave resonance associated with the wave reflection
in one way or another, Smith (1985) explained this based on steady-state solutions to
Long's equation for flow beneath a stagnant well-mixed layer. Smith's results suggested
that amplification is possible over the entire range of critical layer heights between

(1/4+n) to (3/4+n) vertical wavelength [i.e. (L/2+2n)p £ Zdm £ (3/2+2n)p]. To clarify
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this question, Durran and Klemp (1987) performed a set of experiments over a wide
range of parameters and found that the response of the flow to changes in the height of
mountain and in the height of critical level of zero ambient wind were in good agreement
with the nonlinear analytical solution of Smith, but not always consistent with the
resonance mechanism by Peltier and Clark. By comparing Smith's solution with shallow
water theory Durran and Klemp were able to demonstrate that the strong downslope
winds associated with wave overturning are caused by a continuoudly stratified analog to

the transition from subcritical to supercritical flow in the conventiona hydraulic theory.

The theory of Smith and the numerical experiments of Durran and Klemp al
emphasize the essential ingredient of awell mixed region related to wave breaking. Such
wave breaking can either be induced by a pre-existing critical level (environmental critical
level) in the ambient flow or be caused by the supercritical overturning of isentropes
(sdlf-induced critical level) when forced by a mountain whose maximum height is over a
critical value. However, transition from subcritical to supercritical flow can also occur in
the absence of wave breaking, when the atmosphere has a layered structure with higher
stability in the lower layer and lower stability above. Durran (1986) showed that a set of
numerical experimentsin which either the depth of lower layer or the height of mountain
was varied while keeping the others fixed, produced results which were qualitatively
identical to the flow of water over an obstacle. The mechanism of flow transition was
found again analogous to the hydraulic jump theory of shallow water, except the role
played by the surface gravity wavesin the latter case is played by vertically propagating
internal waves in the continuously stratified atmosphere. The layer interface plays an
analogous role as does the free wave surface. The reduction in static stability above the
interface decreasesthe ability of flow in producing a strong enough pressure gradient
force by deflecting the flow interface. When nonlinear advection can not be balanced by
the pressure gradient force, the flow would then continue to accelerate on the downslope
of the mountain, the transition from subcritical to supercritical flow then occurs.

Durran (1986) simulated the 1972 Boulder windstorm using exactly the same
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sounding as Peltier and Clark (1979). Thetime evolution of the simulated event was very
similar to that of Peltier and Clark. Two additional simulations, in one of which the low-
level strong stability layer was removed and in the other the stratosphere stability and
wind speed were replaced with those at the top of troposphere, identified that the
transition from subcritical to supercritical flow at the low-levels in association with the
low-level strong stability layer (see sounding in Fig.4.13) was responsible for the
nonlinear amplification at the initial stage which induced the wave breaking at the
tropopause later on. This amplification mechanism alone was able to produce a surface
pressure drag well in excess of the prediction of linear theory while the amplification
after wavebreaking was explained in terms of Smith's theory, which is again closely
related to the mechanism anal ogous to the hydraulic jump.

In the section to follow, a simulation of the same Boulder storm will be presented,
together with the results of sensitivity experiments. These ssmulations are carried out for
alonger time than those reported by previous authors. A maximum intensity in terms of
the downslope wind speed is believed to have been achieved by the wave system during
the final phase of our simulations. The surface pressure drag is nearly three times of that
at the time when the simulations of previous investigators were terminated (see Fig.4.20
and Fig.4.21). Our simulations suggest that thetime evolution of this severe wind storm
can be divided into four stages, the waves amplify in the first three stages by different
mechanisms until finally the breakdown of the whole wave system occurs due to the on-

setting of Kelvin-Holmholtz type instability.

4.4.2 Numerical simulations of the 11 January Boulder severe

windstorm: Time evolution and mechanism of amplification

The upstream sounding used to initialize the model is the same as that used in Peltier
and Clark (1979). It is the sounding taken at Grand Junction, upstream of Boulder on 11
January 1972. The profiles of the potential temperature and the wind normal to mountain

ridge are plotted in Fig. 4.13, together with the profiles of the Brunt-Vaisalafrequency
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and the Scorer parameter calculated for the given sounding. The atmospheric structure is
characterized by an unusually strong upper tropospheric jet and a relatively weak static
stability, with alayer of high stability (isothermal) sitting just over the mountain peak.
The profile of the Scorer parameter shows a rapid decrease from the ground level
upwards to much smaller values above 4km height, except for an increase in the layer of
strong stability. In an atmosphere with the given structure, short waves can not propagate
to high levels and tend to be trapped at low levels to form lee waves. For longer
hydrostatic mountain waves, this atmosphere will produce a phase shift of 3/4 vertical
wavelength across the depth of troposphere. The first overturning of isentropes or
streamlines will then occur at the tropopause, that is at a height of about 10km above the

ground, provided that the air flow is sufficiently forced at the ground level.

Fig. 4.13. Upstream potential temperature (a) and wind (b) profiles for the 11 Jan.
1972 Boulder windstorm. In(c) and (d) are respectively the Brunt-Vaisala frequency
and the Scorer parameter squared corresponding to the given sounding.
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The control simulation of the Boulder Severe Windstorm is named as SDW1. It uses
193 points in horizontal with grid length Dx=1km, and 41 levels in the vertical with
Psurf=850HPa and piop=30HPa. The 850HPa surface pressure is chosen to roughly
match the ground level pressure to the east of the mountain ridge, the Continental Divide
of the Rocky mountains. The time step Dt used is 4s. Following previous investigators, a
symmetric bell-shaped mountain ( h(x)=hm/[1+(x/a)?] ) with half-width a=10km is used
(the solution should not be very sensitive to the upstream topography profile since the
actua upstream flow below the level of mountain peak is to a certain degree blocked) and
islocated at the centre of the model domain. The maximum mountain height hy, is 2km.
The top of the model domain (30HPa constant pressure surface) is about 22km above the
ground level, from which a sponge layer extends down to 15km height. The Rayleigh
type damping described in section 3.3.4 is employed within this sponge layer, with the
shortest e-folding time of damping being 5 minutes at the top of the domain. A full
formulation of turbulence mixing with the deformation and Richardson number
dependent mixing coefficients is used (see section 3.3). The eddy Prantl number
Pr=Km/Kn isassumed to one where K, and Ky are respectively the mixing coefficient
for momentum and heat. Therefore K=K, and the turbulent mixing is invoked when
the Richardson number falls below one, i.e. when R£1. The starting up procedure of the
model smulation is the same as that used for linear gravity wave experiments described
in section 4.2, that is, the initial state (the temperature and wind) is specified as afunction
of height or pressure based on the hydrostatic relation, and then the model atmosphereis
allowed to evolve from this state. Radiative conditions are applied on the latera

boundaries, together with a mass flux adjustment procedure as described in chapter 2.
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Fig.4.14. The isentrope fields at various time of the model simulations of the 11 Jan.
1972, Boulder severe downslope windstorm.
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Fig.4.15. Asin Fig.4.14, but at later time of the simulation. The fields show a continuous
acceleration of the downslope flow and an increase in the steepness of the flow jump. The
isentrope field at 240 min isto be compared with both the observation (Fig.4.11a) and the

theoretical results of Smith (Fig.4.22).
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Fig.4.16. Thefields of horizontal velocity at various time of the simulation of the Boulder
windstorm.
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Fig.4.17. As in Fig.4.16, but at later time. The fields show the maximum horizontal
winds descend gradually down to the surface and to the foot of the lee Slope, exceeding 72
m/s at 420 minutes.
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Fig. 4.18. The perturbation horizontal velocity (deviation from the upstream) fields. The
pattern (e.g. a 180 min) indicates the presence of interaction between the upward
propagating and the downward reflected wave components (cf. Fig.4.24).
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Fig.4.19. The fields of the vertical velocity. The establishment of the trapped waves below the
breaking tropopause is most evident in these fields.
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Since the turbulence parameterization isin effect only in regions of low Richardson
number, aweak constant background diffusion isfound necessary to remove small scale
roughness in the highly nonlinear flow. This background diffusion, as was discussed
before, operates only on the deviations from the initial state, it therefore helpsto maintain
the ambient flow to a certain extent. The coefficient of background diffusion
K sg=200m?/sis used for control run SDW1.

Unlike inthe previous studies (Peltier and Clark 1979, and Durran 1987), our time
dependent simulation is extended to the point where the waves in the entire troposphere
are amplified to a maximum intensity and start to breakdown; this does not happen until
over 7 hours of model integration. Shown in Fig. 4.14 and 4.15 are the isentrope fields
at various time of simulation, and in Fig. 4.16 and 4.17 are the fields of horizontal
velocity. The deviation of horizontal velocity from its upstream value (U') is contoured in
Fig. 4.18, and the vertical velocity w in Fig. 4.19. The time evolution of the surface
pressure drag [defined in (4.2.17)] is depicted in Fig.4.20, in which the dashed line is
the drag for linear mountain waves evaluated at the surface. The time evolution of the
maximum surface u-velocity is also shown in the same figure.

It will be seen that the evolution of the simulated wave system can be divided into
four phases or stages. They are 1) the initial amplification stage due to low-level flow
trangition, 2) the stage of amplification of the disturbancesin the entire tropospheric flow
following the wave breaking at the tropopause directly over the mountain, 3) the stage of
further amplification until the wave disturbances reach afull strength, together with the
occurrence of successive wave breaking at the tropopause downstream and the formation
of deep trapped lee waves, 4) finally the stage of breakdown of the entire tropospheric
wave system. These stages are cleared reflected in the evolution of both the pressure drag
and maximum wind speed at the surface (Fig. 4.20). The time evolutions of the surface
pressure drag reported by Peltier and Clark (1979) (dashed line) and by Durran (1987)
(solid line) are shown in Fig.4.21. It can be seen that the magnitudes of drag obtained in
three different simulations agree fairly well within the period in which the results from all

thethree are available.
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Fig.4.20. The time evolution of (a) the surface pressure drag (106 kg/s?) and (b) the
maximum horizontal velocity at the surface, for the smulation (LMW1) of the
1971 Boulder windstorm .

Fig.4.21. The time evolution of the surface pressure drag obtained by Peltier and
Clark (dashed line) and by Durran (solid line) in their simulations of the 1971
Boulder windstorm, [picture reproduce from Durran (1987)].

Asisrecognized by Durran (1987), the initial stage of amplification manifestsitself
as the transition from a subcritical to a supercritical state of the flow immediately above
the mountain top level. During this period, the interface between the layer of strong

stability and the layer of weaker stability higher up playsacrucial role. This stage of low
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level flow transition is evident in the flow patterns shown in Fig. 4.14 and covers the
initial 1.5 hours of integration. The flow at lower levels, when passing the mountain
peak, continues to be accelerated downslope to reach a maximum speed 36 m/s at about
one third the maximum mountain height (see u field at t=90mins in Fig. 4.16). This state
isin fact established rather quickly (whin the initial one hour) and the resultant surface
pressure drag is nearly three times that of linear waves. The flow amplification at the low
levelsis very important, it is this process that provides the necessary low level forcing
that isrequired to induce the wave breaking at the tropopause (note that the vertical flux
of wave energy is proportional to the pressure drag / momentum flux at the surface, this
was discussed in section 4.2.2). Negative values of u-velocity have appeared by 90
minutes over the mountain peak at about 10km height, correspondingly the isentropes
display aflow overturning at that level. Durran (1987) has shown that this upper-level
flow overturning can not occur if the strong stability layer at the lower levelsis removed.
Initially the vertical velocity maximum is associated with the low level flow jump, but at
90 minutesiit is shifted to 8km height level to be related to the deepening waves there.

By 120 minutes, the flow has changed into another flow regime (stage two of the
development) in which the entire air stream beneath the expanding wave breaking region
starts to accelerate over the lee slope of the mountain. The role played by the flow
interface in connection with the low level flow transition now gives place to the one
between the well-mixed air at the upper levels and the laminar flow underneath it. The
change in the low level flow pattern is particularly evident by comparing the u-field at
t=90 and t=120 minutes. The change is signified by the disappearance at t=120mins of
the flow transition on the lee slope and the shift in position of the maximum surface wind
(Figs. 4.16d and 4.18b), which is now at about 2/3 the height of the mountain peak,
rather than the 1/3 at 90mins.

Fig. 4.20 shows that the wind and pressure drag at the surface increase rapidly
during the first half of the second stage (from 90mins to 240mins). They reach their local

peak values at about 3 hours and then level off dlightly to a temporary minimum at 4
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hours, indicting the point where the the third amplification phase begins. The time
dependence of the surface pressure drag as well as its magnitude predicted by our model
during the early stages agrees very well with both the result of Peltier and Clark (1979)
and that of Durran and Klemp (1983). The former a so recognized the different stages of
development, only they offered a different explanation. However the simulations
described in both papers all stopped at about 2.5 hours of integration, presumably under
the assumption that a maximum amplitude had been reached by the wave system. Our
extended simulation shows clearly that the wave system at thetime of 2.5 hours is far
from being mature, i.e. being at its maximum amplitude. In fact, the wave drag triples
once more during the following 5 hours of development, reaching a value that is one
order of magnitude greater than that of linear mountain waves (3.8 106 kg/s? versus
3.04" 10° kg/s?). This value is however very close to the drag (4.136° 106 kg/s?)
obtained by Smith (1985) for the nonlinear solution to Long's equation depicted in
Fig.4.22.

As was discussed in the earlier introduction, Smith's theory based on Long's
equation explains the severe downslope winds as a result of the flow transition to a
supercritical state in the presence of awell mixed stagnant region. It will be seen that this
mechanism is well supported by our numerical simulations. During stage three of the
development in simulation SDW1 which covers approximately the period from hour 4 to
7, the surface wind and pressure drag exhibit a linear increase with time. The isentropes
over the mountain are increasingly deflected downwards - the one originating at 10 km
height is now as low as 4 km above ground level. The entire tropospheric air is now
channelled into the layer of less than 4 km deep, and is accelerated right down to the
mountain foot at the end of this development phase. The flow pattern depicted by the
isentropes at t=420mins can be compared with the nonlinear solution of Smith in Fig.
4.22. The resemblance between them in the transition part of the flow is striking although
the hydrolic jump is not present in Smith's solution. The limitations of Smith's solution
will be discussed later. Our solution shows that while the surface supercritical flow

pushed its way ahead towards the mountain foot, the jumping flow becomes increasingly
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upright and the vertical velocity inside the jump also increases greatly, which implies that
the isentropes become more and more vertically oriented and the wind shear is getting
stronger. As aresult the dynamical stability in the jJump flow is significantly reduced. The
onset of the dynamical instability is evident already at t=390 as shown in the isentrope
fields, and is even more clear at t=450. The slope of isentropes in the jump flow has a
direct relevance to the low level flow too, since as soon as the overturning of these
isentropes occurs, the hydrostatic pressure gradient associated with the sloping isentropes
vanishes. The resulting situation is then obvious - the deep wave system quickly breaks
down as the flow becomes convective unstable, and this is what happened after 450mins
in the model smulation. Fig. 4.20 shows a even more rapid increase in the maximum
surface wind speed after 420mins whereas the increase in the pressure drag slows down.
Therefore we call the period after 420mins a fina stage of wave breakdown. The
maximum surface wind speed at the end of stage three is about 80m/s, again very close to

the value in Smith's solution (83m/s, see Fig.4.22).

Fig. 4.22. Nonlinear steady state solution to Long's equations obtained by Smith
(1985) for acase in which U=20m/s, N=0.01s'1,h;;=1km. The solution shows the
air flow beneath a well mixed region transitions from a subcritical flow to
supercritical flow across the mountain ridge, such that the flow continues to
accelerate greatly downslope to reach a maximum speed at the mountain foot.
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Smith's theory also has certain limitations. It does not give us the time evolution of
theamplification processes, nor does it predict the behaviour of the supercritical flow
downstream. The nonhydrostatic effects are not taken into account either in Smith's
theory, which in reality may cause a significant amount of wave energy dispersion away
from the mountain forcing. Our simulation has shown that the flow jump does occur and
it occurs rather quickly, typically before the downslope flow reaches the foot of
mountain. In contrast to the case in which the flow transition is caused by an uniform
flow interface at agiven level (e.g. the case of shallow water or layered atmosphere), the
position of the flow jump is closely linked to or interlocked with the right edge of the
upper level wavebreaking region - the low level flow acceleration stops at the point where
the hydrostatic pressure gradient force produced by the upper level flow interface
reverses direction. As aresult, the jump is seen to migrate gradually down slope toward
the mountain foot as the area of upper level wave breaking progressively expands. A
series of waves are indeed triggered downstream by the jump flow, and the amplification
of them induces further wave breaking at the tropopause, which turn the tropopause into
an effective reflecting lid. A resonant wave train then forms between the tropopause and
the ground, which clearly has a tendency of propagating infinitely downstream. This
implies a considerable amount of wave energy is being transported downstream by these
waves, essentially through nonhydrostatic dispersion. The relative importance of its
impact on the flow amplification on the lee slope, however, still needs quantifying before
athorough understanding is obtained.

On the other hand, the simulated disturbances can also to a certain degree be
interpreted in terms of the internal gravity waves that develop in a spatially varying
medium - a flow that has spatial variations in speed and stratification, and may also
contain critical lines away from which the impinging waves will be reflected. The areas of
waves breaking in the smulated system form such aline of reflection, which is called by
Peltier and Clark the self-induced critical line. The ray-tracing techniqueis very helpful in

understanding the behaviour of waves in such avarying medium.
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The propagation of the wave energy and the reflection of the energy at the reflection
level are schematicaly illustrated in Fig.4.23. In the figure, Cgx and Cgy represent the

horizontal and vertical component of the group velocity respectively.

When the waveisinitiated at the mountain forcing source (x=0, z=0 in the figure), it
propagates in both the vertical and the horizontal direction. The latter occurs because of
the nonhydrostatic effects. As the wave propagates upwards into a region of well mixed
air where both the static stability and the flow speed are nearly zero, it can no longer
propagate further upwards and is reflected downwards. Assume the horizontal group
velocity islittle changed during the process while the vertical group velocity decreases
gradually as the wave approaches the reflection level, the energy ray of the wave can then
be sketched as in Fig.4.23. When the reflected wave hits the ground, it is reflected
upwards again. If the wave energy islittle lost in the reflective processes, it will carry on

propagating downstream between the cavity formed between the ground and the

reflection level.
_ Refl ection
z=L¢ | evel
Z
z=0 G ound | evel

x=0 ¢

Fig. 4.23. A schematic illustration of the ray of energy showing the propagation of
nonhydrostatic gravity waves in an atmosphere containing areflective line.

The downstream propagation of the wave energy in the way illustrated above is
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evident in the model solution (e.g. the u, or U, w and q fields at t=420mins). This
process on the one hand would cause leakage of wave energy downstream of the
mountain, presumably slowing down the amplification of the disturbances on the
mountain slope; on the other hand, the interaction between the upward and downward
waves can cause enhancement or cancellation of disturbancesin certain regions.

The positive and negative anomaliesin the field of horizontal velocity perturbation u'
(seeu field at t=180mins in Fig.4.18) show clear evidence of the interactions (or wave
interference). The presence of downward fluxes of wave energy is also implied by the
downstream titling of phase lines indicated by the positive anomaliesin the w fields. To
further demonstrate the presence of such wave interactions in the model solutions, we
construct a field by super-positioning two solutions of the hydrostatic mountain waves
propagating in opposite directions. It is written as [see the hydrostatic mountain wave
solutions in (4.2.25) and (4.2.26), and they are given in the following in a
nondimensiona space; x is scaled by mountain half width a, z by vertical wavelength L,
u' scaled by Uhpaand w by Nhpal,

. (x%q) coS(2p2)+sin(2p2)  (x-Xp) 0S[2p(z-2)] +Sin[2p(z-2)]
u=u +ru= +r
1+(X-X1)? 1+(X-X,)?
(4.4.1)
and
. 2(xx) cos(2pz) + [1-(x-x,)’] Sin(2p2)
W=W +rw =-
[1+(x-x)7°
2(x-X,) cos] 2p( ze- 2)] + [1 - (x-x,)?] Sin[ 2p( 2, - 2)]

- (4.4.2)

[1+(x-x)%]?
where z. is the height at which the upward propagating waves are reflected.
ut, wt and u-, w- are respectively the solutions of the upward and downward
propagating hydrostatic gravity waves centred at x=X1 or X2, where x1 and x2 are constant
horizontal coordinates. In order to mimic the dispersive effects that are not included in the

simple hydrostatic solutions, we modify the solutions by shifting the horizontal
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coordinates x1 and X2, so asto reflect the bending of energy ray in the varying medium. A
parabolic trgjectory of energy ray is assumed, therefore
x1=d[1-V1-2z/zc], xp=d[1+V1-2z/zc].

Where 2d is equa to the distance between the two branches of energy ray at ground level
(seetheillustration in Fig.4.23), and r is the reflection index. The origin of the frame of
reference islocated at the centre of the mountain base line.

Choosing the level of the reflection at z=3/4, i.e. a a height of three quarters the
vertical wavelength, the downstream shift distance 2d=2.0, and assuming the reflection

index r=1, we plot the constructed fields of uand w in Fig.4.24.

Fig.4.24. The constructed wave fields. (a) horizontal velocity given by (4.4.1) and
(b) the vertical velocity given by (4.4.2).

The wave pattern in the constructed solution fits nicely with the pattern in the model
solution (e.g. the u' and w fields at t=180mins), in particular at the lower levels. The
solutions near the reflection level can not be expected to compare much better, since the
waves there in the model solution are already broken. Particularly worth noticing in the
constructed solutions are the large anomalies directly over the mountain lee slope, which
closely resembles those in the the model solution. It istherefore suggested that before the

wave disturbances attain alarge amplitude, the mechanism of the critical layer reflection
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and resonant growth advocated by Peltier and Clark does seem to be feasible, but when
the wave amplitude is very large, it becomes hard to interpret the solution in terms of
linear arguments. Since the basic state would have been greatly modified by the wave
disturbances the linear arguments have only local meaning by then. The effect of the
downward wave energy fluxeson the downslope winds is difficult to generalize. In fact
at time t=240mins of the model simulation, the downward energy fluxes are at a peak in
association with the appearance of the first secondary wave breaking at the tropopause
(comparetheq and u' fields at 240mins to those 180mins), the corresponding vertical
velocity perturbation is however weaker than at t=180mins, the surface pressure drag and
wind speed are also at a minimum at this time, indicating the wave disturbances on the
downslope are weakened rather than enhanced by the downward wave energy fluxes.
The curve of the surface maximum wind in Fig.4.20 shows two more nearly periodic
oscillations at later times, these seemsto be also related to the wave interactions between
the upward and downward components. But at the later times, the contributions from
them are no longer large enough as to alter the trend of the downs ope wind amplification.
In summary, the 11 January 1972 Boulder severe downslope windstorm is smulated
using a nonhydrostatic sigma-coordinate model. The initial development agrees
remarkably well with the results of previous investigators. Moreover, our simulation is
extended to the stages of flow development that are beyond the effective influence of the
explicit downward reflected waves. It is these further results that demonstrate to a full
extent the mechanism of flow amplification. The amplification is clearly seen as the result
of the fully nonlinear transition of the flow in the entire troposphere, from a subcritical
state into a supercritical state after a well mixed stagnant region is produced by
wavebreaking. Thefinal flow pattern isvery similar to the steady state solution of Smith
(1985) and is very close to the observed pattern too. The downslope flow exhibited a
tendency of continuous acceleration until it reached the mountain foot. The model
simulations ended with the onset of a dynamical instability in the entire wave system and
consequently the violation to the CFL condition. The maximum surface wave speed at the

ending phase was as high as 80m/s which is obviously higher than the observed value.
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This is most probably due to the absence of a proper parameterization of the surface
frictional drag. Had such a parameterization been included, a steady state may be obtained
when there is a balance between the flow acceleration and the surface friction. The
possible unsteadiness of the upstream flow may also be part of the reasons that the
observed downs ope winds were weaker than the ssmulated ones.

The interaction between the primary upward propagating mountain waves and the
downward reflected components is also evident in the numerical solution. However due
to the presence of strong nonlinearity and the significant changes in the basic conditions
by these large amplitude wave disturbances, the role of the interaction israther difficult to
generalize. We would rather consider this to be of only secondary importance to the
development of the severe downslope winds, especialy at the later stages.

A number of sensitivity experiments were also carried out. They include increasing
the gpatia resolution, decreasing the integration time step, re-positioning the lateral
boundaries relative to the mountain, altering the top boundary pressure or reducing the
background diffusion. None of these was found to produce fundamental changes to the
overal time evolution of the windstorm. Four stages of development are well simulated
in all of these experiments, though the timing of the development may vary slightly, due
to e.g. the change in the amount of background diffusion present. These results lead usto
aconclusion that the development of the severe downslope wind is adeterministicfeature

of the given upstream sounding.
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4.5 Trapped mountain waves: Dry and moist |ee waves
4.5.1 Introduction to trapped lee waves

Mountain lee waves are gravity waves that are trapped in the low levels due to the
variationsin the vertical atmospheric structure (wind and/or stratification). Asitiseasier
for longer waves to propagate verticaly, these trapped waves are generally of smaller
scales and are mostly nonhydrostatic. The problem of mountain lee waves has been a
subject of extensive studies for many years. According to linear theory, the character of
the mountain gravity waves are principally governed by the size and shape of the

mountain, and the Scorer parameter

N2 U
2_ _ 77
2= 00" (4.5.1)

Here N is the Brunt-Vaisala frequency, and U is the mean cross mountain wind speed.
As was discussed in section 4.2, the Scorer parameter determines the maximum
horizontal wavelength at which steady linear gravity waves can propagate in the vertical.
Scorer (1949) found that if | decreases with height, there will be arange of wavenumbers
over which standing gravity waves can have wavy solutions in the vertical only near the
ground. If this decrease is abrupt and sufficiently large, one or more resonant waves can
develop in the lower atmosphere. These waves - called trapped lee waves, can propagate
infinitely far downstream of the ridge. In the absence of friction, they can produce strong
rotors and destructive winds along the lee slope of the ridge. In a moist atmosphere,
cloud streets can form due to the wave motion, and unstable convection can aso be

triggered by these waves, some times at places far downstream of the mountain forcing.

The simplest structure of atmosphere that supports trapped waves consists of two
layers, with the Scorer parameter | being constant in each one. In his classical paper on
lee waves, Scorer (1949) provided the solution of the resonant (trapped) waves in such a
two-layered atmosphere together with the conditions for such a solution to exist. Let |1

and | be the Scorer parameter in the upper and lower layer respectively and H the depth
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of the lower layer. Scorer showed the linear resonant waves can exist in the lower layer

whenever

112 - 1523 p2/4H2, (45.2)
Thisisthe condition that non-trivial solutions of the linear equations of motion exist with
homogeneous boundary conditions. This condition is obviously more easy to satisfy with
alarge difference of Scorer parameter in the two layers and with a deeper low layer.

The resonant horizontal wavenumber k satisfies equation
Tan(l 1H) =111/ 2, (4.5.2)

Where =112 - k2, 1 o=\/122 - k2.
When the lower layer is sufficiently deep, multiple solutions to (4.5.2) may exist that
correspond to different horizontal wavenumbers. Scorer showed that in such a case the
longest wave number will dominate the solution.

For aflow over a2-D bell-shaped ridge given by h(x)=hpy/[1+(x/a)4], the streamline
displacement due to a single Fourier component of the mountain waves is given by

Scorer as

U(0)
U(2)

h(2)=- 2phmae kat 2 Y k(z)/Wﬂ—'f((O) sin(kx) (4.5.4)

where U(2) is the mean horizontal wind speed, and function Y (z) satisfies equation

T2Y 192z + (12 - K2) = 0.

Clearly the waves amplitude depends on several factors such as the mountain height
and width, the stratification and mean flow speed. The relative importance of the these
factors were discussed by Corby and Wallington (1956) in terms of the maximum vertical

velocity in the lee waves developed in atwo layer atmosphere.

In most situations, qualitative understanding can be obtained on the devel opment of
lee waves based on the above linear theory. However realistic atmospheric structures are

usually much more complicated, the effects of nonlinearity and moisture condensation can
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not be easily included in the analytical models. Durran and Klemp (1982) studied the
effects of moisture on trapped mountain waves using a numerical model. They found that
the moisture affects the behaviour of lee waves mainly by changing the effective static
stability so asto change the trapping condition of the atmosphere. Lee waves can aso be
destroyed through the destabilization in the process of condensation.

Lee waves and the associated |ee wave clouds are very common phenomena in the
western mountainous areas of the British Isles. Distinct cloud patterns prevailing
hundreds of kilometres downstream of certain mountain ridges are frequently observed
from satellite pictures. Two of such cases are selected for our modeling studies. The
satellite pictures showing the lee wave cloud patterns of these two cases are displayed in
Fig.4.25. The time and dates for the cases are respectively the 14:34 GMT, 20 April
1984 (Case A) and 13:37 GMT, 8 March 1985 (Case B).

In both cases, the satellite pictures display very clear wavy cloud patterns covering
almost the whole of Ireland and Scotland. The cloud streets lie roughly NW to SW, while
the prevailing winds at the time were mainly southwesterlies, normal to the observed
cloud streets. Furthermore, both pictures show clear-cut edges of the wavy clouds,
coincident with the west and southwest coast of Ireland, indicating that the moist,
maritime air flow was being forced by the hills along the coast. Short waves formed in
the low-level stable layer are trapped and propagate to the lee of these hills, and are
presumably reinforced by the hills further downstream.

The atmospheric conditions at the corresponding time are represented by the
sounding profiles taken at 127, 20/4/84, Vaentiaand 127, 8/3/85 Vaentia (as marked in
the pictures) respectively for the two cases. The dlightly modified version of these sound-
ingsisgivenin Fig.4.26 and Fig.4.27. The presence of alow-level stable layer is a com-
mon feature of these soundings. In Case A, the stable layer extends to the ground sur-
face, whilein Case B the layer of avery strong stability (an inversion in fact) is located
above awell mixed surface boundary layer. The atmosphere above these stable layers has

amuch weaker stratification, the q profiles arein fact close to the moist adiabats.
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Fig.4.25. The visible satellite images showing the lee wave patterns over the
British Isles at (a) 14:34 GMT, 20 April 1984, and (b) 13:37, 8 March 1985.
Numerical experiments of lee waves will be presented which use the 127 soundings
of the Valentia upper air station (marked by bold cross in the map) to specify the
environmental conditions.

-135-



Fig.4.26. Vertical profiles of (a) the potential and equivalent potential temperature,
(b) the cross mountain wind speed (c) the Brunt-Vaisala frequency, and (d) the Scorer
parameter, derived from the 127, 20/4/84, Valentia sounding for Case A.

The profiles of the Scorer parameter are plotted in picture (d) of each figure. For Case A,
the Scorer parameter decreases amost linearly from the ground level upwards and
remainsroughly at a small constant value between 4 to 10 km height. Fig.4.27d shows
for Case B a large value of Scorer parameter in a shallow layer between 1 to 2 km
height., corresponding to a layer of strong inversion there, but above and below this
layer the parameter is much smaller. In this case, the short waves will be expected to be
confined mainly to the inversion layer - which essentially acts as an effective wave guide!
In the following sections, the numerical experiments with the given atmospheric

conditions will be presented.
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Fig.4.27. As in Fig.4.26, but they are derived from the 127, 8/3/85 Valentia
sounding for Case B.

4.5.2 Case A: Lee wave experiments with the 20/4/84, Valentia upper

air sounding

a) Dry and moist lee waves forced by a single ridge

The potential temperature and wind profiles derived from the 20/4/84, Valentia
sounding shown in Fig.4.26 are used to initialize the model atmosphere, in order to
simulate the lee waves that occurred on that day over the western parts of the British Isle.
But due to the lack of detailed observations, we do not attempt to simulate every aspects
of the actual waves, rather we use only idealized (the bell-shaped) mountain profiles
while directing our attention to the genera lee wave dynamics as to the effects of moisture
condensation and the mountain size, etc. on the lee wave development. Table 4.3

provides alist of experiments to be described in this subsection.
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Table 4.3 Lee Wave Experiments (LWE) with the sounding of Case A

Experiment | Mountain Scale(km) Height(km)  (NX,NS) Dx(km) Dt(s) Dry/Moist

LWE1A 3.0 05 (257,41) 05 40  Dry
LWE1B " " " " " Moig
LWE2A " 1.0 " " " Dry
LWE2B " " " " " Moig

Other parameters used are Pgyf=1013.25HPa, Piop=100HPa. The upper sponge
layer isfrom 12 to 16 km height. In the moist runs, only cloud water is included and is
kept inthe flow while it is advected, the condensation is therefore reversible. The Flux-
Corrected Transport schemeis used only to advect the cloud water. A weak background
diffusion is included and the coefficient is 1.0 m?/s for the lower mountain runs, and
10.0 m?/s for the higher mountain runs. The deformation and Richardson number
dependent turbulence mixing will be switched on where appropriate.

Thefields of the vertical velocity w and the isentropes at t=60mins and 180mins of
the dry lee wave experiment LWELA are shown in Fig.4.28. The smulated waves are
mostly trapped in the lower 4 km layer, in which the Scorer parameter is large but
decreases rapidly with height. The wave disturbances are seen to propagate gradualy
downstream with time to establish a steady, regularly spaced lee wave pattern. The
horizontal wavelengthis about 12.57 km, corresponding to a wavenumber of k=0.50
kmrl, This wavenumber is between the value of | at z=0 km (I =1.12 km'1) and that at
z=4km (1 =0.38 km-1), consistent with the prediction of Scorer's theory in the case of a
two-layered atmosphere. The vertical velocity maximaare at about 2.5 km height, that is
roughly at the top of the low-level stable layer. The wave disturbances decay almost
exponentially above thislevel of maxima. The magnitude of the vertical velocity is about
3m/sand is nearly constant all the way downstream, indicating there is little energy lose

in the trapping layer.
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Fig.4.28. Fields of vertical velocity w (a),(c), and of isentropes (b),(d) obtained in
lee wave experiment LWELA, at 60 and 180 minutes of model simulation.

Fig.4.29. Fields of vertical velocity w (a) and of isentropes (b) at 180mins of the
lee wave experiment LWE1B (the moist run of LWE1A).

Given the half-width of the ridge of 3km, the dominant wavenumbers forced by the
ridge are around k=1/a»0.33 kmr1. This value is lower than the Scorer parameter in the
mid-levels, therefore a considerable number of wave components can propagate into high

levels. The longer propagating waves are readily visible directly over the ridge in the
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model solution (see e.g. thew field at t=180 mins).

According to Scorer's linear theory, the wavelength of the trapped waves are solely
determined by the vertical structure of the atmosphere. The role of the mountain is to
provide a sufficient forcing of the trapped wave components. This suggests that ridges of
smaller scales can be more effective in generating lee waves than broad smooth
mountains, athough the latter can be rather high. This also lends support to our use of a
very simple mountain profile in our lee wave smulations. Finally we can see the
simulated wave pattern and the wavel ength agree rather well with those shown by the lee
wave clouds in the satellite picture.

In experiment LWE1A, the mountain ridge is not high relative to the vertical scale
height of the flow. The Froude number Fr=hyl ranges from 0.19 to 0.56 in the
troposphere, with the higher values at the lower levels. Therefore wave overturning
would not occur within the troposphere.

In experiment LWE2A, a higher mountain with h,n=1km isused. Thew and q fields
at t=180mins are shown in Fig.4.31 (the mountain in now placed at 48 km from the | eft
boundary). Compared with the corresponding fields of LWEI1A in Fig.4.28, the wave
amplitudes are dightly more than doubled in LWE2A, with the maximum vertical velocity
being still a the same level. The Froude number in this case is higher than the critical
value for overturning in the low-level flow, but this stable layer is not deep enough for
the wave overturning to occur within it. The overturning would aso not occur in the
upper troposphere where the Froude number is much lower. The crests of the trapped
waves are no longer evenly spaced in the model solution, thisis most probably due to the
interaction between the trapped waves and the longer, propagating waves higher up. The
average wavelength of the lee waves is about 13.6 km, longer than that obtained in
LWEZ1A, this difference can be attributed to the nonlinear effects. On the whole, the wave
patterns obtained in experiments LWE1A and LWE2A are qualitatively similar,

irrespective of the difference in the wave amplitudes.
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In experiments LWE1B and LWE2B, the effect of moisture condensation is
included. Theinitia relative humidity profile derived from the corresponding sounding is
plotted in Fig.4.30. The relative humidity is rather high at the low levels, actudly it is
more than 95% in the lower 2km layer. Because of the low temperature in the layer, the
absolute moisture content is however not high. The maximum specific humidity is only
7.69/kg. The equivalent potential temperature ge calculated for this atmosphere was given
in Fig.4.26(a). Because most of the atmosphere remains unsaturated during the model

run, gewill not be effective in determining the static stability in most areas.

Fig.4.30. Theinitial profile of relative humidity (Case A) for experiments LWE1B
and LWE2B

Fig.4.31. Fields of (@) the vertical velocity w and (b) the isentropes obtained in lee
wave experiment LWE2A, at 180 minutes of model simulation.
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Fig.4.32. Asin Fig.4.31, but for experiment LWE2B, the moist run of LWE2A.

The smulated fields of vertical velocity w and the potential temperature q at
t=180mins are shown in Fig.4.29 for experiment LWE1B and Fig.4.32 for LWEZ2B. In
both cases, cloud rolls are seen to form in the wave crests, where the lifting is largest in
association with the low-lever convergence. These areas coincide with the lines of
minimum vertical motion. In both runs, the average wavelength of the lee waves is
dightly longer than that in the corresponding dry run, and the magnitudes of the vertical
velocities are reduced, especialy in the cases of the higher mountain in which more
moisture is condensed (maximum dc is 2.0g/kg in LWE2B but only 0.8g/kg in LWE1B).
Theincrease in wavel ength and decrease in the magnitude of the vertical velocity can be
explained in terms of the reduction of the effective static stability in the saturated areas.
However, due to the limited amount of moisture present, the modification by the moisture
condensation is only quantitative rather than qualitative, for the particular sounding used.
In other words, in the real atmosphere, the clouds associated with the lee waves observed

on the 20/4/84, are actually the products rather than the initiator of the lee waves.

b) Interaction between waves produced by two separate ridges

In realistic situations, topography seldom consists of a single isolated ridge. There

may exists a number of mountain ridges of varying size in the direction of prevailing
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winds. However the cloud patterns observed from the satellite are frequently very regular
and persistent, following the initial setting up at the leading edge of the cloud covered
mountainous area. To understand the interaction between the waves produced by
different mountain ridges, we performed a series of experiments in which two bell-
shaped ridges of equal size are placed at different distances from each other. The
experiment setting is basically the same asthat for LWE1A, and a list of the experiments

isgivenin table 4.4.

Table 4.4. Dry lee wave experiments with two separate bell-shaped
ridges, at different distances from each other

Experiment | Mountain Scale(km) Height(km) — (NX,NS) Dx(km) Dt(s) Ridge distance
LWE3A 3.0 0.5 (257,41) 0.5 4.0 0.5L x
LWE3B ! ! ! ! ! 1.0Lx
LWE3C ! ! ! ! ! 1.5L x
LWE3D ! ! ! ! ! 2.0Lx
LWESE ! ! ! ! ! 2.5L x

The wavelength found in LWE1A is used as the reference wavelength. Both of the
bell-shaped ridges have a peak height of 500m and a half-width of 3km. The distance
between two ridgesis 0.5, 1.0, 1.5, 2.0, 2.5 Ly in each experiment, where the reference
wavelength Lx=12.56km. The w and q fields at 180mins for the five runs are shown in
Fig.4.33. In experiment LWES3A, the two ridges are very close to each other so that the
spectrum of the topography profile is dominated by both the longer and the shorter
Fourier components corresponding to the overall mountain profile and the individual
ridges. Therefore a considerable amount of untrapped longer waves can be forced and
they are shown clearly in Fig.4.33a over the mountain ridges. Shorter trapped waves are
also evident in the model solution but they are not forced effectively asin the case of a

single ridge and their magnitudes are small due to the cancellation between the waves
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produced by two individual ridges. In LWES3B, the two ridges are one wavelength apart,
each of them is able to force the flow independently to generate shorter waves that are
mostly trapped. The wave produced by the second ridge is in phase with those already
existing in the cross-ridge flow, i.e. those generated by the first ridge, as a result, the
wave amplitude doubles in the lee of the second ridge. Such enhancement is more clearly
seen the LWES3D in which the ridges are further apart at two wavelength distance from
each other. Experiment LWE3C and LWE3E are cases in which the trapped waves
produced by the two ridges are out of phase - they tend to cancel each other. A near
perfect cancellation is achieved at the lee of the second ridge in LWE3E where the
magnitude of the vertical velocity is only about 1m/s as compared to the 6m/sin the in-
phase cases.

The results of the above experiments show that the mountain ridges in the lee of the
first ridge would force the flow in a similar way to the first ridge as long as the wave
amplitudeis small, and there is a strong interference between the waves produced by each
individual ridge. The result of the interference is found depending strongly on the
distance between the ridges in terms of the wavelength of the trapped waves; the waves
would be enhanced when the ridges are of integer wavelength apart but would cancel
each other when the ridges are of an integer and a half wavelength apart. The resulting
waves are close to those obtained by superimposing the waves generated by each
individual ridge. These results suggest that both the structure of low-level atmosphere
(most importantly the Scorer parameter) and the information on the actual topography is
necessary in order to make accurate predictions of the occurance of lee waves. The
former will determine the trapping condition of the atmosphere and the wavelength of the
waves that are trapped whereas the latter would, to a large extend, determine the
magnitude of these trapped lee waves. For the case being studied, the satelliteimageis
not of high enough resolution for us to identify the lee wave interactions. Observational

information from other sources would be necessary.
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Fig.4.33. Fields of the vertical velocity w (left panel) and the isentropes (right
panel) consequently for experiments LWESA-E.
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453 Case B: Lee wave experiments with the 8/3/85 Valentia

sounding

a) Control runs

The sounding profiles used for the control experiments in this subsection is given in
Fig.4.27. As was discussed previoudy, the atmosphere has a strong inversion layer
between the 1 to 2 km level, in which most of the short waves are expected to be trapped.

The model configuration for these experiments and those to be described later is
much the same as that for LWE1A, only that a smaller horizontal domain is used with a
higher resolution to account for the decrease in wavelength of lee waves. The number of
the vertical levelsisalso increased to better resolve the wave activities along the shallow

layer of inversion.

Table 4.4 Lee Wave Experiments (LWE) with the sounding of Case B

Experiment | M. Scale(km) Height(m) (NX,NS)  Dx(m) Dt(s) Dry/Moist Comment
LWE4A 1.0 500 (257,61) 250 3.0 Dry

LWE4B " " " " " Moig  Standard RH
LWESA 3.0 500 " " " Dry

LWESB 1.0 750 " " " "

LWEGBA 1.0 500 " " " Moist High RH
LWEGB " " " " " " Even-higher RH
LWET7A 1.0 750 " " " Moist High RH
LWE7B " " " " " " Even-higher RH
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Fig.4.34. Fields of the vertical velocity w (left panel) and the isentropes (right
panel) obtained in experiment LWE4A (upper panel) and LWE4B (lower pandl).

Experiments LWE4A and LWE4B are respectively the dry and moist control runs
that use the standard wind, temperature and moisture profiles. The bell-shaped ridge has
asmall half-width of 1km and a height of 500m. We show in Fig.4.34 only the w and q
fields at 180mins from both runs.

Asis expected from the given atmospheric structure (shown by the profile of the
Scorer parameter), the waves generated by the narrow ridge are aimost completely
trapped in the inversion layer. Thereis little wave activity in the nearly-neutral surface
layer, not much wave activity is seen penetrating into the higher levels. The latter is also
due to the lack of long wave components forced by the mountain ridge. Given the
exceptionally high Scorer parameter in the inversion layer, the Froude number with
respect to the mountain height is very high, therefore the wave amplitudes are, as is
expected, rather large.

In the moist run LWEA4B, clouds are seen forming in the wave crests similar to the
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moist run in Case A, and they form mainly between the 1 to 2km height. But again due to
the limited amount of condensation (maximum cloud water content at 180mins is about
0.6g/kg), the modification to the lee wave structure is also limited. The effect of moisture
condensation will be seen to be much greater in later experiments in which the low level
environmental humidity isincreased.

The average wavelength of the ssimulated lee waves is about 6.5km, slightly shorter
than the observed value. This may be because of that the actual inversion isoverestimated
by the Valentia sounding. In fact the inversion shown in two other soundings taken at the

same timeis wesker than in the Valentia sounding.

b) Sensitivities to the mountain scale and height

Two variations of experiment LWE4A are performed. In experiment LWESA, the
half-width of the ridge is increased to 3km while keeping the same height, and in
experiment LWESB a higher ridge of 750m is used with the half-width fixed at 1km.

The wave solution in LWES5A is shown by the w and g fields at 180mins in
Fig.4.35. The lee wave pattern and magnitude in the solution are much the same as those
in LWE4A (Fig.4.34), but the wave activity propagating into the mid-levels is
significantly increased, obviously due to the increase in the horizontal scale of the
mountain ridge. The amplitude of the propagating waves over the ridge slope is large,

and indicates that overturning would occur had the flow been forced by a higher ridge.

Fig.4.35. Fields of (a) the vertical velocity w and (b) the isentropes from experiment LWESA.
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Fig.4.36. Fields of the vertical velocity w (left panel) and the isentropes (right
panel) at time 180, 240, 300mins of experiment LWESB.

In experiment LWESB, in which hy,,=750m, the Froude number (Fr=hml ) now has
amaximum vaue of 1.88 in theinversion layer, thisis much larger than the critical value
for wave overturning obtained for a uniform flow over a finite amplitude ridge [0.85
according to Miles and Huppert (1969)], the flow is therefore expected to be very
nonlinear. The isentrope fields in Fig.4.12 show that the waves generated in this
experiment have indeed been transformed into a nonlinear wave regime, displaying a

wave pattern rather different from that in LWE4A. The trapped waves show a clear
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aperiodic behaviour - they propagate in the form of wave packets and evolve
continuoudly in time and space. On the lee dope of theridge, the low-level stable flow is
accelerated right down to the ridge foot (seethe q fields at 180 and 300mins), producing
rather strong downslope winds. Being forced by this strong low-level disturbance, the
flow directly over the lee slope overturns at 180mins at the 4km level, accompanying a
certain degree of wavebreaking. However at 240mins, little wave activity remainsin the
mid-level flow and the breaking waves at the previous time have been absorbed by the
mean flow. The decrease in the wave amplitude after 180mins may be because the net
forcing of the low-level flow is reduced when a considerable amount of wave energy is
transferred to high levels by the waves propagating vertically. At 240mins, most of the
wave energy is trapped, the disturbances on lee slope amplify subsequently. By
300mins, a large amplitude wave pattern similar to that seen at 180mins is again
established over the lee slope, and the amplitudes are even larger. The vertical velocity
pattern shows more clearly the vertical wave energy flux into high-levels at 180mins and
300mins, but much less flux at 240mins.

The formation of the strong lee slope winds can be explained in the context of the
flow transition to a supercritical state in association with the low-level inversion layer (see
Durran 1987). At the same time the trapping condition in the layer above the inversion is
also important, since it determines the amount of the wave energy that will be trapped at

the low-levels.

c) Effects of moisture on the lee waves

Four additional experiments were performed as listed in table 4.4. In these
experiments the standard sounding used in the previous experiments are modified, mainly

by increasing the low-level relative humidity.

In experiments LWEGA and LWETA, the relative humidity below 1.3km isincreased
to 100%, (high-RH case), whilein LWE6B and LWET7B, this saturated layer extends up

to the 4km level (even-higher-RH case). In the latter case, the potential temperature at the
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3.5km level isdightly decreased to avoid excessive convective instability in the presence
of adeep saturated layer. Fig.4.37 shows the profiles of (a) the potential and equivalent
potential temperature and (b) the relative humidity for the two cases. As shown in the
figure, the qe profile for the high-RH case (bold line) is almost uniform above the 2km
level, indicating the effective static stability will be very small if the air flow there is
saturated. In that case, waves from below will be effectively trapped. Whereas for the
even-higher-RH case (shown in thin lines), the layer between 2 to 3km is convectively
unstable, convection can therefore occur in this layer, but the layer above is then again
relatively stable so as to permit the propagation of certain wave components. The
convection, if it occurs, may act as a messenger between this layer and the inversion layer

at the lower levels.

Fig.4.37. Initial profiles of (a) the potential temperature (solid lines) and the
equivaent potential temperature (dashed lines) for the high-RH case (bold lines) and
the even-higher-RH case (thin lines), and (b) the relative humidity for the two cases
(bold and thin line for the two cases respectively).

Sincethe effects of condensation is larger in the case of higher mountain ridge, we
will present here only the results of experiment LWE7A and LWET7B, the fields from
these two runs are given respectively in Fig.4.38 and Fig.4.39. Although there is
considerable diabatic effects due to condensation, the isentropes are still agood indication
of the flow trgjectories, by comparing the isentropes and the contours of the equivalent

potential temperature.
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The right panel of Fig.4.38 shows that at 180mins of experiment LWE7A, the
clouds associated with the lee waves form below the 4km level, except directly over the
lee slope where the clouds are deeper. The condensation in the lee waves crests has led to
an increase in the wavelength of the lee waves. Compared with that in the corresponding
dry run LWEA4B, the overturning did not occur over the lee slope, obviously because of
the release of latent heat in the crossridge flow and in the deep cloud over the lee slope.
By 240mins, the lee wave clouds have grown deeper, indicating parts of the mid-layer
are saturated. The wave disturbances at the mid-levels are very weak in the saturated
regions but much stronger in unsaturated regions. These wave disturbances, whose
wavelength is now longer due to the reduction in the effective static stability, are clearly
seen from the fields of the vertical velocity to be propagating upwards in-between the
gaps (at x=16km and 30km) of the clouds. By 360mins, the longer waves at the mid-
levels are well established, with the first wave trough remaining at the same place as at
t=240mins (x=16km), the second trough has grown deeper and is now at x=32km,
giving a well defined wavelength of 16km. Due to the effect of the moisture
condensation, thewave crests are seen to be more shallower and broader than the wave
troughs, the vertical motion is also concentrated around the wave crests. The amplitudes
of the lee waves at the low-levels are seen much reduced downstream of the mountain
ridge (see w field at 360mins), caused by the leakage of wave energy into the higher
levels. The cloud water concentration shows maximamostly at the 3km and 5km height,
corresponding respectively to the waves crests of the trapped waves at the lower-levels
and those of the longer mid-level waves. The wave pattern revealed by the equivalent
potential temperature contours issimilar to that shown by the isentropes, the differenceis

mainly at the waves crests where the condensation is greatest.
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Fig.4.38. Fields of (a), (c), (e) the vertical velocity w and (b), (d), (f) the isentropes
together with the cloud boundaries at time 180, 240, 360mins of experiment
LWETYA (the high-RH case). (g) and (h) are respectively fields of cloud water and
equivalent potential temperature at 360mins.
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Fig.4.39. Fields of the vertical velocity w (left panel) and the isentropes together
with the cloud boundaries (right panel) at time 180, 240, 300mins of experiment
LWET7B (the even-higher-RH case). (g) and (h) are respectively fields of cloud water
and equivalent potential temperature at 300mins.
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The fields at various time of experiment LWE7B are shown in Fig.4.39. As was
discussed previoudly, in the even-higher-RH case, the layer between 2 and 3km height is
convectively unstable (see the ge profile in Fig.4.37), gravity waves can therefore not
propagate in this layer, if the air thereis saturated. The latter condition can be expected to
be true in most areas since initialy the air is saturated up to the 3.6km level. The
prediction made from the ge profile is confirmed by the results of experiment LWE7B
shown in Fig.4.39. The q fields show that the isentropes at the 3km level in the lee are
amost completely horizontal, implying there is hardly any wave activity at that level.
However, below and above this level, there exist clearly two branches of wave trains
The lower branch consists of mostly the shorter waves that are trapped underneath the
unstable layer, and the upper branch is composed of waves that are of longer wavelength,
and whose structure is significantly modified by the condensation processes - the
saturated wave crests are broader than the wave troughs. The upstream tilting phase lines
of the longer waves to the lee of the ridge shown by thew fields at al timesindicate that a
significant amount of wave energy is being transported into higher levels, providing the
necessary energy source for the wavesin the mid-levels. The two branches of waves are
interdependent; the nonlinear amplification of the low-level waves produces wave
disturbances of longer wavelength (which may not have been effectively forced by the
narrow mountain ridge) that carry wave energy upwards, while the upper branch of the
waves changes the trapping conditions so as to influence the amount of wave energy that
can be trapped. The structure of the waves at the lower levelsis also greatly influenced
by the waves propagating separately at higher levels. At places where the upper-level
waves are in phase with the lower-level waves, the low-level wave amplitude is enhanced
( see e.g. the first wave ridge in the lee at 300mins), otherwise the wave amplitude is
reduced (see e.g. thefirst ridge in the lee at 240mins). When little wave energy is leaked
into the upper levels, the low-level trapped waves can persist over a long distance
downstream of the mountain ridge (see fields at 240mins), whereas when these waves
are untrapped by the moist process, their amplitudes is then much reduced only a few

wavelength downstream (see fields at 300mins).
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In summary, two experiments, LWE7A and LWE7B are performed, which use the
modified sounding taken at 8/3/85 Vaentia. The relative humidity israised to 100% in the
layer above the ground up to a different height. It is found that with a high relative
humidity in theinitial flow, the behaviour of the |lee waves and the waves at higher levels
are significantly different from the corresponding dry run, especialy in areas where
saturation is reached. The moisture condensation can change the effective static stability
to the extent that it changes greatly the distribution of the wave energy originating from
the mountain ridge. Unstable convection can also produce other sources of wave
forcing. On the contrary, when the observed humidity profile is used (e.g. experiment
LWE4B), little change is found in the wave structure due to the limited amount of
moisture condensation. Judging from the wave amplitude on the lee slope, we can state
that the pressure drag on the mountain surface in these moist runs is lower as compared
to that in the corresponding dry run LWESB.

Moreover, our experiments suggest clearly a mechanism of triggering deep
convection by mountain gravity waves. Experiment LWE7B is a case in which alimited
amount of convective instability is present in the environment and the instability is
released when low-level trapped gravity waves produce sufficient lifting. These
convective activitiesinteract with the gravity waves, modulating the gravity waves and
being also controlled by the wave activities. It can be speculated that if the trapped waves
propagate along the stable layer at the lower levels into a region of large convective
instability, deep convection would be triggered. On the other hand, these gravity wave
activities could have been produced by pre-existing convection and further the cold
outflow from the pre-existing convective storms can establish a stable layer to radiate the
wave activities far away from the source. The problems on deep moist convection and

convection forced by mountain ridges will be studied in the following two chapters.
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Chapter Five

Srong, Long-lived Sguall Lines
- Two Dimensional Numerical Experiments

5.1 Introduction

A squall lineis known as any line or narrow band of active thunderstorms. Squall
lines are frequently observed to last for severa hours and sometimes propagaterelativeto
the ground at a considerable speed, producing heavy precipitation on their path. In this
chapter, we describe a series of two-dimensional (2-D) experiments carried out using the
nonhydrostatic s-coordinate model described in previous chapters, and we address
mainly the problem as to the dynamics and the optimal condition for strong, long-lived

squall lines. Recently, Rotunno, Klemp and Weisman (1988, thereafter RKW) presented
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areview of both the observational and modeling studies of squall lines. They addressed
the issue that whether asquall lineis a system of special, long-lived cells, or along-lived
system of ordinary, short-lived cells, they also suggested the optimal conditions for a
strong long-lived squall line to be established and maintained.

The classical model of asquall line views it as a system of convective updraughts
and downdraughts aligned perpendicular to the wind shear. Ludlam (1963) suggested
that a strong updraught tends to lean against the wind shear, allowing the updraught to
unload its rain on the upshear side rather than falling directly above the low-level
updraught so as to cut off low-level inflow. Newton (1966) also took asimilarsingle-cell

view of asquall line. Newton and Ludlam's conceptual model isillustrated in Fig.5.1.

Fig.5.1. Schematic of the Ludlam-Newton model of a steady two-dimensional squall
line in a deep, uniform-shear environment. The strong updraught leans against the
shear and drops its rain out on the upshear side, alowing a long-lived cell
(Reproduced from Fig.3 of RKW, 1988).
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Fig.5.2 The conceptual model of squall line in a low-level sheared environment
derived from a 2-D numerical simulation of TMM (1982) (Reproduced from Fig.5
of TMM, 1983, .).

However, attempts in the seventies to replicate the Newton-Ludlam model in the
presence of deep ambient shear using numerical models were not successful. The failure
was then thought to be due to the limitation of two-dimensional models. It was
considered that three dimensionality was an inherent property of cumulonimbus clouds
(Lilly, 1979) and sguall lines were mostly composed of organized supercell
thunderstorms. On the other hand, this idea was not supported by some of the later
observationa studies. Bluestein and Jain (1985), by reviewing approximately 10 years of
data from the Oklahoma City radar, showed that many intense squall lines are not
composed of supercell thunderstorms. Further more their grand average hodograph for all
cases shows that the largest wind shear is confined at low levels.

In 1982, Thorpe, Miller and Moncrieff (1982, hereafter TMM) re-examined the
strictly two-dimensional problem, with special attention paid to the shear in the ambient
wind profilee. TMM showed that quasi-steady convection that bore most of the
characteristics of observed squall-lines can be produced if the mid- and upper-level flow
has small shear but the low-level shear islarge. The experiment in which the shear inflow
is confined below 2.5 Km with zero wind above was found to produce maximumsurface
precipitation. The quasi-steady squall line in that experiment appeared to be unicellular,

and the conceptual model drawn from the numerical simulations consists of distinct com-
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ponents of an overturning updraught, a jump type updraught, a shallow downdraught,

and low-level rotor and an inflow boundary layer (Fig. 5.2.).

TMM recognized clearly the essential role of both the low-level shear and the shallow
rain-induced downdraught in maintaining steady convection. They reasoned that the low
level shear is essential in order to prevent the rain-produced surface outflow from
propagating rapidly away from the storm. TMM also showed that when reversed shear
was included above the low-level shear, the storm that devel oped was less vigorous but
also long-lived. The storm showed multicellular characteristics with discrete cells being
continuously generated and advected rearwards relative to the cold outflow front. When
the mid- to upper-level shear was in the same direction as the low-level shear, the storm
was short-lived, due to the downshear tilting of the updraught. RKW (1988) and in a
companion paper (Weisman, Klemp and Rotunno, 1988; Hereafter WKR), attempted to
further explore the mechanism of strong, long-lived squall lines, based on a series of
two- and three-dimensional numerical experiments, with particular attention focused on
the magnitude of the low-level shear. They also obtained, as TMM did, long-lived deep
convection provided there was sufficient low-level shear (uniform shear inflow below 2.5
km level as in TMM). A shear of 17.5 m/s over 2.5 km was found to alow for a
sequence of the strongest cell updraughts. The optimal condition for the longest-lasting
deep convection, asthey claimed, comes from a balance between the circulation induced
by the spreading cold outflow or cold pool and the circulation of the sheared inflow.

Their arguments areillustrated in Fig.5.3.
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Fig.5.3. Schematic diagram illustrating RKW's vorticity arguments on how an erect
updraught can form in the presence of both the inflow wind shear and a cold pool. RKW
argued that the negative vorticity of the underlying cold pool will induce a circulation that
causes the updraught to lean upshear, whereas the positive vorticity in the inflow will
cause the updraught to lean back over the cold pool. When the positive and negative
vorticity matches each other, an erect updraught may form.

RKW argued that the horizontal inflow can turn to the vertical direction to form an
erect updraught in the presence of a cold pool circulation that tends to prohibit deep
lifting, only when "the circulation associated with the cold pool's negative vorticity
approximately balances the circulation associated with the positive vorticity of the low-
level shear."

Their arguments clearly suggest that the tilt of the updraught is dominantly dictated
by the amount and the sign of the vorticity contained in the air that enters the updraught.
Hence amore or less vertical, symmetric deep circulation requires that the vorticity in the
original inflow be largely diminished at the cold pool front (CPF). However RKW did
not suggest how this diminishing process could happen., nor did they attempt to quantify
the relative importance of the vorticity in the inflow as compared with that of the vorticity
to be generated by buoyancy in the updraught. One may argue that the diminishing of the
vorticity in the inflow at the cold pool front can only occur when there is sufficient
turbulent mixing between the inflow and cold pool air. One may also suspect the role of

the net vorticity remaining in the updraught as compared to the role played by the cloud
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and subcloud layer relative flow in determining the tilt of the updraught. Our numerical
experiments suggest that it is the momentum rather than the vorticity in the inflow that is
important, which will act against the cold pool (through a pressure force according to
Bernoulli's equation) to prevent the cold pool front from propagating relative to the cloud
level air. Theair in theinflow that impinges upon the cold pool front is lifted and enters
the mid-layer which hasto be more or less calm viewed in the frame of reference moving
with the cold front. The tilt of the updraught is determined by the relative speed of the
cloud layer flow, being also modulated to a certain extent by the horizontal momentum
retained in the air that enters the updraught. One can further deduce that the crucial factor
isthe difference between the speed of the subcloud layer air and the air in the cloud layer,
and the optimal condition for the updraught to be near-vertical is that the horizontal speed
of the mid- to upper-level flow is approximately equal to (or slightly lessthan to allow for

dlightly upshear tilting updraught) the propagation speed of the underlying cold pool.

In later sections, we will describe a series of numerical experiments of squall lines.
These experiments are designed to examine the role of the interaction between the low-
level ambient inflow and the cold pool outflow, and the mechanism by which such an
interaction determines the development and evolution of a squall line. The importance of
vorticity versus momentum in the inflow is understood through experiments that have
either a step-type (zero-vorticity) or shear-type (constant vorticity) inflow. A conceptual
model of the inflow-cold pool interaction (Section.5.4.1) and the optimal conditon for a
intense long-lasting squall line (Section 5.5) are proposed. The sensitivity of squall line
simulations to diffusion is exmained in Section 5.6. In next section several experiments
of moist convection in a zero-wind environment that has the same thermodynamic

structure asthat for later squall line experiments will be presented first.

5.2 2-D moist thermal convection in a zer o-wind environment

The thermodynamics and parameterized cloud microphysics of our numerical model

have been described in detail in Chapter three. The model has been used in Chapter four
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to study moist mountain waves in which clouds form as condensation occurs. However,
the microphysical parameterizations involving both cloud water and rainwater have yet to
be tested. We present in this section a number of 2-D experiments of moist convection in

azero-wind environment, which serve partly asthe model verification.

Fig.5.4. Tephigram of the thermodynamic sounding for the moist convection experiments
and later experiments of squall lines. Straight lines at right angle to each other are
isotherms and dry adiabats. Lines lying roughly horizontally are isobars. The thick full
lines is the temperature profile and the thick dashed line represents the moisture profile.

The thermodynamic sounding used here and for al the later experiments of squall
linesis depicted by a Tephigram in Fig.5.4. This sounding is typical of the environment
of mid-latitude squall lines (cf. Bluestein and Jain, 1985) and is also similar to that used
in RKW and TMM. The surface layer isrelatively dry for this sounding so that rainwater
evaporative cooling can be sgignificant. The minimum (e (equivalent potential

temperature) is at the level of 3.5km (roughly 650HPa) and has a value of about 312K.
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The air originating from this level would gain a 12 degree deficit in temperature had it
been brought moist-adiabatically downto the surface. This temperature deficit sets the
lower limit of the temperature possible for the rain-induced cold pool. The total CAPE
(convective available potential energy) for the given sounding is rather high and istypical

of the environment of severe mid-latitude squall lines (Bluestein and Jain, 1985).

Table 5.1. Experiments of 2-D moist thermal convection with no ambient winds

Experiment | (NX,NS) Dx (km) Dt (s) FCT for ¢ Ri/Def. mixing Background
diffusion (m?/s)
MTCIA (65,30) 1.0 6.0 yes yes 50.0
MTC1B (65,60) 0.5 4.0 yes yes 50.0
MTC2A (65,30) 1.0 6.0 no yes 50.0
MTC2B | (65,60) 0.5 4.0 no yes 50.0
MTC3A (65,30) 1.0 6.0 yes no 50.0
MTC3B (65,30) 1.0 6.0 yes no 200.0

The parameters for the six moist convection experiments are listed in Table 5.1. In
these experiments psurf=1000HPa, piop=50HPa. A damping layer is applied above the
12km level. The convection in al casesisinitiated by a saturated line thermal perturbation
that has a maximum temperature surplus of 2K. It is 10km wide, 1.5km deep and is
centred at 1km AGL. Being saturated, it bears a surplus of about 5K in ge. The warm
cloud microphysical processes described in Chapter three are al included in these
experiments. The terminal fall speed of rainwater is given by formula (3.1.13).

a) Control experiment

Experiment MTC1A isthe control run which has a 1km horizontal resolution, 30
levelsin vertical, uses the FCT scheme to advect ', gv, Qe and gy, and incorporates a
full formulation of turbulent mixing parameterization together with a constant background
diffusion with the coefficient Kgg=50m2/s. In other experiments, the sensitivities to the

gpatial resolution, the advection schemes and the formulations of diffusion are examined.
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The time development of the cloud cell is depicted in Fig.5.5 by the wind vectors and
the qge fields at various model time. At 10 minutes a convective circulation is seen
symmetric around the x=0km central line (Fig.5.5a); and cloud top is dlightly higher than
3km. Condensation has occurred by this time, producing a light cloud with a maximum
qc of lessthan 1.0g/kg. By 20 minutes the cloud cell has risen to the 10km height level
(Fig.5.5c) and the core updraught speed is now higher than 30m/s. Rainwater with a
mixing ratio higher than 8g/kg is generated but most of it is still suspended at high levels
by the strong updraught. By 30 min, the heavy water loading (about 10g/kg at t>20 min)
has turned the updraught along the central line of the cloud into downdraughts at both the
upper and lower levels, with only a weak updraught remaining at the mid-levels
(Fig.5.5e). Therain has just fallen on to the ground (shown by the shading). The main
upward motion is now roughly 6km off the original central line, the surface flow
immediately below the cloud (at x=0) has changed into spreading outflow. The cloud cell
decays rapidly as this cold outflow propagates away in both directions, cutting off the
supply of moist unstable air from the low-levels. The life-time of the primary convective
cell isabout half an hour to 40 minutes.

The development of the cloud cell is also manifested by the fields of the equivaent
potential temperature qe Which is conserved along air parcel trgjectoriesin the absence of
diffusion. Fig.5.5 shows that the convection occurs as the high ge air penetrates through
the mid-level low ge air to reach the high-levels. At 20 min, the maximum is at about 8km
height. This maximum is shown in Fig.5.6 to rise further to join the high ge at about

10.5km height level. At the later time when the updraught at the high-levels has evolved
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Fig.5.5. Fields showing the development of a moist thermal convection from control experiment
MTCI1A. In the left panel are fields of wind vectors together with the cloud boundaries (bold
lines) and areas with rainwater (shaded). The right panel shows the fields of ge a various time.
(Only 16km central domain is shown, with the horizontal grid position indicated by the ticks on
the border).
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Fig.5.6. Hovmoeller diagrams of (a) the vertical velocity w, (b) the perturbation
potential temperature’, (c) the rainwater content gy and (d) the equivalent potential

temperature ge along the central line of the symmetric cloud cell in experiment
MTCI1A.

into downdraughts, the ge contours there (e.g. the 322K contour in Fig.5.5€) are seen
dipping downwards while the magjor upward penetrations have moved off the central line.

The time evolution of propertiesinside the cloud cell is best depicted by Hovmoeller
diagrams, with thequantities along the central line of the cell being plotted against time.
Thesearegiven in Fig 5.6, and are respectively for w, q', gr, and ge along the x=0km
line. They all show clearly that the cell convection gains its maximum intensity at about
23 mins, and then undergos a rapid decay in which updraught is disrupted by heavy
rainwater-loading and turns into a downdraught at lower levels (Fig.5.6a,c). The rain

reaches the ground at 30mins,the evaporation of which after this time then produces a
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pool of cold air below 2km level (Fig.5.6b). The conservation of ge along with the cloud
cell isshown by Fig.5.6d to be excellent. This (aswill be shown later) should be largely

attributed to the use of the FCT scheme for advection.
In conclusion, the control experiment MTC1A simulated successfully the life cycle of

amoist thermal convection in atwo dimensional frame work. The convection obtained
was vigorous and physically consistent. It can be inferred that the ge along air parcel
trajectories is excellently conserved. With the application of the FCT scheme to the
advective processes, the problem with 'negative water' generation by conventional high-

order accurate advection schemesis entirely eliminated.

b). Sensitivity to spatial resolution.

In experiment MTC1B, the spatial resolution is doubled over that of control run
MTCI1A, with 0.5km horizontal grid length and 60 vertical levels. The fields of wind
vectors and ge a 20min of thisexperiment aregiveninFig 5.7, and in Fig.5.8 is shown
the time evolution of g, and ge along the central line of the convective cell. The results
from MTCI1B are rather different from those of the control experiment. The cell cir-
culation is clearly better resolved and a mushroom-shaped cloud cell is seen to have
formed at 20min (Fig.5.7) with the high ge air being advected from the upper edge of the
cloud sidewards and downwards by the cell circulation. Thereis an indication of the mid-
level low ge air being wrapped up by the circulation into the cloud, though this did not
continue due to the subsequent formation of downdraught. The updraught in this high-
resolution run is however much weaker (Fig.5.8a), with a downdraught forming at the
top of the cloud as early as 15min. Thisis caused by the thinning of the layer of high ge
air at the cloud top boundary hence the reduction in buoyancy force there (Fig.5.7b). The
earlier cutting off of the low-level high ge air supply (by the intruding mid-level low ge
air) contributes also towards the lack of overall vigor in the convection. At any rate, we
should regard the development of the convective cell obtained in this high-resolution run

isas being more redlistic.

- 168 -



Fig.5.7. As in Fig.5.5 but for experiment MTC1B (Fields are only shown at
t=20min here).

Fig.5.8. Asin Fig.5.6 but for experiment MTC2A.
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c) Sensitivity to advection schemes.

The flux-corrected transport (FCT) scheme, as is described in chapter three, is used
in all cases to advect water quantities (gy, dc and gy). But its use for the ' equation is
optional. The leapfrog-centred advection scheme can be used instead. Experiments
MTC2A and MTC2B correspond to MTC1A (control) and MTC1B respectively expect
that the leapfrog-centred instead of the FCT schemeis used for the g’ equation.

Fig.5.9. Thefields of (a) wind vectors and (b) ge at 20min from experiment MTC2A. The

|eapfrog-centred advection schemeis used for g' equation instead of the FCT asin MTC1A.
The conservation of ge is far from being as good asin MTC1A.

Fig.5.10. Hovmoeller diagrams of (a) w and (b) ge aong the central line of the
convective cell for experiment MTC2A (cf. Fig.5.6).
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Fig.5.11. Asin Fig.5.10 but for experiment MTC2B (cf. Fig.5.10 and Fig.5.8).

The convective circulation and the ge field at 20min of experiment MCT2A are
shown in Fig.5.9. Compared with the corresponding fields in Fig.5.5¢c and Fig.5.5d, the
circulation is very much weaker and more shallow. The ge along with the rising cell is
clearly not well conserved. The low-level 328k contour present initially is now
completely absent in Fig.5.9b, and the maximum height the cloud top reaches is more
than 2km lower (Fig.5.10). The value of e is progressively reduced along with the
rising cell (Fig.5.10b). The maximum g is only 4g/kg. All of the above results suggest
that the leapfrog scheme isinadequate for advecting arelatively small volume of buoyant
air penetrating alayer of air that hasalower ge,

Given the fact that the updraught is only resolved over a few grid pointsin MTC2A,
one may ask where the inadequacy may be relieved by increasing the spatial resolution.
Thisis done in experiment MTC2B. However, a similar effect of resolution increaseis
found asin experiment MIT2B; when the resolution is increased, a downdraught forms at
the top of the cloud between 15 to 20mins, making the major updraught even weaker.
Therefore increasing in spatial resolution did not improve the results and the use of the
FCT schemein the q' equation as in the equations for water quantities is having a very

significant impact on the conservation properties of the numerical model. The leapfrog-
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centred scheme, at least when the FCT scheme is used for the water quantities, is
inadequate to describe thermal convection in which the updraughts are frequently very

narrow.

d) Sensitivity to turbulent mixing.

In experiments MTC3A and MTC3B, the Richardson number and deformation
dependent turbulent mixing is switched off, with only a constant background diffusion
being included, and the coefficient Kgg=50m2?/s and 200m2/s respectively. The
differences in the solutions as compared to those for MCT 1A are found to be only quan-
titative. The solutionsin MTC3B in which Kgg=200m?/s are found very similar to those
from MTC1A in which the calculated mixing coefficient is of the order of 200m2/s
(compared Fig.5.12 with Fig.5.6). When Kgg=50m?/s as in MTC3A, the maximum
speed of updraught is larger (36m/s) and the cold pool air more shallow (Fig.5.13), due

to the weaker diffusion.

Fig.5.12. Hovmoeller diagrams of (a) w, (b) ge aong the centra line of the
convective cell in experiment MTC3B, in which K gg=200m?/s.
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Fig.5.13. Asin Fig.5.12 but for experiment MTC3A, in which Kgg=50m?/s.

e) Summary

In this section, the model simulation of the life cycle of a two-dimensional moist
convection in a zero-wind environment has been presented, together with a number of
sengitivity tests. These experiments verify the thermodynamical and cloud microphysical
processes of the numerical model. The control run demonstrates a very good performance
of the model while the use of the FCT scheme significantly contributes to this.
Appropriate spatial resolution isshown to be necessary to properly resolve convective
circulations, but the different formulations of diffusion is not found to have a major
impact, at least in the simulations of the life cycle of isolated convection. The results of
these experiments in asimple environment will lend guidance to the experimental design

of our squal line simulationsin the following sections.

5.3 Experimental design for squall line simulations

Although squall linesin reality may not be exactly two-dimensional, our use of two-

dimensional numerical model is justified by the conclusions of RKW through inter-
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comparison of 2-D and 3-D simulations - the essential physics of the squall line that
developsin amedium shear perpendicular to the line is contained in the 2-D framework.
Recent successesin 2-D squall line simulations such as those of Dudhia, Moncrieff and

S0 (1987, thereafter DMS) and Forvell and Ogura (1988) aso lend support to this.

The model characteristics are similar as used for the control experiment MTCIA in
the last section, in which the FCT scheme is used to advect both water and thermal
quantities. For all the following experiments, a domain of 192km in horizontal is used
with Dx=1km. The vertical domain ranges from 1000HPa to 50HPa with 60 levels. The
corresponding vertical grid-length varies from about 150m at the low-levels to nearly
1.5km at the top. Thehigh resolution at the low levels is considered necessary since the
major activities associated with wind shear and cold pool outflow are concentrated at
these levels. The vertical resolution in our model is naturally higher at the lower levels

with constant increment in s. The time step Dt=4 seconds.

The devel opment and evolution of squall lines can be dependent upon many factors,
among them are the wind profile, the thermodynamic sounding of the pre-storm
environment. However, the work of TMM and RKW, WKR, has shown that the
interaction between the cold pool outflow and the low-level wind shear is most important
in determining the characteristics of smulated squall lines. In order to isolate the key role
of the inflow, we shall fix the environmental thermodynamic conditions in all of our
subsequent experiments while altering only the inflow. This modelling philosophy is also
followed by TMM and RKW. The sounding is given in Fig.5.4 and is typical of the
severe mid-latitude squall line environment as was discussed in the previous section. Two
types of inflow profile are used in our experiments. The first has an uniform inflow
(constant horizontal velocity UQ) between z=0 and z=1.5km. The flow speed decreases to
zero from 1.5 to 2.0km and then remains as zero above. We call thisthe step type inflow.
The second type isthe low-level shear inflow aswas used in TMM and RKW. The flow
reduces from UQ to zero linearly from z=0 to z=2.0km, and then remains zero above.

This shear layer is dlightly shallower than in TMM (2.5km deep there). The inflow
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profilesare schematically illustrated in Fig.5.14. Experiments with these wind profiles

help us to understand the specific role of the momentum versus the vorticity in the inflow.

Fig.5.14. Schematic diagram of the inflow profiles for the squall line experiments. (a)
shows step type inflow profiles which has a uniform speed therefore zero vorticity below
1.5km, (b) show shear inflow profiles which has a constant vorticity.

The convection in our experimentsisinitiated in asimilar way asin TMM, i.e. by
specifying an initial localized cooling which attempts to model evaporative cooling from
previous convective cell. Convection can also be started by specifying an initia thermal
perturbation asin RKW, but the procedure of initial cooling would accelerate the process
by which theinitial convection is established. Comparisons show that the development of

simulated squall lines at later stage depends very little on the initiation procedure.
The cooling function Q(x,F s;t) is specified as

t£15min Q=Qc 0.0 £ Fg/g < 1.5km
=Q.(25-F4Jg) 15€£Fgg<25km
=0.0 25£Fdg

15£t<21min Q=(21-t) Qt=15)/6
t>21min Q=0.0

where Qc=-0.48K/min [X-Xo| £ 5km
=0.0 [X-Xo| > S5km.
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The imposed cooling will produce atemperature perturbation of about -6 degree, but
the cooled air will be quickly advected downstream by the low-level flow, and the

subsequent cold pool is entirely maintained by the rainwater evaporative cooling.

Table 5.2. The specifications of numerical experiments of long-lived squall lines

Experiment Inflow [Ug| (m/s)  Ri/Def mixing Background dif. (m2/s)
SLE1A Step 10 No 100.0
SLE1B " 15 " "
SLE1C " 18 " "
SLE1D " 25 " "
SLE2A Shear 12 No 100.0
SLE2B " 15 " "
SLE2C " 20 " "
SLE2D " 28 " "
SLE3A Jet 10/18 No 100.0
SLE4A Step 18 No 20.0
SLE4B " " " 200.0
SLESA Step 18 Yes 20.0
SLEGB " " " 100.0

In the case of step inflow, there exists alayer of strong shear between 1.5 to 2.0km.
Diffusion acting on the full flow field is obvioudly detrimental to the maintenance of such
aninitial state. On the other hand, diffusion that acts only on perturbation fields will help
to maintain this state. Therefore, only a constant background diffusion is included in a
majority of our experiments. A few experiments with differing diffusion magnitude and
formulation are also presented. Table 5.2 summarizes the specifications of the
experiments to be discussed. Experiment SLESA uses a jet inflow profile in which the
inflow speed has a maximum speed at z=1.5km and decrease linearly to 10m/s at z=0 and
to 0.0m/s at 2.0km and remains zero above 2.0km. Such an inflow contains vorticity of

opposite signs.
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5.4 Results of the squall line experiments

5.4.1 Step type inflow

The surface precipitation rates averaged over two minutes for four experiments
SLE1A to SLE1D are plotted against time in Fig.5.15. In all cases, rainfall is seen falling
to theground in-between 30 to 40 minutes. The first cell, as indicated be the associated
rainfall pattern is generated at around x=0.0km, and then moves to the rear of the line (to
the left). However the subsequent development, especially the propagation, of these lines
are very different. The convection is most persistent in SLE1C in which the system is
amost stationary relative to the ground before it starts to surge ahead at 4.5hrs. In
experiment SLE1A in which the inflow is weakest (10m/s), the system move rapidly
against theinflow at a speed exceeding 4m/s relative to the ground, and the precipitation
rate, especially after 2hrs, is much lower than that in the other three cases. The convective
system obtained in SLE1B is amost as persistent as in SLE1C, only that it moves at a
steady speed relative to the ground. Fig.5.15¢ shows clearly that multiple cells are being
generated at the CPF and are then advected to the rear of the line. The cell re-generation
after 4hrsare extremely regular, with a period of about 15 minutes. Experiment SLE1D
has the strongest inflow (25m/s), the convective line in the run is seen moving in the
opposite direction as in the other three, with the cold pool being pushed back by the
strong inflow. In spite of this, still a considerable amount of precipitation is produced.
After 315 minutes, this system weakens when another convective line develops upstream
at x=10km, atering the upstream conditions for the first line. The secondary development
is clearly related to the disturbances that developed on the low-level strong shear, butitis

not clear whether its development and its location are deterministic.
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Fig.5.15. The surface rainfall rate (mm/hr) for experiments (a) SLE1A, (b) SLE1B,
(c) SLELC and (d) SLE1D respectively.
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Fig.5.16 The accumulated total surface rainfall in the model domain against time for
experiment SLE1A to SLE1D.

Fig.5.15 indicates that in spite of the differing propagation behaviour, the squall line
systemsin amoderate to strong low-level inflow (15-25m/s) are all long-lived. Especialy
in SLE1B and SLELC, the system is not exhibiting any sign of decaying by the end of
simulation (6hrsfor SLE1C and up to 10hrs for SLE1B). They may be expected to last
forever if the environmental conditions are not changed.

The total accumulated precipitation in the model domain is plotted against time for the
four casesin Fig.5.16. The maximum precipitation is produced in SLE1C, with SLE1B
in the second place. Experiment SLE1A produces the least rain. In fact the precipitation
becomes very weak after 2hrs. The difference between SLE1B and SLE1C comes mainly
at the early stage when the convection in SLE1B is relatively weaker. The amounts of
rainfall from both runs produced between 4 to 6hrs are almost the same (2.30 106 versus
2.29” 106 kg/m). The precipitation in SLE1D comes partly from the second convective

line therefore the precipitation from the first line is less than that shown in Fig.5.16.
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Fig.5.17. The time series of the Wmax, Wmin for experiment SLE1C (a) and
SLEI1B (b), and of the d'max, 9'min for SLE1C (c) and SLE1B (d).

The time evolution in the intensity of the ssimulated squall line system is also well
indicated by the time series of the maxima and minima of vertica velocity and
temperature perturbations. These are given in Fig.5.17 for SLE1C and SLE1B. In
general, the maximum intensity of updraught occurs at 35min when the first convective
cell istriggered by the low-level cold outflow which has a minimum temperature of about
-6K at 20min when the specified cooling is switched off. A rapid decrease in the cold

pool temperature immediately follows after 35min when the rain from the first intense
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convective cell reaches ground (Fig.5.17b). Subsequently, several oscillations are seen
in theintensity of updraught (Fig.5.17a), similar to that found by RKW. This period is
named by RKW as a phase of 'quasi-periodic redevelopment’ of cells, but this phase in
our simulations with step inflow is generally shorter. Associated with these cell re-
developments, there are further decreases in the cold pool temperature. By 2hrs, a very
low temperature of about -10K is reached in both cases, the system then enters a long
stage of steady evolution, in which new cells are periodical generated at the CPF and
advected rearwards, as isreflected by the surface rainfall pattern in Fig.5.16. This stage
of steady evolution is absent in the 'optimal’ case of RKW, instead they found that after
the cold pool isintensified, the system starts to decay while the cold pool surges ahead.
Fig.5.17d shows that the minimum temperature of the cold pool in SLE1B is maintained
at a nearly constant level of -10K after 2hrs, and the system then propagates at a near
constant speed relative to the ground (Fig.5.16b). In SLE1C, the cold pool temperature
exhibits oscillations whose time scale is much longer than that of individual cells. It is
noticeable that the cold pool is strengthened at 280min, associated with this, the cold pool
experienced a sudden surge ahead and began a stage of steady propagation after the
quasi-stationary phase the time before.

Regardless of the ground relative speed of the system, the surface rainfall patternin
both cases are rather similar to that produced by a simulated squall line of Forvell and
Ogura (1988) in which the environmental sounding derived from a Oklahoma squall line
(Ogura and Liou, 1980) is used. Their results agree with observation in that the squall
line system is multicellular and the system propagates rapidly relative to the ground. Their
wind profile include weak low-level flows and stronger flows at the upper level, with the
wind shear being concentrated mostly below 2.5km. They showed a system relative
surface rainfall pattern that was extremely regular at the mature stage of the squall line,
and the primary cell regeneration period was about 30 minutes. The cell regeneration
clearly occurs quicker in our simulations, with the period being only about 15 minutes.

This difference is amost certain to be due to the different wind profiles used.
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a) Experiment SLE1C

The flow fields of the simulated squall line in SLE1C are shown in Fig.5.18. The
fields of u, w, q', ge gr and F at selected time are shown on Fig.5.19-21. At 60
minutes after initiation the second cell becomes mature as indicated by the maximum
updraught intensity and maximum q' in Fig.5.17. The updraught at this time is vigorous
and almost vertical (Fig.5.18a and Fig.5.19b), the cloud top is up to 12km and the
rainwater exceeding 9g/kg is seen suspending at the 6km level (Fig.5.21a). At the low-
levels ahead of the CPF, the inflow speed is decelerated to zero over only 2-3km
horizontal distance (Fig.5.19a). The convergence forces the entire inflow air to go up
which is then accelerated upwards by the buoyancy force (Fig.5.19b). The downdraught
underlying the low-level updraught is evident (Fig.5.19b) which is clearly bringing mid-
level low ge air down to the surface (Fig.5.20b). Further to the left of this low-level low
(e ar we can see aternating blobs of air with high and low ge The low Qe air is
produced by the downdraught of the first intense convective cell, and the high ge air is
mostly the evaporation cooled inflow air that forms part of the cold pool in between the
gaps of cell regeneration. The outflow at the high levels from the updraught spreads
equally in both directions. During the next hour, the cold pool greatly intensifies
(Fig.5.17b) to about -10 degree, and moves forward slightly. At 120min, the updraught
becomes titled upshear (downstream of the inflow), and spans over a 30km horizontal
distance but remains very deep. Embedded on this broader scale updraught are a number
of alternating updraught and downdraught cores that are associated with individual cells
that are advected rearwards after being generated at the front line and that are seen to be at
different stages of their life history. Directly behind the CPF, a well established rotor is
evident. Theqefield (Fig.5.20d) indicates that the air inside this rotor is mostly of low-
level origin, that is, the air lifted at the CPF, cooled by rain evaporation, then entrained
into the rotor at the back, forming part of the downdraught. Further to the rear is a

downdraught circulation consisting of air of mid-level origin (Fig.5.20d).
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Fig.5.18. The flow fields of squall line experiment SLEIC at selected time. This experiment
produced a maximum surface precipitation among four experiments using step type inflow. In the
pictures, x=0 is the centre of the initial cooling, which in this experiment is 72km from the left
boundary. Only a portion of the model domain is shown here. The cloud boundary (gc=0.01g/kg)
isindicated by the thick lines, so is the boundary of the cold pool (g'=-1.0K). The velocity shown
by the arrows are ground relative. At t=60min, (a) the system isin the initia ‘cell re-devel opment’
stage, the updraught is shown to be almost vertical, though the vorticity in theinflow is zero. (b)
At t=120min, the system has just entered a stage of steady evolution. The updraught is relative
weaker than before but still very deep and is tilting downstream (upshear with respect to the sub-
cloud and cloud layer relative shear). (c) (d) At t=240 and 360 min, the flow fields change very
little in a broad sense from that at 120min, showing the system is rather steady during this period.
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Fig.5.19. Thefields of ground-relative horizontal velocity u (left panel) and the vertical velocity w (right
panel) at selected time for SLE1C (Ug=18m/s). The picture setting in this figure and the most of the
following figuresisthe sasme asin Fig.5.18.
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Fig.5.20. As in Fig.5.18, but are fields of the potential temperature perturbation g’ (left panel) and the
equivalent potential temperature ge (right panel).
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Fig.5.21. Asin Fig.5.18, but are fields of the rainwater content (gc) (left panel) and the potential height
perturbation (F '/g) (right panel)
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The circulation at 120minis aready very close to that in the conceptua model of
TMM (Fig.5.2), and it remains qualitatively similar (Fig.5.18c,d) during the next a few
hours of model simulation. At 240min, the rear-to-front flow at 2 to 3 km levels is
intensified and extends right to the CPF, with the flow speed exceeding 8m/s. The cloud
anvil is spreading over awider areain both the front and back, as aresult, therain curtain
is also spreading over a wider region, inducing even stronger downdraughts by
evaporative cooling. The system hardly moves during the first 4 hours of simulation.

A sudden forward surge of the system occurs at 270min (Fig.5.15c) as the cold pool
is enhanced. At 300min, the cold pool is 14km from the the centre of initial cooling. The
cold pool, therefore the system propagates a further 4km during the next hour. At
360min, the rain is seen extending over more than 80km to the rear of the front
(Fig.5.18a), and the rear-to-front flow is now exceeding 12m/s. The observational
evidence of thistype of strong rear inflow is documented in Smull and Houze (1987) and
is generally regarded as self-induced, i.e. induced by the convective system itself. The
multicellular structureindicated by the surface rainfall pattern is aso evidenced by the
separate updraught coresin thew field at 360min (Fig.5.19f).

Theqefield at t=300min shows that the air ahead of the CPF below 2km is almost
completely drawn into the updraught to levels higher than 7km. This suggests that
although the updraughts are not vertical, a very high efficiency is still being achieved by
the system in releasing the CAPE contained in the low-level flow. In fact, the upshear
tilting of updraughts has been regarded in classical conceptual models as the effective
orientation (Browning, 1977), this seems to be true even in a strictly two-dimensional
framework. It can then be inferred that the 'optimal’ state suggested by RKW in which
the updraughts should be vertical may not necessarily be the most efficient state

energetically.

b) Experiment SLE1B

The squall line obtained in experiment SLE1B isaso intense and steady. Infact, it is
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even more steady than the one in SLE1C which produces the maximum rainfall. The
simulation is extended further to 10 hours and the surface rainfall rate during the extra
4hrsis shownin Fig.5.22. Clearly the system has been remarkably steady throughout the
later 8hrs. This squall line differs from that in SLE1C in that it propagates at an almost
constant speed relative to the ground, as a consequence of weaker low-level inflow. The
propagation speed of the cold pool, therefore, of the system is about 2.5m/s, so that the
line relative inflow speed is 17.5m/s. This relative speed is very close to the low-level
inflow speed (18m/s) in SLE1B, in which the cold pool is essentially stationary at the
early stage. As the CPF propagates relative to the ground, it also moves relative to the
mid-level flow. A flow of 2.5m/s towards the line is enough to tilt the updraught lying in
its way downstream (upshear). An upshear tilting updraught is clearly shown in
Fig.5.23a, i.e. the flow field at 60min. This intense and narrow updraught is aso
indicated by the ge contours in Fig.5.23b. During the next hour (up to 120min), the
system evolves gradually towards a quasi-steady state, and then remains steady and
propagatesat an almost fixed speed for 8 hours of model simulation. The convection at

the end of the smulation is asvigorous asit was at 2hrs.

Fig.5.22. The surface rainfall rate between 6 and 10hrs of the model simulation
(experiment SLE1B). The rainfall rate before 6hrs for the same simulation is shown in
Fig.5.15.
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Fig.5.23. The flow fields (Ieft panel) and the ge fields (right ) from experiment SLE1B, in which the step
inflow speed is 15m/s. The squall line obtained is very steady. (Note the picture translation with time).
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Throughout this period of steady evolution, the flow field is typified by amajor jump
type updraught, a weak overturning updraught, a strong rotor and a downdraught
together with strong rear-to-front inflow.

Since the squall lineis moving relative to the air at al levels, it can be expected that
certain mid-level air will pass through the line to arrive at the rear of the line. This is
evident in Fig.5.23d as shown by the ge-tracer. A low-qe blob is seen swimming in the
middle of high-ge air towards the rear of the line to feed into the cold pool. Directly above
x=15km, anew cell is seen forming, which would soon trap another blob of low-ge air
to it left, and this blob of air will presumably follow a similar trgjectory as the one now
situated to its left. It is suggested that the line-relative motion of ambient air flow at all
levelsisalso important in ensuring the steadiness of the squall line. Since in such case,
the line moves into an environment whose conditions are hardly changed from the initial
ones. Such a steadiness can not be expected to last for very long if the squall line is
stationary (relative to the ground and to the mid-level air), since the whole troposphere

would be quickly stabilized by the vigorous convection.

c) Comparison of experiments with step inflow: What determines the

tilt of updraught?

The flow fields at 1hr and 3hrs from experiment SLE1A to D are put together in
Fig.5.24 and Fig.5.25. It can be seen that thetilt of the updraught is clearly dependent on
the magnitude of the low-level inflow: The updraught turns from upshear-tilting to
downshear-tilting with the increase in the low-level inflow speed. Since most of the low-
level inflow has zero-vorticity, we can not argue that it is the vorticity balance between
the inflow and the cold pool that induces an updraught of vertical orientation as we have

seen in SLELC (Fig.5.14c).

- 190 -



Fig.5.24. The flow fields at t=60min from experiment (a) SLE1A, (b) SLE1B, (¢) SLE1C and (d)
SLEI1D. The circulation shown is at the initiadl development stage of the squall line. The
updraughts in all cases are intense at this time, but their orientations are very different. The
orientation of the updraught is a strong function of the speed of the low-level inflow, in other
words, afunction of the mid-level system-relative flow since the line is propagating at a different
speed. We argue here that it is the subcloud-cloud layer relative shear that dictates the tilt of
updraught while the vorticity (zero here) in the low-level flow is only of secondary importance.
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Fig.5.25. Asin Fig.24, but at 180min.
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Fig.5.26. Schematic diagram illustrating the way in which the interaction between the low-
level inflow and the rain-induced cold pool occurs depending on their relative strength, and
how this determines the tilt of the updraught. The C in the figure is the propagation speed of
the CPF relative to ground, which is mainly dependent on the cross frontal pressure jump
and the speed of the inflow. In the above three cases, the strength of cold pool is assumed to
be the same but the magnitude of low-level inflow U increases from case (a) to case (b) as
indicated by the inflow profilesin the figure. x=0 is the initial position of the cold pool, the
final position of the cold pool is shown by the cold front indicator. The bold arrow near the
cold pool front indicatesthe displacement of the CPF as a result of the imbalance between
the front and the low-level inflow. In case (a), the inflow is not strong enough to balance the
pressure force induced by the cold pool at the front so that the CPF surges ahead (C>0)
inducing a deep anti-clockwise circulation as shown by the circle in picture (a). This
circulation then forces the updraught to tilt upshear. Case (c) isjust the opposite; the inflow
is very strong so that the CPF recedes (C<0) inducing a deep clockwise circulation which
forces that updraught totilt downshear. In case (b) the cold pool and the inflow are just in
balance so that the CPF is stationary (C=0). The air lifted at the CPF in this case enters the
undisturbed middle levels to establish an upright updraught.
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A close examination of Fig.5.25 reveds that the consequence of the interaction
between the low-level inflow and the cold pool is best signified by the movement of the
CPF. In case of weak inflow, the cold pool is strong enough to propagate forward
through the inflow asin SLE1A and SLE1B. An immediate result of thisis that an anti-
clockwise deep circulation is set up through mass continuity. This circulation acts to
effectively tilt the updraught upshear (Fig.5.24a,b). On the other hand, when the inflow
istoo strong for the cold pool to resist, the cold pool would recede which then introduces
aclockwise circulation that in turn forces the updraught to tilt downshear (Fig.5.24d).
Fig.5.24c shows a case in which the cold pool and the inflow is amost in an exact
balance so that the CPF is stationary. The inflow is decelerated to be stationary at the
CPF, and is lifted upwards and then enters the mid-troposphere that is hardly disturbed
to form a vertical updraught. But it should be pointed out that the maintenance of an
exactly vertical updraught ina squall line system is not required in order to achieve a
maximum efficiency in releasing the CAPE in the low-level flow. Our arguments on how
the interaction between the cold pool and the low-level inflow determines the updraught
slopeisillustrated schematically in Fig.5.26.

The dependence of the updraught tilt on the relative strength of inflow and cold pool
isfurther illustrated by the model-simulated flow fields at 3hrs (Fig.5.25). By this time,
the CPF has propagated over a different distance in each case. The updraught in all cases
except in SLELD is tilting upshear. In SLELC, the updraught turns from the vertical
direction to upshear in response the intensification of cold pool, but the cold pool and
inflow are still roughly in balance. Fig.5.15 shows that at this time the squall line in

SLE1C is most efficient in producing precipitation.
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5.4.2 Shear type inflow

Therainfall rates at the surface from experiments with shear type inflow (SLE2A-D)
areshown in Fig.5.27. It is clear that the line propagation speed is strongly dependent on
the inflow magnitude; the line in SLE2A is fast propagating whereas the line in SLE2D
(Up=28m/s) is stationary if not receding. The convection is most vigorousin SLE2A and
SLEZ2B but very weak in SLE2C and SLE2D. In the later two, the low-level shear is so
strong as to suppress severely deep convection. It is also evident (Fig.5.27) that as the
mid-level system-relative front-to-rear flow increases, the system becomes increasingly
multicellular, and the line relative speed at which the individual cells moves away from
the line where it is generated increases a so. The accumulated rainfall in the domain from
each lineis plotted against timein Fig.5.28. The overall precipitation from these lines are
much lower than those with step type inflow. The case with a shear magnitude of 15m/s
over 2km produces maximum rainfall whereas hardly any rain is produced by line
SLEI1D. It is therefore suggested that the shear in the low-level inflow is detrimental to
rather than favourable for strong, deep convection, and for a given environmental
sounding, there exists a preferred magnitude of shear with which the squall line
convection ismost vigorous. This preferred condition can aso be understood through the
mechanism we suggested previoudly (Fig.5.26) in terms of the inter-balance between the
low-level inflow and the cold pool. A maximum efficiency of rain-generation is achieved
when the inflow is just strong enough to keep the cold pool front stationary or
propagating slowly relative to the mid-level flow.

The flow fields at 1hr and 3hrs from four experiments are given in Fig.5.29 and
Fig.5.30. The CPF in SLE2A (Fig.5.29a, Up=10m/s) moved forward by 14km during
theinitial one hour, consistently the updraught is seen tilting upshear athough individual
updraught cores are nearly vertical. The updraught that formsin SLE2B (Up=15m/s) is
amost exactly vertical at 60min, with the entire low-level inflow being drawn up into the
updraught. The other two cases with stronger low-level shear have much weaker

updraughts, with most of the inflow air running through under the convective area. In
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these two case, there is a tendency for the cold pool to recede, but it appears stationary
because it is being fed by evaporation cooled air from the convection. By 3hrs, the
convection in the later two cases remains very weak, whereas the other two squall lines
experience steady evolution (Fig.5.30). The line in SEL2A propagates faster and the
multicellular structure is most pronounced, with four separate updraught cores being
identifiablein Fig.5.30a. The corresponding e field (not shown) indicates that the cold

pool isalso fed by the air from mid-level at the front of the line.

Fig.5.27. The surface rainfall rate as a function of time for experiments (a) SLE2A ,
(b) SLE2B, (c) SLE2C, and (d) SLE2D.
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Fig.5.28 The accumulated surface rainfall in the model domain produced by
squall lines (as indicated in the diagram) with ashear type low-level inflow. It
can be seen that a 15m/s shear inflow produces the maximum rainfall
(SLEZ2B), therefore the most active squall line.

In conclusion, the results of the experiments with shear type inflow again lend
support to themechanism we suggested, by which the interaction between the low-level
flow and the cold pool in terms of their relative strength determines the development and
evolution of squall line systems. The important role of the low-level inflow is to stop the
cold pool from propagating too rapidly relative to the mid-level flow, but the cold pool
should also be strong enough to resist the inflow so as to maintain a vertical-to-upshear
tilting updraught. The vorticity in the low-level in flow is only of secondary importance
in determining the tilt of updraught. A stationary or slow-propagating cold pool relative to
the mid-level air flow, as aresult aglightly upshear tilting updraught, is optimal to alow

for avigorous, long-lived squall line.
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Fig.5.29. The flow fields at 60min from experiments with shear type inflow. They
arefor (a) SLE2A, (B) SLE2B, (c) SLE2C and (d) SLE2D.
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Fig.5.30. The flow fields at 180min from experiments with shear type inflow. They
arefor (a) SLE2A, (B) SLE2B, (c) SLE2C and (d) SLE2D.
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5.4.3 Jet type inflow

Another experiment (SLE3A) is performed with a jet type low-level inflow. This
inflow has a maximum of 18m/s at 1.5km level, and decreases linearly to 10m/s at

z=0.0km and to 0.0m/s at and above 2.0km.

Fig.5.31. Theflow fields at (a) 60min and (b) 240min of the simulated squall line
in ajet type low-level shear. (c) Thefield of geat 240min of this simulation.
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Since the inflow at the ground level is weak, the strong cold pool enhanced by
evaporation from a wide area of rain pushes its way ahead very quickly through the
inflow, inducing a strong compensating anti-clockwise circulation which together with
the strong inflow at 1.5km level swvampsthe lifted air rapidly to the rear of the front line.
(Fig.5.31). Deep convection is only seen considerably a long distance to the rear of the
front line where the prohibiting circulation and water drag are weaker. The ge field shows
that at 240min, the cold pool consists largely of the air from ahead of the CPF, which is
of higher ge Due to the lack of vigorous, deep convection in the line, the tota
precipitationproduced is very limited. In short, the development and evolution of the
squall line in this experiment is consistent with our interpretation on the conditions for

strong long-lived squall lines.

5.5 The optimal conditions for intense, long-lived squall lines

Our numerical experiments have shown that squall lines that develop in an ambient
flow with a strong enough relative shear between the lower 2km and the layer above are
mostly long-lived. However, the intensity of convection in the system depends strongly
on the relative strength of the rain-induced cold pool outflow and the low-level ambient
flow. When the cold pool is not strong enough to resist the low-level ambient flow, it
would, at least tend to, recede. As aresult, a deep circulation as indicated in F.g.5.26¢
would be induced which tends to tilt updraught downshear (with respect to the deep
ambient shear). In this case the rain that falls overhead of the low-level inflow would be
prohibitive to persistent deep convection, and as the rainwater evaporative cooling is
limited the cold pool will be weak. On the other hand, when the low-level inflow is
relatively weak, the cold pool would propagate forward so that the air above the cold pool
isleft behind. A deep circulation having an opposite direction as in previous case would
then be induced (Fig.5.26a), which tends to tilt the updraught upshear. This case is

regarded by RKW as being 'less than optimal’, however, the upshear tilting orientation of
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updraught is generally considered the most effective (e.g. Browning, 1977). The
extremely persistent convection in the squall line obtained in SLE1B clearly supports the
latter view. In such a situation, the rain falls from the upshear tilting updraught without
interrupting the low-level inflow. Moreover, the rain evaporation at the mid- and low-
levels beneath the tilting updraught would strongly enhance the cold pool. Since there
exists alower limit to the cold pool temperature (determined by the minimum qe in the
domain), a quasi-steady state with cold pool temperature fixed could be eventually
established. Provided that the CPF does not move too rapidly (within a few meters per
second) relative to the air above the cold pool, a upshear tilting but still deep and
persistent updraught can be maintained in which there may be a number of updraught
cores related to individual cells at different stages of their life cycle. In the intermediate
case in which the cold poal isroughly in balance with the low-level inflow, the cold pool
would hardly move. The inflow would then be lifted at the CPF and enter the scarcely
disturbed mid-layer to form an erect updraught (Fig.5.26b). Although the updraught
developed in this case can be more vigorous than in the upshear tilting case, it would not
be as persistent. It will be periodicaly disrupted by heavy liquid water loading.
Moreover, this state with vertically symmetric convective circulations can not last for very
long since the latent heating accumulated at the mid- and high-levels would soon change

the environmental conditions.

Based on the above arguments, we propose here the optimal conditions for long-
lived, intensesquall lines. Assuming the environment has an uniform flow of speed Ug
(<0) below z=H1, and zero flow above, the optimal state requires that the cold pool
propagation speed relative to the ground, hence relative to the air above the cold pool

also, be zero or dlightly greater (forward) than zero, namely

C=k(DF")Y2+a Ugs 0. (5.5.1)
Here DF ' isthe jJump in geopotential height across cold pool front, k and a are two non-

dimensional parameters. When C2 0, its value should be within afew meters per second.
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Formula (5.5.1) is based on the speed of atmospheric density current propagating in
an atmosphere at rest. Seitter (1986) gave aformula of the speed as

C+ =k (Dp)¥2, (5.5.2)
where the Dp is the pressure jump across density current head (cold pool front) and 7 the
average density inside the density current head. This pressure jump includes the
contributions from not only the temperature deficit inside the density current (cold poal),
but aso warming in the updraught, water loading and nonhydrostatic effects. It is
therefore more accurate than the classical formulafor density current propagation which
takes into account of the density deficit only (Benjamin, 1968). k=1.1 is suggested by
Seitter (1986) based on numerical experiments.

When a density current propagates in an environment with opposing inflow, its

speed is given by Thorpe, et. a. (1980) as

C=C++a U, (5.5.3)
where Cx is the density current speed without opposing flow, and Ug is the ground
relative inflow speed a=0.7 is suggested by Thorpe, et.a when calculating C+ based on
temperature buoyancy only. A larger value of about 0.9 is more appropriate according to
our later experiments.

Condition (5.5.1) can be rewritten as

|Ug| £ k' (DF ")V20 Cx /a, (5.5.4)
i.e. theinflow speed, adjusted by factor a (of the order one), is equal to or dlightly less
than the absolute density current propagation speed C+ (here k'=k/a).

The optimal condition given by RKW is
H
DU =k[ -B)dz]¥2° ¢ (5.5.5)
0

where DU represents the wind difference across the low-level environmental shear, B
represents the full buoyancy term, including water loading, and H is the level where

negative buoyancy first vanishes. k=\/2 as is given in their formula, but a smaller value
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of about 1.0 was also suggested when the propagation of the cold pool was discussed
taking diffusion into account. Therefore c in (5.5.5) and C+ in (5.5.4) are both the
prediction of cold pool propagation speed. Regardless of the exact equality required in
(5.5.5), condition (5.5.4) and (5.5.5) predicts essentially the same dividing line of the
magnitude of the low-level inflow, but the interpretations of them are very different.
RKW obtained condition (5.5.5) based on the assumption that the low-level inflow is
sheared, and DU is the magnitude of shear across depth H. The flux of vorticity in this
sheared flow should balance exactly the generation of vorticity of opposite sign at the cold
pool front. This condition is obviously not consistent with the results of our numerical
experiments in which the low-level inflow has a constant speed therefore zero vorticity.
To obtain condition (5.5.5), RKW also neglected the fact that the diminution of vorticity
in theinflow is not possible unless there is a thorough mixing between the inflow and the
cold pool air. Thisis clearly not occurring in the model simulations. We think that the role
of the inflow is to control the propagation of the cold pool outflow so that a slightly
upshear tilting updraught is maintained, rather than to provide vorticity to be destroyed by
the cold pool. The vorticity possessed by the air lifted to enter the updraught has only a

secondary effect on the orientation of updraught.

The condition (5.5.4) is verified against the results of our experiments with step type
flow. In SLE1B, SLE1C and SLE1D, the ground relative propagation speed of the CPF
IS respectively positive, nearly zero and negative. With reference to the surface rainfall
pattern in Fig.5.15, we chose a relatively steady period of one hour for each case for
testing calculations. They are 1 to 2hrsfor SLE1C and SLE1D, and 2 to 3hrsfor SLE1B.
The cross frontal jump in geopotential height perturbation F' is calculated as the average
of F' at the beginning, middle and end of each one hour period. The corresponding
curves of F' at the surface are shown in Fig.5.32. The values of C+ calculated according
to (5.5.4) are listed in Table.5.3, together with the inflow speed (Up) and the ground
relative speed of CPF (C) calculated from the actual CPF positions.

It can be seen that for the nearly stationary case SLE1C, C«=17.2, this is very close
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to the absolute speed of inflow (18m/s). For the upshear tilting (also forward
propagating) case SLE1B, |Ug|<C+ and for SLE1D in which the updraught remains
downshear tilting and the cold pool recedes, |Ug[>C+. These are clearly consistent with
our previous discussions on how the inflow controls the propagation and further the
development and evolution of a sgquall line. Condition (5.54) gives a good guide line
towards our understanding of squall line dynamics. Finally by fitting in the values of Cx,
Up and C into formula (5.5.3) we find an average value of 0.89 for factor a. Therefore

we suggest a=0.9 being most appropriate in formula (5.5.3).

Fig.5.32. The curves of the geopotential height perturbations at s=1 showing the pressure
jump across the cold pool front within squall lines obtained in experiment SLE1B (upper
panel), SLE1C (middle pandl) and SLE1D (lower panel). The curves are plotted as F'/g
(m).
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Table.5.3. Verification of the propagation speed of cold pool and the condition for
intense and long-lived squall lines with experiments SLE1B, SLE1C and SLE1D

Experiment DF'/g C+ (m/s) Up (m/s) C(m/s) a
SLE1B 22.0 16.15 -15.0 2.8 0.89
SLE1C 25.0 17.22 -18.0 0.35 0.94
SLE1D 35.3 20.47 -25.0 -056 084

Furthermore, Table.5.3 shows that DF ' in SLELD is greater than in SLE1B, but the
cold pool in SLE1D is considerably weaker. This suggests that the contribution to the
cross frontal pressurejump from other factors, in particular the warming above the cold
pool, are significant. The strong heating overhead of the cold pool in SLE1B (also in
SLEIC, see Fig.5.21) considerably reduces the pressure at the surface.

5.6 Sensitivity of squall line simulations to diffusion

Asislisted in Table.5.2, four experiments are performed with other model settings
exactly the same as in the maximum rain-production experiment SLE1C, except that
different formulations or magnitudes of diffusion are used. In experiment SLE4A and
SLE4B, the Richardson number and deformation dependent diffusion is switched off as
in SLEIC, but a smaller (20m2/s) or larger (200m?2/s) coefficient (Kgg) of constant
background diffusion is used. In SLES5A and SLE5B, the former diffusion is activated
and Kge=20m?2/s and 100m?/s respectively.

Therainfal rate from each of the four experimentsis plotted against timein Fig.5.33,
the time series of maximum and minimum q' are shown in Fig.5.34. In Fig.5.35 are the
flow fields at 3hrs from these experiments. It can be seen that SLE4B is most rain-
productive while SLE5A isthe least. On the whole, the squall lines are mostly intense and

long-lived, consistent with the prediction made according our optimal condition (5.5.4).
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Fig.5.33. Therainfal rate at the surface plotted against time for experiment SLE4A
(a), SLE4B (b), SLE5SA (c) and SLESB (d).
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Fig.5.34. The time series of 'max and q'min for respectively experiment SLE4A
(a), SLE4B (b), SLE5A (c) and SLESB (d).

In SLE4A, thediffusion is much weaker than in all the other three, as a result, the cold
pool is the strongest and is established earlier (q'=-9.5K at 100min, Fig.5.34) The
strength of the cold pool enables it to propagate forward against the inflow, inducing a
strongly upshear tilted updraught. Fig.5.35a shows that the flow field at 3hrs of this
experiment isfairly smilar to that in SLE1B. This system should be expected to be also
long-lived if the upstream conditions are properly maintained (the background diffusion
helps to maintain the initial environmental state). The evolution of the squall line in
SLE4B isvery similar to that in SLE1C (cf. Fig.5.15c); both systems are intense and
nearly stationary. Only that the cold pool at the early time (50-130min) is weaker in
SLE4B, due to stronger diffusion on the temperature perturbation. Accordingly, the
system is seenreceding slightly first in SLE4B, but it remains stationary in SLE1C. By
240min, the cold pool in both cases has a similar strength, the subsequent evolutions of

two systems are much the same. The squall linein SLE4B isvery intense (Fig.5.35Db).
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Fig.5.35. The flow fields at 180min of the squall line in experiment SLE4A (a),
SLE4B (b), SLE5A (c) and SLESB (d).
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In the other two experiments (SLESA, SLESB), the time evolution of system appears
to be somewhat different. Both systems experienced a period of 'single cell
redevelopment' (from 120 to 225min in SLE5A and 90 to 135min in SLE5B). Within
this period, the system appears to be unicellular. The cell life cycle in rather short, the
period of cell regeneration is only about 11 minutes (Fig.5.33c,d). During this period,
the cold pool isrelatively weak (Fig.5.34c,d) and the updraughts are vertically oriented.
At t=225min in SLE5A and 135min in SLE5B, the cold pool is evidently enhanced
(Fig.5.34c,d), corresponding to this, the surface rainfall pattern exhibits a distinct change
from unicellular to multicellular one. At the same time, the updraught changes from more
or less vertical to upshear orientation. The convection is since more vigorous and
persistent, the flow field becomes similar to those in SLE1C and SLE4B. We show in
Fig.5.35 the flow fields at t=180mins for SLE5A and SELS5B, they happen to be at

different stages of development in each case.

In general, thesquall linesin all of the above experiments are long-lived and nearly
stationary. This is consistent with our discussions in section 5.5. However, the time
taken in each experiment to establish a rain-productive system with an upshear oriented
updraught differs greatly. It isfairly quick when the constant background diffusion only
isincluded (E2hrs) and even quicker when Kpg is smaller, but it takes up to 4 hours to
reach that state in experiment SLESA in which K(Ri, Def)! 0 and Kgg is small. These
experiments show the diffusion does affect the time evolution (especially the timing) of
simulated squall lines, but it would not change very much the fina state of a mature
squall line whichis mainly controlled by the relative strength of cold pool and low-level

inflow.
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5.7 Summary

A seriesof experiments of two-dimensional squall lines have been performed using
our s-coordinate model. The results agree with the finding of TMM and RKW that the
interaction between the rain-induced cold pool and the low-level inflow plays a crucia
role in maintaining an intense, long-lived squall line. However, the results of our
experiments do not support RKW's argument that the orientation of the updraught is
solely dictated by the net vorticity in the updraught air. Rather, we believe that the
orientation of updraught is mainly controlled by the flow speed at the cloud (mid-) levels
relative to that of the cold pool front at which the inflow air is lifted, whereas this relative
speed is related to the deep environmental shear between the sub-cloud layer and the
cloud layer, when the intensity of cold pool isroughly fixed. This deep shear is required
so that the cold pool propagates at a considerable speed relative to inflow air but not
relative to the cloud layer flow. To achieve this, we do not require vorticity in the low-
level flow. The mechanism of vorticity balance happens to predict a magnitude of low-
level shear agreeing with the results of numerical experiments (RKW) (the evaluations of
certain parameters are rather arbitrary). But such a success comes for the wrong reasons.
The low-level shear in their case is to, just like the un-sheared low-level inflow in our
case, produce a pressure force to balance the pressure gradient produced by the total
buoyancy at the cold pool head, such that the cold pool does not propagate rapidly
relative the air above the cold pool. This conclusionisin line with that of TMM.

The dlightly upshear tilting orientation is shown to be the most effective one of
updraught, just as suggested by classical conceptual models of 2-D squall lines. An
exactly vertical updraught may be vigorous but has to be intermittent due to liquid water
loading. Moreover, even in a strictly two dimensional framework, a quasi-steady squall
line system is still possible, and the system can even propagate relative to flows at al
levels. This being possible is because that the system is in most cases multicellular, in
which new cells are continually generated at the front line and sometimes moved rather

rapidly rearwards and air in front of the line can pass the line through in-between the gaps
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of individual cells.

The experiments with low-level sheared inflow of different magnitudes show results
consistent with the prediction made according to our optimal condition, and that the
updraughts in these cases are less intense than in the step inflow cases.

Diffusion isfoundto be able to affect the timing of squall line evolution, but not to
the extend as to change the final state of long-lived squall lines.

Supercell type convective storms generally exist in an environment of deep and
strong shear, and they have three dimensional structures (Browning, 1977). This type of

deep convectrion is not considered here.
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Chapter Sx

Deep Orographic Convection
- Numerical Sudy on The Big Thompson Storm

6.1 Introduction

Compared with squall line type convection and broad scale orographic precipitation
systems, deep orographic convection is an area not much studied, part of the reason is
that fewer observational events have been documented due to the smallness of such
systems and the attachment of them to particular geographical locations. The lack of
modeling studies is mainly because the ssmulations of these systems requireappropriately
formulated numerical models (being capable of dealing with irregular orography) as well
asarather large amount of computing resources. In spite of these, Orville (1965) in the
sixties managed to carried out some numerical studies on convection over an idealized
ridge. In his case, the ridge was composed of two straight slopes with the slopes being
coincident with rectangular grid mesh. The effect of ambient winds were examined. L ater
on, numerical models with terrain-following coordinate transformation emerged in the
mid-seventies (Gal-Chen and Somerville, 1975, and Clark, 1976), but still little effort
has been devoted to problems of deep orographic convection. In our nonhydrostatic
sigma-coordinate model, both the convective processes and orographic effects are
included, it istherefore an ideal tool to study problemsin this area.

There are some observational studiesin the literature on convective processes over

mountains. The best documented events may be the Big Thompson storm that occurred
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over the Big Thompson Canyon, east of Continental Divide, Rocky Mountains on the 31
July to 1 August, 1976. On that day, a large quasi-stationary thunderstorm complex
formed over the Big Thompson river drainage west of Loveland, Colorado, and intense
rainfall produced devastating flash floods that cost many lives. It is this event that we are
going to study using our numerical model. Other observational studies include Grossman
and Durran (1984), in which the orographic convection due to interaction between
monsoon flow and the coastal mountains of the Indian sub-continent was examined.

A detailed analysis of the meteorological conditions which culminated in the Big
Thompson floods was presented in Maddox et al. (1978). They were summarized in

Caracenaet al. (1979) asfollows:

1) At upper levels (500-300hPa), the flow around a negatively tilted ridge was light
southeasterly over the Front Range area of Colorado.

2) A short-wave trough on the meso-a scale (at 500hPa) was approaching the region
from the south along the west side of the ridge.

3) A polar air mass lay to the northeast of the Front Range, with the polar front
stretching across southeastern Col orado.

4) During the day, increasing surface pressure over Nebraska and northeastern
Colorado, and falling pressure over northwestern Colorado, accelerated a secondary cold
frontal surge that reached the foothill of the Front Range about 0000 GMT 1 August
1976.

5) Behind the secondary cold front, a deep moist flow in the boundary layer carried
potentially very unstable air upslope. The strong moisture intrusion focused on the Big
Thompson area. The storm complex developed over the Big Thompson river drainage

and remained quasi-stationary for several hours.

-213-



Fig.6.1. Skew T/logp plot of upper air sounding constructed for Loveland, Colorado, 0000
GMT 1 August 1976. LCL and LFC levels and moist adiabats are shown for alifted parcel
with mean thermodynamic characteristics of lowest 100hPa layer.

Fig.6.2. Heavy rainfall components accumulated throughout the lifetime of the storm from
0000 to 0500 GMT 1 August 1976. (From Caracenaet al. 1979)
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Caracena, et a. (1979) further analysed the mesoscale features and cloud
microphysical aspects of the Big Thompson storm, making use of radar data and surface
observation, rain gauge data. A post-frontal sounding profile was constructed based on
various sources of information for Loveland, Colorado (about 30km from the major
mountain ridge), 0000GMT, 1 August 1976. The skew T/logp plot of the sounding is
reproduced in Fig.6.1. The air between the surface and the 730hPais very moist (mean
mixing ratio 14.8g/kg) so that the air mass is convectively very unstable. Asis shown in
Fig.6.1, the post-frontal air mass is however capped by a strong frontal inversion at
730hPa, which is aso the height of lifted condensation level (LCL). An additional 80hPa
of lift isnecessary to bring this air to its LFC and release its strong potential instability.
This additional lifting was realized as the air mass moved up into the foothills.
Meanwhile, other convection over the plains was suppressed by the nocturnal cooling so
that a steady inflow into the storm was established and continued to feed the quasi-
stationary storm. Fig.6.1 also shows that the air in the inverson was rather dry,
corresponding to low-ge values there. If this low-ge air is brought to ground levels (say
in the form of downdraught) it will be considerably colder than the inflow air. This
suggests a potential for a strong cold outflow to form. Fig.6.1. further indicates that
strong flow is limited to a 1.5km deep surface layer, while the wind aloft is very light.
Such awind profile is favourable for long-lived squall line system as was discussed in
last chapter.

Thetotal accumulation of heavy rain from the storm estimated according to radar data
is shown in Fig.6.2. The maximum rainfall accumulated is 178mm (7.0 inches).
Although several maximum centres are visible the overall rainfall pattern is aligned with
the mountain ridge, and the north-south extent of the storm is much longer than its east-
west scale. The storm can therefore be regarded as two dimensional to the first

approximation.
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Fig.6.3. Physical model of one of the initial cells of the Big Thompson
storm complex. LCL, LFC, winds and levels of 0°C and the -25°C isotherms
arefrom interpolated Loveland sounding. Grover 0045 radar reflectivities are
shown with 10dBZ contours beginning with 15 dBZ level.

A physical model has been given by Caracena, et a. (1979) for this storm. It is
depicted in Fig.6.3, in which the contours with shading show the radar reflectivity (dBZ)
in across section through one of theinitial cellsat 0045 GMT. According to the model, a
strong low-level inflow produces a strong moisture and mass flux into the storm area,
and is lifted above the LCL on approaching the Front Range. Stratus and stratocumulus
cloudsform first in the 80hPathick layer between the cloud base and the LFC. Further on
at some point along the mountainous topography the air mass is forced above the LFC
and vigorous convection devel ops. With the vertical transport of the easterly momentum
into the storm and very light winds at high levels, the updraught tilts dightly in the
direction of the inflow to the west, and this westward tilted updraught allows precipitation

to fall out of the rear of the updraught, enabling the system to exist in a nearly steady
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state. The downdraught circulation was found very weak in the system, which was
attributed to the lack of appreciable hail therefore weaker drag, cloud base very close to
the surface and the lifting of the mountain terrain. The cold outflow did not spread
eastward out of the mountains to trigger new cells further east. Warm rain processes are
believed to play the major role in generating storm precipitation, asis evidenced by the
low echo-centroid and lack of hail. A very high precipitationefficiency (total precipitation
to the total low-level moisture influx) of up to 85% was achieved by the storm, helped by
the minimal lose of rainwater by evaporation in the rather weak downdraught circulation.
In the next section we will give a list and the specifications of two dimensional
numerical experiments with the Loveland sounding. The results of these will be presented

in section 6.3 and some discussions and conclusions will be found in the last section.

6.2 Experimental designs

Themodel initialization procedure is essentially the same as that for the simulations
of moist mountain lee waves in Chapter four. The initial state for al the following
experiments are in hydrostatic balance. The model is initialized from a given sounding
profile of temperature and humidity, therefore the initial stateisa function of height or
pressure only. Also theinitial flow field depends on height only. The specified mountain
isintroduced at the beginning of simulations therefore a period, but generally very short

period of adjustment is required after setting up.

The pressure at the ground level, Pgrf(F s=0), is 850hPa, and this is chosen to match
the pressure at the surface of the high plain to the east of the mountain range. For al the
experiments, we have Pyop=100hPa, a 256km horizontal model domain with Dx=1km,
and 40 levelsin the vertical so that Ds =1/40. Time step Dt=6s. Richardson number and
deformation dependent mixing parameterization is activated and a constant background

diffusion with Kgg=100.0m?2/s is incorporated.

The sounding profiles used as model input are re-plotted in Fig.6.4 on a Tephigram
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(T-Ing). The temperature profile is unchanged in all the experiments but the moisture
profile is modified at mid-levels (thin dashed line in Fig.6.4) in the second set of
experiments (DOC2A-C), we will refer to these cases as modified moisture sounding
cases. The upstream wind profileis given in Fig.6.5 which shows that inflow is mainly
below 2.5km AGL, with ajet at the 1.0km level. This profileisin a broad sense similar

to those used in the squall line experimentsin the last chapter.

Fig.6.4. Tephigram of sounding profiles used as model input of deep orographic convection
experiments. They are based on the Loveland sounding given in Fig.6.1. Straight lines at
right angle to each other are isotherms and dry adiabats. Lines lying roughly horizontally
are isobars. The temperature profile is in bold solid line and the moisture profiles are in
dashed lines, with the bold being the standard and the thin one being the modified one.
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Fig.6.5. The initial upstream wind profile used in all experiments of deep
orographic convection. All windsare seen confined below 3.0km, with a jet
at 1.0km level.

Three types of mountain shapes are used to represent the orography profile outlined
in Fig.6.3. The first one is the symmetric bell-shaped mountain (SBM) given by
h(x)=hm/[ 1+(X-X0)2/&, 2] with hy, being the maximum height and a; the half-width of the
mountain (see Fig.6.6a). The second is the asymmetric bell-shaped mountain (ABM,
Fig.6.6b) which is actually composed of opposite haves of two bell-shaped mountains of
scales & and a respectively. The third is the plateau type mountain consisting of aflat
high plain joined up with half a bell-shaped mountain (PBM) as shown in Fig.6.6c¢. In all
the experiments, the half-width of the bell-shaped mountain on the windward side &, is
10km, while the half-width of the left portion of the asymmetric bell-shaped mountain &
is 50km. The specifications of the three sets of experiments of deep orographic

convection (smulations of the Great Thompson storm) are listed in Table.6.1.
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n

Fig.6.6. Sketches of three mountain profiles used to present the orography
that forces the Big Thompson storm.

Table.6.1. Specifications of deep orographic convection (DOC) experiments.

Experiment Mountain shape Height hm(km) Moisture profile
DOCIA | symmetric Bell-shaped (SBM) 18 Standard
DOCI1B | Asymmetric Bell-shaped (ABM) " "
DOCIC | Plateau + Bell-shaped (PBM) " "
DOC2A SBM 18 Modified
DOC2B ABM " "
DOcC2C PBM " "
DOC3A SBM 10 Standard
DOC3B ABM " "
DOC3C PBM " "

6.3 Results of experiments

In this section, three sets of experiments are to be reported. Each set includes three
experiments that use different mountain profiles. For al the experimentsin the first set
(DOC1A-C), standard sounding profiles are used and the maximum mountain height hy,
is 1.8km. In the second set (DOC2A-C), the moisture sounding is modified at the low

levelsto removethe dry layer there (see Fig.6.4) with the other specifications remaining
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the same. The last set of experiments differs from the first one only in the height of the

mountain which is now 1.0km.

6.3.1 Experiments with standard sounding

The standard sounding (shown in bold lines in Fig.6.4) has a fairly dry layer at
about 700hPa (about 1.5km AGL) corresponding to the layer of inversion. The geisat a
minimum at thislayer, and is higher immediately below and above. The mid-level low ge
layer isat about 500hPa, i.e. about 4.5km AGL. The existence of this low-level low e
layer suggests an increase in the potential for a strong cold pool if this air can descend
low enough and be cooled by rain evaporation. Strong cold pools indeed form in certain

experiments to be reported.

Fig.6.7. Hovmoeller diagrams of the surface
rainfall rate (averaged over 2 minutes) in
experiments DOC1A (a), DOC1B (b) and
DOCI1IC (c) through four hours of model
simulations. x=0 indicates the position of the

mountain summit, or the edge of the flat plateau.
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Fig.6.8 The wind vector fields in the vertica plane, at 1 to 4hrs from experiment DOC1A. The
convectionisforced by a symmetric bell-shaped mountain ridge. Thick lines in the pictures outline the
cloud boundaries and the rainy areas are shaded. Wind vectors are plotted at every other grid points in
horizontal and at all levelsin the vertical, running average over 6km horizontal distances is performed on

thewind fields for clarity of illustration.
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Fig.6.9. Fields of potential temperature perturbation q' and equivalent potential temperature ge at 3 and
4hrs from experiment DOC1A. In the former, areas with g'£-1K are heavily shaded to indicate the
position of low-level cold pool. The layer with negative g between 1 to 2km is mainly induced by
adiabatic cooling due to ascending motion in the inversion layer.
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We start by showing the rainfall rates produced by the storms obtained in
experiments DOC1A, DOC1B and DOCI1C (Fig.6.7). The orographic convective
systemsin both DOC1A and DOCI1B areintense and nearly stationary. Rain is seen first
faling at near the summit of the mountain at half an hour, and individual cells are seen
moving rearwards. The site of cell initiation shifts slightly downslope during the later
hours with most of the rain still falling on the upwind slope of mountain. The convection
in the case of asymmetric bell-shaped mountain is more intense than with the symmetric
mountain (Fig.6.7a,b). The convective storm forced by a plateau type mountain however
behaves very differently (Fig.6.7c); after being initiated on the upwind slope, it
propagates rapidly downslope away from the mountain, and at the later time, it appears
more like a usual squall line driven by a strong cold pool. The convection becomes very
weak after 3hrs, being prohibited by the strong relative flow above the cold pool.

The flow fields at 1 to 4hrs of experiment DOC1A are shown in Fig.6.8. Only a
portion of model domain is shown. The fields of potential temperature perturbation q'
and equivalent potential temperature ge at 3 and 4hrs are shown in Fig.6.9.

Similarly as depicted in the physical model of the Big Thompson storm proposed
Caracena, et a. (1979), as the low-level moist inflow approaches the mountain range, it
is forced up so that stratus clouds first form at above 1km levels AGL. Asthe air runs
further upslope, it is lifted above its level of free convection, deep convection is then
break out. At 1.0hr of model simulation, the cloud top is seen to be at 12km height
aready (Fig.6.8a), however, alarge proportion of low-level inflow is running through
over the mountain top and then descending on the lee slope of the bell-shaped ridge, this
implies that the precipitation efficiency is not high at the moment. By 3hrs, it is seen from
Fig.6.8c that the convective stormis at it full intensity, and the storm structure at thistime
bears a strong resemblance to the Big Thompson storm described by the physical model
of Caracenaet al. A vigorous updraught leans against the upwind slope of ridge in a
slightly downwind direction, and the rain fals off the updraught directly over the

mountain ridge. Downdraught is fairly weak. The air on the upwind slope above

- 224 -



z=0.5km is saturated, being rendered so partly by the evaporation of rain water, as a
result it is slightly colder then its surrounding (Fig.6.9a). The air in this region is nearly
stagnant therefore it enhances the lifting to the incoming flow. On the lee slope, thereis a
rather strong downslope flow. Thisflow is composed of both the air originating from the
upwind side of the ridge and from the mid-levels on the lee side. By 4hrs, the convection
becomes less vigorous as the updraught becomes more rearward tilted due to the
intensification and the propagation of cold pool aong the upwind slope. A rotor
circulation associated with the cold pool front is now clearly exhibited in Fig.6.8d. The
downstream (upshear) tilting of the updraught can be explained by the mechanism of cold
pool and inflow interaction as was discussed in last chapter for squall lines.

On the whole, the convective systems obtained are intense and nearly stationary

during the four hours of simulation.

Corresponding to Fig.6.8 and Fig.6.9, the flow fields and the temperature fields
from experiments DOC1B with an asymmetric bell shaped mountain are given in
Fig.6.10 and Fig.6.11. In a broad sense, the development and evolution of the
orographic convection in this experiment are ssimilar to those in simulation DOC1A. But
in this case, the rotor circulation associated with the cold pool on the upwind slope
establishes earlier and propagates by alonger distance during the period simulation. In
this case, the lee slope of mountain ridge is much more gentle than that in DOC1A, as a
result, the evaporation-cooled air at the top and on the lee slope of the ridgeis not drained
away as efficiently asin DOCI1A (see Fig.6.9), instead it tends to pile on the mountain
top and feed the cold pool on the upwind slope. This increases the pressure over the lee
slope and drives the cold pool front downward aong the slope. The position (at x=29km)
of the cold pool front is clearly further away from the ridge top in DOCI1B than in
DOCI1A (at x=19km).
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Fig.6.10. As in Fig.6.8, but for experiment DOC1B in which the mountain
asymmetric bell-shaped.
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Fig.6.11. As in Fig.6.9, but for experiment DOCI1B in which the mountain
asymmetric bell-shaped.
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upright

Fig.6.12. Asin Fig.6.8, but for experiment DOC1C in which the mountain profile
is of the plateau type. A larger portion of model domain is shown here. The storm
inthis caseisrapidly propagating.
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upright

Fig.6.13. Fields from DOCI1C of (&) horizontal velocity u, (b) potential temperature
perturbation and (c) equivalent potential temperatureq at 3 hours.
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In general, smulations DOC1A and DOC1B captured the essential characteristics of
the observed Big Thompson storm. The simulated storm structure resembles that
described by the physical model of Caracena et. al. Heavy precipitation over the mountain
ridge persists throughout the four hours of model simulations (rainfall rate exceeds
100mm per hour) although the storm consists of individual cells that are continually
regenerated and undergo their own life cycles (Fig.6.7). It should be noted that the fields
in Figs.6.8-11 are only snap shots of the evolving systems which do not necessarily
show major cellsin the system at their mature stages. The simulated storms exhibit slow
propagation down the upwind slope as aresult of the formation of arelatively weak cold
pool. Thisisin fact not surprising considering the sounding profile used which has a
layer of low-ge air a quite low levels. The ge fields in Fig.6.11 shows clearly that the
cold pool consistsof thislow ge air (qe£344K). In experiment DOC1A, this low geair
appears only on the top of the ridge.

In DOCL1C, the mountain profile is of the semi-infinite plateau type. It has been seen
from the surface rainfall pattern in Fig.6.7 that the convective storm in this run is not

stationary relative to the mountain, rather it propagates rapidly downslope and upstream.

Fig.6.12 displays the flow fields a one hour intervals up to 4 hours of model
simulation. Fig.6.13 showsthe fields of u, q' and ge a 3hrs. The convection a 2 hrsis
rather intense with the deep updraught tilting in the downwind direction. Different from
previous cases, the downdraught in this case in very strong. It lies under the sloping
updraught and brings mid-level low-ge ar right down to the surface (Fig.6.12b). Due to
alarge contrast between the ge of the air at mid-levels and that of the low-level inflow, a
cold pool with a very large temperature deficit (' £-11K) is formed. This strong cold
pool drivesthe system rapidly upstream against the inflow that is too weak to resist this
strong cold pool. The rapid propagation of the cold pool relative to the air above prohibits
deep convection resulting in the decay of the system (Fig.6.12).

In the previous cases of a bell-shaped mountain, much of the evaporation-cooled

downdraught air was drained away aong the lee slope of the ridge, so that the cold pool
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on the upwind slope was much weaker, the convective storm therefore remained nearly
stationary. In the case of plateau type mountain, the cold air is piled on the edge of the
plateau, and much of it then find its way down the slope, enhancing the cold pool there
(Fig.6.12b). This cold pool is rendered even deeper and stronger by the presence of the
plateau that blocks the cold outflow in the left ward direction. Although we would not say
that the storm obtained in this experiment (DOC1C) is a successful reproduction of the
observed Big Thompson storm, its development and evolution are physically consistent
with the given sounding and mountain profile.

In summary, using the pre-storm sounding of Loveland, attempts to reproduce the
devastating event of Big Thompson storm were made by performing three experiments
each of which uses a different mountain profile. The storms simulated in DOC1A and
DOC1B with bell-shaped mountains were persistent and quasi-stationary, whereas that
obtained in DOCI1C with plateau type mountain was fast-propagating. It is suggested
therefore if we are to believe in the representativeness of the environmental sounding
used here which has a potentia of producing strong cold pool, and we assume that the
mountain and the storm itself are quasi-two-dimensional, the mountain profiles must then
allow for the drainage of cold outflow from the lee of the ridge. In reality, probably
neither the orography nor the storm is strictly two dimensional, so that the blocking effect
asin case of aplateau would not be that strong.

As was pointed earlier, the presence of a dry, low-ge layer at the lower levels
contributes positively to the formation of a strong cold pool, in next section, we will
discuss the results of experiments in which this low-level low-qe layer is removed by

modifying the moisture profile of environmental sounding.

6.3.2 Experiments with modified moisture sounding

In the second set of experiments (DOC2A, DOC2B and DOC2C, see Table.6.1) to
be reported in this section, the moisture sounding profile is modified to remove the dry

layer at 700hPa level. The modified profile is shown in Fig.6.4 in thin dashed line.
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Correspondingly, the ge thereisincreased so that it decrease monotonically from ground
level to aminimum at the mid-levels (about 500hPa).

Corresponding to Fig.6.8, we show in Fig.6.14 the surface rainfall rates from these
three experiments. It can be seen that storms developed over bell-shaped mountains (Fig.
14a,b) are very persistent and stationary, and are even more so than those in DOC1A and
DOC1B where standard sounding was used. The maximum precipitation in both DOC2A
and DOC2B is still falling directly over the mountain ridge by the end of ssimulation. In
the case of the plateau type mountain, the trend of downslope (upstream) propagation of
the storm is unchanged. The Storm in DOC2C isinitialy stronger than in DOC1C but it

decays more quickly, as aresult of even faster propagation of the cold outflow.

Fig.6.14. Hovmoeller diagrams of the surface
rainfall rate (averaged over 2 minutes) in
experiments DOC2A (a), DOC2B (b) and
DOC2C (c) through four hours of model
simulations. x=0 indicates the position of the
mountain summit, or the edge of the flat plateau.
(cf. Fig.6.7).
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Fig.6.15. The flow fields (Ieft panel) and the fields of g (right) at 2hrs (upper) and
4hrs (lower panel) of simulation DOC2A.
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Fig.6.16. Asin Fig.6.15 but for experiment DOC2B.
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Fig.6.17. Flow fields (a) (b) and the fields of equivalent potential temperature (c) (d)
from experiments DOC2C. (cf. Figs.6.12-13).
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The flow fields and those of ' from experiment DOC2A and DOC2B are shown in
Fig.6.15 and Fig.6.16. Compared with those of experiment DOC1A and DOCI1B (see
Figs.6.8-11), the convective storm obtained here are more intense, the cold pools are
weaker. Minimum q' of the cold pool here is only -3 to -4K, instead of -6K as in
previous cases. In fact, the air that forms the cold pool on the upwind slope is cooled due
to primarily adiabatic ascent rather than rain evaporation. A relatively weak downdraught
is only seen on the lee slope. Therefore we can say that the storms simulated in
experiments DOC2A and DOC2B are closer to the observed Big Thompson storm.

The flow fields and ' fields at 2 and 4hrs of simulation DOC2C are shown in
Fig6.17. The genera trend of system evolution is similar to that seen in DOCI1C
(Fig.6.12-13), but it happens quicker. At 2hrs a very strong downdraught is seen in
Fig.6.17alying along the slope of the plateau, bringing low ge air at the mid-levelsright
down to the mountain foot, resulting a cold temperature deficit of -8K. The cold pool
temperature falls further to -12K by 3hrs.

Driven by this exceptionally strong cold pool the system propagates rapidly and then
decaysasaresult (Fig6.17a,b). In this case, although the low-ge layer at the lower levels
isremoved, astrong cold pool forms still due to the descent of the low-ge air a the mid-
levels, and also due to the blocking effect of the plateau to its left.

The above experiments show that the removal of the low-level dry, low-ge layer
results in weaker cold pools for any of the bell-shaped mountain simulations and
therefore in more stationary orographic storms. In fact the storm obtained in experiment
DOC2A isthe most persistent and stationary of al. The storm developed over the slope
of aplateau is rapidly-propagating even when the dry layer at lower levels is removed. In
this case, the cold pool forms as the strong downdraught brings mid-level low Qe air

down to the surface.
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6.3.3 Orographic convection over lower mountains

A third set of experiments (DOC3A, DOC3B and DOC3C) are performed in which
the mountain height is 1.0km, lower than in previous cases, in order to examine the effect
of mountain height on orographic convective storm. The other specifications of this set of
experiments are the same as for the first set (see Table.6.1). Since the results of
experiment DOC3B differs from those of DOC3A only qualitatively, we will show the
results of experiments DOC3A and DCO3C only and compare these results with those of
DOCI1A and DOCIC mainly.

Again we show first the rainfall rates at the surface produced by these two storms
(Fig.6.19). Due to the lower height of mountain, the initiation of convection is slower
therefore the rain reaches ground later than in previous cases (cf. Fig.6.7). The rain is
less heavy too. The storm moves faster in DOC3A than in DOCI1A, but slower in
DOC3C thanin DOC1C. The propagation speed of the storm is closely related to the

intensity of rain-induced cold pool.

Fig.6.18. Hovmoeller diagrams of the surface rainfall rate (averaged over 2 minutes)
in experiments DOC3A (a) and DOC3C (b) through four hours of model
simulations. x=0 indicates the position of the mountain summit, or the edge of the
flat plateau.
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horizontdl

Fig.6.19. Flow fields (upper panel) and those of g' (lower panel) at 3 or 4hrs of simulation DOC3A. This
experiment corresponds to DOC1A but the mountain is lower (hm=1.0km).
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upright

Fig.6.20. Flow fields (a) (b) and fields of ' (c) (d) at 3 or 4hrs of simulation
DOC3C. This experiment corresponds to DOC1C but the mountain is lower
(hm=21.0km).
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In DOC3A, the bell-shaped mountain is lower than in DOC1A, the cloud base is
therefore higher above the mountain surface so that this is larger depth for ran
evaporation to occur. Theresult of thisis the earlier formation and larger intensity of the
cold pool on the upwind slope. At 2hrs, arotor circulation isjust about to be seen on the
mid-slope of mountain (not shown), by 3hrs, the rotor is fully developed and its front
has reached the mountain foot (x=16km, see Fig.6.19a), the minimum q' of the cold
pool is at thistime -5K. The cold pool front surged ahead further during the next hour to
x=28km (Fig.6.19b). The temperature deficit of the cold pool at 4hrsisabout -8K, much
colder that in DOC1A but not as cold as in the plateau type mountain cases because the
downdraught is still relatively weak and the cold pool is mainly composed of air that is of
low-level origin.

The development of storm in DOC3C is depicted in Fig.6.20. Again we see that the
cold pool isvery strong. Since the plateau is lower in this case, the convection is not as
intense asin DOCLC, the downdraught is also weaker. The storm propagation is slightly
slower.

The results of the experiments in this section suggest that mountain should have
sufficient height not only to provide enough lifting of the low-level conditionally unstable
air, but also to ensure that the cloud base is very close to the mountain surface so that rain
evaporation is minimal. A quasi-stationary deep orographic storm can thereby be

maintained in the absence of appreciable cold poal.

6.4 Summary and discussions

A series of numerical experiments using our s-coordinate model have been reported
in the chapter. These experiments, initialized using an original or a modified version of
sounding taken prior to the Big Thompson storm, successfully reproduced the intense
and quasi-stationary nature of that storm in certain runs. It is further shown that, with the
given environmental sounding, the simulated storms are sensitive to the mountain profile.

A bell-shaped mountain produces an intense quasi-stationary storm over the mountain
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whereas aplateau type mountain produces a storm that tends to propagate quickly away
from the mountain range. The storm remains quasi-stationary in the former case due to
the lack of an appreciable cold pool on the upwind slope since air that is cooled by rain
evaporation is mostly drained away from the other side of the bell shaped mountain
range. When the mountain is of a semi-infinite plateau type, this cold air can not be
drained away in the same way, it instead tends to run down the upwind slope to form
density current which intensifies further and drives the convective line downslope away
from the mountain range. The storm is therefore no longer stationary. Our experiments
also show that the removal of adry layer in the original sounding reduces the intensity of
cold pool therefore helpsin keeping the storm stationary. To maintain a storm stationary,
the mountain also has to have a sufficient height so that the cloud base is close to the
mountain surface therefore rain evaporation is minimal.

Thereal orography shown in Fig.6.3 is more like a plateau but the observed storm
that developed over it was quasi-stationary. This discrepancy may be attributed to the
two-dimensional assumptions made on both the storm system and the orography. In a
strictly 2-D frame work, the possibility of drainage of cold outflow in the third
dimensional is eliminated, this would clearly enhance the cold outflow on the upwind
slope as in the plateau type mountain case. The three dimensionality of orography may
also be important since cold outflow can possibly be drained from mountain valleys or
over the ridge as in the bell-shaped mountain case. Moreover, our experiments are based
on the single sounding constructed for Loveland after Caracena, et al. (1979), this
sounding may not be exactly representative of the air mass that fed the Big Thompson
storm. Clearly if the relative humidity of the low-level inflow was higher, the cold pool
that forms would be expected weaker. Further studies on the environmental conditions

and the three dimensionality of both the orography and the storm are clearly necessary.

N.B. On completion of this work, we recognized that very recently Y oshizaki and

Ogura (1989) have also completed a numerical study on the Big Thompson storm. Their
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mountain profile consists of aflat high plain with a gentle sope of 50km horizontal scale,
which israther close to our plateau type mountain. The Loveland sounding was modified
to remove both the temperature inversion and lower relative humidity layer at the lower
levels. They also noticed the existence of a cold pool but it was relatively weak. The

storm remained quasi-stationary during afew hours of simulation.
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Chapter Seven

Conclusions and Discussions

Thisthesis can be broadly divided into two parts. The first part consists of Chapters
one to three, which gives a detailed account of the nonhydrostatic s-coordinate model.
Chapters four to six form the second part in which are applications of the model to
various mesoscale meteorological problems.

The quasi-nonhydrostatic equation system in s-coordinates was introduced in
Chapter one together with discussions on the properties of the system. This system of
equations has been derived by Miller and White (1984) using the small parameter
expansion technique, while our model is the first attempt to solve it numerically. Not
surprisingly, a number of problems have to be resolved while developing the model. It
has been pointed out in Chapter one that two procedures of solving the equation system
are possible, one of which solves the vertical momentum equation explicitly and the other
derives the vertical velocity from the continuity equation. The former procedure was
chosen since it treats both the horizontal and vertical velocity components in a similar
fashion. The mass continuity in the model is ensured by an accurate solution of the
elliptic equation. Thisequation is essentially a divergence equation.

The details of the model equations and the numerical formulations of dynamic
processes were given in Chapter two, whereas the treatment of physical processes and
the numerical techniques employed to advect thermodynamical quantities and to solve the
elliptic equation for F' were presented in Chapter three

The Arakawa C-grid is chosen to represent the model variables which ensures the
conservation of quadratic quantities by advective processes so as to effectively control

nonlinear instability. Aswith all limited area numerical models, the definition of boundary
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conditions is perhaps the most difficult part. This problem is further complicated in our
model by the non-orthogonality of the coordinate system and the time dependence of the
surface pressure. In spite of these, a radiative boundary condition due to Orlanski has
been successfully applied on the lateral boundaries, and in certain situations an adjustment
procedure is necessary to ensure the conservation of the total mass in the model domain.
Onthe lower and upper boundaries, the conditions for velocities are specified under the

constraint of mass continuity.

An efficient and accurate solution of the eliptic equation for F' [Eq.(2.1.10)] is
another major issue with this model. Apart from the extra complexity of the forcing
function on the right hand side of the elliptic equation, the presence of cross-
differentiation terms with respect to x and s on the left hand side makes the equation
impossible to be solved directly using fast Poisson solvers. But fortunately, these cross-
differentiation terms are generally at least one order of magnitude smaller than two major
terms. A procedure of solution has been found which treats the less important terms
explicitly and solve the resultant Poisson equation directly using afast FFT solver. An
acceptable accuracy is reached after typically two or three iterations associated with
updated right hand side terms. To make the above problem complete, the value of F' at
s=1, i.e. the lower boundary condition of the elliptic equation, needs to be properly
determined. But the way in which this is done is however not obvious. In the model,
F'(s=1) isrelated to the surface pressure based on the definition of the reference state,
which isin a hydrostatic balance. As such a recursive equation (which would be a 2-D
Poisson equation in a 3-D model) hasto be solved. The overall procedure for solving the

elliptic equation isfound to be rather efficient.

Asis well known that conventional second-order accurate advection schemes will
generate 'negative water' when used in the water quantity conservation equations. This
problem is eliminated in our model by using the Flux-Corrected Transport (FCT) scheme
instead, the model accuracy isalso greatly improved by using this advection scheme. Of

course, the FCT scheme is more expensive than conventional methods, but the positive
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contributions it makes towards improving the model accuracy prove its use to be well
worthwhile.

In most of our experiments, an absorbing layer with a Rayleigh type damping is
included near the top of the model domain in order to remove reflections from the top
boundary. This method is found to be efficient in our calculations athough a better
boundary condition such as that of Klemp and Durran(1983) may be possible. Subgrid
scale turbulence in the model is parameterized using the deformation and Richardson
number dependent formulation due to Lilly (1962). A constant background diffusion is
also included. Microphysical processes in the model include evaporation and con-
densation, auto-conversion and accretion and the evaporation and sedimentation of rain.

Kessler's parameterizations are adapted. Solid water phases can be included in the future.

The results of our model calculations have confirmed the validity of the quasi-non-
hydrostatic s-coordinate equation system as suggested by the analysis of Miller and
White (1984). This model has certain specific advantages. One of these is common to
hydrostatic numerical models formulated ins-coordinates (Phillips, 1957). In pressure-
based coordinates thermodynamical (condensation and evaporation) cal culationsare more
straightforward. Another outstanding advantage is that the nesting of this model with
other large scale weather forecasting models which are generally in s-coordinatesis much
more natural and easier. And it has been shown in chapter four that this model can be
easily switched to its hydrostatic version which makes close comparisons between
hydrostatic and nonhydrostatic solutions more direct and revealing than using totally
different models. For certain problems, the hydrostatic version of the model is

sufficiently accurate.

A maor disadvantage of thismodel is the presence of fast Lamb wave modes in the
system. It isnot clear at present whether these can be easily removed. Lamb waves tend
to limit the maximum time step that can be taken for time integration, however, this
restriction is greatly relieved when the model grid length is small relative to the vertical

scale of air motion. In this case the nonhydrostatic Lamb waves are significantly retarded.
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For example, a six second time step was used in the deep orographic convection
experiments where the horizontal grid length was 1km. According to the CFL condition
for wave propagation on a staggered grid, the corresponding maximum phase speed of
wave modesisless than 100m/s. In certain experiments (e.g. the squall line experiments
in which 60 vertical levels were used), the limitation on the time step is from the small
vertical grid length. Asthe horizontal grid length increases (e.g. in the experiments of
inertial mountain gravity waves), the restriction on the time step becomes serious. Large
time steps can not be used unless a mothod is found that eliminates or retards the Lamb
waves. Using semi-implicit techniques such as time averaging of the geopotential height
field, or possibly only the surface pressure may be a feasible way of solving this
problem. At least, in applications we have carried out (Dx is around a few kilometres),
the limitation on time stepsimposed by Lamb waves has not been very serious.

Several mesoscale models (e.g. that of Klemp and Wilhelmson, 1978) are based on a
fully compressible equation system, in which sound waves (both horizontal and vertical)
are dealt with using time-splitting techniques. In general, avery small time step is used to
describe the acoustic oscillations. While the computer code of such models is relatively
simple, it is not advantageous either when the horizontal grid length is relatively large
sincein that case the time step will be limited mainly by the small vertical grid length. The
anelastic equation system of Ogura and Phillips (1962) seems superior in this aspect but
this also has problems when used to describe flows of large scales. These problems

clearly deserve further investigation.

The model developed was verified and applied to a number of two dimensional
problems. They includes those of dry and moist mountain gravity waves and related
phenomena in stratified air stream flowing over a 2-D mountain ridge, and those of the

long-lived squall lines and deep orographic convection.

In Chapter four, numerical solutions of steady state mountain gravity waves were
obtained in various wave regimes. These solutions were quantitatively compared with

analytical results and those obtained by other numerical models, very good agreement has
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been found. The hydrostatic version of the model was also shown in this chapter to have
produced consistent mountain wave solutions.

The 11 January 1972 Boulder severe downslope windstorm associated with the
amplification of tropospheric mountain gravity waves was further studied using the s-
coordinate model. Our simulations demonstrated even more clearly the mechanism of
wave amplification; the wave system amplified as aresult of the fully nonlinear transition
of the tropospheric flow from a subcritical to supercritical state whereas the existence of
the lower level inversion layer and the creation of a nearly stagnant well mixed region by
wave breaking played crucial roles. The final state of our simulation and the associated
surface pressure drag were very close to the nonlinear analytical results of Smith (1985)
and to those of observation. The possible mechanism of resonant interaction between the
upward propagating waves and the downward reflected wave components is believed to
be only of secondary importance.

Finally in Chapter four, trapped mountain lee waves were studied based on two real
soundings taken over the west of the British Isles. Lee wave patterns seen from the
satellite pictures were well reproduced. And the experiments showed that the trapped
wave amplitudes were sensitive to the underlying topography spectrum as well as to the
atmospheric structure. Experiments with increased lower-level humidity demonstrated the
way in which lee wave structures were significantly modulated by moisture
condensation. Convection was seen breaking out in certain regions. The sensitivities of
the trapping and development of lee waves to mountain scale and height were aso
examined.

Intense, long-lived two-dimensional squall lines were studied in Chapter five.
Experiments were designed to examine the role of the interaction between the cold pool
outflow from the system and the low-level ambient inflow, and the mechanism by which
such interaction determines and maintainsan optimal state of squall line convection. It
was shown that the orientation of the updraught islargely determined by the direction of
propagation of the surface cold pool front relative to the cloud layer (layer above the cold

pool) ambient flow, which in turn is determined by the relative strength between the cold
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pool and the low-level ambient flow. A dlightly upshear (with respect to the cloud-
subcloud layer shear) tilting is the most efficient orientation of updraught in a squall line.
An optimal condition for most intense, long-lasting squall lines was proposed based on
the propagation speed of cold pool. The vorticity mechanism of Rotunno, Klemp and
Weisman (1988) is not supported by our experiments, on the contrary, we believe the
vorticity in the low-level inflow islargely irrelevant to the determination of the updraught
orientation while it is the difference between the flow speed at the subcloud layer and that
at the cloud layer that isimportant. Also in this chapter, the sensitivities of convection to
the use of FCT scheme, andto spatial resolution and diffusion were also examined. The
improvement in the model accuracy dueto the use of FCT was found very significant.

In chapter six, deep orographic convection is studied using our s-coordinate
numerical model. A pre-storm environmental sounding was used to initialize the model in
order to simulate the quasi-stationary Big Thompson storm that occurred over the Front
Range of the Rocky Mountains and caused flash floods. Intense and quasi-stationary
storm was obtained when the orography has either a symmetric or asymmetric bell-
shaped profile, but the storm was fast propagating when a plateau type mountain was
used. In the latter case, the rain induced cold pool was very strong due to the blocking
effect of plateau. The removal of the low-level dry layer existing in the original sounding
was found to reduce the intensity of cold pool therefore increase the stationarity of the
storm. To maintain a stationary storm, sufficient height of the mountain is found also
necessary to keep the cloud base close to the mountain surface so asto alow for littlerain
evaporation. Finaly the possible impact of the two-dimensionality on the storm
simulation are discussed.

In conclusion, a mesoscale numerical model that has certain unique features has been
developed and verified. The successful applications of this model to a variety of
mesoscale meteorological problems has shown both its efficacy and its potential of

further development for applications to more complex mesoscale weather systems.
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Appendix A A brief description of the leapfrog-trapezoidal transport

algorithm

We outline in this appendix the high and low-order algorithms used in section 3.2 for
the FCT scheme. We seek the finite difference approximations to equation (3.2.1),
fir  TF _

&t =0 (A1)

We assume that at the beginning of a time step, values of rj and f; are known at grid
points xj and at time levels t-Dt and t. The leapfrog-trapezoidal finite difference

approximation to Eq. (A1) influx formis:

. _ Dt t t

ri=r " -[F,,, -F_y,12Dt/Dx (A2)
* _ 1 t ]

=5 + 1) (A3)
t+Dt _ . * A4
=0 - [Ruye - Fiy, I1DU/DX (A9)

Here Ft° F(ft) and F*° F(f*). The trapezoidal step Eq. (A3) and (A4) strongly damps the
computational mode generated at the leapfrog step Eqg. (A2). Time centring in both steps
guarantees second order accuracy in time. The trapezoidal step is implemented in the
model at every time step.

If Dxj isindependent of i, the functional form of the flux F of second order spatial
accuracy (implemented in the model) is defined as

1
Fie =5 (fg + 1) (A5)

Even higher order spatial differencing can also be used.

The low-order flux of the leapfrog-trapezoidal FCT schemesis simply the upstream-
forward (donor cell) scheme plus a zeroth order diffusive flux with coefficient 1/8. The
donor cell agorithm requires that f=ur, where u is an advective velocity. Specifically

L _ DC 1 n n
Fiovz = Uia fierz ~ 5 K =X (Mg - 17 (A6)
n .
r. if u 30
rDC 3 | | i+1/2
where i+1/2 % n " (A7)
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c, C, C+

o>

DU7 DWa DQ7 Dq
Dx

List of symbols

prime denoting perturbation or deviating variables

overbar denoting average or reference state

half-width of bell-shaped mountain

parameter for Robert timefilter

rainwater auto-conversion rate

Sound wave phase speed, phase speed of other physical waves
propagation speed of density current or thunderstorm cold outflow
front

estimated disturbance propagation speed for radiative boundary
conditions

group velocity of physical waves

specific heat of dry air at constant pressure and constant volume
respectively

rainwater accretion rate

pressure drag due to mountain gravity waves

grid interval between s levels

timeintegration step

diffusion or turbulence mixing terms for various equations

grid interval in x direction

total energy

rainwater evaporation rate

saturation vapour pressure

Coriolis parameter, arbitrary function

geopotentia height, the perturbation and that of the reference state
mountain gravity wave energy flux

forcing function for F' equation
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Fr

Kea
Kb, Kr
Km, Kn, Kq
L

I

m

Mg, Mq
n

N, Ng
NX, NS
P

P

p
[oN
Po

Psurf, Ptop, Pt

Froude number

stratification parameter 1/2 dinr J/dz

acceleration due to gravitation

ratio of specific heat at constant pressure to that at constant volume,
& Cp/Cy

heat flux, scale height, layer depth parameter

mountain height

y-component of vorticity vector

maximum height of mountain

grid point index in x and s direction respectively

diffusion coefficient

horizontal wavenumber

total wave number, parameter R/Cp,

coefficient for background diffusion

coefficients for sponge layer damping

diffusion coefficients for momentum, temperature, water quantities
latent heat of condensation of water, horizontal scale length
Scorer parameter

wavenumber in vertical direction

terms representing parameterized microphysical processes
index of time levels, wavenumber iny direction
Brunt-Vaisaa frequency

number of grid pointsin x and s direction respectively
mass weighted pressure

nondimensional pressure P° (p/po)k

pressure

difference between psyrf and prop

constant pressure of 1000HPa

pressure at the lower surface and top of model domain
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q potential temperature

d', Os potential temperature for perturbation and reference state
Ov, de Or mixing ratios for water vapour, cloud water and rainwater
Q heat source or sink

R gas constant for dry air, residua of elliptic equation for F'
ryrofrsr air density

Ri Richardson number

Ro Rossby number

S scale height parameter

S independent variablein s-coordinates, s° (p-pt)/p+

S suffix denoting the reference state

S velocity component in s coordinate direction

T nondimensional time, absolute temperature

t time, temperature in Celsius

tij stress tensor

u' perturbation x-velocity

U, U, Ug basic flow speed in x direction

U Vv,w mass weighted velocity componentsin X, y, z direction respectively
u, v, w velocity componentsin X, Y, z direction respectively

UFLUX, WFLUX, TFLUX, QFLUX flux termsin u, w, q' and q equations

v vector velocity

Vi terminal fall speed of rainwater

W, W vertical velocity in s-coordinates

X, Y, Z independent variables in Catesian coordinates
y,Y arbitrary functions
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