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ABSTRACT

The quality of polarimetric radar data degrades as the signal-to-noise ratio (SNR) decreases. This sub-

stantially limits the usage of collected polarimetric radar data to high SNR regions. To improve data quality

at low SNRs, multilag correlation estimators are introduced. The performance of the multilag estimators for

spectral moments and polarimetric parameters is examined through a theoretical analysis and by the use of

simulated data. The biases and standard deviations of the estimates are calculated and compared with those

estimates obtained using the conventional method.

1. Introduction

In addition to reflectivity factor (Z), radial velocity (yr),

and spectrum width (sy), a polarimetric radar also mea-

sures the polarimetric parameters: differential reflectivity

(ZDR), copolar cross-correlation coefficient (rhy where

h and y stand for horizontal and vertical, respectively),

and differential phase (fDP) and its derivative-specific

differential phase (KDP; Doviak and Zrnić 2006; Bringi

and Chandrasekar 2001). The polarimetric radar mea-

surements provide extra information about targeted

media, such as phase composition and shape of hydro-

meteors, and allow better hydrometeor classification and

quantitative estimation of the physical states of pre-

cipitation (Zrnić and Ryzhkov 1999; Zhang et al. 2001;

Brandes et al. 2002). The quality of polarimetric radar

data (PRD; i.e., the polarimetric parameters), however,

degrades when signal-to-noise (SNR) decreases, which

limits the usage of PRD to the high SNR region. For

example, by using the conventional estimator (Park et al.

2009) ZDR and rhy are used only in the region of SNR

that is larger than 5 dB in most hydrometeor classification

algorithms and for rain estimation. However, by using

the multilag rhy estimator, it is shown herein that the

PRD can be used to the region of SNR as low as 0 dB.

Data quality depends on the signal processing method

used for parameter estimation as well as on radar char-

acteristics. In conventional autocovariance processing,

Z and ZDR are estimated by subtracting noise power

from lag 0 of the measured autocorrelation functions

(ACF); rhy is estimated from the cross-correlation func-

tion (CCF) of horizontal (H) and vertical (V) copolar

signals at lag 0 and normalized by the noise-corrected

ACFs, also at lag 0; yr is estimated from lag 1; and sy is

estimated from lag 0 and lag 1 of the ACF (Doviak and

Zrnić 2006). Because noise power is measured after

a volume scan when the transmitter is turned off and the

beam is at a high elevation angle and directed at clear

skies or light precipitation, the true noise power at the

angle of weather data differs from the measured noise

power at the higher angle (Fang et al. 2004). This causes

biases in spectral moment and PRD estimates when the

conventional estimator is used. Because noise power

measurements use many more samples than M, the

number used to estimate moments and PRD, the noise

power is measured with negligible variance, but it can

have significant bias. Thus, polarimetric parameter esti-

mates can have asymptotic bias (i.e., bias independent

of the number M of samples processed), especially when
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the SNR is low (Melnikov and Zrnić, 2007). For exam-

ple, if proper noise corrections are not made, then the

copolar correlation coefficient rhy will have a negative

asymptotic bias because the normalizing factors should

be signal power, not signal plus noise power. Another

source of bias of rhy is bias originating from the limited

number of samples used in the estimates; this is always

positive as will be shown (Fig. 11a).

There have been some attempts to improve the quality

of PRD by reducing the effects of noise and freeing it

from asymptotic bias. For example, an LDR estimator

introduced by Hubbert et al. (2003) is effective in low

SNR regions. It uses the cross-to-cross covariances in

contrast to using just the autocovariance of the cross-

polar time series to calculate cross-polar power. In ad-

dition, one-lag estimators were introduced to estimate

ZDR and rhy from lag-1 correlations (Melnikov and

Zrnić 2007). The one-lag estimators avoid lag-0 data to

estimate the polarimetric parameters ZDR and rhy, and

hence the one-lag estimates of these two parameters are

unbiased by noise. Furthermore, the standard deviations

of one-lag estimators of ZDR and rhy are practically the

same as the conventional estimates when spectral width

is less than 6 m s21 and SNRs are larger than 5 dB; at

wider spectral widths, the standard deviations of one-lag

estimates are larger than the ones from the conventional

algorithm (Doviak and Zrnić 2006, section 8.5.2). Be-

cause one-lag estimators only use lag 1, some useful data

at other lags within the correlation time (i.e., data from

2tc to tc) are discarded. That is, because data from

contiguous lags are correlated the added information is

likely to be small for high SNR signals, but significant

at low SNR (Zhang et al. 2003, 2004). This added in-

formation and its impact on improving estimates at low

SNR are quantified in this paper.

Correlation estimators that do not use zero lag pro-

duce moment and PRD estimates that are free from

asymptotic bias, which is independent of the number M

of samples and results when the measured noise power

deviates from the true noise power. All useful ACF lag

correlations except for the ones at lag 0 are used to fit

a Gaussian function. This research is an extension of the

multilag correlation estimator developed for cross-beam

wind measurement using spaced antenna interferometry

(Zhang et al. 2004).

It is true that some observed Doppler spectra do not

follow the Gaussian function shape well (Moisseev et al.

2008). These include those caused by second-trip ech-

oes, nonuniform wind shear, and nonuniform reflectivity

in regions of uniform shear and turbulence. The second-

trip echoes can be detected and excluded before apply-

ing the multilag processing. The main purpose of this

work is to improve spectral moment and PRD estimation

for weak weather echoes, such as those from stratiform

cloud–precipitation, and for power spectra that are

mostly Gaussian (Doviak and Zrnić 2006, section 5.2).

The noise effects on the nonzero lags of ACF and CCF

at low SNR can cause the non-Gaussian shape of the

observed correlation functions, but these noise effects

can be reduced by fitting the Gaussian model at multiple

lags. The window effect can be neglected if the num-

ber of samples is large enough (Doviak and Zrnić 2006,

section 5.1.4); therefore, we still use a Gaussian model to

fit ACF or CCF data in this research.

The multilag estimators for polarimetric parameters

are described, and the corresponding expressions are

presented in section 2. Biases and standard deviations

of the multilag estimates are derived and plotted in sec-

tion 3. The performance of the multilag estimators are

examined and compared with conventional pulse-pair

processing (PPP; Doviak and Zrnić 2006). Theoretical

results of the estimation errors are provided and veri-

fied by numerical simulations. Conclusions and discus-

sions are provided in last section.

2. Multilag estimators

The idea of a multilag estimator is to use many avail-

able and informative lag correlation estimates to fit a

Gaussian function, and hence to obtain more accurate

estimates of spectral moments and PRD at low SNR than

those obtained using conventional estimators. Weather

signals from regions of uniform reflectivity, shear, and

turbulence should have ACFs closely resembling a Gauss-

ian function (Doviak and Zrnić 2006). Depending on

the correlation time (inversely proportional to spectrum

width) of the weather signal, the number of sequential

correlation lags, excluding zero lag, can be two, three,

four, etc. They are correspondingly called two-lag, three-

lag, four-lag, and x-lag estimators (Lei 2009, Lei et al.

2009a).

To illustrate the idea, a numerical simulation is shown

in Fig. 1 for a weather signal that is generated using the

spectrum method of Zrnić (1975). In this case, the fre-

quency is 3 GHz, the number of pulses is 128, and pulse

repetition time (PRT) is 0.001 s; these three radar pa-

rameters are used throughout this work. Figure 1 shows

simulated estimates and fitted Gaussian functions if

SNR is 3 dB and spectrum width is 3 m s21. The raw

ACF estimates are shown as solid dots connected with

a dotted line. The fitted Gaussian functions for two- and

four-lag estimators are shown as dashed and solid lines,

respectively. Because the ACF at lag 0 is excluded from

the fittings, the resulting fitted Gaussian functions pro-

vide better estimates of the spectral moments than

those obtained using the conventional PPP in which an
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independent measurement of noise power is used to

estimate the signal power from the ACF datum at zero

lag. The fitted Gaussian function is then used to calcu-

late moments (i.e., power, velocity, spectrum width, etc.)

and PRD. Detailed fitting procedure and radar moment

estimators are in the following subsections.

a. General expressions for fitted ACF and CCF

The expected ACF of weather radar signals is mostly

represented by the Gaussian form (Janssen and Van Der

Spek 1985) and is given by Doviak and Zrnić (2006,

p. 125), which is extended to include the autocovariance

function for the horizontally H and vertically V polarized

signals as well as their cross-covariance functions. The

expected ACF is

Rh,y
(mTs) 5 Sh,y

r(mTs) exp 2
jpmy

yN

� �
1 Nh,y

dm, (1)

and the expected CCF is given by

Chy
(mTs) 5

ffiffiffiffiffiffiffiffiffiffi
ShS

y

q
rhy

r(mTs) exp 2
jpmy

yN

1 jfdp

� �
,

(2)

where the subscripts h, y, and hy mean the parameters

are calculated by using signals from the H or V channels,

and from both the H and V channels [i.e., for C
hy

(mT
s
) ].

The m 5 0, 1, 2 . . . , N is the lag number, Ts is the pulse

repetition time, and S is the signal power; r(mT
s
) 5

exp[2(mTs)
2/2t2

c] is the correlation coefficient of the

weather signals and tc 5 l/4ps
y
, where sy is the spec-

trum width and yN is the Nyquist velocity; y is the mean

radial velocity, Nh,y is the expected value of white noise

power in the H or V channels, dm 5 1 for m 5 0, and zero

otherwise; and rhy is the copolar correlation coefficient

at lag 0 and fdp is differential phase. If the beams are

matched, then the Doppler mean velocities y and the

correlation times tc are the same for weather signals

from the H and V channels (e.g., yh 5 y
y
5 y; Melnikov

and Zrnić 2007; Sachidananda and Zrnić 1985, 1986;

Bringi and Chandrasekar 2001).

Taking the natural logarithm of the magnitude of both

sides of Eq. (1), the expected ACF is rewritten as

ym 5 ln[jRh,y
(mTs)j] 5 am2T2

s 1 b (3)

for m 5 1, 2, 3 . . . , where 21/2t2
c 5 a, ln(Sh,y) 5 b. Then, the

estimated ym is given by ln[jR̂h,y(mTs)j] 5 ŷm, and the caret

(^) denotes the estimated value. Using both the expected

ACF and estimated ACF the merit function F(â, b̂) is

F(â, b̂) 5 �
N

m51

(m2âT2
s 1 b̂ 2 ŷm)2

5 â2T4
s �

N

m51

m4 1 2âb̂T2
s �

N

m51

m2 2 2âT2
s �

N

m51

m2ŷm

1 Nb̂2 2 2b̂ �
N

m51

ŷm 1 �
N

m51

ŷ2
m, (4)

where N is the number of lags used and N $ 2 (e.g., N 5

3 indicates that data at lags 1, 2, and 3 are used); â (or b̂)

is the estimate of a (or b) obtained from the fitted

Gaussian correlation function using N lags, and ŷ
m

is the

estimated value of ym using M 2 1 2 m lags, where M is

the number of weather signal samples. According to

the definition of the least squares fit, the merit func-

tion Eq. (4) reaches its minimum value when

›F(â, b̂)

›â
5 0

›F(â, b̂)

›b̂
5 0

.

8>><
>>:

These two equations are solved simultaneously for â

and b̂, and after manipulation the solution can be put in

the reduced form

â 5

30 �
N

m51

[6m2 2 (N 1 1)(2N 1 1)]ŷm

T2
s N(N 2 1)(N 1 1)(2N 1 1)(8N 1 11)

, (5a)

b̂ 5

6 �
N

m51

(3N2 1 3N 2 1 2 5m2)ŷm

N(N 2 1)(8N 1 11)
, (5b)

where N $ 2.

FIG. 1. An example of multilag estimated ACF. Data from two or

four lags are used to determine Gaussian parameters to estimate

the expected ACF magnitude.
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From the above equations and the definition of â, b̂,

and ŷ
m

, the general expression for multilag power and

spectrum width for H or V channel signals can be

written as

Ŝ
(N)

h,y 5 jR̂(N)

h,y (0)j 5 exp

6 �
N

m51

f(3N2 1 3N 2 1 2 5m2) ln[jR̂h,y
(mTs)j]g

N(N 2 1)(8N 1 11)

8><
>:

9>=
>;, (6a)

ŝ
(N)
h,y

5
l
ffiffiffiffiffiffiffiffiffi
22â
p

4p
5

l
ffiffiffi
2
p

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

30 �
N

m51

f[6m2 2 (N 1 1)(2N 1 1)] ln[jR̂h,y
(mTs)j]g

T2
s N(N 2 1)(N 1 1)(2N 1 1)(8N 1 11)

vuuuut
, (6b)

where the superscript (N) means an N-lag-fitted esti-

mate. The multilag method can also be applied to obtain

an estimate of y [i.e., the unwrapped phase angle of

ACFs at multiple lags can be fitted by a linear line to obtain y

(Lee 1978; May et al. 1989)]. If measurements are made at

several lags (i.e., N lags) and the ambiguities are resolved,

a multilag estimator for the mean Doppler velocity is

ŷ
(N)
h,y 2

1

N
�
N

m51

n yN

mp
[argR̂h,y

(mTs) 1 2pqm]
o

, (6c)

where qm are integers to unwrap the phase for lag m.

To Gaussian fit the CCF from a set of measure-

ments, a similar procedure as that used to estimate the

ACF is applied to Eq. (2). The only difference is that

negative lags are used together with zero and positive

lags, that is, m 5 2N,2(N21), . . . , 21, 0, 1, . . . , N. As

a result, the four-lag estimator, for example, actually

uses nine lags of data. The reason why more lags can

be used in fitting the CCF than the ACF is that the

CCF is not symmetric and lag 0 is not biased by noise.

After applying the least squares fit and similar calcu-

lations used to estimate the ACF, the result of CCF

fitting is

���Ĉ(N)

hy (0)
���5 exp

*
3 �

N

m52N

f(3N2 1 3N 2 1 2 5m2) ln[jĈhy
(mTs)j]g

(2N 2 1)(2N 1 1)(2N 1 3)

+
. (7)

For polarimetric radar parameters, the expressions for

the differential reflectivity and correlation coefficient are

Ẑ
(N)

DR 5 10 log10

"
Ŝ

(N)

h

Ŝ
(N)

y

#
, (8)

r̂
(N)
hy

5

���Ĉ(N)

hy (0)
���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ŝ
(N)

h Ŝ
(N)

y

q , (9)

where Ŝ
(N)

h , Ŝ
(N)

y , and jĈ(N)

hy (0)j are calculated using Eqs.

(6a) and (7).

Differential phase fdp can also be obtained from

multilag data of the CCF angle. CCF data at positive

and negative lags are multiplied to cancel the Doppler

velocity; that is,

f̂
(N)

dp 5
1

2(N 1 1)
�
N

m50

arg[Ĉhy
(mTs)Ĉhy

(2mTs)]. (10)

Expressions of the statistical characteristics for the

Doppler velocity and differential phase estimates are

lengthy and will not be presented in this paper.

Equations (6)–(9) are the general expressions of

power, spectrum width, differential reflectivity, and co-

polar cross-correlation coefficient magnitude estimates

obtained using multilag estimators. For example, if N 5

4, it means that lags 1, 2, 3, and 4 of the ACF data and lag

0, lag 61, lag 62, lag 63, and lag 64 of CCF data are

used to estimate polarimetric parameters. The value of

the chosen N depends on the SNR, number of pulses,

spectrum width, noise type, etc. The following sections

provide detailed description for N 5 2, 3, and 4.

b. Specific estimators

TWO-LAG ESTIMATOR

The two-lag estimator uses lags 1 and 2 of ACF

and lags 0, 61, and 62 of CCF to estimate polarimetric

parameters. Substituting N 5 2 into Eqs. (6)–(9), the
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formulas to estimate spectrum width, differential re-

flectivity, and correlation coefficient are given by

Ŝ
(2)

h,y 5
jR̂h,y

(Ts)j
4/3

jR̂h,y
(2Ts)j

1/3
, (11)

ŝ
(2)
h,y

5
lffiffiffiffiffi

24
p

pTs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnjR̂h,y

(Ts)j 2 lnjR̂h,y
(2Ts)j

q
, (12)

Ẑ
(2)

DR 5 10 log10

jR̂h(Ts)j
4/3

jR̂h(2Ts)j
1/3

jR̂
y
(2Ts)j

1/3

jR̂
y
(Ts)j

4/3

 !
, (13)

r̂
(2)
hy

5

���Ĉ(2)

hy (0)
���[jR̂h(2Ts)jjR̂y

(2Ts)j]
1/6

[jR̂h(Ts)jjR̂y
(Ts)j]

2/3
, (14)

where jĈ(2)

hy (0)j is obtained by substituting N 5 2 into

Eq. (7).

For spectrum width estimates, the two-lag estimator

(i.e., using lags 1 and 2) has been recommended to be

used in place of the conventional estimator (i.e., one

using lag 0 and lag 1) if SNR is low (Doviak and Zrnić

2006). The two-lag estimator has better performance

than the conventional estimator at narrower spectrum

widths, but poorer performance at wider spectrum widths

(Srivastava et al. 1979). However, for other parameters

such as power, differential reflectivity, and correlation

coefficient, the statistical performance of the two-lag es-

timator is poor based on the analysis shown in section 3.

This is so because the exponent 4/3 in the numerator of Eq.

(11) is larger than 1; this increases the noise effect at low

SNRs. To decrease the exponent and improve the sta-

tistical performance, more lags are needed (e.g., three or

four lags), as shown in appendix A.

3. Performance of the estimators

In this section, the performance of the multilag esti-

mators is examined through perturbation analysis and

compared with the performance of conventional estima-

tors. Theoretical statistical biases and standard deviations

of power, spectrum width, and differential reflectivity

estimates are calculated and verified by simulations.

a. General expression of statistical analysis for
multilag estimators

To calculate the bias and standard deviation of multi-

lag estimators, perturbation analysis is used (Zhang

et al. 2004; Melnikov and Zrnić 2007) and terms to second

order of the Taylor expansion are retained. For example,

the following is the Taylor expansion of signal power in

several variables from jR̂(T
s
)j, jR̂(2T

s
)j, to jR̂(NT

s
)j:

S(N)[jR̂(Ts)j, . . . , jR̂(NTs)j] 5 �
‘

n
1
50

. . . �
‘

n
N

50

8>>><
>>>:

[jR̂(Ts)j 2 jR(Ts)j]
n

1 . . . [jR̂(NTs)j 2 jR(NTs)j]
n

N

n1! . . . nN !"
›n

1
1���1n

N S(N)

›jR̂(Ts)j
n

1 . . . ›jR̂(NTs)j
n

N

#
[jR(Ts)j, . . . , jR(NTs)j]

9>>>=
>>>;

. (15)

The R(Ts) is the ACF and S(N) is the signal power esti-

mated by using N lags of ACF; n1, . . . , nN are the number

of derivatives for each variable in the Taylor expan-

sion. Similar expansion can also apply to other radar

parameters. If an N lag estimator is used, Sh,y and sy

both have N variables, but ZDR has 2N variables and rhy

has 4N 1 1 variables. The difference between the esti-

mated and true S(N) is expressed by

dS(N) 5 S(N)[jR̂(Ts)j, . . . , jR̂(NTs)j] 2 S(N)[jR(Ts)j, . . . , jR(NTs)j]

5 �
‘

n
1
50

. . . �
‘

n
N

50

8>>>><
>>>>:

[jR̂(Ts)j 2 jR(Ts)j]
n

1 . . . [jR̂(NTs)jj 2 jR(NTs)j]
n

N

n1! . . . nN !"
›n

1
1���1n

N S(N)

›jR̂(Ts)j
n

1 . . . ›jR̂(NTs)j
n

N

#
[jR(Ts)j, . . . , jR(NTs)j]

9>>>>=
>>>>;

2 S(N)[jR(Ts)j, . . . , jR(NTs)j]

5 �
‘

n
1
50

. . . �
‘

n
N

50

8>>><
>>>:

[jR̂(Ts)j 2 jR(Ts)j]
n

1 . . . [jR̂(NTs)jj 2 jR(NTs)j]
n

N

n1! . . . nN !"
›n

1
1���1n

N S(N)

›jR̂(Ts)j
n

1 . . . ›jR̂(NTs)j
n

N

#
[jR(Ts)j, . . . , jR(NTs)j]

9>>>=
>>>;

; (16)
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if n1, n2, . . . , nN, the number of derivatives of the Taylor

expansion are not simultaneously equal to zero.

According to the definition of bias and variance, sta-

tistical bias and variance of S are defined as

Bias[S(N)] 5 hdS(N)i, (17)

Var[S(N)] 5 h[dS(N)]2i. (18)

Putting Eq. (16) into Eqs. (17) and (18), we arrive at an

expression for the bias

Bias[S(N)] 5

*
�
‘

n
1
50

. . . �
‘

n
N

50

8>>><
>>>:

[jR̂(Ts)j 2 jR(Ts)j]
n

1 . . . [jR̂(NTs)j 2 jR(NTs)j]
n

N

n1! . . . nN !"
›n

1
1���1n

N S(N)

›jR̂(Ts)j
n

1 . . . ›jR̂(NTs)j
n

N

#
[jR(Ts)j, . . . , jR(NTs)j]

9>>>=
>>>;

+
, (19)

and the following expression for the variance:

Var[S(N)] 5

*
�
‘

n
1
50

. . . �
‘

n
N

50

8>>><
>>>:

[jR̂(Ts)j 2 jR(Ts)j]
n

1 . . . [jR̂(NTs)j 2 jR(NTs)j]
n

N

n1! . . . nN !"
›n

1
1���1n

N S(N)

›jR̂(Ts)j
n

1 . . . ›jR̂(NTs)j
n

N

#
[jR(Ts)j, . . . ,jR(NTs)j]

9>>>=
>>>;

0
BBBB@

1
CCCCA

2

+
. (20)

In Eqs. (19) and (20), n1, n2, . . . , nN are not simulta-

neously equal to zero. Following the same procedure

used to obtain the bias and variance of the signal power

estimates, the bias and variance of ŝ(N)
y , Ẑ

(N)
DR, and r̂

(N)
hy

can be obtained. Detailed calculations for the two- and

four-lag estimators are in appendixes B and C. To sim-

plify the calculations, the Taylor expansion is kept to

second derivative term (i.e., n1 1 � � � 1 nN # 2).

b. Statistical analysis for power, spectrum width,
differential reflectivity, and correlation coefficient

1) SIGNAL POWER

For the conventional estimator, asymptotic bias comes

from errors in estimating noise power. Noise power for

the Weather Surveillance Radar-1988 Doppler (WSR-

88D) is measured at the highest elevation angle of each

volume scan and while the transmitter is shut off. Mea-

sured noise power deviates from true noise power be-

cause the measured noise power is measured at different

times and directions. Noise power originates within the

receiver chain from lossy [e.g., waveguides, radio fre-

quency (RF) filters, etc.], and active components (e.g.,

low noise amplifiers etc.) as well as from external sour-

ces (e.g., the earth, cloud/precipitation, sun, etc.). Noise

power level depends on beam direction, temperatures of

the radar’s lossy components, and external sources, etc.

(Fang et al. 2004). Noise power variations of 1 dB are

observed frequently with WSR-88D, although most noise

bias is within 0.5 dB of the mean value (Melnikov and

Zrnić 2007). Sometimes, exceptionally strong electrical

emissions cause noise to increase more than 8 dB above

the receiver noise level (Fang et al. 2004). Because of the

measured noise power deviating from true noise power,

the conventional estimator does not perform well at low

SNR. The one-lag and multilag estimators are efficient

ways to mitigate this problem.

The following five power estimators: conventional and

one, two, three, and four lag are expressed as

Ŝh,y
5 R̂h,y

(0) 2 Nh,y
, (conventional estimator) (21)

Ŝ
(1)

h,y 5 jR̂h,y
(Ts)j, (one-lag estimator) (22)

and the two-, three-, and four-lag signal power estima-

tors are given by Eqs. (11), (A1), and (A5). To compare

these estimators, the bias and standard derivation are

calculated for each.

(i) Analytical expressions for conventional power
estimate bias and variance

In (21), N
h,y

is an average of noise power over many

more than M samples and the variance of N
h,y

should be

minimal (Fang et al. 2004). Therefore, we assume Nh,y is

measured with negligible variance, but it can have bias,

and thus Ŝh,y bias depends on how much Nh,y deviates

from its true value. If noise power has negative bias, then

the signal power will have positive bias, and vice versa.

The variance of the conventional estimate Ŝ
h,y

can be

found in Melnikov and Zrnic [2004, Eq. (A6)] as
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Var(Ŝh,y
) 5 h(dP̂h,y

)2i 5 S2
h,y

"
2(SNR)h,y

1 1

M(SNR)2
h,y

1
1

MI

#
,

(23)

MI 5 M 1 1 2 �
M21

m51

(1 2 m/M) j r(mTs)j
2

" #21

,

(24)

in which M is the number of samples used to esti-

mate Sh,y, and MI is the equivalent number of in-

dependent samples of the signal power having a

correlation coefficient r(mTs) (section 6.3.1.2, Doviak

and Zrnić 2006). For large M and s
y
/2y

N
� 1, M

I
’

4MT
s
p1/2s

y
/l.

(ii) Analytical expressions for one-lag power
estimate bias and variance

The one-lag signal power estimator [i.e., Eq. (22)] is

a biased estimator because the ACF at lag 1 under-

estimates signal power unless the correlation time is very

large (or the spectrum width is very small; see Fig. 2). The

negative bias is given by

Bias[Ŝ
(1)

h,y] 5 hjR̂h,y
(Ts)j 2 Sh,y

i 5 Sh,y
r(Ts) 2 Sh,y

,

(25)

and the variance of the one-lag signal power estimates is

Var[Ŝ
(1)

h,y] 5 h[jR̂h,y
(Ts)j 2 jRh,y

(Ts)j]
2i

5 hjR̂h,y
(Ts)j

2i 1 S2
h,yr2(Ts) 2 2Sh,y

r(Ts)hjR̂h,y
(Ts)ji

5 hjR̂h,y
(Ts)j

2i 2 S2
h,yr2(Ts). (26a)

Using Eq. (C5) in Melnikov and Zrnić (2004) to approximate the hjR̂h,y(Ts)j
2i in Eq. (26a) and then combine the

result with Eq. (1), the Var[Ŝ
(1)

h,y] is

Var[Ŝ
(1)

h,y)] ’ jRh,y
(Ts)j

2

"
1 1

2(SNR)h,y
1 1

(M 2 1)r2(Ts)(SNR)2
h,y

1
1

r2(Ts)MI

#
2 S2

h,yr2(Ts)

5 jRh,y
(Ts)j

2

"
2(SNR)h,y

1 1

(M 2 1)r2(Ts)(SNR)2
h,y

1
1

r2(Ts)MI

#

5 S2
h,yr2(Ts)

"
2(SNR)h,y

1 1

(M 2 1)r2(Ts)(SNR)2
h,y

1
1

r2(Ts)MI

#

’ S2
h,y

"
2(SNR)h,y

1 1

M(SNR)2
h,y

1
1

MI

#
. (26b)

Note that this equation is the same as Eq. (23). This is

because we have assumed Ts is much smaller than the

correlation time, resulting in signal estimates at lag 0 and

1 that are nearly equivalent.

(iii) The performance comparison of power
estimators

For the two-, three-, and four-lag estimators of signal

power [i.e., computed from Eqs. (11), (A1), and (A5)],

FIG. 2. Fractional bias of power estimates M 5 128, Ts 5 0.001 s,

l 5 0.1 m (these radar parameters apply to all figures). For the

one-lag estimator, bias is independent of SNR.
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the bias and variance can be calculated using Eqs. (19)

and (20). Detailed calculations are shown in appendix B.

Fractional biases of power estimates using different

estimators (i.e., one, two, and four lag) are shown in

Fig. 2. Results presented in this paper are focused on

weather types (e.g., stratiform) that produce weather

signals with spectrum widths less than 4 m s21; the me-

dian value of spectrum widths for all types of weather

other than squall lines is less than 2.5 m s21 (Fang et al.

2004). For the conventional estimator, the bias is asymp-

totic and depends on how much the measured noise value

deviates from the truth. Bias is the function of SNR, M

(number of samples), and spectrum width. Increasing M

and SNR decreases the bias. In Fig. 2, the one-lag esti-

mator is a strongly biased estimator and has low bias only

when the spectrum width is very small. The four-lag esti-

mator has less bias than the two-lag estimator for a spec-

trum width less than 3.3 m s21 when the SNR is less than

10 dB, although the biases for all the estimators, except

for the one-lag estimator, are small. As the SNR increases,

the two- and four-lag estimator bias approaches zero.

The theoretically derived standard deviation of power

is shown in Fig. 3 and is verified with simulations in

Fig. 4. In the simulation, H and V channel signals are

generated by the spectrum method (Zrnić 1975). Then,

the copolar correlation coefficient and power differences

are generated for the polarimetric radar parameters

(Galati and Pavan 1995). The conventional estimator has

the same standard deviation as the one-lag estimator

because it is calculated here assuming that the noise

power is accurately measured. If not, the standard de-

viation of the conventional estimator will be larger. The

two-lag estimator does not have significantly better per-

formance than the conventional or one-lag estimator,

and the reason is given in last paragraph in section 2.

The four-lag estimator is slightly better than other es-

timators when the SNR is under 10 dB and the spec-

trum width is less than 3.5 m s21 with the given radar

parameters. In conclusion, the multilag estimators can

decrease the standard deviation of the signal power

estimates only by small amounts (Fig. 3).

In Fig. 4, the theoretical results and simulations differ

at larger spectrum widths for the four-lag estimator. This

is caused by the undersampling rate at larger spectrum

widths. In other words, when the spectrum width is

large, the ACF is narrow. Thus, PRT needs to be short

enough to obtain accurate ACF estimates, especially

when using more lags. By decreasing the PRT, the dif-

ference between theory and simulation at larger spec-

trum width diminished significantly. Another reason for

the difference between theory and simulation comes from

the Taylor expansion. In the calculation of bias and

standard deviation, the Taylor expansion is used. How-

ever, this expansion is only valid when the estimated

value is close to the true value. Thus, the theory results

will be valid only when the bias and standard deviation of

the spectral moments and PRD estimates are not large

(within 10% of the true value). If the number of samples

or SNR increases, then the differences between the the-

oretical and simulated results are smaller.

2) SPECTRUM WIDTH

Four spectrum width estimators: conventional (lag

0 and 1) and two, three, and four lags are expressed, re-

spectively, by

ŝh,y
5

l

2
ffiffiffi
2
p

pTs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln(jŜh,y

j) 2 ln[jR̂h,y
(Ts)j]

q
,

(conventional estimator) (27)

FIG. 3. Normalized standard deviation of signal power estimates.
FIG. 4. Comparison of theory and simulation for the standard

deviation of power estimates at SNR 5 5 dB.
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and by Eq. (12), (A2), and (A6) for the two-, three-, and

four-lag estimators. The standard deviation of the con-

ventionally derived estimates can be found in Zrnić

(1977, 1979). The bias and variance for the two- and four-

lag estimators can be calculated from Eqs. (12), (A2), and

(A6) using the perturbation method through Eqs. (15)–

(20). The detail calculations can be found in appendix B.

The biases of spectrum width estimators are com-

pared in Fig. 5a. Because the estimation error of ŝ
y

is not

much smaller than its expected value ŝ
y

(i.e., if the

spectrum width is less than 1 m s21; Fig. 6), the condi-

tion for Taylor expansion up to the second order is not

satisfied. Hence, the results at very narrow spectra are

not reliable, but those at sy .1 m s21 are accurate. At

low SNR, the four-lag estimator provides notable de-

creases of spectrum width bias. On the other hand, the

bias of sy estimates, obtained using the conventional

estimator, is strongly dependent on the measured noise

bias; if noise bias is negative (e.g., 20.5- and 21-dB

differences between true noise and measured noise in

Fig. 5b), ŝ
y

bias is positive and large (Fig. 5b).

From Fig. 6, it is seen that the standard derivation of

the spectrum width estimates strongly depends on the

spectrum width. In general, spectrum width estimated

using more lags has smaller standard deviation at small

spectrum widths. However, when the spectrum width

becomes large, the multilag fitting method has poorer

performance than the other estimators. This is so be-

cause data at large lags introduce more uncertainty than

information. In addition, the standard deviation of the

conventional estimator (i.e., the one using lags 0 and 1) is

shown in Fig. 6.6 of Doviak and Zrnić (2006), and the

standard deviation of the two-lag estimator, which uses

lags 1 and 2, is shown in their Fig. 6.7. The good agree-

ment of our results with those in the cited reference

supports our discussion of Fig. 6.

In Fig. 7, the theoretical analysis of standard devia-

tion is verified with simulations. They match reasonably

well over the spectrum width interval from about 0.3

to 3.6 m s21 for the four-lag estimator, and for spectrum

widths larger than about 1 m s21 for the two-lag esti-

mator. The poorer performance at small spectrum widths

is caused by not having enough independent samples to

yield small relative errors required for the Taylor ex-

pansion to be satisfactory. For the four-lag estimator, the

difference between theory and simulation at large spec-

trum widths is due to the fact that the PRT is not very

small compared with the correlation time.

3) DIFFERENTIAL REFLECTIVITY

The differential reflectivity is a ratio of the reflected

horizontal and vertical signal powers. Five estimators

[conventional (lag 0) and one, two, three, and four lag)

are examined. They are explicitly written as

FIG. 5. Bias of spectrum width estimates resulting from (a) sy

estimation error and (b) equal measured H and V noise power

biases at SNR 5 5 dB.

FIG. 6. Standard deviation of spectrum width estimates.
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ẐDR 5 10 log10

Ŝh

Ŝ
y

 !
, (conventional estimator) (28)

Ẑ
(1)

DR 5 10 log10

�jR̂h(Ts)j
jR̂

y
(Ts)j

�
, (one-lag estimator) (29)

whereas Eqs. (13), (A3), and (A7) are the two-, three-,

and four-lag estimators. The one-lag estimator is in-

troduced in Melnikov and Zrnić (2004, 45–54, 2007).

The bias and variance of ẐDR and Ẑ
(1)
DR can also be found

in the report. The conventional estimator calculated herein

assumes that the noise level is accurately measured. If

not, the bias of the conventional estimator (Fig. 8b) will

be larger than the results shown in Fig. 8a. For Eqs. (13),

(A3), and (A7), the bias and variance can be calculated

using the perturbation method through general Eqs.

(15)–(20). The detailed calculations can be found in

appendix C.

It is seen (Fig. 8a) that as more lags are used, ZDR bias

decreases although the bias is very small for all estima-

tors. However, if there is bias in the measured noise

power, then the improvement of multilag estimators

over the conventional estimator is significant (Fig. 8b),

where the same noise power bias is assumed to be equal

in both H and V channels. On the other hand, the H and

V noise powers can differ and the difference can be as

much as 1 dB (Melnikov and Zrnić 2007). In this case

the ZDR bias of conventional estimators would be larger

than that shown in Fig. 8b. The multilag estimator can

mitigate this kind of bias as the one-lag estimator does.

Figure 9 shows the standard derivations of different

estimates as a function of the spectrum width. If the

spectrum width is small, then a higher-order multilag

estimator can be used to provide better performance.

For example, although the bias of differential reflectivity

can be improved by only 0.01 dB when SNR 5 0 dB, the

standard deviation can be improved by about 0.1 dB at

spectrum widths less than 3 m s21 if a four-lag estimator

is used. However if the spectrum width is large, then the

four-lag fitting method has poorer performance than the

other estimators. In Fig. 10, the theoretical analysis of

the standard deviation SD(Ẑ
DR

) is compared with sim-

ulations; the comparison shows they match reasonably

well except for the four-lag estimator at large spectrum

widths. The improvement of multilag estimator forZDR

is very limited.

4) CORRELATION COEFFICIENT

The correlation coefficient is the correlation between

the horizontally and vertically copolarized weather ech-

oes. Both ACF and CCF are used to estimate the cor-

relation coefficient. For the ACF, lags 1, 2, 3. . . are used;

for the CCF, lags. . .23, 22, 21, 0, 1, 2, 3. . . are used.

FIG. 7. Comparison of theory and simulation for the standard

deviation of spectrum width estimates at SNR 5 5 dB.

FIG. 8. Bias of differential reflectivity estimates resulting from

(a) estimation error and (b) equal measured H and V noise power

biases of 20.5 and 21.0 dB at SNR 5 5 dB, rhy 5 0.97, and ZDR 5

1 dB.
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The four types of estimators are conventional (lag 0),

and one, two, three, and four lag, respectively,

r̂hy
(0) 5

jĈhy
(0)j

(ŜhŜ
y
)1/2

, (conventional estimator) (30)

r̂
(1)
hy

(0) 5
jĈhy

(2Ts)j1 jĈhy
(Ts)j

2
�
jR̂h(Ts)R̂

y
(Ts)j]

1/2
, (one-lag estimator)

(31)

whereas Eqs. (14), (A4), and (A8) are the two-, three-,

and four-lag estimators. In Eqs. (14), (A4), and (A8),

we use both positive and nonpositive lags to estimate

Ĉ
(N)

hy (0).

Figure 11a shows that the four-lag estimator produces

significantly lower bias estimates than the other esti-

mators do at low SNR (e.g., , 5 dB) and for spectrum

widths less than about 3.5 m s21. However, if there is

bias in the measured noise power, then the improvement

of multilag estimators over the conventional estimator

is even larger (Fig. 11b). Furthermore, the SD(r̂hy
) for

the four-lag estimator is significantly lower at low SNR

(Fig. 12). However, these results are a bit suspect be-

cause the SD(r̂
hy

) obtained with the four-lag estimator

does not cross that obtained with the two-lag estimator

as we expected; this crossover can be seen more clearly

in the simulated data of Fig. 13. The reason for the

crossover is that the four-lag estimator has better per-

formance than the two-lag estimator at small spectrum

width (i.e., when the spectrum width is small more lags

are within the correlation time), while the two-lag esti-

mator has better performance than the four-lag esti-

mator at large spectrum width (i.e., the lags outside the

correlation time can cause estimation errors). The lack

of a crossover point in the theoretical curves might be due

to truncating terms in the Taylor expansion to second

order. Higher-order expansion is needed to obtain more

accurate results. In Fig. 13, simulation and theory for the

standard derivations of different estimates are compared,

and the simulation does show that the SD(r̂
hy

) obtained

with the four-lag estimator does exhibit a crossover with

results obtained with the two-lag estimator.

The SD(r̂hy
) result obtained from simulation with the

two-lag estimator is worse than the SD(r̂hy
) obtained

with the one-lag estimator (Fig. 13). This small dis-

crepancy, which increases at lower SNR (Fig. 12), could

also be related to limitations of the perturbation method.

For example, the estimated value cannot be far away

from true value, and it is likely that SNR cannot be

too small (e.g., less than 0 dB) in order to satisfy this

condition.

In Fig. 14, a dual-polarization radar simulation verifies

that the multilag estimator outperforms other estima-

tors for rhy. The input of this radar simulation is from

the Advanced Regional Prediction System (ARPS)

model (Lei 2009; Lei et al. 2009b; Xue et al. 2000, 2001).

The prognostic state variables include the three wind

components, potential temperature, pressure, turbulent

kinetic energy, mixing ratios for water vapor, rainwater,

cloud water, cloud ice, snow, and hail. The ground truth

of rhy, SNR, and spectrum width are calculated from

ARPS and shown in the right column (Figs. 14d–f). The

model-generated ground truth correlation coefficient is

larger than 0.96 in most places, even though SNR is as

small as 0 dB. Estimates made with the four-lag esti-

mator are closer to the ground truth than those made

with the one-lag and conventional estimators. For this

FIG. 9. Standard deviation of differential reflectivity estimates of

rhy 5 0.97 and ZDR 5 1 dB.

FIG. 10. Comparison of theory and simulation for the standard

deviation of differential reflectivity estimates. SNR 5 5 dB, rhy 5

0.97 and ZDR 5 1 dB.
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simulation, noise power is not calculated because there

is not a standard procedure for noise correction to all

radar parameters, and thus the noise power is not sub-

tracted to estimate the signal power needed in Eq. (9)

for the conventional estimate of rhy (Fig. 14a). The

omission of noise power from the calculation of signal

power causes significant bias when compared with the

ground truth (Fig. 14d); the bias is largest where SNR

(Fig. 14e) is weakest. Figure 14c shows that ‘estimation

improves significantly when the four-lag estimator is

used.

4. Summary

A multilag estimator has been developed to improve

the 10-cm wavelength radar estimation of polarimetric

parameters using weak signals principally from clouds/

light precipitation where turbulence and shear are weak

(i.e., SNR is less than 5 dB, and spectrum widths are less

than 4 m s21); the median value of spectrum widths for

all types of weather other than squall lines is less than

2.5 m s21 (Fang et al. 2004). The multilag estimator

produces meteorological parameter estimates with smaller

bias and standard deviation than conventional estimators

when the spectrum width is small and echoes have low

SNR. The multilag estimators are also immune from the

bias error in noise estimation.

Performances for each of the four variables (i.e., sig-

nal power, spectrum width, differential reflectivity, and

copolar correlation coefficient) are listed separately in

terms of 1) bias reduction and 2) standard deviation

reduction.

FIG. 11. Bias of copolar cross-correlation coefficient estimates

resulting from (a) estimation error and (b) equal measured H and

V noise biases at SNR 5 5 dB; rhy50.97 and ZDR 5 1 dB.

FIG. 12. Standard deviation of the copolar cross-correlation

coefficient estimates; rhy 5 0.97 and ZDR 5 1 dB.

FIG. 13. Comparison of theory and simulations for the copolar

correlation coefficient estimates. SNR 5 5 dB, rhy 5 0.97, and

ZDR 5 1 dB.
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d Signal power: Signal power bias decreases when using

the multilag estimators (Fig. 2). The standard de-

viation of signal power shows no significant decrease

when using multilag estimators (Fig. 3).
d Spectrum width: Spectrum width bias decreases sig-

nificantly using the four-lag estimator (Fig. 5). If H and

V noise power estimates have equal biases (e.g., 20.5

and 21 dB), then the improvement in the spectrum

width bias by using a multilag estimator versus using the

conventional one can vary from 0.5 to 3 m s21 (Fig. 5b);

the improvement is even larger if the H and V noise

power biases are not equal. The standard deviation of

spectrum width decreases significantly when using multi-

lag estimators (Fig. 6).
d Differential reflectivity: Differential reflectivity bias

decreases when using multilag estimators (Fig. 8). If H

and V noise power estimates have equal biases (e.g.,

20.5 and 21 dB), then the improvement of differen-

tial reflectivity bias by using a multilag estimator versus

using the conventional one is around 0.035 and

0.06 dB, respectively (Fig. 8b); the improvement is

even larger if the H and V noise power biases are

not equal. The standard deviation of differential

reflectivity shows no significant decrease when using

multilag estimators (Fig. 9).

d Copolar correlation coefficient: Copolar correlation

coefficient bias decreases using the multilag estima-

tors (Fig. 11). If the H and V noise power estimates

have biases (e.g., 20.5 and 21 dB), then the im-

provement of copolar correlation coefficient bias by

using a multilag estimator versus using the conven-

tional one is around 0.03 and 0.06, respectively

(Fig. 11b); the improvement is even larger if the H

and V noise power biases are not equal. The stan-

dard deviation of copolar correlation coefficient

decreases significantly when using multilag estima-

tors (Fig. 12).

In this study, equal weights have been used in Gauss-

ian fitting to derive the multilag estimator. In practice,

weights should be dependent on the merit and reliability

of the estimates. It is expected that adjustable weights

and an adjustable number of lags would produce even

more accurate estimates. Hence, an adaptive multilag

estimator should be developed, which can automatically

choose how many lags to use and how to weight them

in Eq. (4) according to initial estimates of the spectrum

width and SNR. With adaptive processing, the N-lag

estimator that gives the best performance can be chosen.

The adaptive multilag estimator is under development

FIG. 14. Comparison of copolar correlation estimates made using (a) the conventional,

(b) one-lag, and (c) four-lag estimators. Also plotted are (d) ground truth of rhy, (e) SNR,

and (f) sy.
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and being tested with the University of Oklahoma

Polarimetric Radar for Innovations in Meteorology and

Engineering (OU-PRIME) data (Cao et al. 2010). In ad-

dition, to improve the data quality non-Gaussian spectra

will be studied in future.
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APPENDIX A

Three-Lag and Four-Lag Estimators

a. Three-lag estimator

The three-lag estimator uses lags 1, 2, and 3 of ACF and

lags 0, 61, 62, and 63 of CCF to estimate radar pa-

rameters. This is a case for N 5 3 in the general formulas of

Eqs. (6)–(9). Substituting N 5 3 into the general expres-

sions, the formulas to estimate spectrum width, differential

reflectivity, and correlation coefficient are given by

Ŝ
(3)

h,y 5
jR̂h,y

(Ts)j
6/7jR̂h,y

(2Ts)j
3/7

jR̂h,y
(3Ts)j

2/7
, (A1)

ŝ
(3)
h,y 5

l

28pTs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 3 lnjR̂h,y

(Ts)j 1 2 3 lnjR̂h,y
(2Ts)j 2 13 3 lnjR̂h,y

(3Ts)j
q

, (A2)

Ẑ
(3)

DR 5 10 log10

jR̂h(Ts)j
6/7jR̂h(2Ts)j

3/7jR̂
y
(3Ts)j

2/7

jR̂h(3Ts)j
2/7jR̂

y
(Ts)j

6/7jR̂
y
(2Ts)j

3/7
, (A3)

r̂
(3)
hy

5 jĈ(3)

hy (0)j
[jR̂h(3Ts)jjR̂y

(3Ts)j]
1/7

[jR̂h(Ts)jjR̂y
(Ts)j]

3/7[jR̂h(2Ts)jjR̂y
(2Ts)j]

3/14
. (A4)

In Eq. (A3), the exponential factors are 6/7, 3/7, and 2/7,

which are much smaller than the exponential factor

of the two-lag estimator, which is as large as 4/3. We

expect that the statistical performance of the three-

lag estimator is better than the two-lag estimator and

conventional estimator at low SNR and narrow spec-

trum width.

b. Four-lag estimator

The four-lag estimators for the spectral moments and

PRD are

Ŝ
(4)

h,y 5
jR̂h,y

(Ts)j
54/86jR̂h,y

(2Ts)j
39/86jjR̂h,y

(3Ts)j
14/86

jR̂h,y
(4Ts)j

21/86
(A5)

ŝ
(4)
h,y

5
l

4
ffiffiffiffiffiffiffiffi
129
p

pTs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13 3 lnjR̂h,y

(Ts)j 1 7 3 lnjR̂h,y
(2Ts)j

23 3 lnjR̂h,y
(3Ts)j 2 17 3 lnjR̂h,y

(4Ts)j

vuut , (A6)

Ẑ
(4)

DR 5 10 3 log10

"
jR̂h(Ts)j

54/86jR̂h(2Ts)j
39/86jR̂h(3Ts)j

14/86jR̂
y
(4Ts)j

21/86

jR̂h(4Ts)j
21/86jR̂

y
(Ts)j

54/86jR̂
y
(2Ts)j

39/86jR̂
y
(3Ts)j

14/86

#
, (A7)

r̂
(4)
hy

5 jĈ(4)

hy (0)j
[jR̂h(4Ts)jjR̂y

(4Ts)j]
21/172

[jR̂h(Ts)jjR̂y
(Ts)j]

27/86[jR̂h(2Ts)jjR̂y
(2Ts)j]

39/172[jR̂h(3Ts)jjR̂y
(3Ts)j]

7/86
. (A8)
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In Eqs. (A5), (A7), and (A8), the exponents are

smaller than the corresponding exponents for the two-

and three-lag estimators. Therefore, we expect that the

performance of the four-lag estimator is better at low

SNR and narrow spectrum width (i.e., at long corre-

lation time). The higher-order multilag (e.g., four lag)

estimators give better estimates at narrow spectrum

widths. However, the maximum number of lags to be

used is determined by the correlation time (inverse

proportional to spectrum width). If the lag is larger than

the correlation time, using this lag will bring error be-

cause the noise contaminates ACFs and CCFs at larger

lags. There is a limit as to how many lags to use in mul-

tilag estimators; this limit depends on the number of

pulses, the SNR, and the correlation time. For example,

the absolute value of ACF is used to weight the multilag

polypulse-pair estimate for Doppler velocity (Lee 1978;

May et al. 1989). The number of lags to be used can be

determined according to measured radar parameters.

APPENDIX B

Bias and Variance of the Spectral Moment
Estimates (Sh and sy)

a. Power (two-lag estimator)

Using Eqs. (19) and (20) to calculate bias and variance

for the two-lag power estimates, and keeping terms to

second order, we obtain

dŜ
(2)

h ’
›Ŝ

(2)

h

›jR̂h(Ts)j
djR̂h(Ts)j 1

›Ŝ
(2)

h

›jR̂h(2Ts)j
djR̂h(2Ts)j 1

1

2

›2Ŝ
(2)

h

›jR̂h(Ts)j
2
[djR̂h(Ts)j]

2

1
1

2

›2Ŝ
(2)

h

›jR̂h(2Ts)j
2
[djR̂h(2Ts)j]

2 1
›2Ŝ

(2)

h

›jR̂h(Ts)j›jR̂h(2Ts)j
[djR̂h(Ts)j][djR̂h(2Ts)j]

’
Shr(Ts)

4/3

r(2Ts)
1/3

4

3
A 2

1

3
B 1

2

9
A2 1

2

9
B2 2

4

9
AB

� �
, (B1)

with a similar expression for dŜ
(2)

y , and where

A 5
djR̂h(Ts)j
jRh(Ts)j

5
jR̂h(Ts)j 2 jRh(Ts)j

jRh(Ts)j
,

B 5
djR̂h(2Ts)j
jRh(2Ts)j

5
jR̂h(2Ts)j 2 jRh(2Ts)j

jRh(2Ts)j
.

We shall use the following equation:

jĈj 5 jC 1 DCj 5 (C 1 DC)1/2(C* 1 DC*)1/2

5 jCj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1

DC

C

� �s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1

DC*

C*

� �s
,

given by Zhang et al. [2003, Eq. (A4)], in which C is

Rh(Ts) [or Chy(Ts) in appendix C when we calculate rhy ].

To calculate A and B the approximation

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 x
p

’ 1 1
1

2
x 2

1

8
x2

is used to obtain

jĈj ’ jCj 1 1
DC

2C
1

DC*

2C*
1
jDCj2

4jCj2
2

DC2

8C2
2

DC*2

8C*2

 !

0
jĈj 2 jCj
jCj ’

DC

2C
1

DC*

2C*
1
jDCj2

4jCj2
2

DC2

8C2
2

DC*2

8C*2
,

(B2)

where, DC 5 Ĉ 2 C.

Therefore,

A ’
DR̂h(Ts)

2Rh(Ts)
1

DR̂h
*(Ts)

2Rh*(Ts)
1
jDR̂h(Ts)j

2

4jRh(Ts)j
2

2
[DR̂h(Ts)]2

8[Rh(Ts)]2
2

[DR̂h
*(Ts)]2

8[Rh
*(Ts)]2

B ’
DR̂h(2Ts)

2Rh(2Ts)
1

DR̂h
*(2Ts)

2Rh*(2Ts)
1
jDR̂h(2Ts)j

2

4jRh(2Ts)j
2

2
[DR̂h(2Ts)]2

8[Rh(2Ts)]2
2

[DR̂h*(2Ts)]2

8[Rh
*(2Ts)]2

. (B3)

Bias is the expectation of dSh, hence,
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Bias[Ŝ
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h ]
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5
hdŜ
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h i
Sh

’
r(Ts)

4/3
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1/3

4

3
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1

3
B 1

2

9
A2 1

2

9
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4

9
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� �	 

; (B4)

variance of the Sh estimates is given by

Var[Ŝ
(2)

h ]

S2
h

5
h[dŜ

(2)

h ]2i
S2

h

’
r(Ts)

8/3

r(2Ts)
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4
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A 2

1

3
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2

9
A2 1

2

9
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4

9
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� �	 2

’

r(Ts)
8/3

r(2Ts)
2/3

16

9
A2 1

1

9
B2 2

8

9
AB

� �	 

.

(B5)

To arrive at the above expressions, we have retained

terms to second order in A and B, whereas analytical

formulas for the expected value of other terms in the

expressions for A and B are in list B at the end of this

appendix.

b. Power (four-lag estimator)

A similar approach is used to calculate the bias and

variance of the four-lag estimates. Because the estimate

bias and variance for the three-lag estimator is between

that for the two- and four-lag estimators, we omit results

obtained for the three-lag estimator. Following is the

statistical analysis result for the four-lag estimator:

dŜ
(4)

h ’
Shr(Ts)

54/86
r(2Ts)

39/86
r(3Ts)

14/86

r(4Ts)
21/86
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�
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86
AC 2

54

86

21

86
AD 1

39

86

14
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�
, (B6)

where A and B can be found in Eq. (B3). Here, C and D are given by

C 5
djR̂h(3Ts)j
jRh(3Ts)j

5
jR̂h(3Ts)j 2 jRh(3Ts)j

jRh(3Ts)j

’
DR̂h(3Ts)
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1

DR̂h
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2Rh*(3Ts)
1
jDR̂h(3Ts)j
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2
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[DR̂h
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’
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1

DR̂h
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jDR̂h(4Ts)j

2

4jRh(4Ts)j
2
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. (B7)

Bias is the expectation of dŜh; hence,
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. (B8)

Variance is

Var[Ŝ
(4)

h ]

S2
h

5
h[dŜ

(4)

h ]2i
S2

h

’

"
r(Ts)
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86
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. (B9)
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The expressions of A, B, C, and D are shown in Eqs. (B3) and (B7), in which the subterms can be looked up

in list B.

c. Spectrum width (two-lag estimator)

For the two-lag estimator bias and variance are calculated by using Eqs. (15)–(20) and procedures are similar to

signal power to obtain

dŝ
(2)
h ’

lffiffiffiffiffi
24
p

pTs

1

2

�
ln
jRh(Ts)j
jRh(2Ts)j

�21/2

A 2 B 2
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2
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2
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� �

1
lffiffiffiffiffi

24
p
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1

4

�
ln
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jRh(2Ts)j

�23/2

2
1

2
A2 2

1

2
B2 1 AB

� �
, (B10)

where A and B are given by Eq. (B3).

Hence, we find that the two-lag spectrum width bias is

Bias[ŝ
(2)
h ] 5 h[dŝ

(2)
h ]i

’
lffiffiffiffiffi

24
p

pTs

1

2

�
ln
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jRh(2Ts)j

�21/2
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� �	 


1
lffiffiffiffiffi

24
p

pTs

1

4

�
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jRh(Ts)j
jRh(2Ts)j

�23/2

2
1

2
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1

2
B2 1 AB

� �	 

, (B11)

and the two-lag variance of the spectrum width estimates is

Var[ŝ
(2)
h ] 5 h[dŝ

(2)
h ]2i’ lffiffiffiffiffi

24
p

pTs

 !2
1

4

�
ln
jRh(Ts)j
jRh(2Ts)j

�21

h(A2 1 B2 2 2AB)i. (B12)

d. Spectrum width (four-lag estimator)

Likewise, following similar procedures used to obtain the perturbations for the two-lag estimator, we can

calculate the perturbations for the four-lag estimator
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l

4
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, (B13)
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Var[ŝ
(4)
h ] 5 h[dŝ

(4)
h ]2i

’
l

8
ffiffiffiffiffiffiffiffi
129
p

pTs
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2
"

ln
jRh(Ts)j

13jjRh(2Ts)j
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3jRh(4Ts)j
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#21

(169A2 1 49B2 1 9C2 1 289D2 1 182AB 2 78AC

2 442AD 2 42BC 2 238BD 1 102CD), (B15)

where A and B are given by Eq. (B3), and C and D are

given by Eq. (B7).

e. List B [Eqs. (B16)–(B19)]

Note that in calculating the expected values of A,

B, etc., we can use the property that DC and DC* have

zero expected value. The analytical formulas for

other terms in Eqs. (B3) and (B7) are given by the

equations in this list. For the terms having the ACF

computed from H polarized signals (the forms are

exactly the same for the ACF computed from V po-

larized signals):

hD2R̂h(mTs)i
[Rh(mTs)]2

5
hD2R̂h

*(mTs)i
[Rh

*(mTs)]2
’

1

MI

1
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, (B16)
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5
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(B18)
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#
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(B19)

The solutions for the V channel signals have the same

form. To demonstrate the derivation procedure used to

obtain the four approximate analytical formulas, we

provide, in what follows, an example derivation for one

[i.e., (B18)] of these formulas. Equation (B18) is

hDR̂h(m1Ts)DR̂h
*(m2Ts)i

Rh(m1Ts)Rh*(m2Ts)
,

where m1 and m2 are positive integers. The expected

value of the numerator can be expressed as
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It can be shown that the first term in the above equation

can be approximated by

’
1

Td
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(B21)

if Ts is much shorter than the correlation time and a

dwell time is much larger than the correlation time

(Zhang et al. 2003; Appendix A in Zhang et al. 2004).

Using the equationð
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APPENDIX C

Bias and Variance of the Polarimetric Parameter
Estimates (ZDR and rhy)

a. Differential reflectivity (two-lag estimator)

The two-lag estimator of differential reflectivity is

given as
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For the two-lag estimator bias and variance are calcu-

lated by using Eqs. (15)–(20), and procedures are similar

to signal power to obtain
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where A 5
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Similar approximations apply to B, C, and D.

Hence, the bias for the two-lag estimator is

Bias[Ẑ
(2)

DR] 5 h[dẐ
(2)

DR]i

’
10

ln10

4

3
A 1

1

3
B 2

1

3
C 2

4

3
D

�	

2
2

3
A2 2

1

6
B2 1

1

6
C2 1

2

3
D2

�

, (C3)
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Var[Ẑ
(2)

DR] 5 h[dẐ
(2)

DR]2i

’
10

ln10

� �2 4

3
A 1

1

3
B 2

1

3
C 2

4

3
D 2

2

3
A2 2

1

6
B2 1

1

6
C2 1

2

3
D2

� �	 2
+

’
10

ln10

� �2 16

9
A2 1

1

9
B2 1

1

9
C2 1

16

9
D2 1

8

9
AB 2

8

9
AC 2

32

9
AD 2

2

9
BC 2

8

9
BD 1

8

9
CD

� �	 

. (C4)

To arrive at the above expressions, we have retained

terms to second order in A, B, C, and D, whereas ana-

lytical formulas for the expected value of other terms in

the expressions for A–D are in lists B and C.

b. Differential reflectivity (four-lag estimator)

A similar approach is used to calculate the bias and

variance of the four-lag estimates. Because the estimate

bias and variance for the three-lag estimator is between

that for the two-lag estimator and four-lag estimators,

we omit results obtained for the three-lag estimator.

Following is the statistical analysis result for the four-lag

estimator:

dẐ
(4)

DR ’
10

ln10

54

86
A 1

39

86
B 1

14

86
C 2

21

86
D 2

54

86
E 2

39

86
F 2

14

86
G 1

21

86
H

�

2
27

86
A2 2

39

172
B2 2

7

86
C2 1

21

172
D2 1

27

86
E2 1

39

172
F2 1

7

86
G2 2

21

172
H2

�
, (C5)

where

A 5
djR̂h(Ts)j
jRh(Ts)j

, B 5
djR̂h(2Ts)j
jRh(2Ts)j

, C 5
djR̂h(3Ts)j
jRh(3Ts)j

, D 5
djR̂h(4Ts)j
jRh(4Ts)j

E 5
djR̂

y
(Ts)j

jR
y
(Ts)j

, F 5
djR̂

y
(2Ts)j

jR
y
(2Ts)j

, G 5
djR̂

y
(3Ts)j

jjR
y
(3Ts)j

, H 5
djR̂

y
(4Ts)j

jR
y
(4Ts)j

.

Approximation is shown as

A ’
DR̂h(Ts)

2Rh(Ts)
1

DR̂h
*(Ts)

2Rh*(Ts)
1
jDR̂h(Ts)j

2

4jRh(Ts)j
2

2
[DR̂h(Ts)]2

8[(Rh(Ts)]2
2

[DR̂h
*(Ts)]2

8[Rh
*(Ts)]2

;

similar approximations apply to B, C, D, E, F, G, and H as

Bias[Ẑ
(4)

DR] 5 h[dẐ
(4)

DR]i

’
10

ln10

54

86
A 1

39
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�

, (C6)

Var[Ẑ
(4)

DR] 5 h[dẐ
(4)

DR]2i’
�

10

ln10

�2 54
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A 1
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B 1
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C 2

21

86
D 2

54

86
E 2

39

86
F 2

14
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G 1

21

86
H

� �	 2
+

. (C7)

c. Correlation coefficient (two-lag estimator)

The two-lag estimator of correlation coefficient is given by

r̂
(2)
hy

5 jĈhy
(22Ts)j

23/35jĈhy
(2Ts)j

12/35jĈhy
(0)j17/35jĈhy

(Ts)j
12/35jĈhy

(2Ts)j
23/35

3 jR̂h(2Ts)j
1/6jR̂

y
(2Ts)j

1/6jR̂h(Ts)j
22/3jR̂

y
(Ts)j

22/3. (C8)
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For the two-lag estimator bias and variance are calculated by using Eqs. (15)–(20) and procedures are similar to

the signal power to obtain

dr̂
(2)
hy

’ rhy
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where

A 5
djĈhy

(22Ts)j
jChy

(22Ts)j
, B 5

djĈhy
(2Ts)j

jChy
(2Ts)j

, C 5
djĈhy

(0)j
jChy

(0)j , D 5
djĈhy

(Ts)j
jChy

(Ts)j
, E 5

djĈhy
(2Ts)j

jChy
(2Ts)j

F 5
djR̂h(2Ts)j
jRh(2Ts)j

, G 5
djR̂

y
(2Ts)j

jR
y
(2Ts)j

, H 5
djR̂h(Ts)j
jRh(Ts)j

, I 5
djR̂

y
(Ts)j

jR
y
(Ts)j

A ’
DĈhy

(22Ts)

2Chy
(22Ts)

1
DĈhy

* (22Ts)

2Chy* (22Ts)
1
jDĈhy

(22Ts)j
2

4jChy
(22Ts)j

2
2

[DĈhy
(22Ts)]2

8[Chy
(22Ts)]2

2
[DĈhy

* (22Ts)]2

8[Chy
* (22Ts)]2

.

Similar approximations apply to B, C, D, . . . , to I.

Hence, we find that the two-lag correlation coefficient

bias is

Bias[r̂
(2)
hy

] 5 h[dr̂
(2)
hy

]i, (C10)

and the variance is

Var[r̂
(2)
hy

] 5 h[dr̂
(2)
hy

]2i. (C11)

Because of the lengthy derivations, calculations for the

performance of the four-lag estimator are not shown

here. However, they follow procedures used for the two-

lag estimator.

d. List C [Eqs. (C12)–(C21)]

The analytical formulas for the terms in A, B, . . . , I are

given by the equations in this list, as well as equations

in list B:
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hDR̂h(m1Ts)DR̂
y
(m2Ts)i

Rh(m1Ts)R
y
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hDR̂h

*(m1Ts)DR̂
y
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’
r2

hy
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exp

"
(m2 2 m1)2T2

s

4t2
c

#
, (C12)

hDR̂h
*(m1Ts)DR̂

y
(m2Ts)i

Rh*(m1Ts)R
y
(m2Ts)

5
hDR̂h(m1Ts)DR̂

y
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y*(m2Ts)

’
r2

hy

MI

exp

"
(m1 1 m2)2T2

s

4t2
c

#
, (C13)

hD2Ĉhy
(mTs)i

C2
hy

(mTs)
5
hD2Ĉhy

* (mTs)i
[Chy

* (mTs)]2
’

1

MI

, (C14)

hjDĈhy
(mTs)j

2i
jChy

(mTs)j
2

’
1

MIr2
hy

r2(mTs)
1

(SNR)h 1 (SNR)
y

1 1

M(SNR)h(SNR)
y
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hy
r2(mTs)

, (C15)
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(m2Ts)i
Chy* (m1Ts)Chy

(m2Ts)
5
hDĈhy
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, (C16)
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, (C17)
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(C18)
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(C19)
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(C20)
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y*(m2Ts)
5
hDĈhy

* (m1Ts)DR̂
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M
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� 1

(SNR)
y

.

(C21)

To demonstrate the derivation procedure used to obtain

the 10 approximate analytical formulas, we provide, in

what follows, an example derivation for one [i.e., (C12)]

of these formulas. Equation (C12) is
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hDR̂h(m1Ts)DR̂
y
(m2Ts)i

Rh(m1Ts)R
y
(m2Ts)

,
where m1 and m2 are positive integers. The expected

value of the numerator can be expressed as
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Therefore,
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APPENDIX D

List of Symbols

Chy
(mTs): Cross-correlation function.

KDP: Specific differential phase

M Number of signal samples

MI Number of independent samples

N Number of lags used for multilag estimator

Nh,y White noise power in the horizontal (h)

and vertical channels (y)

R(mTs) Autocorrelation function

S Signal power

SNR Signal-to-noise ratio

PRD Polarimetric radar data (e.g., ZDR, etc.)

T
s

Pulse repetition time

T
d

Dwell time

yr Doppler velocity

yN Nyquist velocity

Z Reflectivity factor

ZDR Differential reflectivity

rhy
Copolar correlation coefficient

r(mT
s
) Temporal correlation coefficient

s
y

Spectrum width

t
c

Correlation time
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