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ABSTRACT

The radar ray path equations are used to determine the physical location of each radar measurement.
These equations are necessary for mapping radar data to computational grids for diagnosis, display and
numerical weather prediction (NWP). They are also used to determine the forward operators for assimi-
lation of radar data into forecast models. In this paper, a stepwise ray tracing method is developed. The
influence of the atmospheric refractive index on the ray path equations at different locations related to an
intense cold front is examined against the ray path derived from the new tracing method. It is shown that
the radar ray path is not very sensitive to sharp vertical gradients of refractive index caused by the strong
temperature inversion and large moisture gradient in this case. In the paper, the errors caused by using the
simplified straight ray path equations are also examined. It is found that there will be significant errors in
the physical location of radar measurements if the earth’s curvature is not considered, especially at lower
elevation angles. A reduced form of the equation for beam height calculation is derived using Taylor series
expansion. It is computationally more efficient and also avoids the need to use double precision variables
to mitigate the small difference between two large terms in the original form. The accuracy of this reduced
form is found to be sufficient for modeling use.
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1. Introduction

The operational Doppler NEXRAD (WSR-88D)
radar network is becoming more and more impor-
tant in improving the real time detection and warn-
ing of hazardous weather (Alberty et al., 1991; Crum
et al., 1998; Serafin and Wilson, 2000). It is viewed
as an essential observing system for initializing non-
hydrostatic, storm-resolving (i.e., horizontal grid spac-
ing of order 1 km) numerical weather prediction
(NWP) models (e.g., Lilly, 1990; Droegemeier, 1990,
1997). Attempts to demonstrate such capability began
early in the past decade (e.g., Sun et al., 1991), and
subsequent efforts have been notably successful (e.g.,
Gao et al., 1998; Weygandt et al., 2002a, b; Crook and
Sun, 2002; Xue et al., 2003; Brewster, 2003; Gao et al.,
2004).

To assimilate the radar reflectivity and radial ve-
locity data from weather radar into an NWP model,

it is necessary to use suitable ray path equations to
obtain the physical location of each radar measure-
ment and to have accurate forward operators to con-
vert model winds to radial velocity in the data assim-
ilation schemes. Currently, there are several versions
of ray path equations in the textbooks (e.g., Doviak
and Zrnic, 1993). Most studies in radar data assimila-
tion use very simple straight line ray path equations to
model the forward operator that projects the 3D wind
fields from the NWP model onto the radial direction
(e.g., Gao et al., 1998; Shapiro et al., 2003; Weygandt
et al., 2002a, b). This paper aims at estimating errors
caused by using simplified ray path equations. In the
next section, we will review the radar ray path equa-
tions in different forms with and without considering
earth curvature under the assumption that the stan-
dard atmosphere is considered. In section 3, we first
derive a new stepwise ray tracing method, and then we
examine the validity of the ray path equations when
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the vertical gradients of the refractive index of air are
significantly different from those of the standard atmo-
sphere during a strong cold front outbreak. In sections
4 and 5, we analyze the error of the beam height and
horizontal distance calculation when earth curvature
is not considered. The error for local slope angle θ′e
of the ray path, which is important when projecting
the three-dimensional wind field onto the radial direc-
tion, is analyzed in section 6. Finally, a summary and
further discussion are given in section 7.

2. The ray path equations and some other op-
erators

Under the assumption that temperature and hu-
midity are horizontally homogeneous so that the re-
fractivity is a function only of the height above ground,
Doviak and Zrnić (1993) derived a formulation that
expresses the ray path in terms of a path following a
curve of a sphere of radius ae:

ae =
a

1 + a

(
dn

dh

) = kea , (1)

where a is the earth’s radius and ke is a multiplier
which is dependent on the vertical gradient of the re-
fractive index of air, dn/dh. The refractive index of
air, n, is a function of temperature, pressure and hu-
midity and is usually taken, subject to certain assump-
tions, as (Beam and Dutton, 1968),

N = (n− 1)× 10−6 = 77.6P/T + 3.73× 10−5eT−2 ,

(2)

where P is air pressure in hPa (including water vapor
pressure), e is water vapor pressure in hPa, and T is
air temperature in K. It is convenient to use the quan-
tity N , called the radio refractivity, instead of n. N
represents the departure of n from unity in parts per
million. N has a value of about 300 (at the surface)
and its variations can be considered more conveniently.

In the above equation, the first term on the right hand
side is known as the dry term, and the second term is
the moist term. The value of N can be computed from
measurements of P, T , and e. When the Standard At-
mosphere is considered, it is found that ke is equal to
4/3 (Doviak and Zrnić, 1993). This is often referred
to as the “four-thirds earth radius model”. If N de-
creases more (less) rapidly with height than the Stan-
dard Atmosphere, the beam may be refracted more
(less), and in such cases, the height of a target may
be overestimated (underrestimated) by the four-thirds
earth radius model. In an extreme condition (a sharp
refractivity gradient of −300 N km−1 below 100 m in
height), a ray sent at a positive elevation angle may
actually decrease in height with range and eventually
strike the earth (Doviak and Zrnić, 1993).

The following two equations relate h and the sur-
face range (distance along the earth’s surface), s, to
radar-measurable parameters, the slant path, r, and
radar elevation angle, θe (Doviak and Zrnić, 1993),

s = kea sin−1

(
r cos θe

kea + h

)
, (3)

h = [r2 + (kea)2 + 2rke sin θe]1/2 − kea . (4)

To derive an expression relating the radial velocity,
which is measured by the radar, to the wind at the
measurement point (r, θe, φ), where φ is the azimuth
angle, a combined spherical and Cartesian coordinate
system is used with x and y as the arc distances from
the radar along two orthogonal great circle paths. We
choose y to be along a longitude, with north as the
positive direction. z measures the height above the
antenna height of the beam. The horizontal compo-
nents u and v of the vector wind v are tangent to the
great circle arcs at x and y, respectively, and are di-
rected eastward. The vertical component w of v is
along z, with z = 0 at the height of the radar feed-
horn. Some of the symbols used in Eqs. (3)–(11) are
listed in Table 1.

Table 1. List of symbols for Eqs.(3)–(11)

Symbol Description

s Surface range of ray path using standard ray path Eq. (3)

h Beam height

x, y, z Cartesian coordinates for curved ray path when the earth curvature is considered

θ Radar elevation angle

θ′e Angle between the radar beam and the tangent plane below the data point

s′ Surface range of ray path using approximation (7)

vr Radial velocity for the curved ray path

x∗, y∗, z∗ Cartesian coordinates for straight line ray path when the earth curvature is not considered

v∗r Radial velocity for the straight line ray path

s∗ Surface range for the straight line ray path
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In their textbook, Doviak and Zrnić (1993) also
show that if r � kea, the coordinates x, y and z are
related to the radar coordinates (r, θe, φ) by,

x ≈ r cos θ′e sinφ , (5a)

y ≈ r cos θ′e cos φ , (5b)

z = h = (kea + r2 + 2rkea sin θ′e)
1/2 − kea , (5c)

where θ′e, the angle between the radar beam and the
tangent plane below the data point, is the sum of two
terms expressed as the following (Brewster, 2003),

θ′e = θe + tan−1[r cos θe/(kea + r sin θe)] . (6)

From Eqs. (5a) and (5b), one can easily derive the dis-
tance along the earth’s surface as,

s′ ≈ r cos θ′e . (7)

The radial velocity vr is the projection of v onto r,
the vector from the radar to the point (r, θe, φ). Again,
if r � kea,

vr = u cos θ′e sinφ + v cos θ′e cos φ + (w − wt) sin θ′e .

(8)

For some applications, where r � kea, previously
published NWP research has typically ignored the in-
fluence of earth curvature and further reduced the
above equations, treating the radar ray path as a
straight line over a flat earth. In such a case, Eqs.
(5), (7), and (8) are simplified as,

x∗ ≈ r cos θe sinφ , (9a)

y∗ ≈ r cos θe cos φ , (9b)

z∗ ≈ r sin θe , (9c)

v∗r = u cos θe sinφ + v cos θe cos φ + (w − wt) sin θe ,

(10)

s∗ ≈ r cos θe (11)

Equations (7) and (11) are two different forms of
approximation of ray path equation (3). Equation (5c)
uses exactly the four-thirds earth beam height equa-
tion (4), and (9c) is an approximation of (4). In the
following sections, we will first examine the influence
of refractive index on the ray path equations based on
a stepwise ray trace method, then we will investigate
whether the simplified ray path equations are appro-
priate.

3. Influence of refractive index

Typically, the four-thirds earth radius model has
been used for radar ray paths, assuming the refractiv-
ity index is linearly dependent on height in the first
kilometer of the atmosphere. However, the gradient
of the refractive index is not always a constant, and
departures from linearity may exist when there are

strong temperature inversions or large moisture gra-
dients with height. In the following study, we will
examine the influence of several different environmen-
tal thermodynamic profiles on the radar ray path. To
accurately estimate the radar ray path, we develop a
stepwise ray tracing method as follows:

(1) Starting from the first gate near the radar loca-
tion, for each radar measurement, calculate the refrac-
tivity Ni−1 for the previous gate according to Eq. (2)
using different thermodynamic profiles and gradients
of refractive index according to the differential of Eq.
(2) with respect to beam height,

dn

dh

∣∣∣∣
i−1

= 106 dN

dh

∣∣∣∣
i−1

(12)

Here i is the index of the gate.
(2) Calculate ae,i−1 = ke,i−1a according to Eq. (1)

using the gradient of refractive index from step (a) at
each gate.

(3) Calculate the angle between the radar beam
and the tangent plane below the data point, θ′e,i−1 us-
ing Eq. (6) for each radar beam gate.

(4) Finally, the radar beam height h and the surface
range s can be calculated using the following formula-
tion, {

hi = hi−1 + ∆r × sin θ′e,i−1 ,

si = si−1 + ∆r × cos θ′e,i−1 ,
(13)

where ∆r is gate spacing, with 250 m for NEXRAD
radial winds. Variables hi and si are the beam height
and surface distance for each gate, respectively. Steps
(1) through (4) are repeated from the first (i=1) until
the last gate of the radar measurement.

As an example, we apply the above procedure to an
intense cold front outbreak in the Southern Plains of
the United States in the winter of 1990 documented in
the textbook of Bluestein (1993). Figure 1 shows four
different temperature and dew point profiles within the
Southern Plains at 1200 UTC 21 December 1990. At
this time, a surface analysis indicates an intense cold
front along the boundary of Oklahoma and Arkansas,
and the eastern part of Texas. Two of the profiles
(Figs. 1a, 1b), Lake Charles, Louisiana (LCH) and
Longview, Texas (GGG) are on the warm side of
the front; the other two stations, Norman, Oklahoma
(OUN) and North Platte, Nebraska (LBF) are on the
cold side of the front (Figs. 1c, 1d). The air in the
frontal zone is humid on both sides of the front; and
the air above the frontal zone is relatively warm and
dry. At the Norman and North Platte sites, there is a
pronounced frontal inversion between 900 and 850 hPa.
The profiles of vertical radio refractivity gradient are
shown in Fig. 2. It might be expected that there exist
large refractivity gradients between 900 and 850 hPa
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Fig. 1. The temperature (solid) and dew point (dashed) profiles for 1200 UTC 21 December 1990,
at (a) Lake Charles, Louisiana (LCH), (b) Longview, Texas (GGG), (c) Norman, Oklahoma (OUN),
and (d) North Platte, Nebraska (LBF), abscissa is temperature (◦C); ordinate is pressure (hPa).
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Fig. 2. The refractivity gradient profiles (km−1) for 1200 UTC 21 December 1990, at (a) Lake
Charles, Louisiana (LCH), (b) Longview, Texas (GGG), (c) Norman, Oklahoma (OUN), and (d)
North Platte, Nebraska (LBF). The solid line is the refractivity gradient for the standard atmo-
sphere; the dashed lines represent observed conditions.
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Fig. 3. The radar ray paths calculated for 0.5◦ elevation angle using the refractivity gradients
derived from (a) Lake Charles, Louisiana (LCH), (b) Longview, Texas (GGG), (c) Norman, Okla-
homa (OUN), and (d) North Platte, Nebraska (LBF) using the stepwise method (dashed lines), as
compared to those derived from the standard atmosphere refractivity gradient (solid lines).

because of the strong temperature inversion and sharp
moisture gradients at the Norman and Lake Charles
sites (Figs. 2a and 2c). However, the gradients of re-
fractivity are close to normal for the North Platte site,
which only has a strong temperature inversion, while
the other soundings exhibit large deviations from the
standard atmosphere at levels with strong moisture
gradients. So it is seen that the gradients of radio re-
fractivity are fairly sensitive to vertical variations in
humidity. To quantitatively estimate such sensitivity
is very difficult because the refractivity gradient is a
complicated function of humidity.

Figure 3 shows the variations of radar beam height
with the range gate for a 0.5◦ elevation angle. The
solid line is the ray path calculated from Eqs. (3)
and (4) with the standard atmosphere condition and
the dashed line is the ray path calculated using the
stepwise method with the refractivity gradients de-
rived from the observed thermodynamic profiles. It
is shown that for all four soundings, the calculated
beam heights are generally close to the ray paths that
are derived from the standard atmospheric condition,
with some small variations, despite strong departure
from the standard atmosphere in some layers. One can
see that for the Lake Charles and Norman sites (Figs.

3a and 3c), the radar beam is refracted downward to-
ward the earth surface due to the sharp refractivity
gradient near the 1.5 km level. The largest difference
in the beam height is about 400 m and occurs with
the Lake Charles sounding at about 1.5 km in height.
The relative error with respect to beam width is about
17%. For Longview and North Platte, the calculated
ray path is very close to that for the standard atmo-
spheric condition. For the higher elevation angles, the
radar ray paths are even less sensitive to the refractiv-
ity gradients (not shown). Suppose that the error for
beam height relative to beam width should be no more
than 50%, then we can see that for this case which
had profiles typical of a strong cold front, with strong
temperature inversion and vertical moisture gradient,
that the use of the four-thirds earth radius model pre-
dicts beam height with sufficient accuracy for numeri-
cal modeling using weather radar data. In Doviak and
Zrnić (1992), it is stated that for weather radar ap-
plications, the four-thirds earth radius model can be
used for all ray paths if beam height, h, is restricted
to the first 10–20 km and if refractive index, n, has a
gradient of about −1/4a in the first kilometer of the
atmosphere. It is still true for this extreme case that
refractive index has gradients that are significantly less
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Fig. 4. (a) The variations of radar beam height with the
range gate for elevation angle 0.5◦. The solid line is calcu-
lated by the four-thirds earth ray path Eq. (5c), and the
dashed line is calculated by the straight line ray path ap-
proximation Eq. (9c); (b) The absolute difference in beam
height calculated from the two formulas given by Eq. (5c)
and Eq. (9c).

than −1/4a at some levels.
Certainly there exist cases where ducting and

strong departures from the four-thirds earth radius
model can and do occur. We are using the above pro-
cedure (12)–(13) to verify the beam path equation (3)
and (4) under a range of locations across the United
States for several decades to quantify the relative oc-
currence of significant departures. This climatological
study will be published separately.

4. Error analysis of the beam height calcula-
tion

Because the total number of radar data to be used
in a data assimilation application can be quite volumi-
nous, it would be practical to use the simplified equa-
tions for the beam path to improve computational effi-
ciency. Simplified equations are also used in the liter-
ature at times to improve tractability. In this section,
we discuss the errors of beam height calculation using
the simplified Eq. (9c) as compared to Eq. (4). To ex-
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Fig. 5. As in Fig. 4, but for the case when elevation angle
is 12◦. Beam heights greater than 20 km are not shown be-
cause typically there is no weather signal above the 20-km
level.

amine the errors for the lower elevation angle, we first
choose elevation θe = 0.5◦ and ranges from 0 to 230
km with a range resolution of 250 m. Figure 4a shows
the comparison of radar beam heights calculated by
Eqs. (4) and (9c), while Fig. 4b shows the absolute
differences in beam heights calculated using these two
formulas. One can see that the two curves stay rela-
tively close to each other only for ranges less than 30
km. At the 30-km range, the error is about 50 m; at
100 km, the error reaches 500 m. At 230 km, the error
grows to 3112 m. This demonstrates that it may not
be appropriate to use Eq. (9c) to calculate the beam
height for low elevation angles. When the elevation an-
gle θe is increased to 12◦, it is shown that the two beam
height curves remain within 500 m of each other until
the range of 100 km (Fig. 5a). Although the relative
error is small, the absolute difference between the two
estimates is nearly the same as that of the low eleva-
tion angle case. Figure 6 shows the relative errors with
respect to radar beam width, calculated using Eq. (9c)
instead of the four-thirds earth ray path equation Eq.
(4). It is shown that for both elevation angles of 0.5◦

and 12◦, the relative errors are quite large for most of
the gates. Though at a range of 30 km, the relative
error is only about 10%; as the beam reaches 230 km,
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Fig. 6. The relative errors of beam height to radar beam
width calculated by the straight line path approximation
(9c). The solid line is for elevation angle 0.5◦ while the
dashed line is for 12◦.
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Fig. 7. The difference between the beam heights given by
approximate formula (12) and true beam path equation
(2) for elevation angle 0.5◦.

the relative errors exceed 70%. So for most applica-
tions, it is necessary to use the curved ray path equa-
tion (4) to calculate the height of the radar measure-
ment locations, instead of the simplified Eq. (9c).

However, numerically evaluating the beam height
of each radar measurement using the original formula,
Eq. (4), is complicated and double precision is usu-
ally required because the right hand side of Eq. (4) is
a small difference between two large terms. A possi-
ble reduction of Eq. (4) for computational efficiency is
examined in the following.

Rearranging Eq. (4) yields,

h = kea(1 + x)1/2 , (14)

where,

x =
r2 + 2rkea sin θe

(kea)2
. (15)

Obviously, x � 1, using Taylor series expansion and
in keeping the first order, h can be expressed as,

h ≈ r sin θe +
r2

2kea
. (16)

This equation is a much better approximation than
Eq. (5c). Figure 7 shows the difference between the
beam heights given by (4) and (14) as a function of
beam range for elevation angle 0.5◦. The maximum
difference at range 230 km is only about 1.5 m. Equa-
tion (16), a much simplified form, is therefore a good
approximation to Eq. (4) and suitable for use when ef-
ficiency is important and many calculations must be
done.

5. The surface range (distance along the earth’s
surface)

In last section, we performed error analyses for
beam height. In this section, we will estimate whether
the calculation for the horizontal location of each radar
measurement using the reduced Eqs. (9a) and (9b) give
good approximations to Eqs. (5a) and (5b). To do
that, we only need to determine if Eqs. (7) and (11)
are good approximations to ray path Eq. (3). Figure
8a shows absolute errors of Eqs. (7) and (11), that is,
the variations of |s′ − s| and |s∗ − s| as a function of
range at low elevation angle 0.5◦. One can see that Eq.
(7) gives an excellent estimate of surface range as com-
pared to Eq. (3). But Eq. (11) gives a good estimate
only for radar measurements less than 100 km. When
the radar elevation angle is 12◦, one can see that the
errors for surface range calculated using both Eqs. (7)
and (11) are larger, but Eq. (7) still gives a very good
estimate of the surface range (Fig. 8b), as even at dis-
tant ranges, the difference is less than a single range
gate. Equation (11) introduces some error, but it can
still be used because, for this elevation angle, the radar
ray is at a height above 10 km at 50 km range (note
that at 50 km range, the horizontal position error is
about 60 m, about one quarter of the range resolu-
tion of the NEXRAD). So we can conclude that for
determining the horizontal location of the radar mea-
surement, Eq. (7) is a very good approximation, and
Eq. (11) may also be acceptable for ranges less than
50 km.

6. Local slope angle θ′e of the Ray Path

Equation (6) describes the calculation of the local
slope angle of the radar beam, θ′e, which is the angle
between the radar beam and the earth’s tangent plane
below the data point. This is an important variable
because we use it not only to calculate the location
of the radar measurement, but also to calculate the
radial velocity in the forward operator within radar
data assimilation, as in Eq. (8). Figure 9 shows the
variation of local slope angle, θ′e, with the range. For
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Fig. 8. (a) The differences in surface ranges given by the
true ray path equation and its two forms of approxima-
tion at elevation angle 0.5◦. The dashed line is for the
curved ray path formula (7) and the solid line is for the
straight line ray path formula (11). (b) The same as (a),
but for elevation angle 12◦. Note that the dashed line in
(a) superposes the horizontal axis.
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Fig. 9. The variation of local slope angle as a function of
beam range for elevation angle 0.5◦.

a low elevation of 0.5◦, θ′e increases with range, becom-
ing 1.84◦ at 230 km, almost 4 times the original ele-
vation angle at the radar antenna; while for a higher
elevation of 12◦, θ′e reaches 13.33◦ at the range of 230
km (not shown). So the relative changes of local slopes
are more significant for lower elevation angles than for
high elevation angles.

Suppose that at one radar gate, we have a horizon-
tal wind u = v =30 m s−1, a vertical velocity w=15
m s−1 and a terminal fall velocity wt=5 m s−1, with
the azimuthal angle being φ = 45◦. Substitute these
values into Eq. (10), and we get Vr=42.51 m s−1 for
elevation angle 0.5◦ and Vr=42.73 m s−1 for elevation
angle 1.84◦. So the difference in radial velocity is only
0.22 m s−1, much less than the expected error of the
measurement itself, even though the local elevation
angles vary by a factor of 4 (see Fig. 9). Since the
NEXRAD radar usually operates at relatively low ele-
vation angles (generally below 20◦), and since sinθ′e is
small compared to other terms on the left hand side of
the forward operators (8) and (10), the contribution of
vertical velocities and terminal fall velocities to radial
velocities remains relatively small. The variation of
cosθ′e is also not very sensitive to θ′e with the increase
of range gate for a fixed elevation angle; this leads to
Eq. (10) being an acceptable approximation to Eq. (8).

7. Summary and discussion

The radar ray path equations are needed to de-
termine the forward operators for the assimilation of
radar data into forecast models. In this paper, we
review the ray path equations in several forms and
develop a new stepwise ray tracing method. The in-
fluence of the atmospheric refractive index to the ray
path equations at different locations related to an in-
tense cold front is examined. It is shown that the radar
ray path is not very sensitive to the relatively large ver-
tical gradients of refractive index caused by the large
temperature inversion and moisture gradients in this
intense cold front environment.

In some published works, radar ray paths have been
approximated as straight lines. This simplifies the
equations used to determine the physical location of
each radar measurement, but introduces errors that
are significant for ranges beyond 30 km. It is found
that the calculation of the physical location of each
radar measurement may have significant error if the
four-thirds earth ray path equations are not used, es-
pecially when the radar is operated at low elevation an-
gles. A reduced form of the equation for beam height
is derived in this paper using Taylor series expansion,
which is computationally more efficient and also avoids
the need to use double precision variables to mitigate
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the small difference between two large terms in the
original form. This form is found to be rather accu-
rate.

It is demonstrated that for the horizontal location
of the radar measurement, Eq. (7) is a very good es-
timate, and Eq. (11) can also be acceptable for radar
measurements within the 50-km range. We also find
that the radial velocity forward operator that projects
the three components of wind onto the radial direction
under the assumption of straight-line ray paths gives
a reasonable approximation under typical operating
conditions. The results of this paper provide useful
guidances to radar data analysis and assimilation ap-
plications in which both efficiency and accuracy are
important.
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