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ABSTRACT

The efficacy of a stochastic kinetic energy backscatter (SKEB) scheme to improve convection-allowing

probabilistic forecasts was studied. While SKEB has been explored for coarse, convection-parameterizing

models, studies of SKEB for convective scales are limited. Three ensembles were compared. The SKMP

ensemble used mixed physics with the SKEB scheme, whereas the MP ensemble was configured identically

but without using the SKEB scheme. The SK ensemble used the SKEB scheme with no physics diversity. The

experiment covered May 2013 over the central United States on a 4-km Weather Research and Forecasting

(WRF) Model domain.

The SKEB scheme was successful in increasing the spread in all fields verified, especially mid- and

upper-tropospheric fields. Additionally, the rmse of the ensemble mean was maintained or reduced, in

some cases significantly. Rank histograms in the SKMP ensemble were flatter than those in the MP

ensemble, indicating the SKEB scheme produces a less underdispersive forecast distribution. Some

improvement was seen in probabilistic precipitation forecasts, particularly when examining Brier scores.

Verification against surface observations agree with verification against Rapid Refresh (RAP) model

analyses, showing that probabilistic forecasts for 2-m temperature, 2-m dewpoint, and 10-m winds were

also improved using the SKEB scheme. The SK ensemble gave competitive forecasts for some fields. The

SK ensemble had reduced spread compared to the MP ensemble at the surface due to the lack of physics

diversity.

These results suggest the potential utility of mixed physics plus the SKEB scheme in the design of

convection-allowing ensemble forecasts.

1. Introduction

The purpose of ensemble forecasting is to address

uncertainty by accounting for errors in ensemble fore-

cast systems. Sources of error in numerical weather
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prediction (NWP) forecasts include initial condition

error from observational error in measurement and in-

adequate spatiotemporal sampling of the atmospheric

state and model error from physical parameterizations

and the numerical schemes with associated random er-

ror from inadequately resolving subgrid-scale processes.

For limited-area models lateral boundary conditions

also contribute to forecast error. For large-scale or

global ensembles, much research exists concerning the

best design practices (see, e.g., Toth and Kalnay 1993;

Molteni et al. 1996; Candille 2009; Wang and Bishop

2003; Wang et al. 2004). However, there is less research

and understanding concerning the design of convection-

allowing ensembles, although the body of work is

growing (e.g., Kong et al. 2006, 2007a,b; Mittermaier

2007; Schwartz et al. 2010; Vié et al. 2011; Xue et al.

2010; Johnson et al. 2011a,b; Bouttier et al. 2012;

Johnson andWang 2012, 2013; Johnson et al. 2013, 2014;

Ropnack et al. 2013; Caron 2013; Duda et al. 2014;

Romine et al. 2014). Current methods used to represent

model error in a convection-allowing ensemble include

multiparameter, wherein fixed parameters within a

physics parameterization scheme are varied (Hacker

et al. 2011; Yussouf and Stensrud 2012; Duda et al.

2014); mixed physics, where separate microphysics and

boundary layer schemes are used (Johnson et al. 2011a,b;

Xue et al. 2010 and references therein; Duda et al. 2014);

and multimodel, where separate dynamic cores are

used (Ebert 2001; Wandishin et al. 2001; Kong et al.

2009; Candille 2009; Johnson and Wang 2012; Du et al.

2014). The Storm Prediction Center also uses a multi-

model ensemble in which each member is a convection-

allowing forecast provided by either the National Centers

for Environmental Prediction or the National Severe

Storms Laboratory (see www.spc.noaa.gov/exper/sseo).

This paper focuses on a different method of representing

model error in an ensemble—stochastic perturbations

using a stochastic kinetic energy backscatter scheme.

Research into the use of stochastic perturbations in

ensemble forecasting is motivated by the results from

prior research showing the benefit of using random

perturbations. Buizza et al. (1999), for example, showed

that merely including multiplicative random perturba-

tions to the physical tendencies using simple spatiotem-

poral correlations was sufficient to increase ensemble

spread and improve probabilistic precipitation forecasts.

This method was based on the notion that the physical

parameterizations handle subgrid-scale processes that are

inherently random. The parameterizations take large-

scale flow as input and thus are considered an ensemble

average impact from subgrid-scale processes. The ran-

dom perturbations, therefore, account for the variability

in the subgrid-scale processes. Mason and Thomson

(1992), on the other hand, used a stochastic kinetic energy

backscatter (SKEB) scheme in a large-eddy simulation

to improve near-surface flow. Similarly, Shutts (2005)

developed a cellular automaton stochastic backscatter

scheme (CASBS) that inserted random perturbations

into the model, but is structured differently than the

scheme in Buizza et al. (1999), and based on a different

justification. The purpose of CASBS was to include a

subgrid-scale process missing from global NWP models.

The scheme injected kinetic energy (KE) into the

model domain to counteract excessive energy dissipa-

tion coming from numerical diffusion and interpolation,

mountain and gravity wave drag, and deep convection.

Not only did CASBS correct the KE spectrum of the

European Centre for Medium-Range Weather Fore-

casts (ECMWF) model, it also improved the spread and

skill of 500-hPa geopotential height forecasts. Without

CASBS themodel failed to correctly simulatemesoscale

circulations conforming to the observed k25/3 power law

(Nastrom and Gage 1985). Berner et al. (2009) built off

the work of Shutts (2005) and developed a spectral

stochastic kinetic energy backscatter scheme (SSBS)

that was implemented in the ECMWF ensemble pre-

diction system (EPS) in 2011 (ECMWF2012). The SSBS

scheme was later modified for use in the Weather Re-

search and Forecasting (WRF) Model by Berner et al.

(2011), who determined that the SKEB scheme gave

superior ensemble mean forecasts of many fields com-

pared to an ensemble using only physics variations.

Their work was performed using a horizontal grid

spacing of 45 km.

The use of SKEB schemes in operational EPSs has

increased recently. Similar versions of the SSBS scheme

have been introduced into the Canadian EPS (Charron

et al. 2010), the Met Office Global and Regional EPS

(Tennant et al. 2011), and the U.S. Air Force Weather

Agency mesoscale ensemble (Hacker et al. 2011). The

impact of SKEB has been overwhelmingly beneficial,

including increased spread with amaintained or reduced

root-mean-square error (rmse) of the ensemble mean,

and improved probabilistic forecasts of upper-level

winds, temperatures, heights, and precipitation.

Prior research into the effectiveness of a SKEB

scheme on probabilistic forecasts has been limited to

global or otherwise coarse-grid-scale EPSs. It remains to

be determined how useful or valid such a scheme is for a

convective-scale EPS. Such research is still limited. For

example, Romine et al. (2014) compared ensemble

forecasts at 3-km grid spacing using two stochastic per-

turbation methods: the SKEB scheme and the stochas-

tically perturbed parameterization tendencies scheme

(Buizza et al. 1999; Palmer et al. 2009). They found the

SKEB scheme to provide a balance between increased
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ensemble spread and forecast bias change. The focus of

the current study is to compare ensemble forecasts using

the SKEB scheme to amixed-physics ensemble, which is

typically used in convection-allowing ensemble forecast

system design. The following questions are investigated:

Is the stochastic error representation method such as

SKEB compatible with a mixed-physics approach in a

convective-scale forecast? What is the impact of in-

cluding SKEB perturbations on top of the typically used

mixed-physics method in convection-allowing ensemble

forecasts?A 4-kmWRF ensemble including a portion of

the United States and featuring warm season cases is

adopted to achieve this goal.

The rest of this paper is organized as follows. The

SKEB scheme is described briefly in section 2. The ex-

periment design is described in section 3. Results follow

in section 4. A summary and conclusions follow in

section 5.

2. The SKEB scheme

a. Mathematical formulation

Stochastic parameterizations are developed to repre-

sent model error and can generate ensemble spread by

perturbing the forecast trajectory. For this purpose, a

SKEB scheme was employed that adds stochastic, small-

amplitude perturbations to the rotational component of

horizontal wind and potential temperature tendency

equations at each time step. The scheme is briefly out-

lined here; readers can refer to Berner et al. (2011) for

details.

Let c(x, y, t) be a 2D-streamfunction-forcing pattern

expressed in 2D-Fourier space:

c(x, y, t)5 �
L/2

l52L/2
�
K/2

k52K/2

c
k,l
(t)e2pi[(kx/X)1(ly/Y)] . (1)

Here, ck,l denotes the spectral coefficient of the per-

turbation field with k and l the (K 2 1) and (L 2 1)

wavenumber components in the zonal x and meridional

y direction in physical space and t denotes time. The

representation in spectral space allows for control of the

spatial length scales of the perturbations as a function of

wavenumber. Subsequently, the rotational wind com-

ponents are obtained by differentiation, the pattern is

transformed back to gridpoint space, and the perturba-

tions are added to the momentum tendency equations.

The perturbations to the potential temperature ten-

dencies are generated analogously. The WRF im-

plementation allows for a 2D or 3D perturbation pattern

to be generated.Here, we followBerner et al. (2011) and

use the same 2D pattern to perturb the tendencies in all

vertical levels.

To introduce spatial and temporal correlations, each

spectral coefficient ck,l is evolved as a first-order autor-

egressive process:

c
k,l
(t1Dt)5ac

k,l
(t)1

ffiffiffiffiffiffiffiffiffiffiffi

a2 1
p

g
k,l
«(t) , (2)

where a is the linear autoregressive parameter deter-

mining the temporal decorrelation time, gk,l is the

wavenumber-dependent noise amplitude, and « aGaussian

white-noise process with mean 0.0 and variance 1.0. The

noise amplitude gk,l determines the variance spectrum of

the forcing and is given by the power law, gk,l 5 bnp,

where n is the wavenumber and p is an assumed constant

slope, and b is the amplitude defined as in Eq. (4) of

Berner et al. (2009), chosen so that a fixed amount of KE

is injected into the flow each time the forcing is applied.

The autoregressive parameter determines the decorre-

lation time t of the pattern, t5Dt/(12a), where Dt is
the model time step. In principle, each spectral co-

efficient can be associated with a different decorrelation

time, but for practical reasons, the same decorrelation

time is chosen for all spectral coefficients. The SKEB

scheme was originally motivated by the notion that up-

scale and downscale cascading energy resulted in net

forcing for the resolved flow from unresolved scales

(Shutts 2005) and the perturbation amplitude was pro-

portional to the instantaneous dissipation rate. Here, the

simplifications in Berner et al. (2011), where it is as-

sumed the dissipation rate is constant in space and time,

are used. Since the forcing is no longer state dependent

the perturbations can be considered as additive noise

with prescribed spatial and temporal correlation.

b. Tuning the scheme

The autoregressive parameter a (related to the de-

correlation time of the forcing field), the slope of the

power spectrum for the perturbations, and the ampli-

tude of the perturbations are adjustable parameters that

can be tuned for a specific application. Sensitivity tests

were conducted to determine if the default settings of

Berner et al. (2011)—obtained for forecasts in simula-

tions with a horizontal resolution of 45 km—are also

optimal for the much higher horizontal resolution used

here. The cases selected, 13 April 2012, 14 June 2012,

and 23 June 2013 (none of which are part of the experi-

ment period; section 3), featured warm season pre-

cipitation episodes exhibiting awide variety of convective

modes and magnitude of large-scale dynamic forcing,

thus allowing for a general tuning of the scheme over a

range of scenarios. This approach also avoids issues re-

lated to in-sample tuning to generalize the results.

Berner et al. (2009) informed the slope of the forcing

spectrum, p, using coarse-graining cloud-resolving model
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output (Shutts and Palmer 2007). Rather than following

this strategy and coarse-grain output from large-eddy

simulations, the slope of the power spectrum herein is

determined empirically. For this purpose the default value

of the spectral slope was perturbed in the positive and

negative directions by 20%, 40%, and 80%. The decor-

relation time was perturbed similarly. Additionally, the

sensitivity to the amplitude of the perturbationswas tested

by varying the backscatter dissipation rates for wind and

temperature, respectively, by several orders ofmagnitude.

We did not test every combination of parameter values.

Instead we evaluated an arbitrary set that focused on

changing only one parameter at a time, although we did

test a few sets of coupled parameter perturbations. This

method was not intended to be comprehensive, and it is

possible that other combinations of values may yield yet

better ensemble statistics and may represent a better

tuning of the scheme.

Sensitivity tests using larger wind and temperature

amplitudes for the perturbations generated drastically

increased ensemble spread relative to the default values.

However, as these perturbation amplitudes increased,

themember forecasts looked increasingly different from

verifying precipitation analyses (not shown) and, hence,

were subjectively judged to be degraded. Therefore, we

chose the default values of the wind and temperature

perturbation amplitudes. An example of the structure of

the perturbation tendency fields for u wind and tem-

perature is shown in Fig. 1.

While ensemble performance was not obviously su-

perior for any one set of decorrelation time and spectral

slope values, examination of ensemble spread helped to

indicate a tendency for a 40% reduction in decorrelation

time coupled with a 40% increase in the spectral slope to

produce the best agreement between spread and rmse of

the ensemble mean for several synoptic-scale fields such

as temperature, geopotential height, wind, and moisture

(Figs. 2 and 3). While improvement of probabilistic

quantitative precipitation forecasts (PQPF) at the con-

vective scale is emphasized, precipitation forecasts were

not strongly sensitive to the choice of decorrelation time

or spectral slope (not shown). Therefore, we used 6480 s

for the decorrelation time and 2.567 for the spectral

slope for both wind and temperature perturbations. This

combination did not always result in the best pre-

cipitation forecasts according to Brier score of 1-h ac-

cumulated precipitation at various thresholds, but it did

not always result in the poorest precipitation forecast

either (not shown). Independently, Ha et al. (2015,

manuscript submitted to Mon. Wea. Rev.) performed

limited sensitivity tests of SKEB scheme parameters in

cycled simulations with WRF at a resolution of 15 km

and determined that the default parameters performed

well. This together with our findings points to the gen-

erality of the parameter settings in WRF, at least for

application to forecasts in the midlatitudes.

In this study, only one set of tunable parameter values

of the SKEB scheme was used for all experiments in-

volving the use of SKEB. In other words, the same

values were used in the SKEB scheme for each combi-

nation of physics options used in the ensembles tested. It

is likely that the optimal parameters for the SKEB ex-

periment may not be the same as those actually used

given the potential dependence of SKEB parameters to

the choice of physics. Therefore, the comparison be-

tween SKMP and MP may not maximize the value of

adding SKEB on top of MP. However, the conclusion of

added values of including SKEB on top of MP should

not change qualitatively.

c. Impact on WRF KE spectra

The original motivation for using a SKEB scheme was

to counteract excessive dissipation in the ECMWF

model, in part caused by the use of a semi-Lagrangian

time stepping scheme (Shutts 2005). The ECMWF en-

semble is a global ensemble and is typically not run at

nonhydrostatic, convection-allowing resolutions. At

lower horizontal resolution the KE spectrum of NWP

models typically does not capture the observed transi-

tion from the k23 spectrum characterizing the synoptic

scale to the shallower k25/3 spectrum in the mesoscale

(Nastrom and Gage 1985). The ECMWF implementa-

tions of SSBS were able to capture this transition by

simulating underrepresented mesoscale variability (Shutts

2005; Berner et al. 2009). It is an area of active research if

the existence of a k25/3 spectrum in a NWP model is nec-

essary for reliable ensemble predictionswith forecast target

times of few days, since it is associated with faster error

growth (e.g., Lorenz 1969; Rotunno and Snyder 2008).

Following Skamarock (2004) we computed KE spec-

tra fromWRF simulations at horizontal resolutions of 1

and 4km (Fig. 4). At both resolutions the KE spectra are

characterized by a k25/3 slope that drops off above

wavenumbers of 0.02 and 0.001m21 for the 4- and 1-km

resolutions, respectively. The slope in the simulations at

1 km continues through the meso-g scale, which in-

dicates that the drop in the tail of the spectrum in the

4-km simulation is due to numerical truncation error

rather than a characteristic of the circulation pattern.

For the tuning parameters chosen, the simulations using

the SKEB scheme do not show any appreciable differ-

ence in KE structure from simulations that do not use

the SKEB scheme, which confirms that the scheme does

not introduce artificial energy. Arguably, it would have

been desirable to tune the scheme so that the KE spectra

at coarser resolution resemble more those at 1 km, but

1890 MONTHLY WEATHER REV IEW VOLUME 144



given that WRF has already a k25/3 spectrum at the

chosen resolution, the benefit might be small.

3. Experiment setup

To compare two methods of accounting for model

error, SKEB and mixed-physics, and to evaluate the

impact of adding SKEB on top of the mixed-physics

approach, three ensembles were constructed. Two en-

sembles contained mixed physics (microphysics, bound-

ary layer, and land surface model) that only differed in

use of the SKEB scheme. The ensemble that did not use

the SKEB scheme is hereafter called the MP ensemble,

whereas the ensemble that did is hereafter called the

SKMP ensemble. The MP ensemble resembles the

common mixed-physics design of the storm-scale en-

semble forecast system produced by the Center for

Analysis and Prediction of Storms at the University of

Oklahoma for the SPC/NSSL HWT spring forecasting

experiment (see, e.g., Xue et al. 2010). Additionally, to

test whether stochastic error representation alone is suf-

ficient for use in an ensemble compared to mixed-physics

error representation alone, a third ensemble, the SK

ensemble, was constructed that contained no physics

FIG. 1. Example forcing tendencies for the (top) u wind (m s22) and (bottom) temperature

(K s21) fields.
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diversity; different random number seeds were used to

supply diversity in the SKEB scheme. The configuration

of each ensemble is shown in Table 1. Seven members

composed each ensemble. The choice of seven members

represents a balance between computational resources,

availability of various physical parameterization schemes,

and adequate representation of the forecast probability

distribution. This size is reasonably adequate to produce

precipitation forecasts at a spatial scale of 50 km (sec-

tion 4c) that are statistically indistinguishable from a

larger ensemble that would better populate a proba-

bility distribution (Clark et al. 2011). Since the focus of

the study is on representation of model error, neither

initial condition nor lateral boundary condition per-

turbations were used.

TheAdvancedResearchWRF (ARW) dynamics core

(Skamarock et al. 2008) of the WRF Model, version

3.4.1, was used to conduct the simulations. The model

domain encompassed a large portion of the central and

eastern United States (Fig. 5) where deep convection is

climatologically favored during the late spring and early

summer, the period during which the experiment was

conducted. We tested 31 cases spanning May 2013.

There were a number of active severe weather days in

the model domain during this period, so the results of

this study should be representative of the overall ability

of the SKEB scheme in a convective-scale EPS for warm

season events. Each case was initialized at 0000 UTC

and integrated for 30 h. The grid spacing for all members

was 4-km with a 20-s model time step. North American

Mesoscale Forecast System (NAM) analyses valid at

0000 UTC were used as the initial conditions, and NAM

model forecasts from 0000 UTC for each case were used

as the lateral boundary conditions.

Verification was performed on a number of fields,

including temperature, wind, height, and various mois-

ture variables at multiple atmospheric pressure levels,

as well as 1-h accumulated precipitation. Rapid Re-

fresh (RAP; Brown et al. 2011; Weygandt et al. 2011;

rapidrefresh.noaa.gov) analyses were used as verifying

data for upper-air fields. METAR and mesonet obser-

vations obtained from the Meteorological Assimilation

Data Ingest System (MADIS; https://madis.noaa.gov/)

were used to verify 2-m temperature and dewpoint and

10-m winds. Only observations passing quality control

checks were used for verification. A motivation behind

FIG. 2. (top) Bias, (bottom dotted line) RMSE, and (bottom solid line) spread of the u-wind component at 500 hPa

verified against RAP forecasts for a test case initialized at 1200UTC 13 Apr 2012. SKEB scheme settings are colored

according to the key at top. Numbers indicate the percentage perturbation from the default values of the SKEB

scheme (3 h for decorrelation time tau, 1.83 for the spectral slope).
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verifying surface fields using observations rather than

RAP analyses is representativeness of surface values.

The finescale detail in the WRF can be better verified

using observations than by using a 13-km grid spacing

model analysis (RAP; which does not resolve features

smaller than 26 km in wavelength). Even though ob-

serving stations are spread farther apart than the RAP

model grid points, they are still capable of capturing

small-scale features such as individual thunderstorms at

certain locations. The signal from a single sample would

certainly be wiped out when performing a gridded

analysis. However, the model can capture features as

small as 8 km in size. For this reason, it was not required

for observations to pass spatial continuity quality con-

trol checks to be included in the verification. This free-

dom increases the chances of the model being rewarded

for forecasting a minimally resolved thunderstorm and

associated cold pool in the right place at the right time

such that the corresponding observation also sampled

the storm. Verifying precipitation data were provided by

the National Mosaic and Multi-Sensor QPE (Quantita-

tive Precipitation Estimation) (NMQ) project produced

by the National Severe Storms Laboratory (Zhang et al.

2011). The QPEs are the result of a combination of

radar-estimated rainfall and rain gauge measurements.

The NMQ QPEs (native grid at 0.018 resolution) were

regridded to the verification domain using bilinear in-

terpolation. Verifications were performed using 1-h ac-

cumulated precipitation. The NMQ QPEs have been

used in earlier studies to verify storm-scale precipitation

forecasts (e.g., Johnson and Wang 2012; Johnson et al.

2013; Duda et al. 2014). PQPFs were constructed with-

out calibration or bias correction as the number of

members in which a threshold value was exceeded.

4. Results

a. Skill of physics packages

The WRF offers a large set of different physics

packages (mainly microphysics and PBL), and many of

those schemes were used in the MP and SKMP ensem-

bles. The skill of individual packages was examined first

to facilitate the comparison between the SK and the MP

or SKMP ensembles.

The rmse of the MP ensemble members for a large

number of fields is shown in Fig. 6. Especially for upper-

tropospheric winds and heights (Figs. 6a–d), the scores

were clustered tightly; only member m5 stood out as a

poorer physics package for these fields. For lower-

tropospheric fields (Figs. 6e–l), there was more diversity

in the rmse among the members. After about forecast

FIG. 3. As in Fig. 2, but for the y-wind component at 850 hPa for a test case initialized at 1200 UTC 23 Jun 2013.
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hour 12 or so, twomembers, m1 andm3, which both used

the Yonsei University (YSU) PBL scheme (Hong et al.

2006) and Noah land surface model (Ek et al. 2003),

tended to perform better than the other members. This

was especially apparent in near-surface fields such as

wind, temperature, and dewpoint (Figs. 6j–l). In this re-

gime (warm season over midlatitude plains) the YSU

scheme appears to be a better PBL scheme as verified

here. The difference between members m1 and m3 was

the choice ofmicrophysics scheme;memberm1, onwhich

the SK ensemble is based, used the Morrison micro-

physics scheme (Morrison et al. 2009), noted as one of the

better multimoment microphysics schemes in Duda et al.

(2014), whereasmemberm3 used the simplerWRF single

moment 6-class microphysics scheme (Hong and Lim

2006). These members were not as skillful for 1-h pre-

cipitation at forecast hours 6–21, andmemberm3was less

skillful thanmemberm1 after forecast hour 14. However,

member m1 was somewhat less biased than most other

members in some fields, although it did not always have

the smallest bias (not shown). Members m5 and m6 were

frequently among those with the highest rmse, especially

after forecast hour 18 (Figs. 6e–l). Finally, there was a

notable clustering by land surface model in the 2-m

temperature and dewpoint fields (Figs. 6k,l). Such stark

contrast in rmse suggests the forecast distributions for

these fields was likely bimodal in some cases. Futurework

will investigate ways to better account for land surface

model uncertainties to better populate the forecast dis-

tribution and to determine if such a bimodal distribution

TABLE 1. Configuration of the ensembles. The last column in-

dicates the integer value of the random number seed used to gen-

erate pseudorandom numbers in the FORTRAN code that the

WRF is built on. The SK ensemble used the same physics config-

uration as member 1, but the random number seed varied among

the members as indicated.

Member Microphysics PBL LSM Seed

m1 (control) Morrison YSU Noah 2

m2 Ferrier MYNN2.5 RUC 3

m3 WSM6 YSU Noah 4

m4 Thompson MYJ Noah 5

m5 MY ACM2/QNSEa RUC 6

m6 WDM6 MYJ RUC 7

m7 NSSL QNSE Noah 8

a The PBL scheme for member 5 was switched from ACM2 to

QNSE starting with the case initialized at 0000UTC 8May due to

difficulties resulting from the interaction between theACM2PBL

scheme and the other physics options in that member.

FIG. 4. (a) Kinetic energy spectra from WRF simulations with

grid spacings of 4 and 1 km (24-h forecasts from different initiali-

zations). The solid red and black spectra are from otherwise

identicalWRF simulations at 4-km grid spacing where one uses the

SKEB scheme and the other does not. A reference k25/3 slope is

included in dashed black. (b) Spectral decomposition of u-wind

spread from one case, also a 24-h forecast.

FIG. 5. Model (thick black) and verification (thinner gray) domains.
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FIG. 6. Member rmse for (a) u wind at 250 hPa (m s21), (b) u wind at 500 hPa (m s21), (c) 500-hPa geopotential height (m),

(d) temperature at 500 hPa (K), (e) temperature at 850 hPa (K), (f) y wind at 850 hPa (m s21), (g) specific humidity at 850 hPa (g kg21),

(h) precipitable water (mm), (i) 1-h accumulated precipitation (mm), ( j) u wind at 10m (m s21), (k) temperature at 2m (K), and

(l) dewpoint at 2m (K).
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reflects the underlying truth error distribution or is an

artifact associated with LSM scheme behavior.

Overall, the bias and rmse characteristics for the in-

dividual members indicates that the SK ensemble was

based on a relatively skillful set of physics parameteri-

zations and thus could be expected to provide forecasts

competitive with those from the MP and SKMP en-

sembles, which use mixed physics.

b. Ensemble spread–error agreement and dispersion

1) AGAINST RAP ANALYSES

(i) Spread, rmse, and rank histograms

We first examine the spread–error relationship of the

ensembles for several fields. The ensemble spread, av-

eraged over the 31 cases and the verification domain, is

shown for several fields in Fig. 7. The addition of the

SKEB scheme added a large amount of spread to the

upper-tropospheric fields in the SKMP ensemble. For

fields such as hgt500 and u500__ (see Table 2 for field

abbreviations), the amount of added spread exceeded

100% at forecast hour 36. Figure 4b shows that, for the

u-wind component, spread was added at nearly all but

the finest scales, with relatively more diversity added at

the largest scales where the perturbation amplitudes

were also the largest. The spread difference between the

SKMP and MP ensembles increased steadily with time.

There was also increased spread in the SKMP ensemble

at fields in the lower troposphere, although not as much

as was added above. There was even an increase in

spread in moisture fields (pwat__ and accppt) despite

those fields not being directly perturbed. The spread in

the SKMP ensemble was higher than that in the MP

ensemble at all forecast hours after forecast hour 1, and

the difference in spread between the MP and SKMP

ensembles generally increased with time throughout the

30-h forecast, but especially after forecast hour 6 or so,

after which time model spinup was complete. Addi-

tionally, the spread in the SK ensemble was also much

larger than that in the MP ensemble for upper-

tropospheric fields. At mid- and lower-tropospheric

levels, the SK ensemble had lower spread than the MP

ensemble until about forecast hour 5, after which the

order was reversed.

Given the general underdispersive nature of many

ensembles (e.g., Duda et al. 2014), increased spread is an

attractive result. However, increased spread does not

necessarily mean the forecast error was sampled more

appropriately. A large spread can result from incorrectly

sampling forecast errors, which could lead to degrada-

tion of the ensemble mean forecast or member forecasts

that are extremely different from one another and

therefore lead to a degraded probabilistic forecast. The

forecast quality is first examined via the rmse of the

ensemble mean, also shown in Fig. 7. For most fields

there was not a numerically large difference in the rmse

among the three ensembles. However, for several fields,

the rmse of the SKMP ensemble was lower than that of

the MP ensemble at a large number of forecast hours

(e.g., tmp500, v850__, sph850, pwat__, tmp850, and

accppt), and that difference is statistically significant

using a t test at a 5 0.05. The fields showing the biggest

decrease in rmse were concentrated in the lower tro-

posphere, suggesting the SKEB scheme is quite effective

in perturbing fields at lower levels when also coupled

with physics perturbations, an observation also made by

Hacker et al. (2011) and Berner et al. (2011) for their

studies at 45-km grid spacing. Since themagnitude of the

wind and temperature tendencies for SKEB perturba-

tions is not dependent on height, the relative magnitude

of the perturbations is larger in the lower troposphere,

which may have played a role in the greater improve-

ment there. The decreased rmse in moisture fields such

as pwat__ and sph850 is particularly interesting since

they are not directly perturbed by the SKEB scheme.

This decrease in rmse could come from improvement in

precipitation and thunderstorm processes, which are

directly impacted through the lower-tropospheric wind

and temperature perturbations. There are a few fields

for which the rmse of the ensemble mean of the SKMP

ensemble was higher compared to the MP ensemble.

However, the degradations were limited to winds and

heights at 500 hPa and above. The increase in rmse of the

hgt500 field in particular could be related to changes in

the number of thunderstorms present in the forecasts

caused by lower-tropospheric wind and temperature

perturbations. An individual thunderstorm can strongly

perturb the height field through nonhydrostatic vertical

accelerations.

The rmse of the ensemble mean in the SK ensemble

was commonly higher than that in the MP ensemble at

early lead times in most fields (black dots across the top

of each panel in Fig. 7). However, in the middle of the

forecast period, and for lower-tropospheric fields like

tmp850 and v850__, the SK ensemble had a lower rmse

than the MP ensemble. In the tmp850 and sph850 fields,

the SK ensemble had a lower rmse than MP ensemble

generally after forecast hour 12. The SK ensemble also

had a lower rmse than the MP ensemble for pwat__

between forecast hours 16 and 25. Also in the tmp850

field the SK ensemble had a lower rmse than even the

SKMP ensemble for forecast hours 15–29 and in the

v850__ field for forecast hours 15–22.

The increased dispersion in large-scale fields is further

supported through examination of rank histograms. For
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FIG. 7. Verification domain-average ensemble mean rmse (solid) and ensemble spread (dashed). Red dots across the bottom indicate

forecast hours at which the rmse of the SKMP ensemble was statistically significantly lower than that of the MP ensemble, whereas black

dots indicate the opposite. Similarly, across the top of each panel, blue dots indicate when the SK ensemble had a significantly lower rmse

than the MP ensemble, whereas black dots indicate the opposite.
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nearly every large-scale field examined, the rank histo-

grams at nearly every forecast hour were flatter in the

SKMP ensemble than in the MP ensemble (Fig. 8). It

should be noted that observation error was not in-

corporated into any verifications in this study. Error in

the observation data sources is either unknown or un-

documented. Therefore, it is inappropriate to make

claims regarding proper ensemble dispersion. Instead

we can only discuss the differences in dispersion among

the ensembles. It should also be noted, however, that

given the broad similarities between this study and that

of Berner et al. (2015), where the order of performance

of various methods of representing model error was

not a function of inclusion of observation error, it is not

expected that the increased spread, flatter rank histo-

grams, and lower rmse of the SKMP ensemble over the

MP ensemble is conditional on inclusion of observation

error.

The rank histograms for the SK ensemble were also

generally flatter than those of theMP ensemble after the

first few forecast hours, but not as flat as those of the

SKMP ensemble, again suggesting that this method of

accounting for stochastic error is at least as effective as a

mixed-physics approach after the added perturbations

have had time to accumulate and create diversity among

the members. For accppt the rank histograms were not

noticeably flatter in the SKMP ensemble than the MP

ensemble, although the positive bias in that field makes

dispersion characteristics less pertinent.

(ii) Case study

The increased ensemble spread and member diversity

can be illustrated via some atmospheric fields from a

representative case. We chose the case initialized at

0000 UTC 19 May 2013 as it contained a severe weather

event associated with a mesoscale feature (a dryline)

forced by a synoptic-scale upper-level trough. The im-

pacts of the perturbations on scales ranging from syn-

optic to storm scale can be seen. First we examine the

500-hPa height field (Fig. 9). Even after the model spun

up convection across portions of western Kansas and

Oklahoma in the early forecast hours (not shown), the

5760-m height contours in the MP ensemble at later

forecast hours show little diversity in areas near and

upstream of that convection, which had propagated into

eastern Kansas at the valid time in Fig. 9. Compared to

the same height contours in the SK and SKMP ensem-

bles, it is clear that the perturbations in the SKEB

scheme have generated some synoptic-scale diversity.

The SK and SKMP ensembles have larger area-

averaged ensemble standard deviations (upper right of

each panel in Fig. 9) than theMP ensemble. While there

are still displacement errors (bias) relative to the RAP

analysis of that contour in all ensembles, there are

members in the SKMP ensemble for which the contour

is more accurately placed due to the increased diversity

in the ensemble.

FIG. 8. Rank histograms for (top) 500-hPa geopotential height at

forecast hour 29, (middle) 850-hPa y wind at forecast hour 20, and

(bottom) precipitable water at forecast hour 29.

TABLE 2. Abbreviations for field names used for verification.

Field name Description (units)

hgt500 500-hPa geopotential height (m)

v850__ 850-hPa y-wind component (m s21)

v500__ 500-hPa y-wind component (m s21)

u500__ 500-hPa u-wind component (m s21)

u250__ 250-hPa u-wind component (m s21)

sph850 850-hPa specific humidity (g kg21)

pwat__ Precipitable water (mm)

tmp850 850-hPa temperature (K)

tmp500 500-hPa temperature (K)

accppt 1-h accumulated precipitation (mm)
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The impacts of increased diversity on mesoscale as-

pects of the forecast are illustrated using precipitable

water in Fig. 10. The 25-mm contour delineates the

dryline extending generally southwestward from central

Oklahoma across central Texas. In the late morning to

midafternoon before convective initiation, the dryline

surged eastward before settling at its most eastward lo-

cation late in the afternoon (not shown). During one

particular afternoon hour (1700 UTC, Fig. 10), each

ensemble placed the dryline too far east in northern

Texas and across Oklahoma. However, there was addi-

tional diversity in the SKMP ensemble compared to the

MP ensemble in which one or two SKMP ensemble

members contained a more westward dryline than in the

MP ensemble, closer to theRAP analyzed dryline location.

The MP ensemble was more biased and overconfident on

the location of the dryline in eastern Oklahoma, whereas

the SKMP ensemble gave a more reasonable uncertainty

estimate, having members that varied more on the longi-

tudinal placement of the dryline.

Water vapor mixing ratio at 2m illustrates increased

spread at the convective scale (Fig. 11). A contribution

from the mesoscale variability in the location of the

dryline combined with a contribution of diversity on the

convective scale resulted in larger ensemble spread in

the SKMP ensemble compared to that in the MP en-

semble along the dryline in Oklahoma and Texas. There

was a small region of enhanced ensemble spread in

northwest Oklahoma near a bulge in the dryline. The

valid time of the data in Fig. 11 is 1 or 2 hours before

convection first developed near that dryline bulge. The

pattern of 1-h accumulated precipitation from each

member in the SKMP and MP ensembles (not shown)

suggests there is more variability in the location, cov-

erage, and intensity of the storms that developed near

this dryline bulge in the SKMP ensemble compared to

the MP ensemble. This difference in variability of pre-

cipitation is likely related to the variability in 2-mmixing

ratio through changes in buoyancy of surface-based

parcels. While there is also mesoscale variability in the

placement of the dryline and the bulge in the SK en-

semble, there is generally very little spread in 2-m mix-

ing ratio near the dryline bulge compared to that in the

SKMP and MP ensembles. The 1-h accumulated pre-

cipitation fields in the SK ensemble also appear very

similar among members, thus corroborating the lower

diversity compared to the SKMP and MP ensembles

[see section 4b(2) for a discussion on the lack of diversity

in the SK ensemble].

2) AGAINST OBSERVATIONS FROM MADIS

Verifications of surface variables against METAR

and mesonet observations (from MADIS) are shown in

FIG. 9. Ensemble standard deviation (shaded, m) of 500-hPa

geopotential height valid at 1100 UTC 19 May 2013. Individual

member 5760-m height contours (light blue) and the analyzed

5760-m height contour from a RAP analysis (gold) are also shown.

Area-averaged ensemble spread is indicated in the top right of

each panel.
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Figs. 12 and 13. Similar to other fields verified against

RAP analyses, the spread was larger (a few percent to as

high as 25%) in the SKMP ensemble than the MP en-

semble for all surface fields by forecast hour 30. The

increase in spread was accompanied by almost no

change in the rmse of the ensemble mean for 2-m tem-

perature and dewpoint. For 10-m winds the rmse of the

ensemble mean in the SKMP ensemble was lower than

that in the MP ensemble for all forecast hours, and the

difference is statistically significant generally after

forecast hour 6. Rank histograms (not shown) for 2-m

temperature and dewpoint and 10-m wind components

were slightly flatter in the SKMP ensemble than the MP

ensemble, but the difference was not as remarkable as

for fields verified against RAP analyses. Brier scores for

exceedance of certain values of dewpoint and wind

speed (Fig. 13) also suggest the SKMP ensemble pro-

duced better probabilistic forecasts at nearly every

forecast hour and threshold compared to the MP en-

semble. In particular, the SKMP ensemble had lower

Brier scores than the MP ensemble at high dewpoint

thresholds, especially between forecast hours 18–24,

which correspond to the mid- to late afternoon, a time

when convective available potential energy is likely to

be at its daily maximum and convective inhibition is

likely to be at its daily minimum. Therefore, the SKMP

ensemble may provide an improved probabilistic fore-

cast of the thermodynamic environment in a large-scale

environment overall supportive of convective storms.

The SK ensemble spread wasmuch lower than theMP

ensemble spread, especially at earlier forecast hours,

and especially for 2-m temperature and dewpoint

(Fig. 12). The ensemble spread difference in the 10-m

wind component fields was smaller than in the 2-m

temperature and dewpoint fields. The lack of physics

diversity in the SK ensemble likely negatively impacted

the ensemble forecasts in these fields. This was also seen

in Berner et al. (2011). The rmse of the ensemble mean

was significantly lower in the SK ensemble compared to

the MP and SKMP ensembles for 2-m temperature and

dewpoint generally between forecast hours 12 and 24

and significantly higher elsewhere. The SK ensemble

had a significantly lower rmse than the MP and SKMP

ensembles for 10-m wind components throughout the

forecast. The SK ensemble had lower Brier scores than

both of the SKMP and MP ensembles for light to mod-

erate 10-m wind speeds and also for all but the highest

2-m dewpoint thresholds during themid- to late afternoon

(Fig. 13). The physics package used for the SK ensemble

is chiefly responsible for the superior near-surface wind,

temperature, and dewpoint forecasts (section 4a). This

result suggests the potential of simplifying the ensemble

design in the future by selecting the best physics

FIG. 10. As in Fig. 9, but for precipitable water (mm, 25-mm

contour is displayed) valid at 1700 UTC 19 May 2013. Individual

member contours are in green, whereas the RAP analyzed contour

is shown in the thick black line.
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parameterization scheme and using a stochastic method

to sample stochastic model errors, which relieve the

need of maintaining multiple physics schemes that are

not necessarily independent from each other.

c. PQPF skill

The spread of 1-h accumulated precipitation in the

SKMP ensemble was greater than that in the MP en-

semble after the first few forecast hours (Fig. 7). Addi-

tionally, the rmse of the ensemble mean of the SKMP

ensemble was lower than that of the MP ensemble at

most forecast hours, with the SKMP ensemble being

significantly better from forecast hours 7–24. Each en-

semble had a positive bias of around 0.01–0.05mm

during the second half of the forecast period, and the

SKMP ensemble was slightly more biased than the MP

ensemble (not shown). The SK ensemble had less spread

than theMP ensemble from forecast hours 1–12 and 21–

30. The rmse of the ensemble mean was similar between

the two ensembles during these periods. In the period of

forecast hour 13–19, however, the SK ensemble had

increased spread and decreased rmse compared to the

MP ensemble. However, this time period corresponds to

the morning and midday when precipitation is less

common, so the inference that the SK ensemble pro-

vides better PQPFs during this period may not be ro-

bust. The SK ensemble was less positively biased at

forecast hours 20–25.

In spite of the bias, several gridpoint and neighborhood-

based probabilistic and traditional verification measures

suggest PQPFs were improved by the use of the SKEB

scheme in the SKMP ensemble. Considering Brier

scores (Fig. 14), the SKMP ensemble had a lower Brier

score than the SKMP ensemble at nearly all forecast

hours for light and moderate accumulation thresholds

(0.254 and 6.35mm). With a lower climatological oc-

currence of precipitation exceeding 25.4mmh21, there

was less difference in the Brier score between the SKMP

and MP ensembles, and due to a relatively larger stan-

dard error, the differences were less likely to be signifi-

cant. The SK ensemble also had lower Brier scores than

the MP ensemble during the middle portion of the

forecast period. The duration in which the SK ensemble

had lower Brier scores generally decreased with in-

creasing threshold except at the 25.4-mm threshold,

where the SK ensemble had significantly lower Brier

scores than the MP ensemble over nearly the entire

forecast range.

The fractions skill score (FSS; Roberts and Lean 2008)

is a neighborhood-based verification metric that mea-

sures the squared difference in the fraction of coverage

of precipitation exceeding a threshold in a neighbor-

hood about a grid point for both the forecast and

FIG. 11. As in Fig. 9, but for 2-mwater vapormixing ratio (g kg21,

the 12 g kg21 contour is displayed) at 1900 UTC 19 May 2013. In-

dividual member contours are in green, whereas the RAP analysis

contour is the thick gold line.
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observations. It is essentially an extension of the Brier

score to spatial neighborhoods. A neighborhood radius

of 48 km [12 grid points as in Johnson and Wang (2012)

and Duda et al. (2014); Romine et al. (2014) used a

neighborhood radius of 50 km for similar precipitation

verification] was used for all neighborhood based scores

presented. There was very little distinction in FSSs be-

tween the SKMP and MP ensembles at the lightest

threshold (Fig. 15). The SKMP ensemble had slightly

higher FSSs during themiddle part of the forecast (forecast

hours 9–24) for moderate and heavy rain thresholds, but

the FSSs of the SKMP ensemble were slightly lower than

those of the MP ensemble generally after forecast hour 24

at all thresholds. The SK ensemble generally had lower

FSSs than the MP ensemble except after forecast hour 23

at the lightest threshold (0.254mm) and a few sporadic

moments in the range of forecast hours 12–18 at the other

thresholds. The difference in FSSs between the SKandMP

ensembles at heavy rain thresholds was especially large,

providing further evidence of the need to incorporate

physics uncertainty into a convective-scale ensemble for

heavy precipitation forecasting.

A neighborhood-based version of the receiver oper-

ating characteristic (ROC) curve was also calculated

(Mason 1982). The ROC curve is a plot of the proba-

bility of detection (POD) against the probability of false

detection (POFD). Since a ROC curve contains the

point (POFD, POD)5 (0, 0) and (1, 1), but varies be-

tween those endpoint values, a more useful parameter to

evaluate is the area under the ROC curve. Since a ROC

curve describes how well a forecast discriminates be-

tween yes and no forecasts (i.e., it only forecasts ‘‘yes’’

when the event occurs and only forecasts ‘‘no’’ when the

event does not occur), larger ROC areas correspond to

more skillful forecasts. ROC areas as a function of 1-h

precipitation threshold for a few forecast hours are

FIG. 12. As in Fig. 7, but for the indicated fields verified against METAR observations.
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shown in Fig. 15. Each ensemble produced skillful QPFs

for light rain thresholds after spinup issues settled. De-

pending on forecast lead time, ROC area tended to peak

at either the very lightest threshold or the light-

moderate (2.54 or 6.35mm) thresholds and decreased

steadily with increasing threshold. For example, at

forecast hour 17 (the time of the minimum in domain

average precipitation) the highest ROC areas occurred

at the lightest threshold and decreased steadily through

the highest threshold, whereas at forecast hour 25 (the

diurnal peak in domain average precipitation), the

highest ROC areas occurred at the 2.54- and 6.35-mm

thresholds and decreased more slowly toward both

higher and lower thresholds. The shape of the plot at

forecast hour 21, during a sharp increase in domain-

averaged precipitation, contained features similar to

those at both forecast hours 15 and 27. As a function of

forecast lead time, skill generally increased until the late

part of the forecast with some oscillation leading up to

the peak around forecast hours 26–28, corresponding to

evening on the next day. The exception is at the lightest

threshold (0.254mm), where skill peaked at forecast

hour 16 and slowly declined afterward (not shown). In

general ROC areas agreed with FSSs in that the SKMP

ensemble had higher scores than theMP ensemblemostly

during the middle portion of the forecast (forecast hours

6–24). Outside of that range, the ensembles had approx-

imately the same skill. Reduced overall sample size likely

explains the noisy pattern at the higher thresholds.

5. Conclusions

As a step toward improving the design of convection-

allowing EPSs, the impact of a stochastic kinetic energy

FIG. 13. Brier scores for (top) 10-m wind speed and (bottom) 2-m dewpoint forecasts at the indicated thresholds.
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backscatter scheme was evaluated for a set of warm

season cases over a large portion of the continental

United States. Three seven-member ensembles were

constructed for the testing. The SK ensemble contained

no physics diversity among the members, but the SKEB

scheme was employed. Diversity in this ensemble came

from the random seed used to generate the pseudoran-

dom numbers. The MP ensemble was a mixed-physics

ensemble containing variations in the microphysics,

planetary boundary layer, and land surface model pa-

rameterizations. The SKEB schemewas not active in the

MP ensemble. The SKMP ensemble had the same

mixed-physics configuration as the MP ensemble with

the SKEB scheme turned on. These ensembles were

designed to answer the following questions regarding

convective-scale ensemble forecasting:

1) Can a stochastic error representation scheme (SKEB

in this case) add meaningful ensemble information

and improve the forecast distribution?

2) Is the stochastic error representation method com-

patible with a mixed-physics approach? If so, does

the combination of these methods further improve

probabilistic forecasts on the convective scale?

Each ensemble member had 4-km grid spacing (no

convection parameterization was used) and was initial-

ized at 0000 UTC, running for 30 h to give a complete

day 1 forecast of next-day severe weather and heavy

precipitation. Both large-scale fields such as tempera-

ture, height, and winds above the boundary layer, as well

as 2-m temperature, 2-m dewpoint, 10-m wind compo-

nents, and 1-h accumulated precipitation were verified

using both gridpoint and neighborhood probabilistic

verification metrics.

The SKEB scheme is designed to (i) correct for in-

sufficient kinetic energy near the grid scales of a forecast

model and (ii) add spread to the ensemble. The SKEB

scheme injects kinetic energy into the model at all scales

through additive perturbations to the rotational wind

and temperature fields. The NWP model used in this

study does not appear to suffer from excessive kinetic

energy dissipation in themesoscales, and thus (i) was not

of major concern in this study. For a reasonably tuned

SKEB scheme, our study found positive impact on en-

semble spread and probabilistic forecasts. Neither ro-

bust nor comprehensive tests of the parameters for

optimal tuning of the scheme were performed; optimal

tuning of the scheme for use at the convective scale is

left for future work.

The SKEB scheme was successful in accomplishing

(ii). Marked gains in ensemble spread were noted in

nearly every field verified, especially large-scale fields.

Spread was even increased in fields that were not directly

perturbed (i.e., specific humidity, dewpoint, and pre-

cipitation), although the increase in spread in those fields

was reduced compared to the increase in other fields that

were directly perturbed. The increase in spread was also

confirmed through examination of rank histograms. His-

tograms in the SKMP ensemble were flatter than those in

the MP ensemble. The increased spread was accompanied

by a reduction in the rmse of the ensemble mean. Some of

these reductions were statistically significant.

Quantitative precipitation forecasts were also improved.

Since the SKEB scheme does not correct individual grid

FIG. 14. Brier scores for the indicated 1-h accumulation thresh-

olds. Colored dots represent statistically significant differences as

in Fig. 7.
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point errors in deterministic forecasts nor does it perturb

the moisture field directly, the connection between the

SKEB scheme and precipitation is convoluted and in-

direct, occurring through changes in stability of air parcels

on the convective scale as well as through changes in the

wind field that provide forcing for convection initiation

and affect ongoing storms. The perturbations are very

small, so the changes are subtle but can accumulate over

FIG. 15. (left) Fractions skill scores for the indicated 1-h accumulation thresholds and (right) area under the ROC

curve at the indicated forecast hours for various 1-h accumulation thresholds. No statistical significance testing was

performed on the FSSs or ROC areas.
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time periods long enough to impact the evolution of the

near-surface wind and temperature field enough to affect

the initiation ormaintenance of convection. It is difficult to

determine the precise factors that impact the change in

PQPF skill from the use of the SKEB scheme given the

random nature of the perturbations. For some individual

cases ensemble forecasts are bound to be improved

through a better representation of the uncertainty of the

atmospheric state.

The performance of the SK ensemble was competitive

with the other ensembles despite the lack of physics

diversity. It contained almost as much spread as the

SKMP ensemble at many forecast hours and in many

fields (thus exceeding that from the MP ensemble) and

also had flatter rank histograms than the MP ensemble.

The rmse of the SK ensemble mean was also similar to

that of the SKMP and MP ensembles. There were even

forecast hours and thresholds at which precipitation skill

scores in the SK ensemble were better than either of the

MP or SKMP ensembles. However, in agreement with

Berner et al. (2011), the spread of the SK ensemble was

much lower in the boundary layer compared to the MP

ensemble. Thus, it seems the best choice is to combine

the uncertainty in the physical processes impacting

temperature, wind, and moisture in the boundary layer

by using mixed physical parameterizations with the un-

certainty in the dynamics and in other unparameterized

subgrid-scale processes by using the SKEB scheme.

Hacker et al. (2011) and Berner et al. (2015) also found

the combination of a SKEB scheme and physics di-

versity to give the best forecasts at and below 700hPa for

convection parameterizing resolutions. Additionally,

similar to Duda et al. (2014), the performance of the SK

ensemble is likely sensitive to the physics parameteri-

zation options used (Morrison microphysics, YSU PBL,

and Noah land surface); this combination was shown to

be more accurate than most of the other combinations

used in the MP ensemble, and the SKEB scheme pa-

rameters were tuned for this particular combination and

were not changed when used with other physics combi-

nations. Since the optimal parameters for the SKEB

scheme may be dependent on the choice of physics, the

comparison between the SK and SKMP ensembles may

not maximize quantitatively the added value of in-

cluding the SKEB scheme on top of the mixed-physics

approach.

This study is among the first to examine the effect of

combining stochastic methods with traditionally used

mixed-physics methods for convection allowing ensem-

ble design. Given the resources needed to maintain

various physics schemes, future research is still needed

to explore to what extent a mixed-physics method is

needed in the presence of a stochastic method. It is also

acknowledged that the conclusion may also be de-

pendent on the diagnostic and verification methods

adopted.

The experiment presented in this paper did not incor-

porate initial or lateral boundary condition perturbations to

isolate the impact of the model-error representation on the

ensemble forecasts. Such perturbations could further

broaden the forecast probability distribution and reduce

or eliminate poor forecasts (present in this study but not

discussed) caused by inadequate initial and lateral

boundary conditions. Futurework should incorporate such

initial and lateral boundary condition error representation

using advanced ensemble based data assimilation (Johnson

et al. 2015) with model-error representation to further

improve convective scale ensemble forecasts.
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