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Abstract

A new 3DVAR method is developed to retrieve three-dimensional moisture field of
atmosphere from a ground-based GPS dant-path water vapor (SWV) observation network. In
this method, the inclusion of an analysis background makes the retrieval feasible. An explicit
Gaussian spatial filter is used to model the background error covariances. Anisotropic spatial
filter that is based on flow-dependent background error structures is implemented and tested.
The anisotropic filter coefficients are derived from true background error field or from the error
in an intermediate analysis obtained using an isotropic filter. In the latter case, an iterative
procedureisinvolved.

A set of observing system simulation experiments is conducted to test the new method
with a dryline case that occurred during IHOP 2002. Results illustrate that this system can
properly recover three-dimensional mesoscale moisture structures from GPS SWV data and
surface moisture observations. The anaysis captures mgor features in the water vapor field
associated with the dryline, even when an isotropic spatia filter is used. The use of flow-
dependent background error covariance modeled by the anisotropic spatial filter further improves
the moisture retrieval .

Sensitivity tests show that surface moisture observations are important for the analysis
near ground, especially when flow-dependent background error covariances are not used.
Vertical filtering is necessary for obtaining accurate analysis increment at the low levels.
Retrieved moisture field with this new method is not very sensitive to the errors in the surface
moisture observations and GPS SWV data. The role of flow-dependent background error

covariance is more prominent when the density of ground-based GPS receiver stations decreases.



1. Introduction

It is very important to accurately characterize the three-dimensional distribution of water
vapor in the atmosphere for the understanding and prediction of mesoscale and storm-scale
weather, especially with regard to quantitative precipitation forecasting (Emanuel et al. 1995).
Skills in quantitative precipitation forecasting have been improved rather slowly owing to the
high spatial and temporal variability of water vapor. Thus, high-resolution observations of three-
dimensional water vapor should have potential to significantly improve the prediction of
precipitation and severe weather.

Existing measurement methods of 3D water vapor field include mainly radiosonde,
ground- and space-based water vapor radiometers. Radiosonde measurements carry significant
operational costs and neither its spatial or temporal resolution is not good enough to capture
water vapor variations. Under severe weather conditions, the poor performance of radiosonde
moisture sensors currently in use prevents effective use of these measurements. The radiometers
cannot satisfy our needs for measuring water vapor variation in atmosphere, either. They do not
function well under all weather conditions even though they are capable of globa coverage and
overcome the temporal resolution problem. In recent years, spaced- and ground-based Global
Positioning Systems (GPS) have been developed and become an important instrument that can
potentially provide water vapor measurements with high resolution under virtually all weather
conditions (Businger et al. 1996; Ware et al. 2000; Wolfe and Gutman 2000; Bengtsson et al.
2003).

The microwave radio signals transmitted by GPS satellites are delayed by the atmosphere
as they propagate to the ground-based GPS receivers. The total delay along the sant path is

composed of three parts: ionospheric delay, hydrostatic delay and wet delay. lonospheric delay



observed by a dual-frequency GPS receiver can be calculated to millimeter accuracy. The
hydrostatic delay can be estimated with known knowledge of pressure and temperature. So the
dant-path wet delay (SWD) is obtained by subtracting the ionospheric and hydrostatic delays
from the total delay. Then zenith wet delay (ZWD) can be obtained by projecting SWD
observations onto the zenith and averaging them over a certain time period. Further, the
precipitable water (PW, defined as the vertically integrated water vapor) can be calculated from
ZWD (Bevis et al. 1994; Duan et al. 1996). In recent years, researchers have demonstrated that
assimilating observations of ZWD and PW data into mesoscale numerical models provides
beneficial impacts on short-range precipitation forecast of convective weather (Kuo et al. 1993;
Kuo et al. 1996; Guo et al. 2000; Falvey and Beavan 2002). Further, Ha et a (2003) showed that
the assimilation of SWD is superior to that of PW both in recovering water vapor information
and in short-range precipitation forecast.

De Pondeca and Zou (2001a) assimilated simulated GPS observations, called zenith total
delay (ZTD), which is made up of zenith hydrostatic delay (ZHD) and ZWD into a mesoscale
model and showed that the vertically integrated moisture was very accurately verified against the
observations and an overall improvement was achieved in the retrieved vertical profiles of the
moisture fields. Further, they (de Pondeca and Zou 2001b) performed a case study of the
passage of a winter frontal system with variational assimilation of ZTD. The work further
verified that the assimilation of GPS ZTD observations has a positive impact on the model
prediction.

In addition to the four-dimensional variational (4DVAR) assimilation method that is used
in some of the afore-quoted work, the three-dimensional variational (3DVAR) method has also

been used. Such work includes Cucurull et a (2004) who assimilated ground-based GPS ZTD



data for a storm event over the western Mediterranean Sea, and MacDonald et a (2002) who
tested a 3DV AR procedure with dant-path water vapor data from a mesoscale hypothetical GPS
ground receiver network to recover three-dimensiona atmospheric moisture field. Since ZTD,
ZWD and PW only give the vertically integrated measurements which do not provide
information about the vertical structure of the atmosphere directly, variational techniques that
solve a global minimization problem is a nature choice for analyzing such data. A variational
method produces a solution that gives the best fit of the analyzed integrated total water vapor to
observations, subjecting to the background constraint. Further, variational methods are also more
suitable in directly assimilating indirect observations, i.e., observations that are not the anaysis
variables themselves.

ZTD, ZWD and PW data are products derived from the original total delay along the
dant paths of GPS observations. The derivation involves additional assumptions. With
variational method available as a powerful analysistool, it is better to directly use the GPS slant-
path observations to obtain a three-dimensional moisture distribution. Therefore, the slant-path
water vapor observation is the focus of this paper. Similar to the relationship of ZWD and PW,
since the SWD is nearly proportional to the quantity of water vapor integrated along the dlant

path, the relationship between the SWD and SWV is (Beviset al. 1994),

SW =TTe SAD, (1)

where S\WwW and SWD are given in units of length, and 11 is a dimensionless constant, a function
of weighted mean temperature of the atmosphere. The accuracy of Sw with this method is about
a few millimeters (Ware et a. 1997; Braun et al. 2001). Most importantly, SWV can provide
vertical structure information of atmospheric moisture distribution through intercepting paths.

MacDonald et a (2002) demonstrates through Observing System Simulation Experiments
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(OSSE) and 3DVAR analysis that a high-resolution network of GPS receivers can recover the
moisture field from the slant integrated water vapor. In their analysis, the integrated slant water
vapor measurements are combined with the surface moisture observations assumed to be
available at each ground station and with alow-density network of water vapor soundings.

In this paper, we follow the standard practice of 3DVAR data assimilation for NWP
(Lorenc 1981; Dadey 1991) by including the analysis background. Consequently, the cost
function includes both background and observation constraint terms. A non-negative-moisture
weak constraint is also included in this cost function. The use of a background makes the
problem over-determined and the retrieval feasible for experiments in which only 9 GPS
satellites are simultaneously in view per ground-based receiver. Furthermore, proper spread of
observation in space is achieved in our analysis through background error correlation. In this
study, a Gaussian spatial filter is used to model background error covariance, and the
implementation allows for flow-dependent anisotropic filtering. Unlike the multi-grid approach
used in (MacDonald et al. 2002), filtering based on background error makes it easy to control or
assess the amount of spatial smoothing being applied, which affects the weighting and spread of
observational information therefore the quality of analysis.

We report in the following our work to analyze 3D water vapor distribution from a
hypothetical GPS observation network. Section 2 introduces our 3DVAR analysis system.
Section 3 describes the generation of a smulated GPS SWV data set using the Advanced
Regional Prediction System (ARPS). Retrieva experiments and numerical results will be
presented in Section 4. Further discussions on the use of this method are given in Section 5
through sensitivity experiments. Conclusions and an outline of future work are given in the find

section.



2. 3DVAR Retrieval Method

The retrieval method used in this paper is based on 3DV AR method (Lorenc 1981; Daley
1991) of data assimilation which is to minimize the following cost function,

J(X) =3, (X)+ Jg,, (X) + I . (X)+ I (X)

:%(x—xb)TB‘l(x—xb)+%[HSM,(x)—S/\N]T Ry [ Haw (X)— SWV | (2)

SIS I

where the cost function J is composed of four terms. background constraint term, GPS SWV
observation term, the term for conventional surface moisture observations and the non-negative
weak constraint. The x, often a vector, is the control variable which in our case contains the
specific humidity gy at every grid point. X, is the corresponding background state vector. The first
term, Jp, represents the departure of the control variable from the background. B is the
background error covariance matrix, which decides how the observation information is spread as
well as weighted (in combination with the observation errors) in the analysis domain.

The second term, Jgw, represents the departure of the analysis, calculated from control
variable g, through the observation operator Hgy, from the observations SAW that is measured by
the ground-based GPS network. The matrix Rgy IS the observation error covariance matrix,
which is often simplified to be diagona under the assumption that observation errors are not
correlated. The magnitude of variances, the diagonal elements of matrix Rg,, compared to the
background error variances, determines the relative weight of observation and background for
the analysis. In our paper, observation error variances for SWV and surface observations are
specified whose values are given later.

Since the ground-based GPS recelver sites are commonly equipped with regular

meteorological sensors, the regular surface water vapor observations can be available together
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with SWV observations. As a consequence, J«c, is added in the cost function to better recover the
moisture structure near surface. Finally, in order to avoid the negative water vapor at high levels
in the minimization process, a non-negative-moisture weak constraint term, Je, isalso included in
this cost function.

As pointed out previoudly, the inclusion of background term is significant for the 3BDVAR
anaysis. It not only can eliminate the under-determined problem associated with the number of
control variables exceeding the number of observations, but also provide more accurate analysis
through the background error covariance matrix. But since B is very large for typical
meteorological problems, its direct inversion as required by (2) is therefore never attempted.
Huang (2000) presents a method named variational analysis using a filter (VAF), in which the
control variable is redefined as,

v= B (x-x). (©)
It is not the full analysis field itself but the increment field relative to the background, multiplied
by the inverse of B. As a consequence, the cost function is redefined as,

J(V) =3, (V) + Igw (V) + g (V) + I (V)

:%VTBTV—I—%[HS,W(BV-F xb)—S/W]T Rs,w‘l[HS,W(Bv+ xb)—S/\N}
+%[Hsfc(Bv+ x°)-q,, T Rsfc’l[HSfC (Bv+ xb)—qvgc] (4)

1{|Bv+ x| —(Bv+ xb)]2
+= .

2 2

This modification avoids the inversion of B in the new cost function. Moreover, VAF method
uses a spatial filter to model the effect of B matrix instead of calculating and storing the matrix.
The new variational analysis scheme is ssmpler and more flexible in practical implementations.

The choice of spatia filter should be based on a priori knowledge of the covariance matrix B.



For instance, the following Gaussian filter function can be used to represent B for homogeneous

and isotropic background error field (Daey 1991) for athree-dimensional univariate problem,

b, =07 exp{—[[—} ] 5)

where o} is the variance of background error, r; is the spatia distance between grid point i and
grid point j, and L, is the length scale decided by the background error correlation and is in

practical use sometimes tied to the observation station density. This model represents an
isotropic background error covariance. It should be pointed out that a truncated Gaussian filter
will be used in this paper to save memory. The truncation destroys the positiveness of the
modified B, so the Lanczos window (Duchon 1979) is chosen to improve iteration convergence.
Previous work (Hayden and Purser 1995) has demonstrated that a recursive filter without the
need of extra memory can asymptoticaly approach a Gaussian filter as the iteration goes to
infinity. But Gaussian filter is smpler and much easier to model anisotropic covariances though
more expensive than recursive filter. Additional details about the VAF method can be found in
Huang (2000) and our 3DV AR anaysis will be constructed based on this method.

The use of isotropic background error covariance is based on the assumption that
background errors at nearby points are smilar (Riishojgaard 1998). But the background error
covariance should be flow-dependent and such covariance should improve the analysis,
especially when data are sparse. Therefore, an anisotropic filter is considered to model the flow-

dependent B matrix. Simply, the following expression can provide such an anisotropic filter,
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where f is a field whose pattern represents that of the background error and we will call it the
error field. In this study, f is either the true error of the background or an estimate of it. L¢ is the
length scale in error field space, compared to the length scale L, in physical space, and is decided
by the correlation of background error. The new background error covariance between two
points defined by the Eq. (6) will follow the shape of the error field and fall off rapidly in the
directions where the error field gradient is strong while isotropic covariance will dominate in
directions where the error field changes slowly. Eg. (6) shows that in the case Lt goes to infinity,
the anisotropic covariance reduces to the isotropic form in Eqg. (5).

The isotropic and anisotropic filters will be used respectively to model the behavior of the
background error covariance and their analysis results will be compared to show how the flow-

dependent background error covariance provide better analysis than the isotropic one does.

3. Observing System Simulation Experiment (OSSE)

Currently, high-resolution GPS observation network with large spatial coverage does not
exist in the United States. We test our analysis system by using simulated data. Experiments as
such as commonly referred as Observing System Simulation Experiments (OSSE) and are often
used to test the performance of future observing systems. The model used to produce the
simulated data set is the Advanced Regional Prediction System (ARPS, Xue et al. 2000) whichis
a nonhydrostatic model in a generalized terrain-following coordinate. High-resolution
observations from hypothetical GPS networks are created from forecast fields for a dryline case
that occurred on Junel9, 2002 over the Southern Great Plains during the CAPS IHOP real-time
forecast period (Xue et al. 2002). The ARPS model is initialized using analysis of the ARPS

Data Analysis System (ADAS, Brewster 1996) at 1200 UTC June 19, 2002, and integrated for 8



hours. The computational domain is over the Southern Great Plains with 9 km grid spacing and
43 layers in the vertical. Stretched vertical grid coordinate is used with a minimum vertical grid
spacing of 100 metersin boundary layer.

Considering that in the near future, mean spacing of ground receivers of GPS observation
networks will probably not be much less than a hundred kilometers, thus the scale of water vapor
distribution we can obtain should be of mesoscale. The 9-km 8-hour forecast field, therefore, is
thinned by sampling specific humidity every 4 grid points, yielding a resolution of 36 km and a
horizontal grid size of 46x41. This gridded field is defined as the ‘nature’ and used to generate
the hypothetical GPS slant water vapor observation data. The specific humidity field from the
‘nature’ is presented in Fig. 1. A roughly north-south zone of sharp horizontal moisture gradient
is located to the west of Kansas, Oklahoma and Texas, corresponding to a dryline located in the
region (Fig. 1a). The east-west vertical dice at y=234 km (Fig. 1b) shows that a vertically
oriented boundary between dry and wet air is found in the lowest 1.5 km and becomes nearly
horizontal off to the east. The upward bulging moisture tongue near x = 576 km reflects upward
motion occurring there. To the west of the dryline, the atmosphere is well-mixed up to 500mb.
Such strong gradient as well as the variations in strong gradient in water vapor may not be
properly captured by ordinary moisture observation networks, especiadly at levels away from the
ground. However, the integrated water vapor along slant paths between surface GPS receivers
and satellites can provide three-dimensiona information with high tempora and spatial
resolutions.

For our OSS experiments, the slant-path water vapor is obtained by formula,

i satellite

SW, = j g, ds, (7)

i receiver



where ds is the length of elements dong slant path, S\, the integrated water vapor along the

dant path between the i ground-based GPS receiver and the j" GPS satellite, and g, is the
specific humidity along the path elements. This value is given by tri-linear interpolations from
eight surrounding grid points. The hypothetical GPS network is composed of nine irregularly
distributed satellites simultaneously in view, and of 132 ground-based receivers which are evenly
distributed in the analysis domain. The horizonta resolution of GPS receivers is 144 km. Both
sampling and analysis grids are on the ARPS terrain-following coordinate. A schematic is given
in Fig. 2 to illustrate the hypothetical GPS observation network. Surface moisture observations

are available at GPS receiver sites.

4. Retrieval experimentsand results
a. Sngle surface observation test

Isotropic and anisotropic filters, defined respectively by Egs. (5) and (6), are used to
model background error covariance which plays a significant role in our retrieva system. In
order to validate our newly developed system and understand the behaviors of the isotropic and
anisotropic spatial filters, we first show in Fig. 3 the analysis increment field from a single
specific humidity observation test using isotropic and anisotropic covariance models,
respectively. For the former, the spatial correlation of background error is expressed by the
function in Eq. (5). For the latter, the anisotropic covariance is modeled by the function in Eq.
(6). L; in anisotropic filter should be larger than that in isotropic filter so that the background
error covariance shapeis able to follow the error field. Its actual valueis given below.

In this case, the observation vector qug in EQ. (4) consists of only one water vapor

observation located at grid point (13, 18, 1) with a specific humidity value of 8.3 g kg™*. This
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observation station is marked by a black dot in Fig. 3. No SWV observation is involved in this
test so that the second term in cost function disappears. The observation operator Hg: can be
ignored here (it has not effect) since the observation station is co-located with grid point and
observation variable is the control variable itself. For simplicity, only two-dimensional
horizontal filter is used so that the analysisis essentialy two dimensional in this example. In the
isotropic filter case, a horizontal length scale (L,) of 4 grid intervals is used. In the anisotrophic

filter case, L, is given a 6 grid-interval length and the length scale in error field space L= 2.0 g

kg™,

For the single observation tests, the error field f is chosen as the specific humidity field of
the ‘nature’. The background used in this case is horizontally homogeneous therefore the pattern
of ‘nature’ field presents correctly the pattern of background error. The background specific
humidity is 12.1 g kg™ at the surface. The observation information located at one grid point is
spatially spread through the background error covariance (Fig. 3). The anaysis increment for the
single observation is determined by the structure of background error, consequently, the analysis
with isotropic covariance gives a analysis increment of circular shape and that with anisotropic
covariance exhibits an analysis increment that is clearly related to the specific humidity or the
error field (Fig. 1a). The analysis increment pattern is oriented in NNE to SSW direction and is
narrower in the east-west and broader in the north-south directions, respectively, compared to the
circular increment of isotropic analysis. This structure is in accordance with the shape of the
error field.

b. SYW retrieval experiments
The single observation tests show us the behaviors of isotropic and anisotropic filters for

modeling the background error covariance. This analysis system is applied to the retrieva of
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three-dimensional moisture from simulated GPS slant-path water vapor and surface moisture
observations here. A list of retrieval experiments is given in Table 1. The overall correlation
coefficients between analysis increment field for these experiments and the ‘truth’ increment
field are aso given in the table for these experiments.

First, a control experiment (CNTL) is performed. In this experiment, both SWV
observations from the hypothetical GPS network and the regular surface moisture observations at
the ground-based GPS receivers are used. The analysis background is created by smoothing the
‘nature’ field 50 times, using a 9-point filter in the horizontal. It can be seen from Fig. 4 that this
background shows a general pattern of higher moisture to the east and lower values to the west.
Detailed dryline structure islost. Since both the truth and background are known, the background
error can be calculated. It is therefore possible to model the background error covariance by
taking the known background error as variable f in Eq. (6) and thisis done for CNTL. The length
scalelL, used is equal to 4 grid intervalsin both horizontal and vertical directions. L; is given as 2
g kg™*. Owing to the insignificant effect of filter on the far distance, cutoff radii are used and
chosen to be 10-grid intervals in the horizontal and 6 layers in the vertical, respectively. The
selection of filter scale depends, for one thing, on the density of ground-based GPS receivers.
The relatively small filter scales and cutoff radii are chosen here so that gaps between receiver
stations are filled without excessive smoothing to the analysis. The relative weights of
background, GPS SWV aobservations, regular surface moisture observations and non-negative
weak constraint are specified as 1, 100, 500 and 50, respectively. The cost function defined by
Eqg. (4) is minimized with respect to the increment of specific humidity, using a conjugate

gradient algorithm.

-12-



With above parameter settings, the control experiment is conducted. Figure 5 presents a
vertical cross-section of retrieved moisture field at y = 234 km from this experiment. Only the
vertical structure below 6 km is shown here since water vapor has very low values above 6 km. It
is obvious that this retrieved moisture field matches the ‘nature’ very well. The dryline near x =
290 km is accurately captured. There is a strong east-west moisture gradient at the low levels and
the moisture isohumes are amost perpendicular to the ground near the dryline. Meanwhile, due
to presumably upward motion near the dryline at near x = 576 km, there exists one moisture
tongue and two troughs to the east and west of the tongue, the latter due to return flows. Figure 6
shows the specific humidity increment at the surface. Retrieved increment matches almost
exactly the increment of ‘truth’ (the difference of the truth from background); for instance, their
shapes match and extremum locations coincide. The correlation coefficient of increment fields of
between retrieval and ‘truth’ for the entire grid is about 0.926.

To see the performance of analysis when an isotropic filter is used, experiment, named
SNF, is conducted. It isthe same as CNTL except that the filter isindependent of the flow and is
isotropic. The length scale for isotropic filter should be smaller than that for anisotropic filter, so
the L, in thistest is given as 3-grid intervals. Figure 7 shows the vertical cross-section at y = 234
km and analysis increment at surface from SNF. The retrieved moisture field also exhibits a
dryline at about x=290 km, a moisture tongue due to updraft and the troughs due to downdraft to
the west and east (Fig. 7a). The strength of the updraft and downdraft as reflected by the isohume
shapes is weaker than that from CNTL or ‘nature’. Their locations near the ground are shifted
eastwards relative to the ‘truth’. The isohumes have shapes different from the ‘truth’ and are

smoother than the ‘true’ isohumes (Fig. 7b). Overall, this analysis does not match the ‘nature’ as
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well as the analysis of CNTL. The overall correlation coefficient of increment fields is reduced
to 0.83.

Experiment CNTL has a flow-dependent background error covariance based on known
background error while experiment SNF assumes an isotropic one. Their comparison illustrates
the importance of accurate background error covariance. The problem is, however, that the
background error covariance is never known exactly. In order to improve actual analysis in
numerical weather prediction, it is necessary to seek feasible method to obtain the background
error covariance as accurately as possible. Using an isotropic filter, we can obtain an anaysis
that is much closer to the ‘truth’ than the initial background field. As a result, the background
error may be computed by subtracting the background from the isotropic analysis, which we call
the updated (from that based on initial background) background error. Based on this
consideration, experiment SUF is performed, which performs a second analysis starting from the
same smoothed background but using an anisotropic filter based on the error field calculated as
the difference between the output of SNF and the background. This analysis matches the 'truth’
much better than that of SNF as shown in Fig. 8, even though the improvement is reflected
clearly in the overal correlation coefficient (0.832 versus 0.830). The surface increment field
(Fig. 8b) contains finer structures that are consistent with pattern of ‘truth’ increment field at the
surface. In the vertical cross-section (Fig. 8a), the isohumes with specific humidity of 4, 6 and 8
g kg™ follow the ‘truth’ much better than those in Fig. 7a. The fine-scale moisture bulge near x =
290 km is also recovered well in this retrieval. Meanwhile, the maximum of 18.65 g kg™ is closer
to the 'truth’ value of 18.64 g kg™ than the 18.79 g kg™ from SNF.

The three experiments discussed above demonstrate that the 3DVAR system with flow-

dependent background error covariance realized through an anisotropic spatia filer provides
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better analysis than that with isotropic covariance. Thisis true even when the background error is
estimated using afirst-pass analysis that utilizes flow-independent error covariance.
c. Retrievals with vertically logarithmic background

The background in above three experiments comes from smoothing the ‘truth’. This
background, shown in Fig. 4, gives to some extent the physical structure of moisture at the larger
scales and also contains information on the vertical moisture distribution. To understand how
much the analysis system depends on the structure information present in the background, we
conduct another two experiments in which the background is specified using a logarithmic
function vertical profile. This profile decreases from avalue of 12 g kg™ at the surface to zero at
17 km, the top of the analysis domain. This profileis used to specify the background g, values on
each terrain-following grid level, therefore, the background values are uniform aong the model
levels. Such a background supplies no realistic physical information on the structure of moisture,
so that successful analysis has to extract structure information from the observations with the
help of background error covariance. Two parallel experiments are performed. Experiment LNF
uses the isotropic filter and experiment LTF uses anisotropic one that is based on the true error
field. The vertical cross-sections of retrieved moisture field for these two experiments are
presented in Fig. 9 and Fig. 10, respectively. As expected, the vertical structure of the analysis
using flow-dependent background error is much better than that using isotropic one. For the
former, the isohumes generaly follow the ‘true’ isohumes except for near the boundaries. The
dryline is reflected by the almost vertically oriented boundary between the dry and moist air in
the lowest 1.5 km. But there are more errors near the boundariesin Fig. 9 (for experiment LTF)
than in Fig. 5 (for experiment CNTL). This can be explained by the fact that, with the

logarithmic background, the 3D moisture structure is mostly recovered from the GPS dslant-path
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water vapor observations but there are few dant-paths near the boundaries. For the retrieval of
the isotropic filter case (Fig. 10), in addition to those problems near the boundaries, the dryline
strength is weaker and the boundary separating the moist and dry air shows a significant slope at
the low-levels. The structure is more symmetric in the east-west direction in accord with the
isotropy and the moist bulge near x = 288 km is completely missed in this analysis.

As we have explained previoudly, the inclusion of the background term in the 3DVAR
analysis eliminates the under-determinedness problem. So even with a background that is worse
than the logarithmic one tested above, 3DVAR analysis is till feasible though the anaysis is
poorer. Thisis confirmed by an experiment that used a three-dimensionally homogeneous, i.e., a
constant, background (results not shown). An analysis could not be obtained, i.e, the
minimization procedure did not converge, when we removed the background term.

The above experiments show that our 3DVAR system is capable of recovering
reasonably well the three-dimensional moisture structure from ground-based GPS dlant-path
water vapor and surface moisture observations even when using a rather artificial logarithmic
background. When flow-dependent background error information is known and properly used,

the analysisis better.

5. Sensitivity Experiments

In this section, sensitivity experiments are performed to test severa factors that can affect
the quality of moisture analysis.
a. Impact of surface moisture observations

Sensitivity experiment STFNSFC excludes surface observations while other settings are

same as CNTL. This is to test the effect of surface moisture observations on the retrieval. The
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results show that there are only dight differences between this experiment and CNTL for
moisture distribution above 300 meters AGL, indicating that the retrieval without surface
observations can still capture major features of the 3D moisture field. The overal correlation
coefficient between the increment fields of retrieval and that of ‘truth’ is now 0.894, a dight
reduction from the 0.926 of CNTL. Another experiment SNFNSFC is conducted with an
isotropic filter and no surface observation as well. The results show that the vertical structure of
the dryline still can be recovered but the strength is much weaker, compared to the retrieval with
surface observation, e.g., from the corresponding experiment SNF that also uses an isotropic
filter. The most outstanding difference occurs in the horizontal moisture structure. The increment
fields at the surface from these two experiments, i. e., STFNSFC and SNFNSFC, are presented in
the Fig. 11. When the covariance based on the true error field is used, as in STFNSFC, the
pattern of the increment field, Fig. 11a, is good even though the extrema are only half as large.
When the covariance matrix is isotropic and no surface observation is used, asin SNFNSFC, the
surface increment field, shown in Fig. 11b, does not match the ‘true’ increment field in Fig. 6a
and the extrema are weaker. Comparison of these analysis increments tells us that the surface
information plays an important role for accurate analysis near ground, especialy when the
background error covariance information is unknown or not used.

Figure 12 plots the correlation coefficients between the retrieval and ‘truth’ increment
fields against the vertical model level. It can be seen that the correlation coefficients with surface
observations is larger than those without surface observation, especiadly at the lowest levels
(below the 4™ model level). From this, we conclude that better analysis of moisture field near the
ground depends on two factors. accurate background error covariance and surface observations.

The best retrieval is obtained when both are included while the worst is obtained when neither is.
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The overall correlation coefficient between the increment fields of retrieval and ‘nature’
is 0.67 for SNFNSFC, about 0.26 less than that of CNTL. The large drop in accuracy is due to
differences at the lowest levels where the surface observations have significant impact. Thisis so
since it is the overlapping dant lines in three-dimensional space that provide information for 3D
water vapor retrieval. Near the surface, very few dlant paths go through the atmosphere due to
the relatively high viewing angles of most satellites. The lowest elevation angle of slant paths in
our experiments is about 15 degrees. The relatively small analysis domain aso limits the lowest
elevation angle of usable paths. The inaccuracy in the surface moisture anaysis influences the
analysis at high levels because the GPS system provides integrated observations.

b. Impact of vertical filtering

To determine the effect of vertical filtering, only the horizontal filter is used in the
experiment STFNVF. All other parameter settings are same as in CNTL. Figure 13 shows the
vertical profiles of correlation coefficients of specific humidity increment from CNTL and
STFENVF. It is clear that CNTL gives a better analysis than STFNVF does. There is amost no
difference at the surface owing to the use of surface observations but the correlation coefficient
of STFNVF is significant lower between the 2nd and 5th level, with the difference being larger
than 0.3 at the 2nd level. Still, the correlation coefficients from 3" to 13" level are larger than or
equal to 0.8 so that pattern of analysis increment remains good. The gradient of the analysis
increment is, however, clearly weaker than that of ‘truth’ increment at the low levels (not
shown). Figure 13 also shows a genera improvement in the quality of analysis at the upper
levels when vertical filtering isincluded. Therefore, the vertical filtering is very important for the
moisture analysis near the surface. It is so because in the absence of vertica filtering, surface

observation information cannot be spread upward to yield a positive impact on the boundary-
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layer analysis and the GPS system cannot provide observation information for the lowest levels
as very few dant paths go through these levels. In conclusion, the vertical filtering helps spread
observation information in the vertical and improves the quality of analysis.

c. Sengitivity to observation error

One of the advantages of OSSE is that observation data can be error-free, but the
sengitivity to observation errors should be examined for practical use. Thisis done in experiment
STF_ER, in which errors are added to both surface and slant-path water vapor observations. The
experiment is otherwise the same as CNTL. Pseudo-observations of surface specific humidity are
with normally distributed errors with standard deviations of 5% and slant-path water vapor
pseudo-observations with normally distributed errors with standard deviations of 7%, larger than
the percentage error of surface observations since ground-based GPS receivers do not directly
measure integrated water vapor, but rather integrated delay. Compared to the experiment CNTL,
the relative weights of GPS SWV observations, regular surface moisture observations are
decreased to 80 and 400 because those observations are imposed errors.

The analysis of STF_ER aso matches the ‘truth’ well, as seen from the vertical diceat y
= 234 km in Fig. 14. Only the 2 g kg™* isohume is prominently different from the CNTL result.
The analyzed maximum is 19.49 g kg™, 0.75 g kg larger than the ‘truth’ maximum of 18.64 g
kg™. The horizontal structure (not shown) also matches truth very well below 7 km where 95%
water vapor concentrates. Therefore, the recovered 3D moisture field from this 3DVAR system
is not very sensitive to random errors present in the surface and slant-path moisture observations
although the overall correlation coefficient between the retrieval and ‘truth’ analysis increments

decreases from 0.926 to 0.79. Still, al major structures of dryline are recovered well.

-19-



d. Observation density test

Finaly, the sensitivity of 3D moisture anaysis to ground-based GPS receiver density is
examined. The GPS receiver density is halved in the following experiments. Thus, there is now
one surface receiver station every 8 grid intervals, giving a receiver network resolution of 288
km. The horizontal length scale in physica space, i.e, L. in Egs. (5) and (6), and the
corresponding cutoff radii are enlarged since their choices should be related to receiver network
density. The length scale should be large enough to fill the gaps between receiver stations. Two
parallel experiments are conducted. One experiment, SNF_LR, uses isotropic filter and L; is
given alength 5-grid interval while the experiment STF_LR uses an anisotropic filter and 6-grid
interval scale length. They should be compared respectively with experiments CNTL and SNF.

Figure 15 presents retrieval result for STF_LR. Comparing the east-west vertical cross-
section at y = 234 km in Fig. 15a with that of CNTL in Fig. 5, we can see that the difference in
the quality of analysis is relatively small, indicating that the 3D moisture retrieval is not very
sensitive to the observation density when the true background error is used to model the
background error covariance. This conclusion is also supported by the surface increment field
(Fig. 15b). The overal correlation coefficient is about 0.87 for STF_LR, 0.06 less than that of
CNTL. When the background error covariance is given in an isotropic form (SNF_LR), the
overall correlation coefficient decreases to 0.68 from the 0.83 of the corresponding high station
density case (SNF). This reduction is much larger than that for flow-dependent background error
cases (CNTL and STF_LR). This means that the retrieval is more sensitive to receiver station

density when no good background error covariance is available or used.
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6. Conclusions and future plan

A new 3DVAR-based retrieval method is developed for recovering three-dimensional
water vapor structure of atmosphere from a GPS observation network. This network provides
integrated water vapor along slant-paths between GPS satellites and ground-based receivers,
together with direct moisture measurements at the receiver sites. The ARPS mesoscale model is
used to produce a ‘true’ atmospheric moisture field, which is used to construct simulated GPS
dant-path water vapor and surface observation data. This new method includes a background
term in the 3DV AR cost function, which for one thing avoids the under-determinedness problem.
A three-dimensional Gaussian spatial filter is used to model isotropic background error
covariance. Further, a flow-dependent background error covariance is modeled by multiplying
this Gaussian filter with an error field-related filter. Three-dimensional variationa retrieval
experiments are conducted with this new method for an IHOP dryline case. The results are
summarized as follows:

1) This variational retrieval method with isotropic background error covariance can
properly recover mesoscale three-dimensional moisture structure and capture major features of
water vapor field simulated by the model from surface moisture and GPS dant-path SWV
observation data.

2) The use of flow-dependent background error covariance further improve the analysis.
Fine-scale moisture structure and strong specific humidity gradient can be accurately recovered
to match the ‘truth’ of dryline. Near the lateral boundaries and at the low levels, where few dant
paths exist or overlap, the role of flow-dependent covariance is enhanced. Consequently, the
retrieval in the boundary layer would be improved if more low-elevation angle slant paths were

available.
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3) Retrieval is till feasible with artificial logarithmic background even though the quality
of analysis deteriorates; especially near the boundaries where few slant lines overlap.

4) Sensitivity experiments indicate that surface moisture observations are important for
accurate analysis of water vapor field at low levels, and more so when no good information on
background error covariance is available or used. The vertica component of the spatid filter is
shown to be very beneficial, especialy in data-sparse regions such as the model levels right
above the ground; its main effect is the upward spread of surface moisture information.

5) Observation error sensitivity tests show that our analysis system is not very sensitive to
errors in the surface moisture and SWV observations. Major dryline structures can still be
recovered when normally distributed errors with standard deviations of 5 and 7%, respectively,
are imposed on surface moisture and SWV observations. After halving ground-based receiver
station density, dryline structure can be reasonably recovered when flow-dependent background
error covariance is used. But the lower observation resolution worsens the boundary problem,
leading to obvious decrease in the retrieval accuracy near lateral boundary and surface. The
decrease is more when isotropic spatial filter is used.

In our analysis system, a Gaussian spatial filter is used to model the background error
covariance as well as to save computational memory (as compared to storing the full B matrix).
This treatment cannot guarantee the positive definite property of the modified covariance.
Meanwhile, the larger is cutoff radii, the more expensive the algorithm becomes. One aternative
is the recursive filter, which can be applied to achieve isotropic as well as anisotropic covariance
(Wu et a. 2002; Purser et a. 2003a; b), athough the realization of the latter with recursive filter
is much more complicated. We plan to experiment with recursive filters due to their

computationa efficiency. In addition, we will use the retrieved moisture field to initidize a
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mesoscale model and examine the impact of assimilating GPS SWV data on short-range
precipitation forecast for the current dryline and other cases. Real GPS SWV data collected

during the IHOP_2002 field experiment will also be tested.
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Table 1. List of moisture retrieval experiments

Experiment | background Flow-dependent B Obs, obs error | Obs resolution| Filter |Correlation
coefficient

CNTL smoothed truth| Yes, on true background | SWV+sfc,no| 1ob/4grid | 3D 0.926
error intervals

SNF smoothed truth No SWV+sfc,no| 1ob/dgrid | 3D 0.830
intervals

SUF smoothed truth|Y es, on updated background| SWV+sfc,no| 1ob/4grid | 3D 0.832
intervals

LTF Logarithmic | Yes, ontruebackground | SWV+sfc,no| 1ob/4grid | 3D 0.827
error intervals

LNF logarithmic No SWV+sfc,no| 1ob/dgrid | 3D 0.821
intervals

STFNSFC | smoothed truth| Y es, on true background SWV, no lob/4dgrid | 3D 0.894
error intervals

SNFNSFC | smoothed truth No SWV, no lob/dgrid | 3D 0.668
intervals

STFENVF | smoothed truth| Yes, on true background | SWV+sfc,no| 1ob/4grid | 2D 0.801
error intervals

STF_ER | smoothed truth| Yes, on true background | SWV+sfc, yes| 1ob/4grid | 3D 0.790
error intervals

SNF_LR | smoothed truth No SWV+sfc,no| 1ob/8grid | 3D 0.679
intervals

STF_LR | smoothed truth] Yes, on true background | SWV+sfc,no| 1ob/8grid | 3D 0.870
error intervals
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List of Figures

Figure 1. Specific humidity field (g kg™) from the ARPS simulated ‘ nature’ for an IHOP case at
20 UTC, 19 June, 2002 (a) at the surface and (b) in the east-west vertical cross-section at
y = 234 km. A roughly north-south zone of strong horizontal moisture gradient is located
to the west of Kansas, Oklahoma and Texas, representing the dryline. In vertical cross-
section, aboundary between the dry and moist air is oriented nearly vertically in the
lowest 1.5 km then turns horizontal to the east.

Figure 2. A schematic of hypothetic ground-based GPS observation network whose data are
analyzed using 3DV AR. Shaded surface representsterrain. Dark solid lines are slant
paths between ground-based GPS receivers and GPS satellites. Dotted lines give a sense
of the vertically stretched grid although the actual grid levels are in terrain-following
coordinate.

Figure 3. Specific humidity increment field in g kg™ at the surface from single moisture
observation tests, (a) for SDVAR anaysis with flow-dependent background error
covariance and (b) for 3DV AR analysis with isotropic covariance. Only one specific
humidity observation is present whose location is marked by the black dot in the figure.

Figure 4. Background specific humidity field in g kg, obtained by smoothing ‘ nature’ 50 times
using a 9-point filter in the horizontal, (a) at the surface and (b) in the east-west vertical
cross-section at y = 234 km.

Figure 5. East-west vertical cross-section of specific humidity field (g kg™) at y = 234 km. Solid
lineisfor ‘nature’ and dotted line from CNTL.

Figure 6. Specific humidity increment field in g kg™ at the surface (a) from ‘nature’ and (b) from

CNTL. Dashed lines represent negative values and solid lines positive values.
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Figure 7. (a) East-west vertical cross-section of specific humidity field (g kg™) at y = 234 km
where solid lines are for ‘nature’ and dotted lines for experiment SNF. (b) Analysis
increment of specific humidity (g kg™) at the surface from experiment SNF, where
dashed lines are for negative values and solid line for positive values.

Figure 8. AsFig. 7 but for experiment SUF.

Figure 9. As Fig. 5 but dotted lines are from experiment LTF.

Figure 10. As Fig. 5 but dotted lines are from experiment LNF.

Figure 11. AsFig. 6 but (a) isfor experiment STFNSFC SNFNSFC (b) isfor experiment
SNFNSFCSTFNSFC.

Figure 12. Profiles of correlation coefficient of specific humidity increment (difference from
background, in g kg!) between those of ‘nature’ and 3DVAR analysis from experiments
CNTL, STENSFC, SNFNSFC, and SNF, plotted for different model levels. Mean heights
of model levels are listed as follows (in km): 0.80, 0.89, 0.98, 1.12, 1.29, 1.50, 1.73, 2.00,
2.28, 2.58, 2.90, 3.24, 3.58, 3.94, 4.30, 4.66, 5.04, 5.41, 5.79, 6.16, 6.54, 6.92, 7.30, 7.67,
8.05, 8.43, 8.81, 9.20, 9.59, 9.98, 10.38, 10.79, 11.21, 11.65, 12.10, 12.57, 13.07, 13.59,
14.14, 14.72, 15.34, 16.00, 16.66.

Figure 13. Profiles of correlation coefficient of specific humidity increment (g kg™) between
those of ‘nature’ and 3DVAR anaysisfrom CNTL (solid line) and experiment STFNZF
(dotted line).

Figure 14. AsFig. 5 but dotted lines are for experiment STF_ER.

Figure 15. AsFig. 7 but for experiment STF_LR.
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Figure 1. Specific humidity field (g kg™) from the ARPS simulated ‘nature’ for an IHOP case at
20 UTC, 19 June, 2002 (@) at the surface and (b) in the east-west vertical cross-section at y = 234
km. A roughly north-south zone of strong horizontal moisture gradient is located to the west of
Kansas, Oklahoma and Texas, representing the dryline. In vertical cross-section, a boundary
between the dry and moist air is oriented nearly vertically in the lowest 1.5 km then turns
horizontal to the east.
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y = 234 km where solid lines are for ‘nature’ and dotted lines for experiment SNF.
(b) Analysis increment of specific humidity (g kg') at the surface from
experiment SNF, where dashed lines are for negative values and solid line for
positive values.
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Figure 8. AsFig. 7 but for experiment SUF.
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Figure 9. As Fig. 5 but dotted lines are from experiment LTF.
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Figure 10. As Fig. 5 but dotted lines are from experiment LNF.
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Figure 11. As Fig. 6 but (@) is for experiment STFNSFC (b) is for experiment
SNFNSFC.
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Figure 12. Profiles of correlation coefficient of specific humidity increment
(difference from background, in g kg™) between those of ‘nature’ and 3DVAR
analysis from experiments CNTL, STFNSFC, SNFNSFC, and SNF, plotted for
different model levels. Mean heights of model levels are listed as follows (in km):
0.80, 0.89, 0.98, 1.12, 1.29, 1.50, 1.73, 2.00, 2.28, 2.58, 2.90, 3.24, 3.58, 3.94,
4.30, 4.66, 5.04, 5.41, 5.79, 6.16, 6.54, 6.92, 7.30, 7.67, 8.05, 8.43, 8.81, 9.20,
9.59, 9.98, 10.38, 10.79, 11.21, 11.65, 12.10, 12.57, 13.07, 13.59, 14.14, 14.72,
15.34, 16.00, 16.66.
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Figure 13. Profiles of correlation coefficient of specific humidity increment (g kg™)
between those of ‘nature and 3DVAR analysis from CNTL (solid line) and
experiment STENVF (dotted line). Mean height of each level is given in the caption
of Figure 12.
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Figure 14. AsFig. 5 but dotted lines are for experiment STF_ER.
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Figure 15. AsFig. 7 but for experiment STF_LR.





