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Chapter 3. Finite Difference Methods for Hyperbolic 
Equations 

 

1. Introduction 
 
Most hyperbolic problems involve the transport of fluid properties. In the equations of 
motion, the term describing the transport process is often called convection or advection. 
 
E.g., the 1-D equation of motion is 
 

21du u u p
u v u

dt t x xρ
∂ ∂ ∂

= + = − + ∇
∂ ∂ ∂

.    (1) 

 

Here the advection term 
u

u
x

∂
∂

 term is nonlinear. 

 
We will focus first on linear advection problem, and move to nonlinear problems later. 
 
From (1), we can see the transport process can be expressed in the Lagrangian form (in 
which the change of momentum u along a particle, du/dt, is used) and the Eulerian form. 
With the former, advection term does not explicitly appear. Later in this course, we will 
also discuss semi-Lagrangian method for solving the transport problems. In this chapter, 
we discuss only the Eulerian advection equation. 

2. Linear convection – 1-D wave equation 

2.1. The wave equations 
 
The classical 2nd-order hyperbolic wave equation is 
 

2 2
2

2 2

u u
c

t x
∂ ∂

=
∂ ∂

.       (2) 

 
The equation describes wave propagation at a speed of c in two directions. 
 
The 1st-order equation that has properties similar to (2) is 
 

0
u u

c
t x

∂ ∂
+ =

∂ ∂
,  c>0.     (3) 

 
Note that Eq.(2) can be obtained from Eq.(3), by taking a time derivative of (3) and 
resubstituting (3) into the new equation. 
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For a pure initial value problem with initial condition 
 

u(x, 0) = F(x),  x−∞< < ∞ ,  
 
the exact solution to (3) is u(x,t) = F(x-ct), which we have obtained earlier using the 
method of characteristics. We know that the solution represents a signal propagating at 
speed c. 
 

2.2. Centered in time and space (CTCS) FD scheme for 1-D wave 
equation 
 
We apply the centered in time and space (CTCS) scheme to Eq.(2): 
 

1 1
2 1 1

2 2

2 2
0

n n n n n n
i i i i i iu u u u u u

c
t x

+ −
+ −− + − +

− =
∆ ∆

.   (4) 

 
We find for this scheme, 
 

2 2( )O t xτ = ∆ + ∆ . 
 
Performing von Neumann stability analysis, we can obtain a quadratic equation for 
amplification factor λ: 
 

1/2
2 2 2 21 2 sin 2 sin sin 1

2 2 2
k x k x k x

p p pλ±
∆ ∆  ∆      = − ± −            

 

 
where  
 

c t
p

x
∆

=
∆

  

 
which is the fraction of zone distance moved in ∆t at speed c. 
 
 

Let sin
2

k x
pθ

∆ =  
 

, we have  

 
2 2 1/21 2 2 [ 1]λ θ θ θ± = − ± − . 

 
We want to see under what condition, if any, | | 1λ± ≤ . 
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We consider two possible cases. 
 
Case I: If θ ≤1, then λ  is complex: 
 

2 2 1/21 2 2 [1 ]iλ θ θ θ± = − ± −  
 

à  2 2 2 2 2| | (1 2 ) 4 [1 ] 1λ θ θ θ± = − + − =  
 
Therefore, when θ ≤ 1, the amplification factor is always 1, which is what we want to 
pure advection! 
 

θ ≤ 1 à 2 2sin 1
2

k x
p

∆  ≤ 
 

 

 
We want the above to be true for all k, therefore p2 ≤ 1 has to be satisfied for all value of 
sin2(). 
 

p2 ≤ 1  à 
c t

p
x

∆
=

∆
 ≤ 1,  

 
which is the same as the condition we obtained earlier using energy method for FTUS 
scheme. 
 
Case II:   
 
If θ ≥ 1, λ  is real: 
 

2 2 1/21 2 2 [ 1]λ θ θ θ± = − ± −  à 
 

2 2 2 1/2 2| | (1 2 2 [ 1] )λ θ θ θ± = − ± − , 
 
you can show for yourself that | | 1λ± >  therefore the scheme is unstable. 
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2.3. Courant-Friedrichs-Lewy (CFL) Stability Criterion 
 
Let’s consider the stability condition obtained above using the concept of domain of 
dependence. 
 
Recall from earlier discussion, the solution at (x1, t1) depends on data in the interval [x1 – 
at1, x1 + at1], and the D.O.D. is the area enclosed by the two characteristics lines. 

 
 
Based on the following discretization stencil,  

 
we can construct a numerical domain of dependence below: 
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Case I:  When the numerical DOD is smaller than the PDE's DOD (which usually 
happens when ∆t is large), the numerical solution cannot be expected to converge to the 
true solution, because the numerical solution is not using part of the initial condition, e.g., 
the initial values in the intervals of A and B.  The true solution, however, is definitely 
dependent on the initial values in these intervals. Different initial values there will result 
in different true solutions, while the numerical solution remain unaffected by their values. 
We therefore cannot expect the solutions to match. 
 
The numerical solution must then be unstable. Otherwise, the Lax's Equivalence theorem 
is violated. 
 
The above situation occurs when ∆t / ∆x > 1/ c  à unstable solution. This agrees with the 
result of our stability analysis. 
 
Case II: When ∆t / ∆x = 1/c, the PDE DOD coincides with the numerical DOD, the 
scheme is stable. 
 
Case III: When ∆t / ∆x < 1/c, the PDE DOD is contained within the numerical DOD: 

 
 
the numerical solution now fully depends on the initial condition. It is possible for the 
scheme to be stable. In the case of CTCS scheme, it is indeed stable. 
 

Definition:  
c t

x
∆

∆
 = σ =  Courant number 

 
The condition that  σ ≤ 1 for stability is known as the Courant-Friedrichs-Lewy (CFL) 
stability criterion. 
 
The CFL condition requires that the numerical domain of dependence of a finite 
difference scheme include the domain of dependence of the associated partial differential 
equation.  
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Satisfaction of the CFL condition is a necessary, not a sufficient condition for stability. 
 
E.g., the second-order centered-in-time and fourth-order centered-in-space scheme for a 
1-D advection equation requires σ ≤ 0.728 for stability whereas the D.O.D condition 
requires that σ ≤ 2. 
 
The DOD concept explains why implicit schemes can be unconditionally stable – it is 
because their numerical DOD always contains the PDE's DOD 
 
e.g., the second-order in time and space implicit scheme for wave equation (2): 
 

2
1 1[ 2 ]

4
n n n n

tt xx xx xx
c

u u u uδ δ δ δ+ −= + + . 

 
is stable for all σ. 
 
The numerical DOD is: 
 

 
 
 
The numerical DOD covers the PDE's DOD. 
 
 
Read Durran sections 2.2.2 and 2.2.3, which discuss the CFL criterion using the forward-
in-time upstream-in-space (also called upwind) scheme. 
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3. Phase and Amplitude Errors of 1-D Advection 
Equation 

 
Reading: Duran section 2.4.2. Tannehill et al section 4.1.2. 
 
The following example F.D. solutions of a 1D advection equation show errors in both the 
wave amplitude and phase. 
 

 
   
 
In this section, we will examine the truncation errors and try to understand their 
behaviors. 
 

3.1. Modified equation  
 
The 1D advection equation is  
 

0
u u

c
t x

∂ ∂
+ =

∂ ∂
.       (5) 

 
Upwind or Donor-Cell Approximation 
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We have discussed earlier the stability of the forward-in-time upstream-in-space 
approximation to the 1D advection equation, using the energy method. The FDE is 
 

1
1 0

n n n n
i i i iu u u u

c
t x

+
−− −

+ =
∆ ∆

      (6) 

 
Here we assume c>0, therefore the scheme is upstream in space.  
 
We can find from (6) that  
 

2 2
3 3( ) ( )

( )
2 2 6 6tt xx ttt xxx

u u t c x t c x
c u u u u O x t

t x
∂ ∂ ∆ ∆ ∆ ∆

+ = − + − − + ∆ + ∆
∂ ∂

 (7) 

 
and the right hand side is the truncation error. 
 
An analysis of τ can reveal a lot about the expected behavior of the numerical solution, 
and to investigate, we develop what is known as the Modified Equation. In this method, 
we write τ so as to illustrate the anticipated error types. 
 
 
Dispersion Error – occurs when the leading terms in τ have odd-order derivatives. They 

are characterized by oscillations or small wiggles in the solution, 
mostly in the wave of a moving wave. 

 
 
 
 
 
 
 
 
 
It's called dispersion error because waves of different wavelengths propagate at different 
speed (i.e., wave speed = a function of k) due to numerical approximations – causing 
dispersion of waves. For the PDE, all Fourier components described by Eq.(5) should 
move at the same speed, c. 
 
 
Dissipation Error – occurs when the leading terms inτ have even-order derivatives. 

They are characterized by a loss of wave amplitude. The effect is 
also called artificial viscosity and is implicit in the numerical 
solution. 
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The combined effect of dissipation and dispersion is often called diffusion. 
 
 
To isolate these errors, we derive the Modified Eqution, which is the PDE that is actually 
solved when a FD scheme is applied to the PDE. 
 
 
The modified equation is obtained by replacing time derivatives in the truncation error by 
the spatial derivatives.   
 
Let's do this for Eq.(7).  
 
To replace ut t  in right hand side of (7), we perform ( Eq.(7)  )t   à 
 

2 2( ) ( )
...

2 2 6 6tt xt ttt xxt tttt xxxt
t c x t c x

u cu u u u u
∆ ∆ ∆ ∆

+ = − + − − +    (8) 

 
and perform – c ( Eq(7) )x 

 
2 2 2 2

2 ( ) ( )
...

2 2 6 6tx xx ttx xxx tttx xxxx
c t c x c t c x

cu c u u u u u
∆ ∆ ∆ ∆

− − = − + + +   (9) 

 
and add (8) and (9) à 
 

2
2 ( ) ( )

2 2 2 2
ttt

tt xx ttx xxt xxx

u c c c
u c u t u O t x u u O x

 − = + ∆ + + ∆ + ∆ − + ∆  
   

. (10) 

 
Similary, we can obtain other time derivatives, ut t t   found in (7) and (10) and uttx and uxxt 
found in (10). They are (see Table 4.1 of Dannehill et al): 
 

3 ( )ttt xxxu c u O x t= − + ∆ + ∆  
2 ( )ttx xxxu c u O x t= + ∆ + ∆        (11) 

( )xxt xxxu cu O x t= − + ∆ + ∆  
 
Combining (7), (10) and (11) à 
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( ) ( )
2

2 3 2 2 3( )
1 2 3 1 ( , , , )

2 6t x xx xxx
c t c x

u cu u u O x x t t x tµ µ µ
∆ ∆

+ = − − − + + ∆ ∆ ∆ ∆ ∆ ∆  (12) 

 

where 
c t

x
µ

∆
=

∆
. 

 
Eq.(12) is the modified equation, which clearly shows the error terms relative to the 
original PDE. 
 

Note that the leading term has as form of 
2

2

u
K

x
∂
∂

 which, for 1- µ > 0, represent the 

dissipation (or diffusion as we often call it) process and therefore the dominant error is of 
a dissipation nature. 
 
 
Note that we had used CTCS scheme δ2t + c δ2xu = 0, then the leading error term in the 
modified equation would be  
 

2 2 2 3

2 3

( ) ( )
1

6 ( )
c x c t u

x x
 ∆ ∆ ∂

− ∆ ∂ 
.      (12) 

 
It contains the third (odd) order derivative, and the dominant error is of the dispersive 
nature. 
 
 
Returning to the upstream scheme, we find that when µ = c ∆t/∆x = 1, the scheme is 

exact!! The coefficient of the leading error term, ( )1
2

c t
µ

∆
− , is called the artificial 

viscosity, and when µ ≠ 1, causes server damping of the computational solution (see 
figure shown earlier).  In fact, the Doner-Cell is well known for its strong damping. 
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3.2. Quantitative Estimate of Phase and Amplitude Errors 
 
Reading: Sections 4.1.2 – 4.1.12 of Tannehill et al.  
               Sections 2.5.1 and 2.5.2 of Durran. 
 
By examining the leading order error in the modified equation, we can find the basic 
nature of the error. To estimate the error quantitatively, we use either analytical (as part 
of the stability analysis) or numerical method. We will first look at the former. 
 
 
With the stability analysis, we were already examining the amplitude of waves in the 
numerical solution. For a linear advection equation, we want the amplification factor to 
be 1, so that the wave does not grow or decay in time. The von Neumann stability 
analysis actually also provides the information about propagation (phase) speed of the 
waves. Any difference between the numerical phase speed and true phase speed is the 
phase error. 
 
 
Going back to the figure we showed at the beginning of this section (section 3), we can 
see that the first-order FTUS scheme has strong amplitude error but little phase error, 
while the 2nd-order CTCS scheme has large phase error but small amplitude error. The 
4th-order CTCS scheme has a smaller phase error than its 2nd-order counterpart. 
 
Amplitude Error 
 
Recall that in the Neumann stability analysis, the frequency ω can be complex, and if it 
is, there will be either decay or growth in amplitude – which is entirely computational for 
a pure advection problem. This is so because 
 
if ω is real,  
 

| | |exp( ) | |cos( ) sin( ) |i t t i tλ ω ω ω= − ∆ = ∆ + ∆ =1   à no change in amplitude. 
 
if ω is complex, i.e., ω = ωR + i ωI, 
 

| | |exp( ) | |exp( )exp( ) | |exp( ) | 1R I Ii t i t t tλ ω ω ω ω= − ∆ = − ∆ ∆ = ∆ ≠  most of the time. 
 
When ωΙ  > 0, | λ | > 1, the wave grows and when ωΙ  < 0, | λ | < 1 the wave decays (is 
damped). | λ | is the amplitude change per time step and | λ |Ν is the total amplitude 
change after N steps.  
 
If, e.g., | λ | = 0.95, then after 100 steps, the amplitude becomes 5.92 x 10-3! 
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Remember for PDE  ux + c ux = 0, the frequency ω is always real. Assuming wave 
solution u = U exp[ i(kx-ωt) ], you can find ω = kc, which is called the dispersion relation 
in wave dynamics. For the current problem the phase speed of waves is ω/k = c which is 
the same for all wave components. Therefore the analytic waves are non-dispersive.  
 
Phase Error 
 
For convinence, let's define  
 

ωa  = frequency of the analytical solution (PDE) 
ωd = frequency of discrete solution (FDE) 

 
then  

exp( ), exp( ).a a d di t i tλ ω λ ω≡ − ∆ ≡ − ∆  
 
 
Recall that if  z = x + i y  ( 1i = − ), we can use the polar form and write  
 
 z = | z | exp( i θ )  or  z = | z | (cosθ + i sinθ )   
 
where | z | = ( x2  + y2 )1/2 is called the modulus of z. 
 
Thus, λa = | λa | exp( i θa ) = exp( i θa )   ( because | λa | = 1). 
 
We define   θa = the phase change per time step of the analytic solution 
 
  = - ωa ∆t   ~ frequency × time step size 
 
 
For the finite difference solution, ω will, in general, be complex, i.e., ω has an imaginary 
part: 
 

ωd = (ωd)R + i (ωd)I 
 
∴ λd = exp[ (ωd)I ∆t ]  exp[ -i (ωd)R ∆t ] = | λd | exp( i θd )à   (13) 
 
θd ≡ − (ωd)R ∆t  is the phase change per time step associated with the F.D. scheme.  
|λd| is not necessarily 1 here. 
 

From (13), we can see that 
Im{ }

atan
Re{ }

d
d

d

λ
θ

λ
= .    (14) 

 

Taking the radio,  
( )d d R d d

a a a a

t kc c
t kc c

θ ω
θ ω

− ∆
= = =

− ∆
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for the same wave number, and the ratio tells us about the relative phase error. 
 
If cd / ca < 1, the F.D. solution lags the analytic solution (moves slower) 
If cd / ca > 1, the F.D. solution leads the analytic solution (moves faster) 
If cd / ca = 1, the F.D. solution has no phase error 
 

3.2.1. First-order upwind scheme 
 
Let's now apply these notations of phase and amplitude error to the first-order upwind 
(donor-cell) scheme. 
 
 

1
1 0

n n n n
i i i iu u u u

c
t x

+
−− −

+ =
∆ ∆

      (15) 

 
Using Neumann method, assume that iikxn n

i du U eλ= , you can show for yourself that 
 

λd = 1 - µ + µ cos( k∆x) – i µ sin( k∆x )    (16) 
 
where µ = c∆t/∆x is the Courant number. 
 

| λd |2 = 1 + 2µ(µ - 1) [1- cos( k∆x) ] 
 

since 1-cos( k∆x) ≥ 0,  
 

| λd | ≤ 1 when µ ≤ 1. 
 
Look at the 2∆x wave, k∆x = 2π/(2∆x) ∆x = π 
 

| λd |2 = 1 + 2µ(µ - 1) [1+1] = 1 + 4µ( µ - 1).   (17) 
 
When µ = 1, | λd | = 1, there is no amplitude error. 
 
When µ = 0.5, | λd | = 0, the 2 ∆x wave is completed damped in one time step!!  
 
For a 4∆x wave and when µ = 0.5, | λd | = 0.5 à 4∆x waves are damped by half in one 
time step! 
 
Therefore, the upwind advection scheme is strongly damping. It should not be used 
except for some special reason. 
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The following figure shows the amplification modulus for the upwind scheme plotted for 
different values of  µ (υ in the figure), the Courant number.  
 
 

 
 
β  in the figure is our k∆x, and π∆x/L ≤ k∆x ≤ π . The lower and upper limits of k∆x 
correspond to 2L and 2∆x waves, respectively. L is the length of the computational 
domain. 
 
This is so because the shortest wave supported is 2∆x in wavelength, à 
 

k∆x = 2π  / (2∆x) ∆x = π  
 
The longest wave supported by a domain of length L is 2L in wavelength à  
 

k∆x = 2π/(2L) ∆x = π∆x/L  
 
k∆x à 0 when L à ∞. 
 
For example, for a 4∆x wave, k∆x = π/2 
 
From the figure, we see that:  
 
When µ = 1, the amplification factor is 1, there is no amplitude error for all values of k∆x 
(β), i.e., for all waves. 
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When µ > 1, the amplification factor is > 1 for all k∆x except for wave number zero. The 
amplification factor is the largest for the shortest wave (k∆x = π), implying that the 2∆x 
wave will grow the fastest when µ >1, in another word, the 2∆x wave is most unstable. 
 
This is why we see grid-scale noises when the solution blows up! 
 
When µ < 1, all waves are stable but are significantly damped. Again, the amplitude error 
is larger for shorter waves (larger k∆x). For Courant number of 0.75, the amplitude of the 
2∆x wave is reduced by half after one single time step. The error is even bigger when µ = 
0.5.  
 
 
From the above, we can see that the numerical solution is poorest for the shortest waves, 
and as the wavelength increases, the solution becomes increasingly accurate. This is so 
because longer waves are sampled by a large number of grid points and are, therefore, 
well resolved. 
 
2∆x wave is special in that it is often the most unstable when stability criterion is 
violated, and when the solution is stable it tends to be most inaccurate. 
 
For generally cases, it is impossible to ensure µ =1 everywhere unless the advection 
speed is constant. Therefore, strong damping is inevitable with the upwind scheme. You 
will see severely smoothed solution when using this scheme. 
 
The damping behavior of the upwind scheme can also be understood from the modified 

equation (13) discussed earlier. The leading error term is of the form 
2

2

u
K

x
∂
∂

 which 

represents diffusion. 
 
 
Now, let's examine the dispersion (phase) error of the upwind scheme. 
 
According to earlier definitions and (16) 
 

θa = - ωa ∆t   = - c k∆t = - µ k∆x 
 

Im{ } sin( )
atan atan

Re{ } 1 cos( )
d

d
d

k x
k x

λ µ
θ

λ µ µ
− ∆

= =
− + ∆

 

 
 

From the above, the ratio of the numerical to analytic phase speed, d

a

θ
θ

, can be calculated. 
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In the following figure this ratio is plotted as a function of β  (k∆x) for µ (υ in the figure) 
= 0.25, 0.5 and 0.75. 
 

 
 
We can see that there is no phase error (corresponding to the unit circle) when µ =0.5. 
 
All waves are slowed down when µ < 0.5. All waves are accelerated when 0.5 < µ < 1.0.  
 
Again the phase error is larger for short waves (larger β, i.e., κ∆x). The error is greatest 
for the 2∆x wave. 
 
For a fixed µ, θd à 0 when k∆x à π , i.e., 2∆x does not move at all! 
 
Because the F.D. phase speed is dependent on wavenumber k, the numerical solution is 
dispersive, whereas the analytical solution is not. 
 
From the above discussions, we see that when using the upwind scheme the waves that 
move too slow are also strongly damped. 
 
The upwind advection scheme is actually a monotonic scheme – it does not generate new 
extrema (minimum or maximum) that are not already in the field. For a positive field 
such as density, it will not generate negative values. We will discuss more about the 
monotonicity of numerical schemes later. 
 
 
Note that for practical problems, c can change sign in a computational domain. In that 
case, which point to use in the spatial difference depends on the local sign of c:   
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1

1 0
n n n n
i i i iu u u u

c
t x

+
−− −

+ =
∆ ∆

  c>0 

1
1 0

n n n n
i i i iu u u u

c
t x

+
+− −

+ =
∆ ∆

 c<0     (18) 

 
Using the following definitions: 
 

c+= ( c + |c| )/2, c- = ( c - |c| )/2,  
 
the upwind scheme in (19) can be written into a single expression 
 

1
1 1( ) ( )n n n n n n

i i i i i i

t
u u c u u c u u

x
+ + −

− +
∆  = + − + − ∆

    (19) 

 
Substituting c+ and c- into (18) yields 
 

1 1 1 1 1
2

( ) ( 2 )| |
2 2

n n n n n
n n i i i i i
i i

c u u u u ut x c
u u t

x x
+ + − + −− − −∆ ∆

= + ∆ +
∆ ∆

.  (20) 

 
One can see that the 2nd term on RHS is the advection term in centered difference form 
and the 3rd term has a form of diffusion. If one uses forward-in-time centered-in-space 
scheme to discretize equation (5), one will get a FDE like (2) except for the 3rd term on 
RHS. The scheme is known as the Euler explicit scheme, and the stability analysis tells 
us that it is absolutely unstable. So it should never be used. Apparently, the 'diffusion 
term' included in the upwind scheme stabilizes the upwind scheme – it is achieved by 
damping the otherwise growing short waves. 
 
The included 'diffusion term' also introduces excessively damping to the short waves, as 
seen earlier. One possible remedy is to attempt to remove this excessive diffusion through 
a corrective step and several corrective steps. This is exactly what is done in the 
Smolarkiewicz (1983, 1984) scheme, which is rather popular in the field of meteorology. 
 
Because Smolarkiewicz scheme is based on the upwind scheme, it maintains the positive 
definiteness of the advected fields therefore is a good choice for advecting mass and 
water variables. 
 
References: 
 
Smolarkiewicz, P. K., 1983: A simple positive definite advection scheme with small 
implicit diffusion. Mon. Wea. Rev., 111, 479-486. 
 
Smolarkiewicz, P. K., 1984: A fully multidimensional positive definite advection 
transport algorithm with small implicit diffusion. J. Comput. Phys., 54, 325-362. 
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3.2.2. Leapfrog scheme for advection 
 
In this section, we examine a perhaps most commonly used scheme in atmospheric 
models – the leapfrog centered advection scheme. 
 
Here leapfrog refers to finite difference in time – the frog leaps over time level n from n-
1 to n+1 – it is a name for the second-order centered difference in time. 
 
Leapfrog scheme is usually used together with centered difference in space – and the 
latter can be of 2nd or higher order. 
 
The leapfrog scheme gives us second order accuracy in time. 
 
The PDE is 
 

1 1
1 1 0

2 2

n n n n
i i i iu u u u

c
t x

+ −
+ −− −

+ =
∆ ∆

      (21) 

 
2 2( , )O x tτ = ∆ ∆  

 
 and (show it yourself) 
 

2 2 1/2sin( ) [1 sin ( )]i k x k xλ µ µ± = − ∆ ± − ∆     (22) 
 
If 2 21 sin ( )k xµ− ∆ ≥ 0, then | | 1λ± ≡  and there is no amplitude error for all waves. This is 
the most attractive property of the leapfrog scheme. 
 
 
In (22), we see that there are two roots for λ - one of them is acutally non-physical and is 
known as the computational mode. 
 
Which one is computational and how does it behave? 
 
Let's look at the positive root λ+ first: 
 

λ+ = | λ+ | exp( -i β+ )   
 
where β+ = - θd    (θd is the phase change in one time step for the discretized scheme, as 
defined ealier). 
 
If  µ ≤ 1, | λ+ | = 1. 
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2 1/2cos( ) sin( ) [1 ]i ia aλ β β+ + += − = − + −  
 
where a = sin( )k xµ ∆ , therefore 
 
 1sin [ sin( )]k xβ µ−

+ = ∆ . 
 
Now consider the negative root λ− : 
 

λ− = | λ- | exp( -i β - )   
 
If  µ ≤ 1, | λ- | = 1. 
 

2 1/2cos( ) sin( ) [1 ]i ia aλ β β− − −= − = − − −  
 
with the aid of the following schematics, we can see that  
 

β π β− +− = + .  
 
 

 
 
 
 
 
We see that the phase of the negative root is the same as that of the positive root shifted 
by π  then multiplied by –1. 
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What does all this mean then? 
 
For a single wave k, we can write the solution as a linear combination of these two modes 
(since both modes are present): 
 

 ( )

( )

[ ]

[ ( 1) ]

i

i

i

ikxn n n
i

ikxi n i n

ikxi n i nn

u A B e

Ae Be e

Ae B e e

β π β

β β

λ λ
+ +

+ +

+ −

− +

−

= +

= +

= + −

     (23) 

 
where A and B are the amplitude of these two modes at time 0. 
 
Which root corresponds to the computational mode then? The negative one, the one that 
give rises to the second term in (23), because of the following observations: 
 
(1) The computational mode changes sign every time step. The period of oscillation is 

2∆t.  
 
(2) It has a phase opposite to the physical mode, therefore it propagates in the opposite 

direction from the physical mode. 
 
(3) Because of the 2∆t period, the computational mode can be damped effectively using a 

time filter, which will be discussed in next section. 
 
(4) The presence of the computational mode is due to the use of three time levels, which 

requires two initial conditions instead of one – the first and second time step 
integrations start from time level –1 and 0 respectively, which are two different initial 
conditions.  

 
In practice, we usually have only one initial condition – we often start the time 
integration by using forward-in-time scheme for the first step, i.e., for the first step, 
we do 

 
1 0 0 0

1 1

2
i i i iu u u u

c
t x

+ −− −
= −

∆ ∆
 

 
 and for the second, we do 
 

2 0 1 1
1 1 0

2 2
i i i iu u u u

c
t x

+ −− −
+ =

∆ ∆
. 

 

An additional note:  when 1 1
1 1( )n n n n

i i i i

c t
u u u u

x
+ −

+ −
∆

= − −
∆

 is used to integrate the advection 

equation, we can experience the grid separation problem, as show schematically below: 
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Due to the layout of the computational stencil, the solution at cross points never know 
what's going on at the dot points. As the solution march forward in time, the solutions at 
neighboring points can split away from each other. This problem is also related to the use 
of three time levels, and can be alleviated by the use of Asselin time filter. An artificial 
spatial smoothing term of the form of K∂2u/∂x2 will also help. In practice, other forcing 
terms in the equation can also couple the solutions together. 
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3.3.3. Asselin Time Filter 
 
The Asselin (also called Robert-Asselin) time filter (Robert 1966; Asselin 1972) is 
designed to re-couple of the splitting solutions in time and damp the computational mode 
found with the leapfrog scheme and others. 
 
It is a two-step process: 
 
(1) u is integrated to time level n+1 using the regular leapfrog scheme, 
 

* 1 1 * *
1 1( )n n n n

i i i iu u u uµ+ −
+ −= − −      (24) 

 
where * indicates values that have not been 'smoothed'. 
 
(2) a filter is then applied to three time levels of data 
 
 * * 1 * 1( 2 )n n n n n

i i i i iu u u u uε + −= + − + .    (25) 
 
Note that the term in second term in (15) is a finite difference version of ∂2u/∂t2 - the 
diffusion in time which tends to damp high-frequency oscillations. 
 
 
If we use (25) in (24), we can do a stability analysis and examine the impact of the time 
filter on solution accuracy: 
 

2 1/2[ ]ia b aλ ε± = − + ± −      (26) 
 
where a= sin( )k xµ ∆  and b = (1-ε)2  [compare (22) with (16)].  
 
If b – a2 ≥ 0 (note that this stability condition has also changed), we have  
 
 | λ |2  = (ε2 + b) ± 2ε ( b – a2)1/2. 
 
We can plot this to determine its effect on the solution. 
 
 
We will find that: 
 
(1) amplitude error is introduced by the time filter; 
(2) the time filter reduces the time integration scheme from second-order accurate to first-

order accuracy only 
(3) the filter makes the stability condition more restrictive (can use smaller ∆t now). 
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We want to use as small a ε as possible. Typically ε = 0.05 to 0.1. 
 
The leapfrog (2nd or 4th-order) centered difference scheme combined with the Asselin 
filter is used in the ARPS for the advective process (more complex monotonic advection 
schemes are also available for scalar advection). 
 
Reference: 
 
Robert, A. J., 1966: The integration of a low order spectral form of the primitive 
meteorological equations. J. Meteor. Soc. Japan, 44, 237-245. 
 
Asselin, R., 1972: Frequency filter for time integration. Mon. Wea Rev., 100, 487-490. 
 
Reading: Durran Section 2.3.5. 
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3.2.4. Adam-Bashforth schemes 
 
Second-order Adam-Bashforth Scheme 
 

1 1 1
1 1 1 13 1

2 2 2 2

n n n n n n
i i i i i iu u u u u u

c
t x x

+ − −
+ − + − − − −

= − − ∆ ∆ ∆ 
 

 
• The RHS is a linear extrapolation of δ2xu from n-1 and n to n+1/2, so that the 

scheme is "centered" in time at n+1/2. 
• Second order in time and space 
• Stability analysis shows that  

 
1 /2

21 3 9
1 1

2 2 4
is s i sλ±

  = − ± − −  
   

 

 
where sin( )s k xµ= ∆ . 
 
Note that this scheme is also a 3 time level scheme and 3 time level schemes always 

have two modes – one physical and one computational. We can see there for the physical 
mode, λ −> 1 as s −> 0, and for the computational mode, λ −> 0 as s −> 0. 

 
If s << 1, we can show that  
 

| λ+ | ≈ (1 + s4/4 )1/2 

 
| λ− | ≈ 0.5 s(1 + s2 )1/2 

 
(You can show it by performing binomial expansion). 

 
Clearly | λ+ | > 1 for s ≠ 0 therefore the scheme is absolutely unstable. 
 
However, for small enough values of s (i.e., Courant number), because s is raised to 

the 4th power, | λ+ | can be close enough to 1 so that the growth rate is small enough for 
the scheme to be still usable. 

 
One can estimate the growth rate in terms of e-folding time – i.e., the time taken for a 

wave to growth by a factor of e. 
 
However, it is higher-order Adam-Bashforth (AB) schemes that we are more 

interested in. The higher-order AB scheme can be obtained by extrapolating the right 
hand side of the equation (i.e., F in ut = F) to time level n+1/2, as we do for the 2nd-order 
AB scheme, but using high-order (e.g., 2nd-order) polynomials, which will also involve 
more time levels. 
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Third-order Adam-Bashforth Scheme 
 
The 3rd-order AB scheme thus obtained has the form of 
 

1
1 2

2 2 2[23 16 5 ]
12

n n
n n ni i

x x x
u u c

u u u
t

δ δ δ
+

− −−
= − − +

∆
 

 
• It involves data at four time levels – require more storage space. 
 
• And it has two computational modes and one physical mode. 
 
• The computational modes are strongly damped, however, unlike the leapfrog 

scheme, so there is no need for time filtering. 
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• Most accurate results are obtained for µ near stability limit. This is not true for the 
leapfrog 4th-order centered in space scheme. That solution is more accurate for µ 
< 0.5 where certain cancellation between time and space truncation errors occur. 
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• Durran (1991 MWR) shows that 3rd-order AB time difference combined with 
4th-order spatial difference is a good choice – it is in generally more accurate than 
the commonly used leapfrog 4th-order centered-in-space scheme. 
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3.2.5. Other schemes 
 
There are many other schemes for solving the advection equation. In the following are a 
some of them, given together with brief discussions on their important properties. 
 
 
Euler explicit (Euler refers to forward in time) 
 

1
1 0, 0

n n n n
i i i iu u u u

c c
t x

+
+− −

+ = >
∆ ∆

  - forward-in-time, downstream in space 

1
1 1 0
2

n n n n
i i i iu u u u

c
t x

+
+ −− −

+ =
∆ ∆

 - forward-in-time, centered in space 

 
• Both schemes are absolutely unstable. You can show it for yourself.  
• They are of no use. 

 
Lax Method 
 

1
1 1 1 1( ) / 2

0
2

n n n n n
i i i i iu u u u u

c
t x

+
+ − + −− + −

+ =
∆ ∆

 

 
• 1st-order in time, 2nd-order in space.  
• Stable when |µ| ≤ 1. 
• Large dissipation error. 
• Significant eading phase error - waves propagate faster.  

2∆x waves twice as fast when µ=0.2. 
 
Lax-Wendroff 
 

1 2
1 1 1 1

2

2
2 2 ( )

n n n n n n n
i i i i i i iu u u u u u uc t

c
t x x

+
+ − + −− − − +∆

= − +
∆ ∆ ∆

 

 
• Effectively an Euler explicit (FTCS) scheme plus a diffusion term. 
 

Its derivation is interesting – it's based the Taylor series expansion in time first: 
 

1 2 31
( ) ( )

2
n n
i i t ttu u tu t u O t+ = + ∆ + ∆ + ∆  

 
and use ut = -c ux  and ut t = c2 uxx to rewrite it as  
 

1 2 2 31
( ) ( )

2
n n
i i x xxu u c tu c t u O t+ = − ∆ + ∆ + ∆ .  
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It is then discretized in space. 
 

• Stable when |µ| ≤ 1 
• Amplitude (dissipation) error for short waves 
• Mostly lagging phase error, for short waves. Leading phase error for shortest 

waves when µ is near 0.75. 
 
We have actually obtained this scheme before based on characteristics and second order 
interpolation. See Section 2.3. 
 
MacCormack (an example of two-step predictor-corrector method) 
 

Predictor:  1 * 1( )
n n

n n i i
i i

u u
u u c t

x
+ + −

= − ∆
∆

 

 

Corrector: 
1 * 1 *

1 1 * 1( ) ( )1
( )

2

n n
n n n i i
i i i

u u
u u u c t

x

+ +
+ + − −

= + − ∆ ∆ 
 

 
• Combination of upwind and downwind steps 
• Intermediate prediction is used in the second corrector step 
• In the corrector step, the time difference is 'backward in time' 
• For linear advection equation, this scheme is equivalent to (you can show this by 

substituting the 1st eq. into the 2nd), therefore its properties are the same as, the 
Lax-Wendroff scheme. 

 
 
Euler Implicit (Euler refers to forward in time) 
 

1 1 1
1 1 0
2

n n n n
i i i iu u u u

c
t x

+ + +
+ −− −

+ =
∆ ∆

 

 
• 1st-order in time and 2nd-order in space. 
• Unconditionally stable. 
• Relatively small dissipation error, only for intermediate wave lengths.  

No dissipation error for longest and shortest waves. 
• Significant lagging phase error for short waves. 
• Need to solve a coupled system of equations.  

Tridiagonal in 1-D. Block trigiagonal in 2-D. 
 
Time-centered Implicit (Trapezoidal) 
 

1 1 1
1 1 1 1 0

2 2 2

n n n n n n
i i i i i iu u u u u uc

t x x

+ + +
+ − + − − − −

+ + = ∆ ∆ ∆ 
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• 2nd-order in both time and space. 
• Absolutely stable. 
• No dissipation error for all waves (similar to leapfrog scheme  

which is also 2nd-order accurate in time) 
• Significant lagging phase error for short waves, similar to Euler implicit. 

 
Matsuno (forward-backward two-step) Scheme 
 

1 *
1 1( )

0
2

n n n n
i i i iu u u u

c
t x

+
+ −− −

+ =
∆ ∆

 

1 1 * 1 *
1 1( ) ( )

0
2

n n n n
i i i iu u u u

c
t x

+ + +
+ −− −

+ =
∆ ∆

 

 
• 1st-order in time, second order in space 
• Stable when µ  ≤ 1. 
• Relatively large dissipation and phase error 

 
Leapfrog Fourth-order Centered-in-Space Scheme 
 

1 1
1 1 2 24 1

0
2 3 2 3 4

n n n n n n
i i i i i iu u u u u u

c
t x x

+ −
+ − + − − − −

+ − = ∆ ∆ ∆ 
 

 
• 2nd-order in time and 4th-order in space 
• Stable for µ ≤ 0.728 (more restrictive than 2nd-order) 
• No dissipation error without time filter 
• Also contains computational mode, as all three-time level schemes do 
• Smaller phase error than 2nd-order centered-in-space counterpart 
• Leapfrog scheme can be combined with centered spatial  

difference schemes of even higher order 



3-32 

 



3-33 



3-34 



3-35 
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List of commonly used time difference schemes and their basic properties (from Durran): 
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3.3. Practical Measures of Dissipation and Dispersion Errors 
 
Takacs (1985 MWR) proposed a practical measure for estimating dissipation and 
dispersion errors based on numerical solutions. The methods divide the total mean square 
error into two parts, one indicative of dissipation error and one the dispersion error. 
 
The total mean square error is given as 
 

21
( )

N

a d
i

u u
N

τ = −∑ .       (27) 

 
ua is the analytical solution and ud  the numerical (discrete) solution. 
 
It can be rewritten as (show it yourself): 
 

2 2 2( ) ( ) 2 ( ) ( ) ( )a d a d a du u u u u uτ σ σ ρσ σ= + − + −    (28) 
 

where 2 2 2 21 1
( ) ( ) , ( ) ( )

N N

a a a d d d
i i

u u u u u u
N N

σ σ= − = −∑ ∑  are the variance of the ua and 

ud, respectively. 
1

cov( , ) ( )( )
N

a d a a d d
i

u u u u u u
N

= − −∑  is the co-variance between ua and 

ud and 
cov( , )

( ) ( )
a d

a d

u u
u u

ρ
σ σ

=  is the correlation coefficient. 

 
 
(28) can be rewritten as  
 

2 2[ ( ) ( )] ( ) 2(1 ) ( ) ( )a d a d a du u u u u uτ σ σ ρ σ σ= − + − + −   (29) 
 
Takacs definite the first two terms of the RHS of (29) as the dissipation error and the 
third term as the dispersion error, i.e.,  
 

2 2[ ( ) ( )] ( )DISS a d a du u u uτ σ σ= − + −      (30a) 
 

2(1 ) ( ) ( )DISP a du uτ ρ σ σ= −       (30b) 
 
We can see that when two wave patterns differ only in amplitude but not in phase, the 
their correlation coefficient ρ should be 1. According to (30a), τDISP  = 0. That's a 
reasonable result. 
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4. Monotonicity of Advection Schemes 
 

4.1. Concept of Monotonicity 
 
When numerical schemes are used to advect a monotonic function, e.g., a monotonically 
decreasing function of x, the numerical solutions do not necessarily preserve the 
mononotic property – in fact, most of the time they do not, and the errors tend to be large 
near sharp gradient. This is illustrated in the following: 
 

 
 
A few example solutions are given below: 
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Monotonic numerical schemes are ones which, given an initial distribution which is 
monotonic before advection, produce a monotonic distribution after advection. 
 
A consequence of this property is that monotonic schemes neither create new extrema in 
the solution nor amplify existing extrema. 
 
 
S.K. Godunov (1959) showed that no schemes having greater than first-order accuracy in 
space can be monotonic by construction (i.e., without using some artificial modification 
to ensure monotonicity). The highly dissipative upstream scheme is the classic example 
of a monotonic scheme.  
 
Monotonic schemes are widely used in computational fluid dynamics because they do not 
allow the Gibbs Phenomenon to occur. This phenomenon results from attempting to 
represent a sharp gradient or discontinuity by a truncated number of waves, and always 
produces "undershoots and overshoots" relative to the amplitude of the initial 
distribution.  
 

• These oscillations typically appear in the "wake" of a traveling wave which 
exhibits a sharp gradient, but do not necessarily grow in time.  

• They are short waves that become noises in the solution – the damping of them 
results in smoothing of numerical solution.  

• The oscillations can cause positive-definite fields, such as mass and water, to turn 
negative. 

 
The Gibbs phenomenon is illustrated in the figure below, which shows how a square 
wave is represented by various numbers of waves in a Fourier expansion. Even if 100 
terms are retained in the expansion, small over- and under-shoots remain. Monotonic 
schemes do not allow such oscillations to occur, i.e., one can think of the oscillations 
being removed by very selective damping. 
 
Spectral methods use truncated spectral series to represent variable fields – they are 
particularly suspect to the Gibbs errors. 
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Monotonic schemes are often constructed by examining local features of the advected 
field, and adjust the advective fluxes of certain high-order schemes explicitly so that no 
new extrema is created in the solution.  
 

4.2. Two basic classes of monotonic schemes 
 
One is called the Flux-corrected transport (FCT) scheme, original proposed by Boris and 
Book (1973) and extended to multiple dimensions by Zalesak (1979).   
 
With this scheme, the advective fluxes are essentially a weighted average of a lower-
order monotonic scheme (usually 1st-order upwind) and a higher-order non-monotonic 
scheme. The idea is to use the high-order scheme as much as one can without violating 
the monotonicity condition. Details can also be found in Section 5.4 of Durran's book. In 
the ARPS, the FCT scheme is available as an option for scalar advection – it is three to 
four times as expensive as a regular 1st or second advection, however. 
 
The other class is the so-called flux limiter method. With this method, the advective 
fluxes of a high-order scheme is directly modified (limited by a limiter) and the goal is 
that the total variation of the solution does not increase in time and this property is 
usually referred to as total variation diminishing (TVD).  
 
The total variation of a function φ is defined as  
 

1

1
1

( ) | |
N

j j
j

TV φ φ φ
−

+
−

= −∑  

 
A TVD scheme ensures that  TV(φn+1) ≤ TV(φn ).  
 
Sweby (1984) presented a systematic derivation of the flux limiter for this class (see also 
Durran Section 5.5.1). 
 
With both methods, the flux correction or limiting is done grid point by grid point – in 
effect, the coefficients of the finite difference schemes are solution dependent therefore 
they are often called non-linear schemes. 
 
Recommended Reading: Sections 5.2.1, 5.2.2., 5.3-5.5 of Durran. 
 
Summarizing comments: 
 
By now, you should have realized that no scheme is perfect, although some is better than 
the others. When we design or choose a scheme, we need to look at a number of 
properties, including accuracy (in terms of amplitude and phase), stability (implicit 
schemes tends to be more stable), computational complexity (implicit schemes cost more 
to solve per step), monotonicity (can we tolerate negative water generation?), and 
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conservation properties etc. You need also consider the problem at hand – e.g., does it 
contain sharp gradient that is important to your solution? What is your target computer?  
The computational and storage requirement are other factors to consider. 
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5. Multi-Dimensional Advection 
 
Reading: Durran section 3.2.1. Smolarkievicz (1982 MWR). 
 
Similar to the diffusion or heat transfer equations, there are three general approaches for 
solving multi-dimensional advection equations, namely: 

 
1) Fully multi-dimensional methods 
2) Direct extensions of 1-D schemes 
3) Directional splitting methods 

 
We will look at each in the following. 
 

5.1. Direct Extension 
 
Many 1-D advection schemes can be directly extended to multiple dimensions. 
 
Multi-dimensional extension of 1-D explicit schemes often have a more restrictive 
stability condition.  
 
We will look at the 2-D leapfrog centered scheme first.  
 
For equation 
 

0x y
u u u

c c
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
,       (31) 

 
the leapfrog centered discretization is 
 

1 1
, , 1, 1, , 1 , 1( ) ( )yn n n n n nx

m j m j m j m j m j m j

c tc t
u u u u u u

x y
+ −

+ − + −

∆∆
− = − − − −

∆ ∆
   (32) 

 
2 2 2( , , )O x y tτ = ∆ ∆ ∆  

 
Let the individual wave component be  
 

, exp[ ( ]n n
m ju i km x lj yλ= ∆ + ∆        (33) 

 
where k and l are wave number in x and y directions, respectively. 
 
Substituting (33) into (32) and solve for λ, you can obtain (do it yourself): 
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1/2

sin( ) sin( ) 1 sin( ) sin( )y yx x
c t c tc t c t

i k x l y k x l y
x y x y

λ±

∆  ∆    ∆ ∆ = − ∆ + ∆ ± − ∆ + ∆    ∆ ∆ ∆ ∆     
 (34) 

 
Similar to the 1-D case, if  
 

1 sin( ) sin( )yx
c tc t

k x l y
x y

∆ ∆
− ∆ + ∆ ∆ ∆ 

≥ 0,      (35) 

 
then | | 1λ± ≡ , the scheme is stable (and has not amplitude error). 
 
Inequality (35) is satisfied when  
 

sin( ) sin( ) 1yx
c tc t

k x l y
x y

∆∆
∆ + ∆ ≤

∆ ∆
.      (36) 

 
 
Let's consider the simpler case of ∆x = ∆y = d, and  rewrite  
 

cx = us cos(θ), cy = us sin(θ),  
 
where us is the flow speed, (36) then becomes 
 

 cos( )sin( ) sin( )sin( ) 1su t
k x l y

d
θ θ

∆
∆ + ∆ ≤ .     (37) 

 
Since we want (37) to be satisfied for all possible waves, we choose the most stringent 
case of sin(k∆x) = 1 and sin(l∆y) = 1, (37) the becomes 
 

cos( ) sin( ) 1su t
d

θ θ
∆

+ ≤ . 

 
The maximum value of cos( ) sin( )θ θ+  is 2  which occurs when θ = π/4, the result is 
the stability condition for 2-D advection equation in the case of ∆x = ∆y: 
 

2 1su t
d
∆

≤    or  0.707su t
d
∆

≤       (38) 

 
i.e., the Courant number has to be less than 0.707, instead of 1 as we get for 1-D case. 
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The reason that ∆t has to be about 30% smaller is explained by the following diagram: 

 
 
 
As seen from the figure, for a wave propagating from SW to NE, the effective distance 
between two grid points is d/ 2  instead of d.  A wave signal cannot propagate more than 
one (effective) grid interval with this explicit second-order leapfrog-centered scheme for 
stability. 
 
Similar reduction of time step size occurs for most other explicit schemes, including the 
upwind scheme. 
 
 
 
 

5.2. Fully Multi-Dimensional Method 
 
Not all direction extensions of 1-D schemes are stable, unfortunately. 
 
Consider the Lax-Wendroff (also called Crowley) scheme we derived earlier using both 
second-order interpolation method (section 2.3 of Chapter 2) and the Taylor series 
expansion method (section 3.2.5 of this chapter): 
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1-D Lax-Wendroff or Crowley scheme: 
 

1 2
1 1 1 1

2

2
2 2 ( )

n n n n n n n
i i i i i i iu u u u u u uc t

c
t x x

+
+ − + −− − − +∆

= − +
∆ ∆ ∆

    (39) 

 
The scheme is table when |µ| ≤ 1. 
 
Using the notion of finite-difference operators, (39) becomes  
 

2
1

2
( )

2
n n n n
i i x xx

c t
u u c t u uδ δ+ ∆

= − ∆ +       (40). 

 
Direct extension of (40) into 2-D is: 
 

22
1

2 2

( )( )
( )

2 2
yn n n n n nx

i i x x y y xx yy

c tc t
u u t c u c u u uδ δ δ δ+ ∆∆

= − ∆ + + +   (41). 

 
It turns out that (41) is absolutely unstable.  This is because the cross-derivative terms are 
neglected! 
 
To see it, we need to go back to original derivation of the Lax-Wendroff scheme: 
 

1 2 31
( ) ( )

2
n n

t ttu u tu t u O t+ = + ∆ + ∆ + ∆       (42) 

 
Use    ut = -cx ux - cy uy     
 
and  utt = -cx utx - cy uty = cx

2 uxx + cy
2 uyy + 2cxcy uxy , 

 
and replace the spatial derivatives with the corresponding finite differences, (42) becomes  
 

22
1 2

2 2

( )( )
( ) ( )

2 2
yn n n n n n nx

i i x x y y xx yy x y xy

c tc t
u u t c u c u u u c c t uδ δ δ δ δ+ ∆∆

= − ∆ + + + + ∆  (43) 

 
Clearly, the last term on the RHS is additional, compared to (41). 
 
Note that we can also obtain (43) using the characteristics method plus quardratic 
interpolation, as long as all terms in the second-order 2-D polynomial are retained. 
 
Equation (43) is an example of fully multidimensional scheme, which is different from 
the direct extension of 1-D counterpart.  
 
Smolarkiewicz (1982 MWR) discuss the MD Crowley scheme in details (handout). 
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5.3. Directional Splitting 
 
It turned out that by using directionally splitting method (i.e., applying 1-D scheme in 
one direction at a time), the effect of cross-derivative terms can also be retained and a 
stable scheme result. 
 
The algorithms is  
 

2
1 *

, , 2 , ,
( )

( )
2

n n n nx
i j i j x x i j xx i j

c t
u u c t u uδ δ+ ∆

= − ∆ +     (44a) 

2
1 1 * 1 * 1 *

, , 2 , ,

( )
( ) ( ) ( )

2
yn n n n

i j i j y y i j yy i j

c t
u u c t u uδ δ+ + + +∆

= − ∆ +    (44b) 

 
In this case, we preserve the stability of each step and λ = λx λy.  
 
 
With the above scheme, we have  
 
Advantages: 
 
1.  1-D advection is straightforward – properties of schemes are well understood. 
2.  The time step constraint is not as severe as for true multi-dimensional problems.  
 
Disadvantages: 
 
1.  We implicitly assume that features move obliquely to the grid may be represented as 

a series of orthogonal steps in the coordinate directions: 
 
 

 
 
 

In an implicit scheme, where the time step can be large, these errors can be 
substantial.  
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2.  The biggest disadvantage is that splitting introduces an O(∆t2) error in the form of a 
spurious source term. To see this, consider the 2-D advection being solved using 
directional splitting upstream advection: 
 
  0t x yu Uu Vu+ + =        (45) 
 
where U=U(x,y) >0 and V(x,y) >0 . 
 
Writing this as a direct extension of the upwind scheme in 1-D, we have 

 
1n n

x yu u tU u tV uδ δ+
− −= − ∆ − ∆ .      (46) 

 
The directional splitting version is  
 

* n
xu u tU uδ −= − ∆        (47a) 

1 * *n
yu u tV uδ+

−= − ∆        (47b) 
 
Substitute (47a) into (47b), we obtain a single step scheme 
 
 

* 2 2n
x y x y x yu u tU u tV u UV t u u V t u Uδ δ δ δ δ δ− − − − − −= − ∆ − ∆ + ∆ + ∆ . (48) 

 
We can see that the last term on RHS of (48) is actually spurious and is not zero when 
U is not constant. 


