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ABSTRACT

During the 2007 NOAA Hazardous Weather Testbed Spring Experiment, a 10-member 4-km grid-spacing

Storm-Scale Ensemble Forecast (SSEF) system was run in real time to provide experimental severe weather

forecasting guidance. Five SSEF system members used perturbed initial and lateral boundary conditions (ICs

and LBCs) and mixed physics (ENS4), and five members used only mixed physics (ENS4phys). This ensemble

configuration facilitates a comparison of ensemble spread generated by a combination of perturbed ICs/LBCs

and mixed physics to that generated by only mixed physics, which is examined herein. In addition, spread

growth and spread-error metrics for the two SSEF system configurations are compared to similarly configured

20-km grid-spacing convection-parameterizing ensembles (ENS20 and ENS20phys). Twelve forecast fields are

examined for 20 cases.

For most fields, ENS4 mean spread growth rates are higher than ENS20 for ensemble configurations with

both sets of perturbations, which is expected as smaller scales of motion are resolved at higher resolution.

However, when ensembles with only mixed physics are compared, mass-related fields (i.e., geopotential

height and mean sea level pressure) in ENS20phys have slightly higher spread growth rates than ENS4phys,

likely resulting from the additional physics uncertainty in ENS20phys from varied cumulus parameterizations

that were not used at 4-km grid spacing. For 4- and 20-km configurations, the proportion of spread generated

by mixed physics in ENS4 and ENS20 increased with increasing forecast lead time. In addition, low-level fields

(e.g., 2-m temperature) had a higher proportion of spread generated by mixed physics than mass-related

fields. Spread-error analyses revealed that ensemble variance from the current uncalibrated ensemble systems

was not a reliable indicator of forecast uncertainty. Furthermore, ENS4 had better statistical consistency than

ENS20 for some mass-related fields, wind-related fields, precipitation, and most unstable convective available

potential energy (MUCAPE) with no noticeable differences for low-level temperature and dewpoint fields.

The variety of results obtained for the different types of fields examined suggests that future ensemble design

should give careful consideration to the specific types of forecasts desired by the user.

1. Introduction

To sufficiently account for model and observational

errors so that all possible states of the future atmosphere

are simulated, perturbation strategies for recent short-

range ensemble forecast (SREF) systems include 1) per-

turbing the initial conditions (ICs; e.g., Toth and Kalnay

1997; Palmer et al. 1992; Molteni et al. 1996), 2) using

different combinations of physical parameterizations

(mixed physics; e.g., Houtekamer et al. 1996; Stensrud

et al. 2000; Du et al. 2004; Jones et al. 2007), and 3) using

different numerical models (e.g., Hou et al. 2001;

Wandishin et al. 2001; Du et al. 2004; Eckel and Mass

2005; Jones et al. 2007). In current SREF systems, sen-

sible parameters influenced by small-scale processes that

must be parameterized [e.g., planetary boundary layer

(PBL) temperature and moisture, convective precipi-

tation] are associated with notably underdispersive
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forecasts (Fritsch and Carbone 2004; Eckel and Mass

2005). The error growth for these sensible parame-

ters typically contains a much larger contribution from

model uncertainty relative to IC uncertainty than for

synoptic-scale parameters [e.g., 500-hPa geopotential

heights and winds, mean sea level pressure (MSLP);

Stensrud et al. 2000; Eckel and Mass (2005)]. The un-

derdispersion may be a result of several deficiencies in-

cluding 1) inadequate methods of accounting for model

error, 2) inability to capture small-scale variability be-

cause of insufficient resolution (Eckel and Mass 2005), 3)

coarsely resolved and temporally interpolated lateral

boundary conditions (LBCs; Nutter et al. 2004), and 4)

inadequate sampling of the most important growth di-

rections by the limited-size ensemble.

One method commonly used to gain information

about ensemble spread is to isolate the error sources by

using different perturbation strategies for a set of fore-

casts (e.g., Houtekamer et al. 1996; Stensrud et al. 2000;

Clark et al. 2008). For example, to isolate model errors,

the ‘‘perfect analysis’’ assumption can be used, in which

identical sets of ICs/LBCs are used to initialize various

ensemble members with mixed physics. Similarly, to

isolate IC errors, the ‘‘perfect model’’ assumption

can be used in which identically configured ensemble

members are initialized with different sets of perturbed

ICs. During the 2007 National Oceanic and Atmo-

spheric Administration (NOAA) Hazardous Weather

Testbed (HWT) Spring Experiment (SE07; Xue et al.

2007; Kong et al. 2007), a 10-member, 4-km grid-spacing

Storm-Scale Ensemble Forecast (SSEF) system was run

in real time to provide severe weather forecasting

guidance to the SE07 participants. Five of the SSEF

members used perturbed ICs/LBCs and mixed physics

(ENS4; four perturbed members and one control

member), while five members used only mixed physics

(ENS4phys) so that the impacts of the different physical

parameterization schemes could be isolated. This con-

figuration of the 2007 SSEF system also facilitates an

isolation of physics-related model errors because five

members use the ‘‘perfect analysis’’ assumption. Un-

fortunately, because there were not any ensemble subsets

with only IC perturbations, the perfect model assumption

could not be assessed.

The goal of this paper will be to use the 2007 SSEF

system to compare ensemble spread from a mixed-

physics-only ensemble to an ensemble with both mixed

physics and perturbed IC/LBCs for various fields in

a convection-allowing ensemble. In addition, ensemble-

spread growth and spread–error relationships associated

with the two five-member subsets of the SSEF system will

be compared to two similarly configured subsets of a

20-km grid-spacing convection-parameterizing ensemble

to examine the impacts of horizontal resolution for var-

ious forecast fields. This paper is organized as follows: in

section 2, a description of the data and methodology is

provided, in section 3 the results are examined, and a

summary and discussion are provided in section 4.

2. Data and methodology

The 2007 SSEF system was run during April–June

2007 and used version 2.2.0 of the Advanced Research

module of the Weather and Research Forecasting model

(WRF-ARW; Skamarock et al. 2005). The 10 SSEF

members were run by the Center for Analysis and Pre-

diction of Storms (CAPS) of the University of Oklahoma,

initialized daily at 2100 UTC, and integrated 33 h over

an approximately 3000 km 3 2500 km domain cover-

ing about two-thirds of the continental United States

(Fig. 1). SSEF system ensemble member specifications

for ENS4 and ENS4phys are listed in Tables 1 and 2,

respectively. Note, because of the 2100 UTC initializa-

tion, forecast hours 3 and 27 correspond to 0000 UTC.

For the SSEF control member, the 2100 UTC analyses

from the National Centers for Environmental Pre-

diction’s (NCEP’s) operational North American Meso-

scale (NAM; Janjić 2003) model (at 12-km grid spacing)

were used for ICs and the 1800 UTC NAM 12-km fore-

casts were used for LBCs. For the members with perturbed

ICs, perturbations were extracted from the 2100 UTC

NCEP SREF system ICs (Du et al. 2004) and added to

the 2100 UTC NAM analyses. Corresponding NCEP

SREF system forecasts were used for LBCs (3-h up-

dates). Xue et al. (2007) and Kong et al. (2007) provide

more details on the configurations.

For a comparison of the five-member SSEF ensemble

subsets to a similarly configured convection-parameterizing

ensemble, a 30-member 20-km grid-spacing ensemble was

generated at Iowa State University, which was also

FIG. 1. Domains for (a) NCEP SREF ensemble members,

(b) ENS4 and ENS20 ensemble members, and (c) the analyses

conducted in this study.
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composed of WRF-ARW (version 2.2.0) members.

Fifteen of the 20-km members have mixed physics and

perturbed ICs/LBCs (ENS20), while another 15 mem-

bers have only mixed physics (ENS20phys). Ensemble

member specifications for ENS20 and ENS20phys are

provided in Tables 3 and 4, respectively. It should be

noted that the ENS20 and ENS20phys ensembles have

one more set of varied physics schemes relative to

ENS4 and ENS4phys, because in addition to the dif-

ferent PBL, microphysics, and surface-layer schemes,

both 20-km ensembles use different cumulus parame-

terizations (CPs; the 4-km ensembles do not use CP).

However, five-member subsets of ENS20 and ENS20phys

that use the same CP do have the same number of varied

physics schemes as ENS4 and ENS4phys. These five-

member subsets will be referred to as ENS20cp and

ENS20phys
cp , where CP refers to one of the three different

CPs used: 1) Kain–Fritsch (KF; Kain and Fritsch 1993), 2)

Betts–Miller–Janjić (BMJ; Betts 1986; Betts and Miller

1986; Janjić 1994), or 3) Grell–Devenyi (GD; Grell and

Devenyi 2002). For the 20-km ensemble members, dif-

ferent sets of ICs and corresponding LBCs for each

member are obtained directly from NCEP SREF mem-

bers initialized at 2100 UTC.

Both ensembles use the rapid radiative transfer method

(RRTM) scheme for shortwave radiation (Mlawer et al.

1997) and the Goddard longwave radiation scheme

(Chou and Suarez 1994), along with the Noah land

surface model (Ek et al. 2003). Varied PBL schemes

include the Mellor–Yamada–Janjić (MYJ; Mellor and

Yamada 1982; Janjić 2002) and Yonsei University

(YSU; Noh et al. 2003) schemes. Varied microphysics

schemes include Thompson et al. (2004), WRF single-

moment six-class method (WSM-6; Hong and Lim 2006),

and Ferrier et al. (2002), as well as surface-layer schemes

including Monin–Obukhov (Monin and Obukhov 1954;

Paulson 1970; Dyer and Hicks 1970; Webb 1970) and

the Janjić Eta Model (Janjić 1996, 2002). Note that none

of the ensemble members use positive-definite advec-

tion of moisture, which may have contributed to high

biases in the precipitation forecasts (e.g., Skamarock

and Weisman 2009).

The forecasts were examined for 20 cases during

April–June 2007 (Fig. 2). These 20 cases are included in

the 23 cases in which ENS4 and ENS20 precipitation

forecasts were compared in Clark et al. (2009). The

other three cases examined in Clark et al. (2009) are

excluded from the current study because some of the

ENS4phys members were not available. As noted by

Clark et al. (2009), the period examined was relatively

active with a variety of convective precipitation events.

This study examines the growth of spread (i.e., en-

semble variance) and statistical consistency [i.e., corre-

spondence between ensemble variance and mean square

error of the ensemble mean (MSE)] for 12 fields: 500-,

700-, and 850-hPa geopotential heights (500Z, 700Z,

and 850Z, respectively); MSLP; 2-m temperature

(T2); 2-m dewpoint (Td2); 850-hPa wind magnitude

(850WMAG), 850-hPa temperature (850T), and 850-hPa

dewpoint (850Td); 3-hourly accumulated precipitation

(PREC); most unstable convective available potential

energy (MUCAPE); and magnitude of the 10-m to

TABLE 1. ENS4 Ensemble member specifications. NAMa and NAMf indicate NAM analyses and forecasts, respectively; em_pert and

nmm_pert are perturbations from different SREF members; and em_n1, em_p1, nmm_n1, and nmm_p1 are different SREF members that

are used for LBCs. The remaining table elements are described in the text.

Ensemble

member ICs LBCs

Microphysics

scheme

Surface-layer

scheme

Boundary

layer scheme

CN 2100UTC NAMa 1800 UTC NAMf WSM-6 Janjić Eta MYJ

N1 CN – em_pert 2100 UTC SREF em_n1 Ferrier Janjić Eta MYJ

P1 CN 1 em_pert 2100 UTC SREF em_p1 Thompson Janjić Eta MYJ

N2 CN – nmm_pert 2100 UTC SREF nmm_n1 Thompson Monin–Obukhov YSU

P2 CN 1 nmm_pert 2100 UTC SREF nmm_p1 WSM-6 Monin–Obukhov YSU

TABLE 2. As in Table 1, but for ENS4phys ensemble member specifications.

Ensemble

member ICs LBCs

Microphysics

scheme

Surface-layer

scheme

Boundary layer

scheme

PH1 2100 UTC NAMa 1800 UTC NAMf Thompson Janjić Eta MYJ

PH2 2100 UTC NAMa 1800 UTC NAMf Ferrier Janjić Eta MYJ

PH3 2100 UTC NAMa 1800 UTC NAMf WSM-6 Monin–Obukhov YSU

PH4 2100 UTC NAMa 1800 UTC NAMf Thompson Monin–Obukhov YSU

PH5 2100 UTC NAMa 1800 UTC NAMf Ferrier Monin–Obukhov YSU
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500-hPa shear vector (WSHR). The 12 fields examined

are separated into those that are ‘‘mass related,’’ or

heavily dependent on the properties of the atmosphere

within a vertical column (500Z, 700Z, 850Z, and MSLP),

and ‘‘low level’’ fields that have more dependence

on boundary layer processes and, thus, have a noticeable

diurnal signal (T2, Td2, 850WMAG, 850T, 850Td,

PREC, MUCAPE, and WSHR). In the subsequent

analyses of ensemble variance and MSE, comparisons

are made between ensemble subsets that have different

numbers of members. Thus, it should be kept in mind

that the forecast probability distribution function (PDF)

sampled by the smaller ENS4 membership should be

less representative of the forecast PDF than the larger

ENS20 membership, which would imply a less ‘‘certain’’

estimate of the ensemble variance in ENS4.

For the computation of MSE and the application of

a bias-correction procedure in section 3a(4), operational

20-km grid-spacing Rapid Update Cycle (RUC) model

analyses provided by NCEP and available at 1-hourly

temporal resolution are used as ‘‘truth’’ for nonprecipitation

fields. The RUC analyses are generated using hourly

TABLE 3. ENS20 Ensemble member specifications. The members are grouped into five-member subsets that have the same cumulus

parameterizations. The ICs/LBCs table elements represent various SREF members and the remaining table elements are described in the

text.

Ensemble

member ICs/LBCs

Cumulus

scheme Microphysics Surface layer

Boundary

layer

ENS20BMJ

1 em_ctl BMJ Thompson Janjić Eta MYJ

2 em_p1 BMJ WSM-6 Janjić Eta MYJ

3 em_n1 BMJ WSM-6 Monin–Obukhov YSU

4 nmm_ctl BMJ Thompson Monin–Obukhov YSU

5 nmm_p1 BMJ Ferrier Monin–Obukhov YSU

ENS20KF

6 nmm_n1 KF Thompson Janjić Eta MYJ

7 eta_ctl1 KF WSM-6 Janjić Eta MYJ

8 eta_n1 KF WSM-6 Monin–Obukhov YSU

9 eta_n2 KF Thompson Monin–Obukhov YSU

10 eta_n3 KF Ferrier Monin–Obukhov YSU

ENS20GD

11 eta_n4 Grell Thompson Janjić Eta MYJ

12 eta_p1 Grell WSM-6 Janjić Eta MYJ

13 eta_p2 Grell WSM-6 Monin–Obukhov YSU

14 eta_p3 Grell Thompson Monin–Obukhov YSU

15 eta_p4 Grell Ferrier Monin–Obukhov YSU

TABLE 4. As in Table 3, but for ENS20phys ensemble member specifications.

Ensemble

member ICs/LBCs

Cumulus

scheme Microphysics Surface layer

Boundary

layer

ENS20
phys
BMJ

16 eta_ctl2 BMJ Thompson Janjić Eta MYJ

17 eta_ctl2 BMJ WSM-6 Janjić Eta MYJ

18 eta_ctl2 BMJ WSM-6 Monin–Obukhov YSU

19 eta_ctl2 BMJ Thompson Monin–Obukhov YSU

20 eta_ctl2 BMJ Ferrier Monin–Obukhov YSU

ENS20
phys
KF

21 eta_ctl2 KF Thompson Janjić Eta MYJ

22 eta_ctl2 KF WSM-6 Janjić Eta MYJ

23 eta_ctl2 KF WSM-6 Monin–Obukhov YSU

24 eta_ctl2 KF Thompson Monin–Obukhov YSU

25 eta_ctl2 KF Ferrier Monin–Obukhov YSU

ENS20
phys
GD

26 eta_ctl2 Grell Thompson Janjić Eta MYJ

27 eta_ctl2 Grell WSM-6 Janjić Eta MYJ

28 eta_ctl2 Grell WSM-6 Monin–Obukhov YSU

29 eta_ctl2 Grell Thompson Monin–Obukhov YSU

30 eta_ctl2 Grell Ferrier Monin–Obukhov YSU
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intermittent three-dimensional variational data assimi-

lation (3DVAR) cycles in which recent observations

from various sources (e.g., wind profiler, radar, aircraft,

surface aviation routine weather reports (METARs,

satellites, etc.) are assimilated using the previous 1-h

RUC model forecasts as the background field. Additional

information on the RUC model is found in Benjamin

et al. (2004a,b). For precipitation fields, stage IV mul-

tisensor rainfall estimates (Baldwin and Mitchell 1997)

are used. The ensemble variance and MSE are computed

according to Eqs. (B7) and (B6), respectively, in Eckel

and Mass (2005), which are designed to account for an

ensemble with a finite number of members. Finally, to

obtain a more equitable comparison between the 4- and

20-km forecast fields, the 4-km fields were remapped to

a 20-km grid covering the central United States, which is

simply a subdomain of the ENS20 members, using a

neighbor-budget interpolation (e.g., Accadia et al. 2003).

3. Results

a. Spread growth

1) ENSEMBLE VARIANCE TIME SERIES

To illustrate the temporal evolution of spread growth

during the 33-h forecast period, time series of the aver-

age ensemble variance for all 12 fields at 3-hourly in-

tervals with box plots overlaid to show variability are

displayed in Fig. 3. To compare 4- and 20-km ensembles

with the same types of perturbations, each panel in Fig. 3

displays the ensemble variance for ENS4 and ENS20, or

ENS4phys and ENS20phys. Note that the different y-axis

scales in Fig. 3 do not allow an easy comparison of the

growth rates between ensembles with both IC/LBC

perturbations and mixed physics and those with only

mixed physics (Phys) for each field; these comparisons

are made in the next section. A number of distinct fea-

tures can be seen in these time series. First, for the mass-

related fields (Figs. 3a–h), ENS4 and ENS20 (Figs. 3a,

3c, 3e, and 3g) have a generally linear increase in mean

spread and it appears that ENS4 spread is increasing at

a faster rate than ENS20, which is a generally expected

pattern of behavior because the smaller scales being

resolved in ENS4 should be associated with faster per-

turbation growth that feeds back to the larger scales

(e.g., Lorenz 1969). Also, the biggest differences be-

tween ENS4 and ENS20 at each time occur at the higher

ends of the variance distributions; that is, differences in

the upper part of the box-plot ranges are greater than

differences in the lower part, indicating that the distri-

butions are more right skewed in ENS4 relative to

ENS20. For the mass-related fields in ENS4phys and

ENS20phys (Figs. 3b, 3d, 3f, and 3h), the ENS20phys mean

spread increases at a faster rate than in ENS4phys, with

the exception of mean MSLP spread (Fig. 3h), which

appears to be similar. In addition, the spread increases in

ENS4phys and ENS20phys are not linear as they were for

ENS4 and ENS20, but instead have a ;6-h period

during forecast hours 21–27 (1800–0000 UTC), during

which the spread increases at a noticeably faster rate

than at the other times. This 6-h period corresponds to

when peak insolation occurs and likely corresponds to

when the different physics parameterizations are most

active and thus result in the most spread increase.

For example, in the central United States, the boundary

layer typically reaches its maximum depth by early af-

ternoon so that turbulent processes that must be pa-

rameterized are occurring over a relatively deep layer.

In addition, peak heating and the resulting well-mixed

boundary layers also lead to shallow and deep convec-

tive clouds, requiring microphysics and cumulus (only

for ENS20 and ENS20phys) parameterizations to be

more active relative to other times.

For the low-level fields (Figs. 3i–x), ENS4 and ENS20

mean variances (Figs. 3i, 3k, 3m, 3o, 3q, 3s, 3u, and 3w)

have clear diurnal signals superimposed on increasing

trends. The differences in the mean variances between

ENS4 and ENS20 vary among the different fields ana-

lyzed. For example, the 850WMAG variances in ENS4

and ENS20 are very similar over the entire forecast

FIG. 2. Gray-shaded dates indicate when 10-member SSEF system simulations were con-

ducted for SE07and dark gray shading indicates which cases are used in the analysis for this

study.
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period (Fig. 3m); Td2 variances and variance growth

rates are higher in ENS4 relative to ENS20 for most of

the forecast period (Fig. 3k), and WSHR variances are

similar until forecast hour 21, when there is a marked

increase in ENS4 variances relative to ENS20 (Fig. 3w).

The amplitude and phase of the diurnal signal also vary

among the different fields. For example, the 850T and

850Td ENS4 and ENS20 variances (Figs. 3o and 3q,

FIG. 3. Time series of mean ensemble variance from ENS4 (gray line) and ENS20 (black line) for the following variables: (a) 500Z,

(c) 700Z, (e) 850Z, (g) MSLP, (i) T2, (k) Td2, (m) 850WMAG, (o) 850T, (q) 850Td, (s) PREC, (u) MUCAPE, (w) WSHR.

(b),(d),(f),(h),( j),(l),(n),(p),(r),(t),(v),(x) As in (a),(c),(e),(g),(i),(k),(m),(o),(q),(s),(u),(w) but for ENS4phys (gray line) and ENS20phys

(black line). Box plots overlay the mean at each time interval. For the box plots, the interquartile range (IQR) is indicated by the area

enclosed by a box, outliers defined by values outside of 1.5 3 IQR are marked by dots, and horizontal lines mark the smallest and largest

values that are not outliers.
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respectively) have smaller amplitudes relative to the

other low-level fields, and peak variances occur for

850WMAG around 0900–1500 UTC (Fig. 3m), for PREC

at 0600–0900 UTC (Fig. 3s), and for MUCAPE at 2100–

0000 UTC (Fig. 3u). The peak variances tend to match

the time at which the forecasts of the variable consid-

ered are maximized. To illustrate this pattern of be-

havior, time series of mean domain-averaged T2 from all

cases for ENS4 and ENS20 members and ensemble

means, as well as RUC analyses, are displayed in Fig. 4.

The peak T2 values occur around forecast hour 25 when

there also appears to be the most spread in domain-

averaged T2 among the ensemble members. Also worth

noting in Fig. 4 is that all ENS4 members are cooler than

the RUC analyses when T2 peaks; however, ENS20 has

about equal numbers of members with warm and cool

biases resulting in a mean that is very close to the RUC

analysis. Coniglio et al. (2009) found similar cool biases

for mean 2-m temperatures in convection-allowing

WRF model simulations run over the central United

States during spring 2008.

2) VARIANCE GROWTH RATES

It was possible to subjectively infer differences in the

mean ensemble variance growth rates from the analy-

sis conducted in Fig. 3; however, to compare ENS4

and ENS20 to ENS4phys and ENS20phys, and to better

quantify mean variance growth rates, a simple objective

method was developed using a standard formula for the

growth rate:

(Var
f
�Var

i
)

Var
i

3 100%, (1)

where Vari and Varf are the initial and final mean vari-

ance, respectively. To reduce the impacts of the diurnal

cycle signal on the variance growth rates, mean vari-

ances at forecast hours 9 and 33 are used as the initial

and final values, respectively, because these forecast

hours are separated by 24 h or one complete diurnal

cycle. Also, to smooth out some of the higher-frequency

variability in the mean variance time series, the Lowess

function in the R statistical software package (R Devel-

opment Core Team 2009), which uses locally weighted

polynomial regression, was used as a low-pass filter. For

mass-related and low-level fields, the proportions of

points influencing the filtered value at each forecast

hour, or the ‘‘smoother span,’’ were set to 0.25 and

0.1667, respectively (i.e., ;eight and six points). A

slightly larger smoother span was used for the mass-

related fields than for low-level fields to adequately filter

particularly high-frequency variability during the first

12 h of the forecasts for the mass-related fields. Finally,

the mean variances at all forecast hours from the ENS4phys,

ENS20, ENS20phys, and ENS20phys
cp subsets were adjusted

by the differences between their variances at forecast

hour 9 and that from ENS4 (i.e., the entire time series

was shifted by a constant). Thus, the variance growth for

all ensemble subsets was computed relative to the same

initial mean variance (i.e., the ENS4 mean variance) to

allow for comparison between ensemble subsets. The

adjusted variance can be expressed as

s2
ENS* 5 s2

ENS 1 [s2
ENS(fhr9) � s2

ENS4(fhr9)], (2)

where s2
ENS* is the adjusted variance at any forecast

hour for a specified ensemble subset; s2
ENS and s2

ENS(fhr9)

are the unadjusted variances for the specified ensemble

subset at any forecast hour and at forecast hour 9, re-

spectively; and s2
ENS4(fhr9) is the unadjusted variance at

forecast hour 9 for the ENS4 ensemble. This adjustment

step was important because the growth rates are sensi-

tive to the initial variance, which changes according to

the field and ensemble subset. Using this procedure to

compute the spread growth rate, a 100% growth rate for

any field can be interpreted as a 24-h doubling of spread

relative to the initial spread in ENS4. Statistical signifi-

cance tests were performed for growth rate comparisons

of ENS4 versus ENS20 and ENS4phys versus ENS20phys

for each field using Welch’s t test (a 5 0.05). This test

determined whether the differences between the aver-

age filtered and adjusted variances of ENS4 and ENS20

(or ENS4phys and ENS20phys) at forecast hour 331 were

significant.

FIG. 4. Time series of mean domain-averaged 2-m temperature

from all cases for the ENS4 and ENS20 ensemble members and

means, along with the RUC analysis.

1 Note that after variances are adjusted to the same initial value

at forecast hour 9, the variance at forecast hour 33 is the value that

determines the growth rate; hence, variances at forecast hour 33 are

used for the significance tests.
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The mean variance growth rates obtained from this

methodology are shown in Fig. 5 (statistically significant

differences are indicated by asterisks). For mass-related

fields, ENS4 growth rates are ;30% higher than those of

ENS20 with differences that are statistically significant.

These differences are consistent with faster perturbation

growth expected as smaller scales are resolved that feed

back to the larger scales (Lorenz 1969; Smagorinsky

1969). The ENS20cp subsets (i.e., five-member subsets

with same CPs) tend to have slightly lower growth rates

than ENS20, which is consistent with ENS20 having

one additional source of model uncertainty relative to

the ENS20cp subsets from varied CPs. ENS20 also has

one more source of model uncertainty than ENS4, but

higher resolution in ENS4 apparently has a greater im-

pact than the additional model uncertainty in ENS20

because ENS4 has much higher growth rates.

For the mass-related fields, the ‘‘mixed-physics only’’

ensemble subsets (denoted Phys in Fig. 5) have growth

rates ;90% lower than the subsets with both sets of

perturbations (denoted IC/LBC1Phys in Fig. 5). The

much lower growth rates for mass-related fields when

using only mixed physics are similar to results found by

Kong et al. (2007) using a similar dataset. The differ-

ences in growth rates occur because the different physics

schemes that parameterize the surface and boundary

layer processes mainly influence the PBL, so that mass-

related fields dependent on an entire vertical column

of the atmosphere exhibit little impact. In addition,

the different microphysics and cumulus parameteriza-

tions, which can possibly have a more direct influence on

layers of the atmosphere above the PBL, are only im-

pacted where the schemes are active, which is usually

only over a small fraction of the domain. On the other

hand, IC perturbations can directly affect all atmospheric

layers and are present over the entire model domain.

All of the growth rates for mass-related fields in

ENS20phys are larger than those from ENS4phys with

differences that are statistically significant. Thus, unlike

the ENS4 versus ENS20 comparison, the impact of one

additional source of model uncertainty in ENS20phys

(from varied CPs) is greater than the impact of higher

FIG. 5. Mean variance growth rates from the ENS4, ENS4phys, ENS20, and ENS20phys ensembles for fields shown in

Fig. 3. Growth rates for five-member subsets of ENS20 and ENS20phys that have the same cumulus parameterization

are also shown (marked by the horizontal lines on the lightest gray histogram). The histograms to the left for each

variable indicate growth rates for ensembles that have IC/LBC perturbations and mixed physics (IC/LBC1Phys) and

the ones to the right are for mixed-physics-only ensembles (Phys). Asterisks below the histogram sets indicate sta-

tistically significant differences between ENS4 and ENS20 or ENS4phys and ENS20phys [black (gray) asterisks in-

dicate that ENS4 or ENS4phys (ENS20 or ENS20phys) had larger growth rates]. A legend is provided at the top of the

figure.
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resolution in ENS4phys. Also, similar to the ENS20cp

subsets, the ENS20phys
cp subsets have smaller growth rates

relative to ENS20phys resulting from having one less

source of model uncertainty (no varied CPs).

For low-level fields, the mean spread growth rates are

much more variable than in the mass-related fields, and

statistically significant differences occur between ENS4

and ENS20 (or ENS4phys and ENS20phys) for T2, Td2,

PREC, and WSHR, with ENS4 (or ENS4phys) having the

higher growth rates for all the significant differences.

This may indicate that, for some variables, higher reso-

lution in ENS4 and ENS4phys results in larger spread

growth rates despite the extra source of model un-

certainty in ENS20 and ENS20phys, but for other vari-

ables, the extra source of model uncertainty in ENS20

and ENS20phys ‘‘balances out’’ the impacts of higher

resolution.

It is suspected that, for some of the low-level fields,

systematic model biases associated with certain param-

eterization schemes and combinations of parameteri-

zation schemes are impacting the growth rates. These

biases are important to consider within the context of an

ensemble because systematic biases that increase fore-

cast uncertainty do so ‘‘artificially’’ since the associated

errors are not uncertain (Eckel and Mass 2005). Thus, as

discussed in recent studies (e.g., Eckel and Mass 2005;

Yuan et al. 2007; Hamill and Whitaker 2007; Yussouf

and Stensrud 2008), calibration should be performed on

raw ensemble output to achieve maximum ensemble

utility. Because the small number of cases examined in

this study makes it difficult to obtain a useful ‘‘training

period,’’ a calibration that could be applied in a real-

time forecasting environment is not attempted. The

possible influence of bias associated with particular CPs

on MUCAPE mean spread growth rates is illustrated by

a time series of domain-averaged MUCAPE values for

all ENS4 and ENS20 ensemble members (Fig. 6). At

forecast hour 33, which is the time used as Varf in the

growth rate calculation [Eq. (1)], ENS20GD members

(11–15) tend to have the largest biases in MUCAPE,

followed by ENS20KF (6–10) and ENS20BMJ (1–5)

members. These biases are consistent with the MUCAPE

mean spread growth rates in Fig. 5 (i.e., larger biases in

MUCAPE at forecast hour 33 inflate the spread and

corresponding growth rates). The impacts of bias on the

variance growth rates will be explored in section 3d.

Some other interesting features are revealed from the

MUCAPE time series. First, for both the ENS4 and

ENS20 ensembles, all members that use the MYJ PBL

scheme tend to have much higher MUCAPE values

than members using YSU, especially for the second di-

urnal peak within the forecast period. In addition, the

ENS4 members that use the Thompson microphysics

with MYJ have higher MUCAPE than members using

the WSM-6 or Ferrier schemes with MYJ. However, in

the ENS20 ensemble, members that use WSM-6 with

MYJ have slightly higher MUCAPE values than mem-

bers using Thompson. Also, the ENS20 MYJ members

tend to have their peak MUCAPE occur about 1–3 h

earlier than in the RUC analysis, but all YSU members

have the peak occurring at the same time as in the RUC

analysis. For the ENS20 ensemble, both MYJ and YSU

members have their peak MUCAPE occurring about

3–4 h earlier than in the RUC analysis. The sensitivity of

MUCAPE to the different PBL schemes very likely

results from systematic temperature and moisture biases

associated with each scheme. For example, it has been

well documented that the YSU method tends to form

boundary layers that are too deep, warm, and dry, while

the MYJ approach has a tendency for relatively shallow,

cool, and moist boundary layers (e.g., Kain et al. 2005;

Weisman et al. 2008).

3) MIXED-PHYSICS ENSEMBLE VARIANCE

CONTRIBUTION

To estimate the percent contribution of mixed physics

to spread in the IC/LBC1Phys ensembles, the ratio of

the mean ensemble variance in the Phys ensembles to

that of the corresponding IC/LBC1Phys ensembles fi.e.,

[Var(Phys)/Var(IC/LBC1Phys)] 3 100%g is computed

for all 12 fields at forecast hours 9 and 33 (Fig. 7). Similar

to the spread growth rate comparisons, statistical signifi-

cance tests were performed using Welch’s t test (a 5 0.05)

for differences in mixed-physics variance contributions

between ENS4 and ENS20. Note the actual contribu-

tions to the ensemble spread in the IC/LBC1Phys

FIG. 6. Time series of mean domain-averaged MUCAPE for the

ENS20 ensemble members and RUC analyses. A legend is pro-

vided in the upper-right portion of the plot with numbers indicating

ENS20 ensemble members corresponding to those listed in Table 3.
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ensembles not only result from separate contributions

from IC/LBC perturbations and mixed physics, but also

from an interaction term (which could be positive or

negative) between the two error sources. Because en-

sembles using only IC/LBC perturbations were not used

in this experiment, it is not possible to diagnose this in-

teraction term, and the estimate of spread contribution

from mixed physics assumes the interaction term is

negligible.

For mass-related fields, the mixed-physics variance

contributions in ENS20 are larger than in ENS4 with

differences that are statistically significant, consistent

with the additional model uncertainty in ENS20 from

varied CPs. The ENS20cp subsets generally have con-

tributions similar to those in ENS4. The mixed-physics

contributions to ensemble spread for mass-related fields

decrease as higher atmospheric levels are examined,

which likely occurs because the higher levels are im-

pacted less by the boundary layer where the boundary

layer physics have the greatest impact (Fig. 7). Rela-

tive to the low-level fields, mixed-physics contribu-

tions to ensemble spread are generally much smaller for

the mass-related fields, which is consistent with earlier

discussed results (e.g., Figs. 3 and 5). Perhaps the most

noticeable feature for the mass-related fields in Fig. 7 is

that the mixed-physics variance contributions for all

ensemble subsets are higher at forecast hour 33 than 9,

implying that the influence of model uncertainty on

ensemble spread increases within the forecast period

analyzed.

For the low-level fields, similar to the variance growth

rates (Fig. 5), there is much more variability in the var-

iance contributions among the different fields examined.

Mixed-physics variance contributions range from around

10% for 850Td in ENS4 at forecast hour 9 to around 85%

for PREC in ENS4 and ENS20 at forecast hour 33. Fur-

thermore, similar to the mass-related fields, the ensemble

subsets for most of the low-level fields have increasing

mixed-physics variance contributions with increasing

forecast lead time. By far, the highest mixed-physics

variance contributions occur with PREC, which is not

surprising because, overall, the physics parameterizations

are particularly active in association with precipitation

and two of the parameterizations (cumulus and micro-

physics schemes) are directly associated with precip-

itation production.

FIG. 7. Mean variance ratio [%; Var(ENS4phys)/Var(ENS4) and Var(ENS20phys)/Var(ENS20)] from the 4- and

20-km grid-spacing ensembles and from the five-member 20-km ensemble subsets for the fields in Fig. 3. The his-

tograms to the left (right) for each field are for forecast hour 9 (33). Asterisks below the histogram sets indicate

statistically significant differences between ENS4 and ENS20 [black (gray) asterisks indicate ENS4 (ENS20) had

larger variance contributions]. A legend is provided at the top of the figure.
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4) IMPACTS OF MODEL BIASES ON MEAN

VARIANCE GROWTH RATES

To explore the impacts that biases in different fields

have on the mean spread growth rates, systematic and

nonsystematic biases are removed from each ensemble

member for each field at all forecast hours using a

procedure based on probability matching (Ebert 2001)

described by Clark et al. (2009). The procedure uses

probability matching to reassign the distribution of a

forecast field with that of the observed field (RUC or

stage IV analysis), so that the modified forecast fields

have the same spatial patterns as the original forecasts,

but have values adjusted so the distribution of their

amplitudes exactly matches that of the analyses resulting

in zero bias. Thus, the adjusted ensemble member fore-

casts all have the same distribution of values in the

analyses, but with different spatial patterns. Ensemble

variances computed from the adjusted forecasts can be

interpreted as the variance resulting solely from the

placement of ‘‘features.’’

The mean variance growth rates for ‘‘bias corrected’’

fields along with the differences between the bias-

corrected growth rates and raw growth rates are dis-

played in Fig. 8. For the mass-related fields, the growth

rates for the IC/LBC1Phys ensembles are noticeably

less relative to the raw growth rates, as shown by the

growth rate differences (Fig. 8b). In addition, the dif-

ferences between the ENS4 and ENS20 bias-corrected

growth rates are much less than those for the raw growth

rates and are no longer significant, which implies that the

higher spread in raw ENS4 mass-related fields relative to

ENS20 (Fig. 5) can be attributed to larger differences in

forecasts of the amplitude of features as opposed to their

placement.

In general, the variance growth rates for the low-level

fields change less than for the mass-related fields after

the bias-correction procedure is applied (Fig. 8b), which

may be related to differences in the evolution of am-

plitude errors with increasing forecast lead time. For the

mass-related fields, IC/LBC perturbations mainly con-

tribute to amplitude errors, which become larger as fore-

cast lead time increases. Thus, applying the bias-correction

procedure, which eliminates all amplitude errors, will de-

crease the ensemble variance more at the later lead times

resulting in slower spread growth rates. However, for

the low-level fields, the physics perturbations can

quickly create large differences in the amplitude of

features. However, these differences can quickly satu-

rate (e.g., Stensrud et al. 2000) so that at later forecast

lead times the amplitude errors are similar to those at

earlier times. Thus, eliminating all amplitude errors will

affect the ensemble variance similarly at all forecast lead

times and variance growth rates will not be strongly

impacted. The variance growth rates for low-level fields

that are strongly impacted by bias correction are likely

those that have amplitude errors (bias) that change with

forecast lead time. For example, the domain-averaged

time series of T2 (Fig. 4) implies that T2 biases are

similar for corresponding periods within the diurnal

cycles for the ENS4 and ENS20 ensemble members.

Consistent with these similar biases, the growth rates for

bias-corrected T2 are not very different from the raw T2

growth rates. However, domain-averaged time series of

MUCAPE (Fig. 6) show that MUCAPE biases during

the latter part of the forecast (hours 24–33) are very

different than those from the first part of the forecast

(hours 0–9), and, consistent with the different biases,

some of the growth rates for bias-corrected MUCAPE

change dramatically relative to the raw MUCAPE

growth rates (Fig. 8b).

To more clearly show how the variance growth rates

are affected by the bias-correction procedure, time se-

ries of mean differences between raw and bias-corrected

ensemble variances for MSLP, T2, and MUCAPE are

shown in Fig. 9. As discussed above, for MSLP, the bias

correction reduces the ensemble variance more at later

forecast lead times (Figs. 9a and 9b). Trends are not as

noticeable for the other low-level fields. However, it is

clear from Fig. 9f that the impacts of the bias correc-

tion are dependent on the CP used; for ENS20GD

(ENS20BMJ), the bias-correction procedure results in

more (fewer) positive ensemble variances at later fore-

cast lead times. Furthermore, ENS20BMJ has larger

mean ensemble variances than ENS4 and ENS20 as well

as the other ENS20cp subensembles, which should be

investigated further in future work.

Other notable features from the bias-corrected growth

rates in Fig. 8 are that ENS4 almost always has higher

growth rates than ENS20, which is expected because

smaller scales of motion (which have faster growth rates)

are resolved in ENS4. However, for many of the vari-

ables (e.g., PREC, MUCAPE, and T2), ENS20cp sub-

ensembles actually have larger mean spread growth

rates than ENS20. This is unexpected behavior because

one less source of model uncertainty in ENS20cp should

result in slower spread growth. Further analyses, which

are beyond the scope of this paper, are needed to explain

this unexpected behavior.

b. Spread–skill relationship

Ideally, in a skillful ensemble that accurately accounts

for all sources of forecast uncertainty, the ensemble

variance should be a reliable predictor of the forecast

skill (e.g., Grimit and Mass 2007). To quantify the var-

iance–MSE relationship, past works have used linear
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correlations (e.g., Jones et al. 2007). This study also

employs variance–MSE linear correlations, but care

should be taken when interpreting the correlation co-

efficients because, as shown by Grimit and Mass (2007),

error statistics tend to exhibit increasing variance with

increasing ensemble spread so that the variance–MSE

relationship cannot be assumed to be linear. Thus, as

noted in a similar analysis conducted by Jones et al.

(2007), the linear correlation coefficients only provide

an estimate of the predictability of ensemble skill.

FIG. 8. (a) As in Fig. 5, but for bias-corrected forecasts. (b) Differences between the bias-corrected and raw growth

rates (bias-corrected minus raw).
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Statistical consistency describes how well the ensem-

ble variance matches the MSE when averaged over

many cases (Talagrand et al. 1999; Eckel and Mass

2005). Thus, unlike the variance–MSE relationship, the

amount of correlation is not considered with statistical

consistency. A statistical consistency analysis can also

provide information on whether an ensemble system is

over- or underdispersive. In an underdispersive (over-

dispersive) ensemble the average MSE is larger (smaller)

than the ensemble variance. In this study, the variance–

MSE and statistical consistency analyses are used as

simple methods for inferring the impacts of the different

spread growth rates on the quality of the ensemble

forecasts. Note that we only examine spread–skill met-

rics for the ensembles that have both IC/LBC pertur-

bations and mixed physics because the lack of IC/LBC

perturbations in ENS4phys and ENS20phys degrades the

statistical consistency for all fields (not shown).

To illustrate the variance–MSE correlation in the

ENS4 and ENS20 ensembles for the different fields ex-

amined, scatterplots of ensemble variance versus MSE

are displayed in Fig. 10. Each panel in Fig. 10 contains

variance–MSE points for each case and for each forecast

hour (20 cases 3 33 times 5 660 points for each panel)

and correlation coefficients indicate the degree of cor-

respondence between the ensemble variance and MSE

(i.e., the reliability of ensemble variance as a predictor

of forecast skill). Rank histograms (e.g., Hamill 2001)

provided in Fig. 10 valid at forecast lead times of 9 and 33 h

also provide information regarding the representation

of forecast uncertainty: flat rank histograms imply an

accurate depiction of forecast uncertainty, U-shaped

(n shaped) rank histograms imply underdispersion

(overdispersion), and right (left) skewness indicates

a tendency for overprediction (underprediction). To

allow for a more convenient comparison between ENS4

and ENS20, the 16 bins composing the ENS20 rank his-

tograms were regrouped into 6 bins that each contain an

equal portion of the original 16 bins.2 This ‘‘regrouping’’

technique has also been used in Clark et al. (2009).

To illustrate the statistical consistency, the average

MSE and ensemble variance at forecast hours 9 and 33

for fields in ENS4 and ENS20 are shown in Fig. 11.

These forecast hours are chosen because they were the

times used to compute the spread growth rates. To es-

timate whether the variance–MSE differences between

ENS4 and ENS20 were statistically significant, a resam-

pling procedure using a 95% confidence interval was

applied (Wilks 1995, 145–150). Differences between

average randomly resampled variance and MSE for two

FIG. 9. Differences in mean ensemble variance between the raw and bias-corrected forecasts from ENS4 and

ENS20 for the following fields: (a) MSLP (hPa2), (c) T2 (K2), (e) MUCAPE [(J kg21)2]. (b),(d),(f) As in (a),(c),(e)

but for the ENS20cp configurations. The triangles denote forecast hours 9 and 33, which are the times used in the

computation of variance growth rates.

2 The formulas for regrouped rank histogram bins can be expressed

as follows: ENS20regroup(1) 5 ENS20(1) 1 ENS20(2) 1 ENS20(3) 3
2/3, ENS20regroup(2) 5 ENS20(3) 3 1/3 1 ENS20(4) 1 ENS20(5) 1

ENS20(6) 3 1/3, ENS20regroup(3) 5 ENS20(6) 3 2/3 1 ENS20(7) 1

ENS20(8), ENS20regroup(4) 5 ENS20(9) 1 ENS20(10) 1 ENS20(11)

3 2/3, ENS20regroup(5) 5 ENS20(11) 3 1/3 1 ENS20(12) 1

ENS20(13) 1 ENS20(14) 3 1/3, and ENS20regroup(6) 5 ENS20(14) 3
2/3 1 ENS20(15) 1 ENS20(16), where ENS20regroup(x) is the value

for regrouped rank histogram bins x 5 1, 2, . . . , 6, and ENS20(x) is the

value for raw rank histogram bins x 5 1, 2, . . . , 16.

606 W E A T H E R A N D F O R E C A S T I N G VOLUME 25



FIG. 10. Scatterplots of ensemble variance vs MSE of the ensemble mean from ENS4 (black dots) for the raw fields: (a) 500Z, (c)

700Z, (e) 850Z, (g) MSLP, (i) T2, (k) Td2, (m) 850WMAG, (o) 850T, (q) 850Td, (s) PREC, (u) MUCAPE, (w) WSHR.

(b),(d),(f),(h),(j),(l),(n),(p),(r),(t),(v),(x) As in (a),(c),(e),(g),(i),(k),(m),(o),(q),(s),(u),(w) but for ENS20 (gray dots). Correlation coefficients

are provided in the top-right corner of each panel and rank histograms for ENS4 (black outline) and ENS20 (gray shaded) for forecast hours 9

and 33 are displayed in the bottom-right corner of the ENS20 plots.
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artificial datasets were computed 10 000 times, and the

distribution of the differences between the two artificial

datasets was used to determine whether the ‘‘true’’

statistic fell outside of the 95% confidence interval,

which would suggest statistical significance.

For mass-related fields in Figs. 10a–h, the variance–

MSE correlations in ENS4 and ENS20 are very low

suggesting that the ensemble variance is not a reliable

indicator of forecast skill for these fields. The highest

correlations occur for the MSLP forecasts from ENS4

(R2 5 0.19). Considering previous work that has also

found small spread–error correlations for fields like

midtropospheric geopotential height (e.g., Buizza 1997),

these results are not surprising. However, there are no-

ticeable differences in the distribution of variance–MSE

points for the mass-related fields: in ENS4 there are

more points to the right of the diagonal than in ENS20,

indicating that ensemble variance is greater than MSE

more frequently in ENS4. Furthermore, the variance–

MSE points in ENS20 appear to be positioned in a verti-

cally oriented ‘‘plume,’’ while those in ENS4 veer toward

the right (i.e., toward higher values of ensemble variance).

These results for mass-related fields are reflected by

the statistical consistency analyses in Figs. 11a–d. At

forecast hour 33, differences between ensemble variance

and MSE in ENS4 are noticeably less than in ENS20

indicating that ENS4 is more statistically consistent than

ENS20 (although, the differences were only found to be

significant for 850Z and MSLP). The better statistical

consistency in ENS4 results not only from greater spread

at forecast hour 33, but also from lower MSEs relative

to ENS20 (Figs. 11a–d). Furthermore, while ENS4

forecasts for mass-related fields do not exhibit much

change in statistical consistency between forecast hours

9 and 33, ENS20 forecasts become increasingly under-

dispersive. The increasing underdispersion in ENS20 is

also indicated by the change to more ‘‘u shaped’’ rank

histograms (Figs. 10b, 10d, 10f, and 10h; gray shaded) from

forecast hours 9 to 33. The ENS4 rank histograms (Figs.

10b, 10d, 10f, and 10h; black outline) do not exhibit a no-

ticeable pattern of change in shape and are right skewed at

both times, implying underprediction of mass-related

fields. This underprediction could possibly result from

a general cool bias in the lower part of the troposphere,

but further examination is beyond the scope of this study.

For mass-related fields, the statistical consistency results

imply that the faster spread growth rates in ENS4 are

contributing to more reliable forecasts than in ENS20.

The variance–MSE correlations for low-level fields in

ENS4 and ENS20 (Figs. 10i–x) are quite variable among

the fields examined, with 850WMAG (Figs. 10m and

10n), PREC (Figs. 10s and 10t), MUCAPE (Figs. 10u

and 10v), and WSHR (Figs. 10w and 10x) having the

FIG. 11. Average MSEs of the ensemble means and ensemble

variances at forecast hours 9 and 33 for the ENS4 and ENS20 en-

sembles for the fields following fields (a) 500Z (m2), (b) 700Z (m2),

(c) 850Z (m2), (d) MSLP (hPa2), (e) T2 (K2), (f) Td2 (K2), (g)

850WMAG [(m s21)2], (h) 850T (K2), (i) 850Td (K2), (j) PREC

(mm2), (k) MUCAPE [(J kg21)2], (l) WSHR [(m s21)2]. The times

at which differences between the ensemble variance and MSE

differences in ENS4 and ENS20 are statistically significant are

highlighted with darker shades of gray.
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highest values. Furthermore, the rank histograms indicate

that ENS4 and ENS20 both suffer from systematic biases

and/or underdispersion for most of the low-level fields.

For example, warm T2 biases and dry Td2 biases are re-

vealed from the right- and left-skewed rank histograms,

respectively, in Figs. 10i–l. Also, the U-shaped rank his-

tograms for 850Td (Fig. 10q) imply underdispersion. The

statistical consistency analyses (Figs. 11e–l) show that by

forecast hour 33 there is little difference between ENS4

and ENS20 in terms of statistical consistency for the

temperature and dewpoint fields (T2, Td2, 850T, and

850Td), while ENS4 has better statistical consistency for

the other fields (850WMAG, PREC, MUCAPE, and

WSHR, all of which have differences that are statistically

significant). Similar to the mass-related fields, the more

statistically consistent forecasts for low-level fields in

ENS4 appear to result from a combination of lower MSEs

and higher ensemble variances relative to ENS20.

4. Summary and discussion

This study compared ensemble spread growth and

spread–error relationships for 12 different fields in

a 4-km grid-spacing convection-allowing WRF model

ensemble to that from a similarly configured but coarser

20-km grid-spacing convection-parameterizing WRF

model ensemble. Ensemble subsets that used both IC/

LBC perturbations and mixed physics were compared

along with subsets that only contained mixed physics. In

addition, the contribution of ensemble variance from

the mixed physics in the 4- and 20-km ensembles was

inferred by comparing the mixed-physics-only ensemble

subsets to those that contained both IC/LBC perturba-

tions and mixed physics. A total of 20 cases were ex-

amined for a domain centered over the central United

States. Our main findings are summarized below. In

addition, Table 5 highlights the main differences that

were observed for the various ensemble comparisons.

Spread growth rates for mass-related fields were

higher in ENS4 than in ENS20 by about 30%. The

mixed-physics-only ensemble subsets (Phys) had much

smaller spread growth rates than did ensemble subsets

with both IC/LBC perturbations and mixed physics (IC/

LBC1Phys). For low-level fields, spread growth rates

were quite variable among the different fields examined;

however, for all of the statistically significant differences

between ENS4 and ENS20 (or ENS4phys and ENS20phys),

the 4-km ensembles had the higher spread growth rates.

The differences between spread growth rates in 4- and 20-

km ensemble configurations are summarized in the first

two columns of Table 5.

The contributions to spread from mixed physics in the

mass-related fields were generally much smaller than

those for the low-level fields, consistent with the differ-

ences between the IC/LBC1Phys and Phys spread

growth rates. In addition, the contribution to spread

from mixed physics increased with increasing forecast

lead time. Similar to the spread growth rates, there was

much more variability in the spread contributions

among the different low-level fields than for the mass-

related fields. For most of the statistically significant

differences between the ENS4 and ENS20 mixed-

physics spread contributions, ENS20 had larger contri-

butions (third and fourth columns of Table 5), which was

related to ENS20 having an additional source of model

uncertainty in the form of varied cumulus parameteri-

zations.

It was suspected from examination of time series for

domain-averaged low-level fields that systematic model

biases may be having an impact on the mean ensemble

spread, as found by Clark et al. (2009). To explore these

potential impacts, biases in all forecast fields were re-

moved by replacing the distributions of values in the

forecast fields with the distribution of values in the

corresponding RUC or stage IV analyses as described by

Clark et al. (2009). It was found that the spread growth

rates for the mass-related fields tended to be impacted

mostly by the bias-correction procedure, which may be

related to differences in how amplitude errors evolve

with increasing forecast lead time. The MUCAPE

fields in the ENS20BMJ and ENS20GD ensemble subsets

were found to be the low-level fields most influenced by

the bias-correction procedure because of different sys-

tematic biases at later forecast lead times relative to

earlier ones.

Finally, to put the spread growth rates for the different

fields examined into an appropriate forecasting context,

an analysis of the variance–MSE relationship and sta-

tistical consistency was conducted. This analysis was

important because increased ensemble dispersion does

not necessarily imply a better spread–skill relationship.

Variance–MSE correlation coefficients indicated that,

in general, ensemble variance was not a reliable in-

dicator of forecast uncertainty. Furthermore, at forecast

hour 33, ENS4 had better statistical consistency than

ENS20 for mass-related fields (850WMAG, PREC,

MUCAPE, and WSHR); however, for temperature and

dewpoint fields (T2, Td2, 850T, and 850Td), there were

no noticeable differences (fifth column of Table 5). It

was found that a combination of higher spread and lower

MSEs contributed to the improved statistical consis-

tency in ENS4.

Generally, the results from this study could be inter-

preted as being encouraging for future convection-allowing

ensemble systems simply because of the improved sta-

tistical consistency for many fields. However, additional
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work is needed to diagnose why the higher resolution of

ENS4 did not seem to improve the spread–error metrics

for temperature and dewpoint fields. Perhaps the pa-

rameterization schemes that the temperature and dew-

point fields depend on are simply not very sensitive to

grid spacing, or perhaps a reduction of the large sys-

tematic errors in the temperature and dewpoint fore-

casts would result in better statistical consistency.

Further work should also analyze larger sets of cases for

different periods and regions. Because this study focuses

on the spring season in the central United States, a time

period and region characterized by frequent convective

systems, examination of other times/regions in which

strong convection is not as prevalent may give different

results. Furthermore, it would be very useful to assess

how much the improved statistical consistency in some

fields increases the skill of probabilistic forecasts. Fi-

nally, the behavior of the ensemble spread observed in

this study should be helpful for designing future en-

sembles. In particular, the variety of results for different

fields suggests that future ensemble design should give

careful consideration to the specific types of forecast

fields desired by the user. Also, the recognition of sys-

tematic model biases should provide motivation for

improving the physics parameterizations used with

convection-allowing grid spacing.
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