
3.11 ASSIMILATION OF SIMULATED CASA RADAR DATA OF VARIED STORM TYPES

USING ENSRF FOR CONVECTIVE STORM ANALYSES AND FORECASTS

Elaine S. Godfrey∗, Kelvin Droegemeier, Ming Xue, and Mingjing Tong
School of Meteorology and Center for Analysis and Prediction of Storms

University of Oklahoma, Norman, Oklahoma

1. INTRODUCTION

1.1 Numerical weather prediction

Although the dynamical equations governing the at-
mosphere have been known for nearly two centuries,
it was not until the advent of digital computers that
it became possible to use these equations in numeri-
cal models to produce useful forecasts. As computing
power increases, the forecasting ability (both in time and
space) from such models also increases, and their three-
dimensional grid spacing significantly decreases. With
the use of supercomputers, it is now possible to create 24-
hour forecasts for most of the continental United States
in a few hours using 2–4 km horizontal grid spacing.
For example, Kain et al. (2004, 2005) performed such
model runs and initiated them by interpolating the anal-
ysis state from the operational Eta model (Black 1994;
Janjić 1994) with 12–40 km horizontal grid spacing to
finer model grid spacing. However, defining the initial
conditions only from a coarser grid analysis is not opti-
mal and likely handicaps model performance in certain
cases. For example, a coarser grid will likely not cap-
ture small-scale features such as gust fronts that can be
extremely important for storm-scale numerical weather
prediction.

Conventional data from surface observations, rawin-
sondes, and other instruments also are not available for
model initialization or updates at or even near the same
resolution as a convective storm model. As computing
capabilities increase, data from denser observation net-
works such as radar are being used to initialize and up-
date storm-scale numerical models. The assimilation of
radar data in numerical models does come with a limita-
tion: most of the model state variables (i.e., temperature,
pressure, moisture, and condensate) are not observed di-
rectly by radar; only radial velocity and reflectivity are
measured1. Thus, more advanced techniques are needed
to retrieve quantities that are not directly observed.

Models that use adjoint techniques, such as 4D-Var,
have been very successful at retrieving initial conditions
and assimilating radial velocity and/or reflectivity data
into forecast models (e.g., Sun and Crook 1997; Gao

1Velocity spectrum width is also available but is not as useful for
numerical weather prediction.
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et al. 1998), but the adjoint code is computationally ex-
pensive to develop and maintain (TX05). Also, the 4D-
Var approach requires significant effort in designing the
background error covariance model. Alternatively, the
recently-developed ensemble Kalman filter (EnKF) tech-
nique for assimilating radar data is much simpler to im-
plement (Lorenc 2003). EnKF is growing in popular-
ity for this reason; several studies of radar data assimi-
lation with this method have been published in the past
few years (Snyder and Zhang 2003; Dowell et al. 2004;
Zhang et al. 2004; Caya et al. 2005; Tong and Xue 2005;
Xue et al. 2006; Charron et al. 2006), and many more
likely are underway.

At this time, the full assimilation and forecast cycles
for a large number of ensemble members can take sev-
eral days to execute on a supercomputing system, and are
therefore not yet possible in real-time. However, as com-
puting resources evolve, real-time radar data assimilation
with high-resolution numerical models will become fea-
sible, likely within the next several years. The resulting
high spatial- and temporal-resolution short-range fore-
casts could assist weather forecasters, government en-
tities, emergency managers, and private industry with
warnings and weather-related decision-making.

1.2 CASA radar network

The National Science Foundation established the
Engineering Research Center for Collaborative Adap-
tive Sensing of the Atmosphere (CASA) in September
2003 to develop low-power, low-cost solid-state Doppler
radars for high-resolution sensing of the lower atmo-
sphere. Unlike the existing WSR-88D radar network
that scans the atmosphere in regular pre-set patterns, the
CASA radars will be able to adapt to changing weather
conditions and end user needs, and will operate col-
laboratively by coordinated directing of multiple radar
beams.

The National Weather Service WSR-88D Doppler
radars have limited sampling capabilities in the lower
troposphere due to the curvature of Earth. Thus, mete-
orological conditions in the lowest three kilometers are
grossly under-sampled, limiting the data available to ini-
tialize model forecasts in the region where storms de-
velop.

The first Integrative Project (IP1) test bed of CASA
X-band radars was installed in southwest Oklahoma in
spring 2006. To keep installation costs manageable,
some of the CASA radars were placed on existing com-
munication towers having large data transmission ca-
pabilities and others were placed on newly constructed



FIG. 1. Four-radar network for initial CASA deployment and the lo-
cation of KTLX in central Oklahoma. Circles denote the anticipated
30-km radar range of the CASA radars.

short towers for easy access. Figure 1 shows the location
of the IP1 network. Although real-time CASA radar data
from this new network are not yet available, the effects
of the CASA network on numerical weather prediction
can be examined using simulated radar data.

1.3 Goals of the study

This study conducts a set of observation system simu-
lation experiments (OSSEs) to assess the potential effects
of assimilating simulated radar data using the ensem-
ble square root Kalman filter (EnSRF) applied to storm-
scale numerical weather prediction. Dynamically adap-
tive scanning strategies are unique to CASA, and the in-
tegration of adaptive radar observations using the EnSRF
will be unique to this inquiry.

This work is part of an ongoing project which seeks
answers to the following questions:

• Will the EnSRF technique work as well with differ-
ent types of convection, such as multi-cell storms
and quasi-linear convective systems, as it did with
isolated supercells?

• What is the effectiveness of assimilating adaptively
scanned data compared to data from conventional
full volume scans?

• What are the most effective adaptive scanning
strategies for use with the EnSRF? Do these vary
by storm type, and if so, how?

To answer these questions, the EnSRF technique will
be used to assimilate simulated radar data from multi-
ple storm types, including a supercell and a multi-cell

system. Further tests in this study will determine the ef-
fects of assimilating radar data from multiple scanning
strategies of these and possibly other types of convection
and will establish the most effective scanning strategy
for each storm type. If plausible, adaptive scanning strat-
egy recommendations based on the successful trials will
be made for future use with the CASA testbed. Eventual
simulations of larger storm systems using an expanded 9-
node CASA radar network will reveal the utility of this
larger system for storm-scale numerical weather predic-
tion of multiple storm types.

2. HISTORICAL REVIEW

2.1 Overview of ensemble-based prediction and data
assimilation

It is helpful to have an estimate of forecast skill in or-
der to assess the potential usefulness of a particular fore-
cast. The prediction of forecast skill is based on the the-
ory of predictability (Wobus and Kalnay, 1995). Lorenz
(1963) suggested that the future state of a stable dynam-
ical system will remain arbitrarily close to its past his-
tory and will be quasi-periodic (and thus predictable),
but that if all states are unstable, there is a finite limit
of predictability. The atmosphere is certainly not sta-
ble, observations are not perfect, and the solutions to its
nonperiodic flow are only readily determined by numer-
ical procedures (Lorenz 1963). Many years later, Lorenz
(1996) assumed that the predictions of individual chaotic
dynamical systems, such as the atmosphere, would be
error-free if the initial state could be observed without er-
ror and the extrapolation procedure is error-free, which is
impossible if the governing laws involve any randomness
(which they do).

So what is to be done? If the amount of uncertainty
in the initial state is known or can be estimated, then
it is possible to perturb the initial state proportional to
the known or estimated uncertainty in order to generate
a group, or ensemble, of forecasts. Leith (1974) was the
first to use such “Monte Carlo” experiments, randomly
generating the perturbed errors that were based on anal-
ysis uncertainty. He showed that even a small number
of forecast ensemble members (i.e., ten members) could
improve the skill of the mean forecast (and is apprecia-
bly better than a conventional single forecast) and could
be used to provide error estimates.

So what is considered to be an ensemble forecast? Do
forecasts from two or more unique models constitute an
ensemble? What about forecasts from the same model
with perturbed initial conditions? Sivillo et al. (1997)
defined an ensemble forecast to be “a collection of two
or more forecasts that verify at the same time,” which
would include both of the previous examples. When ap-
propriate, it is possible to weigh the individual members
of the ensemble according to their respective ages, res-
olution, model accuracy, and other relevant factors to
minimize the root-mean-square forecast error (Van den



Dool and Rukhovets 1994). As to the purpose of en-
semble forecasting, Sivillo et al. (1997) defined it as the
recognition of “the inherent uncertainty of weather fore-
casting,” and suggested that its goals are “to increase the
average forecast accuracy, to estimate the likelihood of
various events, and to estimate the decay of forecast skill
with increasing lead time.” The authors also asserted that
the largest value for ensemble forecasting is found in the
more general case when non-linear processes influence
forecast errors.

As Leith (1974) and many others have demonstrated
(e.g., Elmore et al. 2002, 2003; Kong et al. 2006a,b),
an ensemble of forecasts can be used to create a single
forecast, and it can also be used to glean additional in-
formation in addition to a simple average. For example,
the individual members of an ensemble forecast can sug-
gest additional possibilities outside the mean, the prob-
abilities of which can be estimated (Anderson 1996),
although these probabilities may need to be corrected
due to an underestimation of the range of possibilities
(i.e., an ensemble model won’t forecast a record high)
(Hamill and Colucci 1997a; Zhu et al. 1996; Buizza
1997). Wobus and Kalnay (1995) suggested that an en-
semble of forecasts could also be used to predict the skill
of probability forecasts. Lastly, an ensemble of forecasts
can suggest locations for additional special observations
that would improve forecast accuracy (Bishop and Toth
1996; Emanuel et al. 1996, Morss et al. 2001).

Although ensemble forecasting has these many ad-
vantages, it is computationally expensive, and a trade-
off must be made among between model initialization,
model complexity, the number of forecasts in the ensem-
ble, and the amount of computer and human time needed
to process the information due to computer limitations
and time constraints (Sivillo et al. 1997).

2.2 Overview of the ensemble Kalman filter

The use of a Kalman filter with an ensemble of fore-
casts started by randomly-perturbed initial background
states was first introduced by Evensen (1994), and has
gained popularity in recent years due to its ease of use
and relatively affordable computational requirements.
This new technique, previously called the ‘Monte Carlo’
method and later dubbed EnKF, uses a large number of
randomly distributed points in phase space that repre-
sent a specific probability distribution function (PDF),
which are integrated forward in time. These fore-
casts can be used to calculate estimates for moments
of the PDF at different times, and the errors in the so-
lution PDF will approach zero at a rate proportional
to N−0.5, where N is the number of ensemble mem-
bers (Evensen 1994). Essentially, this technique is a
way to approximate the evolution of the error statis-
tics. Evensen (1994) proved that use of the EnKF tech-
nique eliminated the unbounded error growth found in
the extended Kalman filter. Houtekamer and Mitchell
(1998) first implemented the stochastic method, which

treats observations as random variables that are sub-
ject to additional perturbations such that the analysis er-
ror covariance is consistent with that of the traditional
Kalman filter, followed shortly by Burgers et al. (1998),
Houtekamer and Mitchell (2001), Evenson (2003), and
others. Houtekamer and Mitchell (1998) also introduced
a cutoff radius, which is now commonly known as the
covariance localization radius, beyond which the covari-
ance between variables is assumed to be zero.

Since the introduction of the EnKF, many new forms
of this technique have been developed. Hamill and
Snyder (2000) developed a hybrid ensemble Kalman
filter/3D-variational (3D-Var) analysis scheme. In it, the
background error covariance is a weighted average of
the static 3D-Var error covariance and the time evolving
EnKF error covariance, and the state estimate is com-
puted using the 3D-Var algorithm. The authors found
that the analysis performed best when the EnKF back-
ground error covariance was given almost full weight,
especially for large ensembles. However, lower covari-
ance weighting was found to be desirable for smaller
ensemble sizes. As expected, the error decreased with
the use of larger ensembles. Bishop et al. (2001) devel-
oped the Ensemble Transform Kalman Filter (ETKF), in
which the error statistics predicted by the ensemble were
used to determine the optimal configuration of future tar-
geted observations. The ETKF was tested using OSSEs
(Bishop et al. 2001), and the authors found that it pro-
vides direct observation sensitivity. Anderson (2001) de-
veloped a method known as the Ensemble Adjustment
Kalman Filter (EAKF), where the observations are not
perturbed. The resulting ensemble mean is still correct,
but the variance is too low, so a linear operator is derived
to replace the traditional gain matrix. Unfortunately, the
measurement covariance matrix is required to be inverted
when it is not a diagonal matrix. This is true for all EnKF
methods. Further examples of the use of EnKF can be
found in Evensen (2003).

2.3 Overview of the ensemble Kalman square-root
filter

Whitaker and Hamill (2002, hereafter WH02) devel-
oped the deterministic EnSRF to better estimate the anal-
ysis variance by avoiding sampling errors associated
with the use of perturbed observations. The ensemble
mean and deviations from the mean are updated sep-
arately such that the ensemble mean analysis and the
analysis covariance are consistent with that predicted by
Kalman filter theory. The EnSRF, like the stochastic
EnKF, assimilates the observations into the model’s ini-
tial conditions and processes them sequentially. This se-
quential processing avoids storing and manipulating very
large matrices when solving the Kalman filter equations
by reducing both the observation-error covariance matrix
and the background error covariance matrix between ob-
servation points to scalars (WH02). One drawback of the
sequential processing of observations is the difficulty in



parallelizing the ensemble members, the lack of which
is impractical for many types of observations (Lorenc
2003). However, the analysis error from EnSRF exper-
iments is likely to be less than the error from EnKF ex-
periments due to the underestimation of error covariance
that is present in EnKF as a result of the perturbed ob-
servations (WH02). According to WH02, the EnSRF is
conceptually simpler than and just as fast as the EnKF,
and possibly more accurate than the EnKF for a given
ensemble size. The authors tested and found that the en-
semble mean error from the EnSRF analysis of a general
circulation model is lower than that of the EnKF analysis
for the same ensemble size. Thus, there are substantial
benefits from using a data assimilation system that does
not require perturbed observations.

2.4 Formulation of the ensemble Kalman square-root
filter

After the notation of Ide et al. (1997) and WH02,
let the superscripts a, b, and o denote analysis, back-
ground, and observation, respectively. Then xb is an m-
dimensional background model forecast state vector, yo

is a set of observations with p dimensions, H is the lin-
earized version of the observation operator, H , which
projects state variable x to observation yo, P

b is the
background or prior error covariance matrix with m×m-
dimensions, R is the p×p-dimensional observation-error
covariance matrix, and xa is the minimum error-variance
estimate of the analyzed state that is given by Lorenc’s
(1986) Kalman filter equation:

xa = xb + K(yo
− Hxb), (1)

where the Kalman gain matrix, K, is given by:

K = P
b
H

T (HP
b
H

T + R)−1. (2)

The analysis equations for the ensemble-mean state x
and the deviation from the mean for the ith member of
the ensemble x

′a
i are given by

xa = xb + K(yo
− Hxb) (3)

and
x

′a
i = x

′b
i + K̃(y

′o
− Hx

′b
i ), (4)

respectively. Here, the background analysis-error covari-
ance P

b is given by:

P
b = x

′bx
′bT ≡

1

n − 1

n∑

i=1

x
′bx

′bT , (5)

where n is the ensemble size, K is the traditional Kalman
gain matrix in Eq. ( 2), and K̃, is the gain function used
to update deviations from the ensemble mean (WH02).

Equation ( 4) can be simplified to the following:

x
′a = x

′b
− K̃Hx

′b = (I − K̃H)x
′b. (6)

For individual observations that are assimilated one at
a time, the background error covariance matrix between
observation points, HP

f
H

T , and the observation error
covariance matrix, R, are scalars, and K = αK̃, with

α =

(
1 +

√
R

HP
b
HT + R

)−1

. (7)

After Xue et al. 2006 (hereafter XTD06), a covariance
inflation procedure is necessary due to the frequent un-
derestimation of the background error covariance that is
a result of the limited size of the ensemble (Anderson
2001). When the ensemble square-root Kalman filter is
used, Equation 6 can be modified with the addition of
a covariance inflation factor (usually slightly larger than
one), β:

x
′a
i = β(I − αKH)x

′b
i (8)

(XTD06).
In the EnSRF, the ensemble mean and the departures

are independently updated and the observations are un-
perturbed, which requires no additional computational
time than the traditional EnKF with perturbed observa-
tions (WH02).

2.5 Previous work using radar data and the
EnKF/EnSRF methods

With the growing success and popularity of the EnKF
and EnSRF and increasing computing capabilities, it
was only a brief time from their development before
radar data were assimilated into storm-scale models us-
ing these techniques. Snyder and Zhang (2003) were the
first to use the EnKF technique to assimilate simulated
single-Doppler radar observations into a numerical cloud
model, and obtained promising results. The authors sim-
ulated a supercell by introducing a warm bubble into
a homogeneous environment characterized by the 0000
UTC 25 May 1977 Del City composite sounding. Snyder
and Zhang (2003) assimilated simulated radial velocity
data into the model and successfully estimated the un-
measured quantities of vertical velocity and temperature
in the analyses. The authors also found that the analysis
quality is affected by covariances between Vr and T , q,
and condensate as well as the initialization chosen for the
ensemble members prior to assimilating the first obser-
vations.

Continuing this work, Zhang et al. (2004) again used
a five-minute radar observation assimilation period. The
authors used different depths of radial velocity data and
found that the lowest data aided the capture of the de-
tailed cold pool structure, but runs without these low-
level observations performed comparably to runs with
all levels of data when given a longer assimilation pe-
riod. The model also successfully captured the super-
cell structure when only the Vr data below four kilome-
ters were assimilated. However, using radar observations
only above four kilometers failed to properly assimilate



the storm unless surface temperature and wind observa-
tions from a hypothetical surface mesonet were included.
Zhang et al. (2004) also tested the effects of 2-minute as-
similation cycles, and found minimal effect after the first
few cycles.

Dowell et al. (2004) were the first to assimilate real
radar observations into a numerical storm-scale model
using EnKF. The authors assimilated both Vr and Z,
and the results from the EnKF analyses were compared
to observations from another radar, dual-Doppler wind
syntheses, and tower in situ measurements. Not surpris-
ingly, Dowell et al. (2004) found that the large observa-
tional errors present in real data make assessment more
difficult than for the relatively clean simulated radar data.
Overall, the results were successful, with a few draw-
backs. The scientists found that the magnitudes of the
vertical velocity and vertical vorticity were similar to the
dual-Doppler analyses, with the exception of a stronger
low-level updraft in the EnKF analyses. The low-level
temperature EnKF analyses performed poorly, partially
due to the warm-rain microphysical scheme used in the
model and partly due to the limitations of the observation
system. The Doppler data that was assimilated did little
to correct temperature errors in the low-level cold pool,
which was too strong in the EnKF analyses (Dowell et al
2004). The authors also tested a two kilometer radius of
influence of observations, which produced poor results.
Thus, a larger radius of influence and an ice microphys-
ical scheme may help solve some of the issues with the
cold pool. However, the authors noted that, “since the
evolution of convection over periods of tens of minutes
depends significantly on cold pools, the implications for
operational numerical forecasting of convection are dis-
couraging if cold pools cannot be predicted well by the
model, and assimilation of Doppler observations cannot
correct the model trajectory” (Dowell et al. 2004). Thus,
additional observations that can better capture this fea-
ture are needed.

More recently, Charron et al. (2006) assimilated ra-
dial velocity data from nine simulated radars using an
EnKF using a larger time and length scales than pre-
vious works. The simulated data were assimilated into
a nonhydrostatic Boussinesq model with horizontal di-
mensions of 1000× 1000 km every thirty minutes over a
four-day assimilation period. The model successfully an-
alyzed the horizontal winds and temperature over a four
day period, but did not successfully resolve the vertical
velocity, likely due to the type of data assimilated and
the localization radius. Their results indicated that the
EnKF technique with radar data could perform well in
the mesoscale range, and the authors suggested that re-
sults could be more accurate if a hydrostatic model were
used.

Previous studies at the University of Oklahoma have
successfully used the EnKF and EnSRF techniques
for the assimilation of simulated single- and multiple-
Doppler radar data of modeled convective storms into
the initial conditions of a numerical storm-scale model

(Tong and Xue 2005, hereafter TX05; XTD06). These
studies have demonstrated encouraging results in retriev-
ing the model state variables (i.e., u, v, w, p, θ, qv , etc.)
with the use of a multi-class ice microphysical scheme.
The model state variables were then successfully imple-
mented into simulated supercell storms using the EnKF
and EnSRF techniques (TX05, XTD06). TX05 found
that the best results are obtained when both radial ve-
locity and reflectivity data from the radar emulators are
assimilated into the model. The authors also showed
that the inclusion of simulated CASA and WSR-88D
radar data from an isolated supercell storm into ARPS
improved the forecast over that using WSR-88D radar
data alone. TX05 also showed that dynamically con-
sistent background error covariances develop in the sys-
tem, most notably in the later cycles, even when ve-
locity data and data outside of the precipitation regions
are not assimilated. Thus, the authors concluded that
such flow-dependent background error covariances play
a crucial role in successful data assimilation and retrieval
(XTD06).

Of the previous radar assimilation work using the
EnKF or EnSRF, no one has yet studied the impact of
assimilating data from a multi-cell storm system. Ad-
ditionally, the effects of assimilating adaptive radar data
into a model using the EnSRF technique have not yet
been evaluated. This ongoing project is a continuation of
the work begun by TX05 and XTD06, and extends their
model to develop a quasi-realistic multicell simulation
and supercell simulation that can be adaptively sampled
using an altered radar emulator and reproduced using the
EnSRF technique. The effects of short and long assimila-
tion time scales, an adaptive radar network, and different
adaptive scanning strategies will be evaluated in this en-
deavor.

3. NUMERICAL MODEL OSSE CONFIGURA-
TIONS

3.1 ARPS prediction model

The Center for Analysis and Prediction of Storms
(CAPS) at the University of Oklahoma developed the
ARPS, a fully compressible and nonhydrostatic atmo-
spheric prediction system that has been well documented
in previous literature (Xue et al. 2000, 2001, 2003), and
has a demonstrated ability to create multiple types of
convective storm systems (Nascimento and Droegemeier
2002; TX05; Richardson et al. 2006).

ARPS is used here as a three-dimensional cloud model
and contains twelve prognostic state variables, including
the three-dimensional wind components u, v, and w, po-
tential temperature θ, pressure p, the mixing ratios for
snow qs, hail qh, cloud water qc, rainwater qr, and cloud
ice qi, the water vapor specific humidity qv , plus the
turbulence kinetic energy used by the 1.5-order subgrid-
scale turbulence closure scheme (Stull 1988; XTD06).
The modified six-category water/ice scheme of Lin et
al. (1983) parameterizes the microphysical processes,



and the implementation of this scheme follows that of
Tao and Simpson (1993). This scheme assumes that all
ice particles are spherical and it assumes an exponen-
tial particle size distribution function for rain, snow, and
hail/graupel (Xue et al. 2000). Because the simulation
domain is relatively small, is over flat terrain, and is over
a brief time scale, the terrain and Coriolis options are
turned off.

3.2 Radar emulator

Although the CASA radar network is still undergo-
ing testing and data are not yet available in real time,
the potential effects of this radar network can still be
estimated using OSSEs. More importantly, conduct-
ing EnSRF experiments with simulated adaptive scan-
ning strategies will produce estimates of the effectiveness
of these strategies and will determine optimal scanning
strategies of different storm types for numerical weather
prediction purposes.

One existing WSR-88D radar in central Oklahoma,
Twin Lakes (KTLX), and up to four CASA test-bed
radars that were recently installed in central Oklahoma
are simulated in this study. The WSR-88D radar has a 10
cm wavelength, a 1° beam width, a total of 14 elevations
with the lowest elevation at 0.5° and highest at 19.5°,
and a radial resolution of 250 m for radial velocity and
1 km for reflectivity. The maximum range is set at 230
km, which is sufficient to cover the entire model domain
(i.e., Figure 3). The four radars in the IP1 CASA test-bed
have a three centimeter wavelength (X-band), a 2° beam
width, and an assumed maximum range of 30 km. The
CASA radars in the Oklahoma test-bed were installed in
the spring of 2006 near Chickasha, Rush Springs, Law-
ton, and Cyril in southwestern Oklahoma. These radars
will be about 90 km to the southwest of KTLX, and are
shown in Figure 1 with their expected 30 km range rings.

To generate the simulated radar data, a storm system
must first be created. This is called the truth or refer-
ence simulation. The truth simulation is established by
placing one or more warm thermal perturbations in a
horizontally homogenous background state that is typi-
cally characterized by an observed or idealized sound-
ing. This warm bubble will rise and initiate an up-
draft, which will evolve into one or more storms in the
three-dimensional model. Once the storm has devel-
oped far enough to generate precipitation, a radar em-
ulator ‘examines’ the model output from the truth sim-
ulation and assigns simulated reflectivity and radial ve-
locity values to different locations based on the amount
of reflective targets in the area and their respective mo-
tions. In the EnSRF technique, an ensemble of initial
model states is created by perturbing the background
state with Gaussian-distributed perturbations. The en-
semble of forecasts runs independently for a brief pe-
riod (generally five minutes), then the observations are
assimilated and the model states are corrected accord-
ingly. This forecast and assimilation cycle is repeated for

a moderate length of time, generally until the ensemble
mean error is reasonably low, and then a medium-term
forecast is usually run without observation corrections.

For these OSSEs, the prediction model (which pro-
duces the truth simulation) and the observation opera-
tors are assumed to be without error, which is a common
assumption in OSSE studies. This study uses the radar
emulator and EnSRF procedure developed by TX05,
XTD06, and Tong (2006). Following their work, stan-
dard precipitation-mode parameters for CASA radars are
assumed and a volume scan consists of ten elevation
scans 2° apart, beginning at 1° elevation. After XTD06,
the emulated radar data are assumed to be on the origi-
nal radar elevation angles and then interpolated from the
radar polar coordinate to the Cartesian coordinate sys-
tem. Since the emulated radar observations are not yet at
the model grid points, a forward observation operator is
used to adjust the data from the model’s vertical levels to
the elevation levels that would be seen by a radar on the
surface. The radar emulator performs power-gain-based
sampling in the vertical direction using

ϕe =

∑
Gϕg∆z∑
G∆z

, (9)

where ϕe and ϕg are the elevation level, e, and grid point
values, g, of either radial velocity (Vr) or reflectivity (Z),
and ∆z is the depth of the layer in which ϕg resides. The
power gain function, G, is assumed to be Gaussian and
has the form

G = exp

[
−4 ln 4(

φg − φ0

φw

)2
]

, (10)

following Wood and Brown (1997), where φw is the
beam width, φg is the elevation angle for the grid point
value, and φ0 is the elevation angle at the beam center.

To calculate radial velocity, the grid point values in-
volved in the numerator of Equation 9 are first calculated
from

Vrg = u cos φg sin γg+ν cos φg cos γg+w sinφg, (11)

where subscript g denotes the grid point value, φg is the
local elevation angle defined earlier, γg is the azimuth
angle of the radar beam that goes through the given grid
point, and u, v, and w are the velocities of the model
which are interpolated to the scalar point of a staggered
Arakawa C-grid (Arakawa and Lamb 1977; XTD06).
Hydrometeor sedimentation effects are not involved in
the data or assimilation because the radial velocity is
sampled directly from the velocity fields.

Simulated reflectivity, Z (dBZ), is calculated from
rainwater, snow and hail hydrometeor mixing ratios with
the same formulations as in TX05 and XTD06, and is
formally given by

Z = Z(qr, qs, qh), (12)



where qr, qs, and qh are rain, snow, and hail mixing
ratios, respectively (Smith et al. 1975). These formu-
lations are consistent with the Lin et al. (1983) ice mi-
crophysics scheme used in ARPS. Future work may in-
clude studying the effects of attenuation, which may have
a significant effect on the CASA radar data.

After the radial velocity and reflectivity are sampled
from the grid pointed data, observation errors are simu-
lated by adding Gaussian random errors with zero mean
and a standard deviation of 1 m s−1 and 5 dBZ for ve-
locity and reflectivity, respectively. These simulated data
are then interpolated from the radar polar coordinate to
the Cartesian coordinate system and incorporated into
ARPS using the EnSRF technique described above. It
should be noted that no data are collected or assimilated
where no grid level lies within the beam width, which
serves to naturally thin the data at well-sampled low lev-
els.

4. MULTICELL MODEL SIMULATIONS

4.1 Environment

The EnSRF code system developed by Mingjing Tong
in conjunction with CAPS and the University of Okla-
homa School of Meteorology for use with ARPS was
used (TX05; XTD06; Tong 2006) in this study. In order
to develop adaptive scanning strategies that may eventu-
ally be implemented when the CASA testbed is fully op-
erational, it is important to have storm simulations that
are realistic in their size, intensity and behavior. Droege-
meier and Levit (1993) used ARPS to simulate supercells
and multi-cell storm systems and found that the modeled
multi-cell systems, which formed in weak-shear environ-
ments, were much more sensitive to the initial conditions
than the supercell storms. Because of this sensitivity, it
has taken many trials to develop a reasonably realistic
and strong multi-cell simulation that lasts for four hours
and can be successfully used with the EnSRF technique.

To establish a suitably unstable initial environment
that was capable of generating a multi-cellular con-
vective system, the vertical temperature, moisture, and
wind-speed profile developed by Weisman and Klemp
(1982, hereafter WK82) was added to ARPS (Richard-
son 1999). The environmental potential temperature θ
and relative humidity H are given by

θ =





θ0 + (θtr − θ0)
(

z
ztr

) 5

4

, z ≤ ztr

θtr exp
[

g
cpTtr

(z − ztr)
]
, z > ztr

and

H(z) =

{
1 −

3

4

(
z

ztr

) 5

4

, z ≤ ztr

0.25, z > ztr

, (13)

where ztr = 12 km, θtr = 343 K, and Ttr = 213 K rep-
resent the height, potential temperature and actual tem-

perature, respectively, at the tropopause, and θ0 = 300 K
is the surface potential temperature (WK82). WK82 also
developed the wind profile used here, which is given by

U = Us tanh

(
z

zs

)
, (14)

where zs = 3 km and Us = 12 m s−1 (after Richardson
1999).

To assess the effects of altering the vertical wind
profile in both horizontal dimensions, a similar equation
for the meridional wind profile in the vertical direction is
included and is given by,

V = Vs tanh

(
z

zs

)
, (15)

where zs = 3 km and Vs is a constant set in the model. In
order to approximate a well-mixed moist boundary layer
that would be conducive to multi-cellular storm develop-
ment, the mixing ratio near the surface is kept constant
(Figure 2) at 16 g kg−1. Several trials were conducted
with Us = 12 m s−1 and Vs set to either 2.5 m s−1 or 5.0
m s−1.

4.2 Truth simulation

Multiple runs were necessary to establish a sufficiently
realistic multicell system simulation, and the domain was
set up such that the CASA radars had thorough cov-
erage of the storms throughout the entire assimilation
period. Several runs were executed before the proper
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FIG. 2. Skew T-Log P diagram from the thermodynamic profile given
by Weisman and Klemp (1982), using an surface mixing ratio value of
16 g kg−1.



domain size and initial bubble location could be deter-
mined. ARPS has a provision for domain motion in
which certain wind speeds in the x and y directions are
subtracted from the environmental sounding, which al-
lows manipulation of the domain such that storms remain
away from the lateral boundaries. The addition of do-
main motion allowed a reduction of the necessarily large
domain and reduced the computing time for each EnSRF
run by several days. A constant wind of u = 7 m s−1

was subtracted from the observed sounding to maintain
the storm within the domain.

This relatively steady multi-cell simulation was used
as the truth simulation, and the radar emulator described
above sampled the storms with full-volume snapshots
along the radar elevation angles every 2.5 minutes. Ob-
servation errors were simulated by adding Gaussian ran-
dom errors with zero mean and a standard deviation of
1 m s−1 and 5 dBZ for velocity and reflectivity, respec-
tively. These data are then interpolated from the radar
polar coordinate to the Cartesian coordinate system and
imported back into ARPS using the EnKF technique de-
scribed in Section 3.2.

The storm simulations were initiated in a horizontally
homogeneous atmosphere following the WK82 equa-
tions and parameters described in Section 4.1, and con-
tained two axially symmetric thermal perturbations, de-
scribed below. The WK82 wind parameters for the zonal
and meridional winds were set to U s = 12 m s−1, and
V s = 2.5 m s−1, respectively. A two-second time step
was used, and model conditions are output every five
minutes to allow for five-minute volume scan simula-
tions by the radar emulators. More details on the truth
simulation initialization parameters are shown in Table 1.

The physical domain had dimensions of 96 × 80 × 20
km in the x, y, and z directions, respectively, and a hori-
zontal grid spacing of 1.0 km. Due to the relatively small
domain size, the effects of the Coriolis force and Earth’s
curvature were neglected. To better resolve the lower at-
mosphere, the 40-layer vertical grid was stretched using
a hyperbolic tangent function and had a minimum verti-
cal resolution of 200 m at the surface. The domain is cen-
tered on the latitude and longitude coordinates (34.7767,
-98.0331), shown in Figure 3, and covers much of the
CASA radar domain.

The first bubble had a horizontal radius of 10 km and
a vertical radius of 1500 m, and was initially centered
on the point x = 16 km, y = 64 km, with the origin
of the coordinate system in the southwest corner of the
grid. In order to more quickly develop a multicell sim-
ulation, a second and slightly smaller warm and axially
symmetric thermal perturbation was added to the initial
time in the truth simulation. The temperature is increased
4°C at the center (located 1500m AGL) of each bubble
and decreases gradually to the edges. The first bubble
has a horizontal radius of 10 km and a vertical radius of
1500 m, and is initially centered on the point x = 20 km,
y = 30 km, with the origin of the coordinate system in
the southwest corner of the grid. The second bubble has

a horizontal radius of 7 km, a vertical radius of 1050 m,
and is initially centered on x = 23 km, y = 50 km, with
the origin of the coordinate system in the southwest cor-
ner of the grid. The initial locations of the bubbles are
chosen so that over most of the assimilation period, most
of the multicell storm system remains within the domain.

The addition of a second bubble proved to be effec-
tive at generating multiple updrafts by the initiation of
the first forecast cycle at 55 minutes, and these cells
continued to evolve into a large multi-cellular thunder-
storm complex with several strong vertical updrafts by
two hours (Figure 4) and by three hours and forty min-
utes (Figure 5). The first forecast was initiated at 55 min-
utes, the first simulated radar data were assimilated at
one hour, and the assimilation cycle continued ingesting
data every five minutes for one hour. As before, both
radial velocity and reflectivity were assimilated. To bet-

FIG. 3. The four-radar network for the initial CASA deployment and
the location of KTLX in central Oklahoma. Circles denote the antici-
pated 30-km radar range, and the red box indicates the model domain.
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TABLE 1. List of parameter settings for dual-bubble ARPS model simulations.
Parameters Value

Horizontal grid spacing (array size) 1 km (96 × 80 points)
Vertical grid stretching function Hyperbolic tangent
Vertical grid spacing (number of levels) 200 m – 800 m (40 levels)
Time step 2 sec
Coriolis and earth curvature effects Not used
Fourth-order mixing coefficient 1×10−3 s−1 horizontal, 5×10−4 s−1 vertical
Pressure field de-trending On
Nondimensional divergence damping coefficient 0.05
Rayleigh damping coefficient (applied above 12 km only) 0.05 s−1

Lateral boundary conditions Radiation (open)
Top & bottom boundary conditions Rigid wall with upper sponge (wave absorbing layer)
Horizontal & vertical advection scheme 4th-order horizontal, 2d-order vertical with leapfrog time step
Cumulus parameterization Not used
Grid-scale microphysics 6-category water/ice microphysics of Lin et al. (1983)
Turbulence parameterization 1.5-order TKE closure
Sub-grid scale turbulence Isotropic
Radiation parameterization Not used
Land surface and vegetation scheme Not used
Computational mixing 4th-order in horizontal, 4th-order in vertical
Horizontal and vertical wind perturbations, standard deviations 1.0 – 1.5 m s−1

Potential temperature perturbation, standard deviations 1.5 K
Water vapor mixing ratio perturbation, standard deviations 0.0002 – 0.0005 g kg−1

Other mixing ratio perturbations, standard deviations 0.0002 – 0.0005 g kg−1

Horizontal radius of influence 4 – 6 km
Zonal grid translation 6 m s−1

Surface mixing ratio for WK82 profile 16 g kg−1

WK82 wind parameters for the zonal and meridional winds Us = 12 m s−1, and V s = 2.5 m s−1

Covariance inflation 10-25% when Z > 10 dBZ
CASA radar cutoff elevation 3 km

ter represent the actual CASA data that will be assim-
ilated in future projects, the emulated radar data were
cut off at 3 km above ground level. The removal of
data above this height had little/no negative effect on
the three-dimensional RMS error, and very slightly in-
creased the ensemble spread. Attenuation, which can
play a significant role in data from X-band radars, was
not accounted for in these trials but will be included in
future simulations.
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FIG. 5. Horizontal cross section of vertical velocity (m s−1) at 3 hours
40 minutes at z = 4.6 km AGL.

4.3 EnSRF results with 5-minute assimilation cycles

A covariance inflation procedure is necessary due to
the frequent underestimation of the background error co-
variance that is a result of the limited size of the ensem-
ble. Although based on the work of Anderson (2001),
this inflation will only be applied at the grid points
where the observations with Z > 10 dBZ are of direct
influence, instead of being applied to the entire domain.
Otherwise, spurious convection would be a significant
problem outside regions of observed precipitation. Due
to the large amount of data ingested into the model,
the ensemble spread was relatively low, so a covariance
inflation of 10-25% was added to different ensemble
runs. This boosted the ensemble spread, but increasing
the covariance inflation too much (i.e., 25%) can lead
to runs where the spread actually increases with time
during the assimilation period. This effect is amplified
in cases where less data are ingested, such as when a
smaller radius of influence is used (Figure 6). Addition-
ally, the horizontal and vertical localization radii were
tuned to find the optimal combination of increasing the
spread and decreasing the RMS error. A small radius of
influence will increase the spread to more optimal lev-
els, but it will also increase the three-dimensional RMS
error. Thus, an appropriate balance must be found. The
radii coincident with the lowest RMS errors with 25%
covariance inflation and low initial perturbations are the
relatively large values of 6 km in both the horizontal and
vertical directions. The lowest 3-D RMS error for u at
the end of the one-hour assimilation cycle is 1.5 m s−1,
and the lowest for v was 1.9 m s−1 (Figure 7).
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FIG. 6. The three-dimensional root mean square (RMS) error plots for the EnSRF multicell simulations that assimilated in radar data from both
KTLX and all four CASA radars. The black lines denote the RMS error from the run, and the red lines indicate the spread across the forty-member
ensemble. This particular run used 25% covariance inflation and had a four kilometer horizontal and vertical radius of influence.
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FIG. 7. As in Figure 6, but for a multicell simulation that used 25% covariance inflation and a six kilometer horizontal and vertical radius of
influence.

The background state variables were randomly per-
turbed such that the standard deviations of the winds
were 1.0 m s−1 for each direction and those of the mi-
crophysical variables were 0.0002 g kg−1 for each vari-
able. In most of the trial runs, a smoothing filter was
applied to the perturbed background state, which helped
decrease the RMS error considerably. To compare the
effects of larger initial perturbations, a simulation with
the standard deviation of the initial wind perturbations of

1.5 m s−1 and microphysical variable perturbations with
a standard deviation of 0.0005 g kg−1 had significantly
higher RMS error values–about twice that of compara-
ble runs (Figure 8). The initially perturbed background
state negatively impacts the various small storms in the
unstable multi-cell environment more than the supercell
simulations. This is likely due to the weak and transient
nature of the individual members of the multicell system,
which are not as robust as the isolated supercell. More-



0

2

4

6

8

55 75 95 115

time (min)

u (m/s)

0

1

2

3

4

5

6

55 75 95 115

time (min)

v (m/s)

0

1

2

3

4

5

6

55 75 95 115

time (min)

w (m/s)

0

1

2

3

4

55 75 95 115

time (min)

pt (K)

0

40

80

120

160

200

55 75 95 115

time (min)

p (Pa)

0.0

0.5

1.0

55 75 95 115

time (min)

qc (g/kg)

0.0

0.5

1.0

55 75 95 115

time (min)

qr (g/kg)

0.0

0.2

0.4

0.6

0.8

1.0

55 75 95 115

time (min)

qv (g/kg)

0.0

0.2

0.4

0.6

0.8

1.0

55 75 95 115

time (min)

qs (g/kg)

0.0

1.0

55 75 95 115

time (min)

qh (g/kg)

FIG. 8. As in Figure 6, except with higher initial background perturbations, 10% covariance inflation, and a 5 km radius of influence.
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FIG. 9. As in Figure 6, except with 2.5 minute assimilation cycles, higher initial background perturbations, 15% covariance inflation, and a 5 km
radius of influence.

over, the radar data are not ingested frequently enough
to help the forecast model overcome this problem. The
effects of ingesting radar data at smaller time intervals
are investigated in Section 4.4. The increase in RMS er-
ror in v, w, qr and qh at around 85 minutes is likely due
to the interaction of several cells in the truth simulation
with the lateral boundaries.

4.4 EnSRF results with 2.5-minute assimilation cycles

Certain Distributed Collaborative Adaptive Sensing
(DCAS) strategies that will eventually be adopted by the
CASA radar network may include full volume scans that
will be available every two and a half minutes. The previ-
ously described dual-bubble multi-cell case was adapted
and re-run, this time outputting data every two and a
half minutes; this will examine the effects of assimi-



lating both the CASA and KTLX radar data more fre-
quently and serves as a predecessor to future adaptive
DCAS work. The sampled velocity and reflectivity out-
put from the emulators was assimilated into the EnSRF
model every two and a half minutes, beginning at one
hour (3600 s). As before, only data below three kilome-
ters were used.

Due to the large amount of data that will be in-
gested into the model every two and a half minutes, co-
variance inflations of only 10–15% were added to sev-
eral different model runs. Despite the lower covariance
inflation amounts than the five minute assimilation runs,
the spread is moderately large enough and the RMS er-
ror is comparable (i.e., Figure 9). As before, the hori-
zontal and vertical localization radii were tuned through
several trial runs to find the optimal combination of in-
creasing the spread and decreasing the RMS error. The
ensemble run with the lowest RMS error had a horizon-
tal and vertical radius of influence of 5 km, smoothed
initial perturbations, 15% covariance inflation, and rela-
tively large initial perturbations. The standard deviations
of the initial wind field perturbations were 1.5 m s−1 for
each direction and those of the microphysical variables
were 0.0005 g kg−1 for each variable. Unlike the pre-
viously described five-minute assimilation run that used
the same values, the RMS errors were lower than in all
previous runs (Figure 9). These reduced errors are likely
due to the rapid updates of the model fields by the more
frequent radar data ingestion. The slight increase in some
of the RMS error plots shown in Figure 9 around 85 min-
utes is likely due to the interaction of some of the mul-
ticell storms with the lateral boundaries. The results of
the rapid data assimilation study are very encouraging
overall and show great promise for the future inclusion
of data from DCAS techniques.

5. SUPERCELL MODEL SIMULATIONS

To compare these multicell system results with a sim-
ulated supercell example, a single-bubble supercell sim-
ulation based on the 20 May 1977 Del City, Oklahoma
event (Ray et al. 1981) is run in the same domain as the
multicell simulation. The homogeneous environment is
based on the 1500 UTC 20 May 1977 sounding (Fig-
ure 10). As before, the physical domain is 96 × 80 × 20
km in the x, y, and z directions, respectively, is cen-
tered on the latitude and longitude coordinates (34.7767,
-98.0331), and has a horizontal grid spacing of 1.0 km.
The 40-layer vertical grid is stretched with a minimum
vertical resolution of 200 m at the surface. The numerical
truth simulation was initiated in a horizontally homoge-
neous atmosphere containing an axially symmetric ther-
mal perturbation with a horizontal radius of 10 km and a
vertical radius of 1500 m. The temperature is perturbed
4°C at the center (located 1500 m AGL) and decreases
gradually to its edge. The warm bubble is initially cen-
tered on the point x = 34 km, y = 20 km. The initial
location of the bubble is chosen so that over most of the
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FIG. 10. Skew T-Log P diagram from the 1500 UTC 20 May 1977
KOUN sounding.

assimilation period, the supercell remains within the do-
main.

Simulated radar data from KTLX and all four CASA
radars (under three kilometers) were assimilated into
ARPS using the EnSRF technique. Similar to the multi-
cell run described in Section 4.2, data were first ingested
at one hour into the simulation and continued every five
minutes for one hour. The horizontal and vertical lo-
calization radii were tuned to find the optimal combina-
tion that increases the ensemble spread and decreases the
RMS error. A covariance inflation of 15% was added to
compensate for the small variance that results from the
large amount of data ingested. The standard deviations
of the initial wind field perturbations were 1.0 m s−1 for
each direction and those of the microphysical variables
were 0.0002 g kg−1 for each variable. A smoothing
filter was applied to the initially perturbed background
state fields. Utilizing a horizontal and vertical radius of
influence of six kilometers produced the best RMS error
and ensemble spread.

Interestingly, the three-dimensional RMS error values
(Figure 11) are higher than the error for the multi-cell
simulation (Figure 8), and are much higher than the re-
sults of the first test supercell simulations (not shown
here) that replicated the work of TX05. These test stud-
ies were conducted on a 64 × 64 × 16 km domain with
2 km horizontal and 0.5 km vertical grid spacing (after
TX05). These early runs compared the effects of start-
ing the assimilation period at 20 minutes vs. 40 minutes
into the truth simulation, which is before the supercell
split into two storms and the cold pool had fully devel-
oped. The 20-minute ‘early start’ and 40-minute ‘late
start’ runs had results comparable to those of TX05. The



0

2

4

6

8

55 75 95 115

time (min)

u (m/s)

0

1

2

3

4

5

6

55 75 95 115

time (min)

v (m/s)

0

1

2

3

4

5

6

55 75 95 115

time (min)

w (m/s)

0

1

2

3

4

55 75 95 115

time (min)

pt (K)

0

40

80

120

160

200

55 75 95 115

time (min)

p (Pa)

0.0

0.2

0.4

0.6

0.8

1.0

55 75 95 115

time (min)

qc (g/kg)

0.0

0.2

0.4

0.6

0.8

1.0

55 75 95 115

time (min)

qr (g/kg)

0.0

0.2

0.4

0.6

0.8

1.0

55 75 95 115

time (min)

qv (g/kg)

0.0

0.2

0.4

0.6

0.8

1.0

55 75 95 115

time (min)

qs (g/kg)

0.0

0.4

0.8

1.2

55 75 95 115

time (min)

qh (g/kg)

FIG. 11. As in Figure 6, except for the EnSRF supercell simulations and with 15% covariance inflation.

combination of the storm’s maturity and complexity at
one hour and the fourfold increase in domain resolution
most likely account for the higher error in the recent su-
percell simulation.

To see how much of an effect the later start time has on
the model, a sample test run similar to the latest super-
cell run began assimilating data at 25 minutes and con-
tinued for one hour. This test run was similar to the latest
supercell run, but used a horizontal radius of influence
of 4 km and a vertical influence of 2 km. The three-
dimensional RMS error from this simulation is lower
(Figure 12), although not as low as the results shown in
TX05. Thus, assimilating data at a later time and using
a higher-resolution model appears to decrease the ability
of ARPS to recreate the simulation.

6. SUMMARY AND DISCUSSION

Significant progress has been made in the last decade
in the development of advanced data assimilation meth-
ods that are capable of ingesting Doppler radar data in an
effort to fully determine the state of the atmosphere. One
of these techniques is the ensemble square root Kalman
filter (EnSRF), which has shown some success with as-
similating real and simulated data from isolated super-
cell thunderstorms. The effectiveness of the EnSRF tech-
nique is not yet understood for other modes of convection
such as multicell systems or linear convective systems.
More importantly, the effect of adaptive radar data as-
similation on numerical weather prediction (NWP) has
never been tested.

This project explores the usefulness of adaptive sens-
ing techniques on NWP using a new radar network re-
cently installed in central Oklahoma. The Collabora-

tive Adaptive Sensing of the Atmosphere (CASA) radars
can be programmed to scan different portions of the at-
mosphere adaptively, according to the development of
weather systems. Since the radars are not yet opera-
tional, the radar data are simulated using observation
system simulation experiments (OSSEs). Assimilations
and forecasts are performed by incorporating the simu-
lated CASA and WSR-88D radar data into the Advanced
Regional Prediction System (ARPS) using the EnSRF
method. In this identical-twin experiment, the results of
the ensemble mean forecasts are compared with the re-
sults of the control simulation. Error is computed for
individual state variables, such as wind, potential tem-
perature, pressure, and moisture content.

Preliminary results of EnSRF experiments using sim-
ulated data from both KTLX and the four-node CASA
network for simulated multicell simulations are promis-
ing. Previous work (TX05) has shown that the addition
of CASA radar data to that of KTLX improves the over-
all model performance, and initial results of increased
temporal sampling of the multicell simulation also show
a decrease in error for most model state variables.

Overall, the supercell simulations are more easily
replicated using the EnSRF technique than are the multi-
cell simulations. This is most likely due to the complex
and disorganized nature of the multicell system. The ini-
tially perturbed background state negatively impacts the
various small storms in the unstable multi-cell environ-
ment more than the supercell simulations. This is likely
due to the weak and transient nature of the individual
members of the multicell system, which are not as ro-
bust as the isolated supercell. The multicell system also
appears to be more sensitive to the adequate capturing
of the low-level cold pool because it is more quickly cut
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FIG. 12. As in Figure 11, but the assimilation period began at 25 minutes and utilized a smaller radius of influence.

off by a strong cold pool. Additionally, new cells in the
multicell system tend to develop on the boundaries of the
cold pool and where multiple boundaries intersect, so it
is very important for the cold pool of a multicell system
to be analyzed correctly.

Multicell systems are complex and difficult to model
due to their sensitivity to the initial conditions and model
settings. Determining a suitable truth simulation re-
quired numerous attempts using different observed and
idealized soundings as the background state. Although it
took some time to develop this multicell simulation and
satisfactory results of the EnSRF simulations, the end re-
sult is a multicell example that performs well with the
EnSRF technique and will soon be tested using multiple
new DCAS strategies. The multicell and supercell trials
discussed here can serve as a reference to which the new
studies can be compared.

6.1 Future Work

The current radar emulator used in this study takes
a ‘snapshot’ of the storm system at one point in time,
and it is these data which are assimilated into ARPS. Al-
though convenient, this radar model is not very realistic,
and will not be particularly useful for future real-data as-
similation cases. One of the unique characteristics and
advantages of the CASA system is the ability to scan, on
command, different portions of a storm at different lev-
els instead of simply completing full-volume scans. The
DCAS abilities were designed into the CASA pedestal,
and are meant to eliminate scanning of areas that are
unimportant to end users.

Morss et al. (2001) studied adaptive observation sam-
pling strategies with simulated rawinsondes using the

3D-Var technique, and found that these strategies were
beneficial for sparse observation networks. The authors
also found that the adaptive observations perform best
when observations are taken more frequently at fewer lo-
cations, and that the adaptive strategy is less effective
when observations are taken less frequently. Interest-
ingly, the converse occurred for fixed observation loca-
tions (Morss et al. 2001). Although much work has been
done on adaptive observation studies (e.g., Lorenz and
Emanuel 1998; Hansen and Smith 2000; Emanuel and
Langland 1998; Langland et al. 1999b; Szunyogh et al.
2000; Toth et al. 2000; etc...), no work has yet been done
on assimilating adaptive radar observations. This is a
new area of research that I intend to pursue in the coming
year.

Future work will focus on determining the most
efficient and cost-effective adaptive scanning strategy for
each storm type, along with the necessary sensitivity
(i.e., rotation rate) and data ingest rates that are needed
for optimal modeling. These idealized numerical simu-
lations will help determine the best model initialization,
setup, and scanning strategy for each type of storm sys-
tem, which will be useful for future real-data assimila-
tion work. If plausible, successful DCAS strategies will
be recommended to CASA for future DCAS policy im-
plementation.

Potential work may also include an simulating the ef-
fects of assimilating KTLX and CASA radar data of
a quasi-linear convective system into ARPS. Studies
of different scanning strategies should determine which
area of these systems is more important to scan for nu-
merical weather prediction purposes (e.g., the stratiform
or convective region or the overall rear-to-front flow
structure). Other future work may include an examina-



tion of the importance and effectiveness of an expanded
CASA network for forecasting multiple modes of con-
vection will be evaluated.
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