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ABSTRACT 

Verification of precipitation is one of the major issues in evaluating numerical 

weather prediction. In this study, a recently developed neighbourhood-based method in 

terms of agreement scales is applied to characterize scale-dependent spatial spread-skill 

relationship of precipitation forecasts in a 3-km convection-allowing ensemble 

prediction system (EPS) over the Yangtze-Huaihe river basin of China. Thirty cases 

during the Meiyu season of 2013 are classified into two weather regimes, large coverage 

(LC) and small coverage (SC) based on the precipitation fractional coverage. Overall, 

precipitation distributions for these two weather regimes are reasonably forecast by the 

EPS. The results show that the spatial spread-skill relationship depends highly on the 

weather regime. The spatial spread-skill relationship under SC is poorer and shows 

more diurnal variations compared to that under LC. In addition, this paper extends the 

neighbourhood-based method to investigate the relative influence of precipitation 

intensity and placement on the spatial spread-skill relationship. With increasing 

precipitation threshold, the relative impact of precipitation intensity on the relationship 

gradually decreases, and the influence of precipitation placement becomes dominant. 
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2. Introduction 

Accurate precipitation forecasts have been particularly challenging for numerical 

weather prediction models. In last decade, as the convection-allowing models have been 

developed rapidly (Kawabata et al., 2007; Baldauf et al., 2011; Seity et al., 2011), 

convection-allowing ensemble prediction systems (EPSs), which explicitly depict 

convection and take the uncertainties from many sources into account, show advantages 

to improve precipitation forecasts (Roberts and Lean, 2008; Clark et al., 2010; Schwartz 

et al., 2015). The convection-allowing EPSs have been operational or quasi-operational 

at many forecasting centers, such as MOGREPS-UK with 2.2-km resolution (Tennant, 

2015), AROME-EPS with 2.5-km resolution (Vie et al., 2011; Bouttier et al., 2012; 

Nuissier et al., 2012; Bouttier et al., 2016 ), COSMO-DE-EPS with 2.8-km resolution 

(Peralta et al., 2012; Harnisch and Keil, 2015) and NCAR’s experimental real-time 

convection-allowing EPS with 4-km resolution (Schwartz et al., 2015). These 

convection-allowing EPSs provide important guidance in operational weather 

forecasting (Iyer et al., 2016), especially when predicting the high impact weather such 

as extreme heavy rain. However, the complexity of nonlinear error growth and the 

predictability of moist convection on convective scale (Hohenegger and Schar, 2007; 

Zhang et al., 2007; Clark et al., 2010; Melhauser and Zhang, 2012) pose great 

challenges for the improvements and assessment of precipitation forecasts in a 

convection-allowing EPS. Therefore, verification of precipitation forecasts becomes 

one of the major issues in evaluating convection-allowing EPSs. This study aims to 

verify the short-range precipitation forecasts in a convection-allowing EPS, focusing 

on the scale-dependent spatial spread-skill relationship using a new neighbourhood-

based method (Dey et al., 2016a, b). 

Traditionally, the spread-skill relationship is used to depict the agreement between 

the ensemble spread (stand deviation between ensemble members that measuring the 

uncertainty of ensemble) and the expected forecast error of ensemble-mean or control 

forecast (Grimit and Mass, 2007). Many studies use the traditional spread-skill 

relationship (or spread-error relationship) to evaluate ensemble precipitation forecasts 

(Ebert, 2001; Martin et al., 2010; Bouttier et al., 2012; Su et al., 2014). However, the 

traditional metrics of forecast error, such as root-mean square error (RMSE) and mean 

absolute error (MAE), are not suitable for the convection-allowing EPSs due to the 

serious double penalty (Mittermaier et al., 2013). In addition, the traditional error and 

spread metrics using all statistical samples are scale-independent. In order to address 

these problems, some spatial verification methods (Gilleland et al., 2009), such as the 

Method for Object-based Diagnostic Evaluation (MODE; Davis et al., 2006, 2009), the 

neighbourhood-based method (Ebert 2008, 2009), the method of Contiguous Rain Area 

(CRA; Ebert and McBride 2000), the method of Fractions Skill Score (FSS; Roberts 

and Lean, 2008) and so on, have been developed for high-resolution weather forecasts. 

Although these methods can reduce the double penalty problem and provide more 

significant scale information than the traditional ones, they are proposed for verifying 

deterministic forecasts not for EPS. In order to extend these methods to verify the 

convection-allowing EPS, some new methods are further developed (e.g. Zacharov and 



Rezacova, 2009; Duc et al., 2013; Dey et al., 2014). 

Recently, Dey et al. (2016a, b) have developed a new neighbourhood-based 

method to identify agreement scales and used it to evaluate the scale-dependent spatial 

spread-skill relationship for ensemble precipitation forecasts in a convection-allowing 

EPS developed over the UK. The spatial spread-skill relationship refers to the 

comparison of the average agreement scale for ensemble members, denoted as 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

, 

and the average agreement scale for ensemble members and observations, denoted as 

𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

. Through a long-term routine model evaluation, they got useful information 

about ensemble performance and characteristics in summer 2013 over the UK (Dey et 

al., 2016b). In order to test the feasibility of this latest method under different climate 

conditions in different regions, this study applies this neighbourhood-based method to 

verify a convection-allowing EPS over the Yangtze-Huaihe river basin of China. Also, 

Dey et al. (2016a, b) pointed out that three factors, including precipitation intensity, 

precipitation placement and the distance from the precipitation, influence the spatial 

spread-skill relationship in the EPS. However, their paper didn’t compare the relative 

contributions of these factors on the spatial spread-skill relationship. This study extends 

a new application of this latest method to further analyze the comparative importance 

of precipitation intensity and placement on the spatial spread-skill relationship in a 

convection-allowing EPS. 

At the same time, the predictability and forecast skill are varied with weather 

regimes. Previous studies show that the forecasts under weak forcing regimes tend to 

produce poorer skill than that under strong forcing regimes (Keil and Craig, 2011), 

meanwhile the predictability and forecast skill on smaller scales are usually worse than 

larger-scale forecasts (Roberts, 2008; Roberts and Lean, 2008; Surcel et al., 2015). 

Done et al. (2006) proposed the convective adjustment time-scale (𝜏𝑐) to classify the 

weather forcing regime. However, many researches (Zimmer et al., 2011; Keil et al., 

2014; Kuhnlein et al., 2014) investigated 𝜏𝑐 and found out that 𝜏𝑐 actually is a weak 

indicator to classify the precipitation forecasts in terms of predictability and forecast 

skill of precipitation. Surcel et al. (2016) found out that the precipitation fractional 

coverage is the best indicator associated with precipitation predictability among three 

indicators (𝜏𝑐 , large-scale forcing for ascent and precipitation fractional coverage). 

Although Dey et al. (2016b) did not verify the spatial spread-skill relationship for 

different weather regimes, their study also suggested that this relationship is highly 

associated with precipitation fractional coverage. Therefore, in this study, the 

precipitation fractional coverage is selected as the classification criteria of weather 

regime, and the cases during the Meiyu season of 2013 over the Yangtze-Huaihe river 

basin are categorized to large fractional coverage (LC) and small fractional coverage 

(SC) groups, respectively. 

The Meiyu season over the Yangtze-Huaihe river basin usually spans from mid-

June to mid-July (Ding and Chan, 2005), while heavy rainfall often occurs under 

favorable synoptic conditions, including the Meiyu front, south westerly low-level jet, 

low-level vortex and subtropical high (Luo and Chen, 2015). There are several studies 



using convection-allowing EPS to investigate the mechanism of precipitation during 

the Meiyu season over the Yangtze-Huaihe river basin. For example, Luo and Chen 

(2015) investigated the forecast uncertainties and physical mechanisms of a quasi-linear 

extreme-rain-producing mesoscale convective system (MCS) along the Meiyu front in 

East China using convection-permitting ensembles. Wang and Zhong (2014) 

implemented multi-physics ensemble simulations of a summertime heavy precipitation 

event and studied the influence of large-scale urbanization on precipitation predictions 

over the lower reaches of Yangtze River valley. Due to the expensive computer 

resources, most of the previous studies used convection-allowing EPS to investigate the 

specific weather cases. Since the Meiyu season of 2013 concentrates from 23 June to 

22 July 2013 over the Yangtze-Huaihe river basin, this study evaluates daily 

precipitation forecasts of the total 30 cases and compares the forecast performance 

under the LC and SC categories, based on a convection-allowing EPS. 

The outline of this article is as follows. Section 2 describes the model 

configurations, verification data, the classification method of weather regimes and the 

neighbourhood-based method. The averaged results and the comparison between the 

traditional and spatial spread-skill relationship of one month studies during the Meiyu 

season of 2013 are presented in Section 3. Section 4 provides the results about the 

relative influence of precipitation placement and intensity on the spatial spread-skill 

relationship of precipitation forecasts. Summary and conclusions are given in Section 

5. 

3. Data and Method 

2.1 Model configuration 

The convection-allowing EPS over the Yangtze-Huaihe river basin is based on the 

Weather Research and Forecasting (WRF) model with the grid spacing of 3-km (single 

domain, 620 ∗ 498 grid points) and 50 vertical model levels (Figure 1). It is driven by 

the control forecast and 14 perturbed forecasts randomly selected from the NCEP 

Global Ensemble Forecast system (GEFS; Su et al. 2014), which output is archived 

with 6 hours interval at 1 degree horizontal resolution (~110 km). GEFS consists of a 

control forecast and 20 perturbed forecasts using the bred vector-ensemble transform 

with rescaling (BV-ETR) method (Wei et al., 2008) and stochastic total tendency 

perturbation (STTP) scheme (Hou et al., 2008). Although, there is a big gap between 

the resolutions of these two EPSs, it is proved as an available way to directly conduct 

the dynamical downscaling (Lawson and Gallus, 2016; Zhu and Xue, 2016). In order 

to represent the uncertainty in model physics, different combinations of physical 

parameter schemes (Table 1), including microphysical schemes, land surface schemes, 

and planetary boundary schemes, are employed to construct individual forecast 

members in this convection-allowing EPS by referencing to the model configuration of 

the NOAA Hazardous Weather Testbed 2007-2010 Spring Experiments (Coniglio et al., 

2010; Clark et al., 2012) and our own tests. All the members use the same short-wave 

and long-wave radiation schemes accounting for their less importance and the stability 



for the model integration. 

Thirty cases from one month (23 June to 22 July 2013) during the Meiyu season 

are initialized at 0000 UTC of each day and forecasted to 36 h with the 3 h output 

interval, except the control run with hourly rainfall output. 

2.2 Precipitation verification data 

The verification data are from the NOAA CPC Morphing Technique (CMORPH) 

merged with the rain gauge observations in China (Shen et al., 2014), which provide 

official grid precipitation observations in China with the highest temporal (1 h) and 

spatial (0.1 degree) resolutions available. Due to the relatively low spatial resolution 

(~10 km) of this verification data, a compromise is made to verify the precipitation 

forecasts on the coarser observation grid; the 3-km precipitation forecasts are 

interpolated using the nearest four grid points with inverse-distance weighting onto the 

observation grid over the verification domain (25.55°N~38.25°N, 110.05°E~122.75°E; 

Figure 1). 

In this study, the 24 h verification period (0300 UTC-0300 UTC of next day, 

corresponding to 3-27 h of forecast) is defined as an individual case, and 3 h 

accumulated precipitation forecasts are only evaluated during this 24 h verification 

period. The first 3 h forecasts are discarded to reduce the spin-up problem, and the 27-

36 h forecasts are removed to avoid the overlapping of the cases. 

2.3 Classification of weather regimes 

The precipitation fractional coverage is defined as the proportion of the 

verification domain with hourly rainfall rates larger than 0.1 mm h-1. When both median 

and mean values of precipitation fractional coverage of hourly observations during a 24 

h verification period are less than 0.1, that day is categorized as the SC day and 

otherwise the LC day. By using the coverage threshold of 0.1, the ratio of the SC and 

LC cases is similar to the percentage of the two categories found in previous studies 

(Zimmer et al 2011; Surcel et al. 2016). 

According to the boxplot of the hourly precipitation coverage of observations 

(Figure 2a), 8 of 30 cases are classified as SC cases, while the remaining 22 cases are 

LC cases. Taking the control forecast as an example, Figure 2b shows scatter plot of 

observed fractional coverages of hourly precipitation versus control forecast coverages; 

it shows a good agreement between forecasts and observations, with a correlation of 

0.86, indicating that the model is predicting generally correct regimes in terms of 

precipitation fractional coverage. 

2.4 Location-dependent agreement scales 

The neighbourhood-based method (Dey et al., 2016a, b) has been developed to 

quantify the location-dependent spatial agreement scales between two precipitation 

fields. The calculation of the agreement scales was described in Dey et al (2016a, b) 

and is repeated as follows: 



The distance 𝐷𝑖𝑗
𝑆  of one grid point (i, j) in the domain at the agreement scale S 

between two precipitation fields f1 and f2 is defined as: 

𝐷𝑖𝑗
𝑆 = {

(𝑓1𝑖𝑗
𝑆 − 𝑓2𝑖𝑗

𝑆 )2

(𝑓1𝑖𝑗
𝑆 )2 + (𝑓2𝑖𝑗

𝑆 )2
      𝑖𝑓    𝑓1𝑖𝑗

𝑆 > 0 𝑜𝑟 𝑓2𝑖𝑗
𝑆 > 0

                1                       𝑖𝑓    𝑓1𝑖𝑗
𝑆 = 0 𝑎𝑛𝑑 𝑓2𝑖𝑗

𝑆 = 0

 

where 𝑓1𝑖𝑗
𝑆  and 𝑓2𝑖𝑗

𝑆  are the area averaged precipitation within a squared grid box 

centered upon the point (i, j), which has the side length of 2*S+1. The values of the 

agreement scale S are varied from 0 to 𝑆𝑙𝑖𝑚 , until 𝑓1𝑖𝑗
𝑆  and 𝑓2𝑖𝑗

𝑆  are deemed 

sufficiently similar when the criterion 𝐷𝑖𝑗
𝑆 ≤  𝐷𝑐𝑟𝑖𝑡,𝑖𝑗

𝑆  is met, where 𝐷𝑐𝑟𝑖𝑡,𝑖𝑗
𝑆 = 𝛼 +

(1 − 𝛼)
𝑆

𝑆𝑙𝑖𝑚
. More details about this method can refer to Dey et al. (2016a, b). In this 

study, 𝛼 = 0.25 and 𝑆𝑙𝑖𝑚 = 30 are used, considering the size of the domain and the 

scales of precipitation fields. Other values of 𝑆𝑙𝑖𝑚, such as 40 and 60, are also tested 

and produce similar results (see supplementary material Figure S2). After the above 

calculation of each point in the verification domain between two precipitation fields, 

the agreement scales can be mapped. By its definition, small (large) spatial agreement 

scales correspond to high (low) spatial agreement.  

This study applies the neighbourhood-based method to evaluate the location-

dependent spatial agreement between the pairs of ensemble members or between any 

individual ensemble forecast and the corresponding observation. To assess the general 

performance and filter the noise in the individual maps of agreement scales (Dey et al. 

2016a, b), the verification focuses to analyze the average scales from all paired fields. 

For an EPS with N members (in this paper, N=14), the averaged result (denoted as 

𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

) of the pairs between ensemble members is generated from the N(N-1)/2 

agreement scale maps, and the averaged result (denoted as 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

) of the pairs between 

individual ensemble members and the observations is the average of the N agreement 

scale maps. In addition, interpretation of agreement scales depends on the verification 

grid spacing, while similar agreement scales on coarser grids represent coarser spatial 

scale information than that on finer grids. 

In addition, the “moving binned scatter” (Dey et al., 2016a, b) method is applied to 

compare the 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 and 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 in this paper. To avoid the noisy scatter plot 

between 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 and 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

, it is necessary to plot the mean values of 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 and 

𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 for each moving bin based on the values of 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

. For each bin, the mean 

value of 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 over those points whose values of agreement scales fall into this bin 

range is calculated and plotted on the x-axis, then the corresponding value of y-axis is 

the mean 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 over these same points. After all bins are calculated, a line of mean 

𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 against mean 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 can be plotted. If the curve falls above (below) the 

diagonal, the ensemble is said to be spatially underdispersive (overdispersive) in terms 

of agreement scales. After examination (see supplementary material Figure S3), the bin 

size of 6 grid points is used in this study to retain enough statistical samples and 

sufficient scale-dependent information in each bin (Dey et al., 2016a, b). 

3. Meiyu season averaged results 

This section investigates the agreement scales 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 and 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 and the 



spatial spread-skill relationship (relationship between 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 and 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

). The 

spatial and diurnal characteristics of the spatial spread-skill relationship are studied, 

and the advantages of the new neighbourhood-based method (Dey et al., 2016a, b) are 

highlighted by comparing with traditional spread-skill relationship (RMSE and spread). 

Dey et al. (2016b) demonstrated the necessity to test the effect of systematic 

intensity biases on the verification of spatial spread-skill relationship. Thus, this study 

also examined the effect of systematic biases by multiplying the observations with a 

factor of 1.5 (approximately the maximum 3 h intensity bias averaged between the 

observations and ensemble members; Figure S1). Consistent with previous results (Dey 

et al., 2016b), systematic biases show insignificant influence on the spatial spread-skill 

relationship. 

3.1 Spatial characteristics 

Figure 3 displays the spatial distributions of 3 h accumulated precipitation averaged 

over the 3-27 h lead times from observations and control forecasts under two different 

weather regimes. Under LC, precipitation distributions are often controlled by the 

Meiyu front at large-scale circulations and the averaged precipitation is widely spread 

throughout the whole verification domain (Figure 3a and 3c). Because of the shift of 

the subtropical high and the Meiyu front, most of the precipitation events are east-west 

or northeast-southwest orientated, forming three major rainbands in the domain (Figure 

3a and 3c). One rainband is located in the northern area extending from coastal 

Shandong (~120°E and 37°N) to mountainous Shanxi (~112°E and 36°N) province, 

one is in the central plain area from Anhui (~117°E and 31°N) to Hubei (~114°E and 

30°N), and the last one in the southern hilly area from Eastern Jiangxi (~117°E and 

29°N) to Western Jiangxi (~115°E and 28°N). In contrast, under SC, precipitation 

observations and the control forecasts (Figure 3b and 3d) are more intense and localized 

along heterogeneous and steep terrains, such as the mountainous areas in the northwest 

domain (~111°E and 37°N), Shandong peninsular (~118°E and 36°N) and the coastal 

areas (~122°E and 35°N) in the northeast domain. In general, the control forecasts of 

the convection-allowing EPS under two different weather regimes reasonably 

reproduce the observed precipitation distributions, but both show the displacement 

errors of rainfall centers. Under LC, the averaged rain intensities of control forecasts 

(Figure 3c) are overestimated, especially in Jiangxi province (~116°E and 29°N) in the 

middle domain. Compared to the observations under SC (Figure 3b), the control 

forecasts generate more isolated and spurious rain cells (Figure 3d), but underforecast 

the maxima of larger precipitation cells (7.33 mm in Figure 3b vs. 3.30 mm in Figure 

3d in the northeast domain). 

Figure 4 shows the spatial distributions of 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 averaged over the 3-27 h lead 

times under LC and SC, which are similar to the spatial distributions of 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 under 

the two regimes (see supplementary material Figure S5). Overall, the agreement scales 

under LC are lower than that under SC (2.75 less on domain average), which is 

consistent with the conclusion that the larger precipitation fractional coverage is 



associated with smaller agreement scales (higher spatial agreement) (Dey et al., 2016a, 

b). The smallest agreement scales locate close to the rainfall centers, indicating more 

confident about the location of precipitation than other regions. The minimum 

agreement scale is only 10.1 grid points (around the neighbourhood length of 212 km) 

under LC and 11.6 grid points (~242 km) under SC. This means the EPS is not confident 

about the location of precipitation at the scales smaller than these grid scales. In the 

research of Dey et al. (2016b), the minimum agreement scale of seasonal averaged is 

12 grid points, which indicates much smaller physical scales (~ 55 km) for the high-

resolution MOGREPS-UK with the 2.2-km resolution. As mentioned in Section 2.4, 

although the minimum agreement scale of this study is smaller than that of Dey et al. 

(2016b), more spatial scale information is lost. 

3.2 Diurnal characteristics 

Section 3.1 showed spatial characteristics of precipitation and its agreement scales 

from the convection-allowing EPS. This section focuses on investigating the diurnal 

variations of domain averaged precipitation amounts, and comparing spatial spread-

skill relationship with traditional spread-skill relationship (RMSE and spread) for 22 

cases under LC and 8 cases under SC. 

Figure 5 shows the diurnal variations of domain averaged precipitation amounts 

under the two weather regimes. Overall, the domain averaged precipitation amounts 

under LC (Figure 5a) are larger than that under SC (Figure 5b). Based on the 

observations during 0300 UTC to 0300 UTC cycle (corresponding to 3-27 h lead times), 

two rainfall peaks under LC occur at 0900 UTC and 0000 UTC, respectively, while 

there is only one peak at 2100 UTC for SC. Under LC, the ensemble mean forecasts 

reproduce the two peaks successfully (Figure 5a), but largely overestimate the first 

rainfall peak and underestimate the second one. For the precipitation forecasts under 

SC, the ensemble mean forecasts generate a spurious peak at the 9 h lead time and a 3 

h time lag for the 2100 UTC observed peak. The ensemble mean forecasts show obvious 

overestimations for the specific period during the afternoon and evening (0600 UTC - 

1500 UTC; corresponding to 6-15 h lead times, 1400 LST – 2300 LST) under both 

regimes and slight underestimations during the early morning 2100 UTC – 0300 UTC 

(corresponding to 21-27 h lead times, 0500 LST – 1100 LST) for the LC cases. The 

overestimation (underestimation) of the precipitation on a diurnal cycle may be related 

to that the physics parameterization schemes (Li et al., 2009; Katragkou et al., 2015) in 

the convection-allowing model tend to overestimate (underestimate) the afternoon and 

evening deep convection (shallow convection in the early morning). 

The diurnal variations of domain averaged RMSE, spread and the traditional 

spread-skill relationship (spread/RMSE) under two weather regimes (Figure 6a and 6b) 

show the similar patterns with the domain averaged precipitation amounts (Figure 5). 

Although RMSE and spread under LC are larger than that under SC, there are no 

obvious differences between the diurnal variations of traditional spread-skill 

relationship under two weather regimes. Figure 6c shows the diurnal variations of 

domain averaged agreement scales of 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 and 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

. In general, they are 

negatively correlated with the domain averaged precipitation amounts, RMSE and 



spread. Same as the previous study (Dey et al., 2016b), the forecasts under SC show 

larger domain averaged agreement scales than LC, revealing that the smaller fractional 

coverage of precipitation is associated with the poorer spatial agreement. Under both 

regimes, the domain averaged agreement scales of 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 are smaller than that 

corresponding scales of 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 at the same lead time. In order to quantitatively 

compare the differences of forecast performance for domain averaged scales under LC 

and SC, the diurnal variations of the ratios between the domain averaged agreement 

scales of 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 and 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

  are presented in Figure 6d. Different with the 

traditional spread-skill relationship (Figure 6b), the spatial spread-skill relationship 

(Figure 6d) under the two regimes are always less than 1 (underdispersion). The ratio 

under SC fluctuates more with the lead time than that under LC (Figure 6d), indicating 

that the spatial spread-skill relationship under SC shows higher variations on the diurnal 

cycle. The ratio under SC reveals the worst spatial spread-skill relationship (Figure 6d) 

at the 18 h lead time, but the traditional spread-skill relationship under SC (Figure 6b) 

is nearly perfect (~ 1) at the same time. 

To further investigate the contradictory results (Figure 6b and 6d) between the 

spatial and traditional spread-skill relationship, Figure 7 presents the spatial 

distributions of precipitation amounts, RMSE, spread, and agreement scales averaged 

over all cases under SC at the 18 h lead time. Obviously, the forecasts for heavier 

precipitation amounts (bold black contours in Figure 7a-f) show larger forecast errors 

(Figure 7a), increased spread (Figure 7b), and higher agreement (Figure 7d and 7e). In 

terms of the differences between the spread and RMSE (Figure 7c), the EPS is severely 

underdispersive in the precipitation areas and overdispersive in relatively large dry 

regions especially around rain cells. Thus, the domain averaged difference between the 

spread and RMSE is quite small (0.14), which leads to the best (~1) traditional spread-

skill relationship (i.e., the ratio of spread and RMSE) at the 18 h lead time (Figure 6b). 

On contrary, Figure 7f shows underdispersive forecasts overspreading the verification 

area, with extremely insufficient spread in the rain cells. Overall, both the traditional 

and spatial spread-skill relationship metrics (Figure 7c and 7f) indicate that the EPS 

lacks spread in the rainfall regions over the northwest mountainous areas and northeast 

coastal areas. However, the traditional spread-skill relationship only measures the static 

information of point-wise error and spread (Figure 7c) and provides spurious perfect 

spread-skill relationship (Figure 6b), while the spatial spread-skill relationship is 

capable of reflecting the correct spatial scale information in the neighbourhood space 

(Figure 7f) and thus obtaining consistent total statistics (Figure 6d). 

In addition, more scale information about the spatial spread-skill relationship is 

obtained by using the “moving binned scatter” method (Dey et al., 2016a, b). Figure 8a 

shows the spatial spread-skill relationship over the 3-27 h lead times under LC and SC. 

As the curves situate above the diagonal, the agreement scales below 20 grid points 

indicate the underdispersive spread-skill relationship under both regimes, and more 

severe underdispersion for that under SC. For different lead times, the spread-skill 

relationship shows slight diurnal variations under LC (Figure 8b), while it shows much 

larger diurnal variations under SC (Figure 8c) with the worst skill at the 18 h lead time. 

This is consistent with the results shown in Figure 6d. In order to examine whether the 

differences under the two regimes are caused by different sample sizes, 8 cases are 



randomly selected under LC (see supplementary material Figure S4) and similar 

conclusion can be drawn. Therefore, the differences of the spatial spread-skill 

relationship under LC and SC are mainly attributed to different predictabilities of these 

two weather regimes. 

4. Relative influence of precipitation intensity and placement 

In Section 3, the agreement scales (𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 and 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

) and spatial spread-skill 

relationship were investigated, and compared with the traditional spread-skill 

relationship during the Meiyu season of 2013. Dey et al. (2016a, b) demonstrated that 

𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 and 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 are influenced by three factors, including the placement of 

precipitation, bias in precipitation intensity, and distance from the precipitation. 

However, their paper has not discussed the relative importance of these factors. For the 

precipitation grids (the grids whose rain rates from any ensemble members or the 

observations are above a specific precipitation threshold), the precipitation placement 

and intensity are the main impact factors on the spatial spread-skill relationship. In this 

section, we extend a new application of this neighbourhood-based method to further 

investigate the relative influence of precipitation intensity and placement on the 

frequency distributions of agreement scales and spatial spread-skill relationship. 

Before calculating the agreement scales, the rain rates below a specific 

precipitation threshold are processed as zero values and the ones above the threshold 

remain unchanged to provide the first type of precipitation field (hereinafter, the 

threshold raw field). Similarly, the original rainfall amounts below the threshold are 

truncated to zero values and the amounts above the threshold are set to one, which 

provides the second type of precipitation field (hereinafter, the threshold binary field). 

In this study, the agreement scales 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 and 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 are calculated and compared 

for the threshold raw and binary fields, respectively. The differences between the 

agreement scales of these two types of precipitation fields are caused by the bias in 

precipitation intensity alone, because the threshold raw fields and threshold binary 

fields are the same except for the precipitation intensity above the selected threshold. 

4.1 Relative influence on frequency distributions of agreement scales 

The frequency distributions of 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 and 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 (Figure 9) for all 

precipitation grids are presented for the two types of precipitation fields at four 

precipitation threshold (0.1, 2, 7 and 15 mm 3h-1) over the 3-27 h lead times. For the 

threshold raw precipitation fields, most of the 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 range from 5 to 10 grid points 

(~ 110 to 210 km), and the distributions are similar for different precipitation thresholds 

under both weather regimes. In terms of 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

, the proportions of agreement scales 

larger than 25 grid points obviously increase with the increasing threshold, especially 

under SC. These results demonstrate that the spatial agreement between ensemble 

members is high and less affected by weather regimes and precipitation thresholds. 

However, with the increasing threshold, the spatial agreement between ensemble 

members and observations gradually decreases, especially for the SC regime. This is 

the reason why the spatial spread-skill relationship becomes more and more 

underdispersive with the increasing precipitation threshold (see supplementary material 



Figure S6), which can be inferred from both types of precipitation fields.  

Comparing the frequency distributions of 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 or 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 for the threshold 

raw and threshold binary precipitation fields, the frequencies of agreement scales with 

lower values change the most. By removing the bias of precipitation intensity, the 

frequencies of small agreement scales for the threshold binary precipitation fields are 

greatly enhanced than the threshold raw ones. With the increasing agreement scale and 

precipitation threshold, the frequency differences of 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 or 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 between 

these two types of precipitation fields steadily decrease, indicating that the precipitation 

intensity plays a more important role on the agreement scales for smaller rainfall 

thresholds. Indeed, the EPS can reasonably predict the spatial coverage of major 

rainbands during the Meiyu season, and hence the intensity becomes relatively 

important for the lighter precipitation (Figure 3). 

4.2 Relative influence on the spatial spread-skill relationship 

This section aims to investigate the relative influence of precipitation intensity on 

the spatial spread-skill relationship. Figure 10 shows the moving bin scatter plots of all 

precipitation grids for the threshold raw and binary precipitation fields at four 

precipitation thresholds. For the 2, 7, 15 mm 3h-1 thresholds, the spatial spread-skill 

relationship is generally underdispersive. By contrast, the forecasts exhibit mixed 

overdispersion and underdispersion at the lowest threshold (0.1 mm 3h-1). With the 

increasing threshold, the spatial agreement for both regimes decreases, suggesting that 

the EPS tends to provide precipitation forecasts with more insufficient spread for higher 

precipitation intensities. The spatial agreement under LC is generally higher than that 

under SC for all thresholds. Under the same weather regime at a specified threshold, 

the spatial agreement for threshold binary precipitation fields is higher than the 

corresponding threshold raw precipitation fields, because the influences of precipitation 

intensity bias are eliminated for the threshold binary precipitation fields. With the 

increasing threshold, the scale differences between these two types of precipitation 

fields become smaller and smaller, indicating the impact of precipitation intensity on 

the spatial spread-skill relationship reduces. 

In order to quantitatively analyze the relative influence of precipitation intensity on 

the spatial spread-skill relationship, the relative skill difference percentages between 

the threshold binary and raw precipitation fields are defined as 𝑠𝑖 =
𝑠𝑏

𝑖 −𝑠𝑟
𝑖

𝑠𝑟
𝑖 , where 𝑠𝑏

𝑖  

and 𝑠𝑟
𝑖  denote the skill (the ratio between averaged 𝑆𝑖𝑗

𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )
 and 𝑆𝑖𝑗

𝐴(𝑚𝑜̅̅ ̅̅̅)
 within the 

ith moving bin) for the threshold binary and threshold raw fields, respectively. 

Figure 11 shows that skill differences between the two types of precipitation fields 

decrease with the increasing agreement scale and precipitation thresholds. For light 

(0.1mm 3h-1; Figure 11a) and moderate (2mm 3h-1; Figure 11b) rain, the influence of 

precipitation intensity under SC is larger than that under LC, especially for the smaller 

agreement scales. At larger agreement scales, there are no obvious differences between 

the two types of precipitation fields, in particular for higher rainfall thresholds (Figure 

11c and 11d). With increasing agreement scales (relatively larger area), removing the 



precipitation intensity bias above higher thresholds may cause negative skill difference 

percentage (Figure 11b-11d), because spurious rainfall cells may reduce dry intensity 

bias of heavy rainfall in raw precipitation forecasts and relatively increase the skill in 

the threshold raw field. Overall, the impacts of precipitation intensity on the spatial 

spread-skill relationship decrease with the increasing threshold, while the precipitation 

placement becomes more dominant to influence the spatial spread-skill relationship for 

heavy precipitation events. 

4.3 Two cases studies 

In addition, two cases are analyzed to provide a more intuitive understanding of 

the relative influence of precipitation intensity and placement on the spatial spread-skill 

relationship. Case 1 (initialized at 0000 UTC 27 June, 2013) and case 2 (initialized at 

0000 UTC 7 July, 2013) are selected to represent LC and SC events, respectively. The 

relatively stationary rainband in case 1 is controlled by the Meiyu front that locates at 

the south of the verification domain, and it reaches the maximum rain intensity at the 

27 h lead time (Figure 12). In case 2, the precipitation is mainly caused by the MCSs 

moving from the southwest to the northeast, and it develops to the strongest cell at the 

12 h lead time (Figure 13). 

For the LC case, the forecasted precipitation rainband (shaded area) over both 

thresholds is generally consistent with the observation (blue contours). The small 

agreement scales of 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 for the threshold raw fields (Figure 12a and 12d) are 

confined within the precipitation grids, indicating that the EPS is very confident about 

the location of this rainband controlled by the Meiyu front. For example, the smallest 

scale is 1.2 grid points (~34 km) at the 0.1 mm 3h-1 threshold (Figure 12a). The positive 

values of the differences (𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

-𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

) reveal an overdispersion of the spatial 

spread-skill relationship, especially for larger agreement scales (Figure 12a and 12d), 

mixed with the underdispersion (negative values) around the rainband center with 

smaller agreement scales at both thresholds (Figure 12b and 12e). As shown in the 

Sections 4.1 and 4.2, the larger the differences of 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 between the threshold raw 

and binary fields, the stronger the relative impact of precipitation intensity on 

agreement scales. Apparently, the LC case demonstrates that the relative influence of 

precipitation intensity decreases with the increasing precipitation threshold (Figure 12c 

and 12f). 

Compared to the LC case, the coverage and displacement biases are much larger in 

the SC case, while multiple rain cells develop and shift fast with MCSs. Although the 

EPS is also confident about the location of most rain cells with small agreement scales 

for this SC case (Figure 13a and 13d), the underdispersion (Figure 13 b and 13e) of the 

spatial spread-skill relationship for the SC case is more severe than that for the LC case 

at both thresholds. The statistics for different lead times (Figure 8b and 8c) also suggests 

that the spatial spread-skill relationship is less underdispersive and more reasonable 

under LC than that under SC. Similar to the LC case, the precipitation placement 

gradually becomes a dominant factor to affect the spatial spread-skill relationship at 

higher precipitation thresholds (Figure 13c and 13f). 



5. Summary and conclusions 

In this study, a new neighbourhood-based method in terms of agreement scale (Dey 

et al., 2016a, b) is applied to verify the spatial spread-skill relationship of precipitation 

forecasts in a convection-allowing EPS. The precipitation forecasts during the Meiyu 

season from 23 June to 22 July 2013 are produced by this EPS with a 3-km grid spacing 

over the Yangtze-Huaihe river basin of China. Since the forecast skill highly depends 

on weather regime, precipitation fractional coverage over the verification domain is 

used to classify the total 30 cases into two categories: the large-coverage (LC) and 

small-coverage (SC) regimes. This study also proposes a new application of this new 

neighbourhood-based method, which further investigates the relative influence and 

importance of precipitation placement and intensity on the spatial spread-skill 

relationship of precipitation forecasts. 

The verification results show that for the 30 days considered here, the spatial 

spread-skill relationships under both LC and SC are underdispersive, except that for the 

light precipitation at the 0.1 mm 3h-1 threshold. This underdispersion deteriorates with 

increasing precipitation threshold, suggesting more difficulties in predicting the 

location of rain for higher precipitation thresholds. Also, the spatial spread-skill 

relationship under SC is poorer and has more diurnal variations compared to that under 

LC. In addition, this study compares the traditional and spatial spread-skill relationship. 

With the traditional scale-independent approach, spread-skill relationship is evaluated 

over the entire verification domain, scale-dependent behaviors that are common with 

localized precipitation cannot be revealed. The scale-dependent neighbourhood-based 

method examined in this paper provides a remedy. 

This study further investigates the relative influence of precipitation intensity and 

placement on agreement scales and spatial spread-skill relationship. By transforming 

the precipitation fields to the threshold raw and binary fields, the neighbourhood-based 

method is able to compare the relative impact of the precipitation intensity and 

placement on the spatial spread-skill relationship. The results indicate that the effect of 

precipitation intensity on the spatial spread-skill relationship concentrates on the lower 

agreement scales (closer to the center of precipitation), and decreases with the 

increasing precipitation threshold and agreement scale. The relative skill difference 

percentages (Figure 11) and two case studies (Figure 12 and 13) reveal that the 

precipitation placement gradually dominates the spatial spread-skill relationship with 

the increasing precipitation threshold. In particular, the precipitation intensity has much 

less influence on the spatial spread-skill relationship under SC at higher thresholds, 

consistent with the increasing difficulty of precipitation forecasting for local heavy rain. 

The impact of precipitation placement on the spatial spread-skill relationship is more 

important than precipitation intensity, especially for heavy precipitation and the SC 

cases.  

Although this study analyze the relative influence of precipitation intensity and 

placement quantitatively, other impact factors such as precipitation structure are also 

worthy of investigations in the future. There are other limitations in this study. The 

resolution of the merged CMORPH precipitation data is limited to 0.1 degree (~10 km) 



which is the best gridded data currently available in China. Because of that, spatial 

spread-skill relationship for scales below the 10 km cannot be examined. Higher-

resolution data are desirable. In addition, many studies (Wang et al., 2014; Johnson and 

Wang, 2016) have emphasized the importance of initial small-scale information on the 

forecasts in a convection-allowing EPS. While it is simple to drive initial conditions of 

a convection-allowing EPS by downscaling a global ensemble (Peralta et al., 2012; Zhu 

and Xue, 2016), small-scale initial perturbations are missing from the global ensemble. 

This is perhaps another reason for the relatively poor spatial spread-skill relationship 

under SC. In future versions of our convection-allowing EPS, small-scale initial 

perturbations will be implemented and the spatial spread-skill relationship will be 

evaluated to assess the benefit of the improved initial perturbations. 
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Supporting Information 

As the supplement to the main manuscript, we provide the following materials: 

1. The effect of systematic intensity biases (Figure S1), 𝑆𝑙𝑖𝑚 (Figure S2) and moving 

bin size (Figure S3) on the spatial spread-skill relationship. 

2. The spatial spread-skill relationship of 3 h accumulated precipitation at different 

lead times for 8 cases randomly selected from the 22 LC cases (Figure S4). 

3. The spatial distribution of 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 (Figure S5), compared with 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 (Figure 4 

in the manuscript). 

4. The spatial spread-skill relationship at different precipitation thresholds (Figure S6). 
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Table 1. Model configurations of the convective-scale EPS with different microphysical, 

land surface and planetary boundary layer schemes. 

Member MP LSM PBL 

Gec00 Thompson Noah MYJ 

Gep01 Lin RUC YSU 

Gep02 M-Y NOAH QNSE 

Gep03 Morrison NOAH MYNN2 

Gep04 WDM6 RUC ACM2 

Gep05 Lin NOAH MYJ 

Gep06 M-Y NOAH YSU 

Gep07 Morrison RUC QNSE 

Gep08 WDM6 NOAH MYNN2 

Gep09 Thompson RUC ACM2 

Gep10 M-Y RUC MYJ 

Gep11 Morrison NOAH YSU 

Gep12 WDM6 NOAH QNSE 

Gep13 Thompson RUC MYNN2 

Gep14 Lin RUC ACM2 

 

  



 

 

 

 

Figure 1. Domain of the convective-scale EPS with coastlines, province boundaries and 

topography heights, and the verification domain of precipitation forecasts (inside thick 

solid lines). 

 

Figure 2. (a) Boxplot of hourly precipitation coverage of the merged CMORPH 

observations for 30 cases (the dot stands for the mean fractional coverage of each case), 



and (b) scatterplot of hourly precipitation coverage of the merged CMORPH 

observations vs. the control forecasts for the SC (blue) and LC cases (red). 

 

Figure 3. Spatial distributions of 3h accumulated precipitation averaged from (a, b) the 

merged CMORPH observations and (c, d) the control forecasts over the 3-27 h lead 

times for (a, c) the LC cases and (b, d) the SC cases. 



 
Figure 4. Scale maps of 𝑆𝑖𝑗

𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )
 averaged over the 3-27 h lead times for (a) the LC 

cases and (b) the SC cases. 

 

 

Figure 5. Diurnal variations of domain averaged 3 h accumulated precipitation 

observations and ensemble mean forecasts for (a) the LC cases and (b) the SC cases. 

The shadow stands for the standard deviation of ensemble members. 



 

Figure 6. Diurnal variations of domain averaged (a) RMSE and spread for 3 h 

accumulated precipitation, (b) ratios of spread and RMSE, (c) 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 and 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

, 

and (d) the ratios of 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 and 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 under two weather regimes. 

 

 



Figure 7. Spatial distributions of (a) RMSE, (b) spread, (c) the differences between 

spread and RMSE, (d) 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

, (e) 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

, and (f) the difference between 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 

and 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 for 3 h accumulated precipitation averaged for the SC cases at the 18 h 

lead time. The bold black contours represent the observations ranging from 1 to 7 mm 

with the 2 mm interval. 

 

 

Figure 8. Moving binned scatterplots of 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 and 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 of 3 h accumulated 

precipitation for (a) the 3-27 h lead times, and different lead times under the (b) LC and 

(c) SC weather regimes. 

 

Figure 9. Frequency histograms of 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 for the threshold raw (black solid) and 

binary (colored solid) precipitation fields, and 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 for the threshold raw (black 

dash) and binary (colored dash) precipitation fields, over the 3-27 h lead times at the 

thresholds of (a), (e) 0.1 mm 3h-1, (b), (f) 2 mm 3h-1, (c), (g) 7 mm 3h-1, and (d), (h) 15 

mm 3h-1 under the (a-d) LC and (e-h) SC weather regimes. 



 

Figure 10. Moving binned scatterplots of 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 and 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 for the threshold raw 

and binary precipitation fields over the 3-27 h lead times at the thresholds of (a) 0.1 

mm 3h-1, (b) 2 mm 3h-1, (c) 7 mm 3h-1, and (d) 15 mm 3h-1. 



 

Figure 11. Relative skill difference percentages between the threshold binary and raw 

precipitation fields over the 3-27 h lead times at the thresholds of (a) 0.1 mm 3h-1, (b) 

2 mm 3h-1, (c) 7 mm 3h-1, and (d) 15 mm 3h-1. 



 

Figure 12. For case 1 (initialized at 0000 UTC 27 June, 2013) at the 27 h lead time, 

spatial distributions of (a, d) 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 and (b, e) 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

- 𝑆𝑖𝑗
𝐴(𝑚𝑜̅̅ ̅̅̅)

 for the threshold raw 

fields over the thresholds of (a-c) 0.1 mm 3h-1 and (d-f) 7 mm 3h-1, and (c, f) the 

differences of 𝑆𝑖𝑗
𝐴(𝑚𝑚̅̅ ̅̅ ̅̅ )

 between the threshold raw and binary fields (raw-binary). The 

gray areas are the region below the precipitation threshold. The blue contours represent 

the observed precipitation threshold. 



 

Figure 13. Same as Figure 12, but for case 2 (initialized at 0000 UTC 7 July, 2013) at 

the 12 h lead time. 


