Chapter 3. Finite Difference Methods for Hyperbolic
Equations

1. Introduction

Mot hyperbolic problems involve the transport of fluid properties. In the equations of
motion, the term describing the transport processis often called convection or advection.

E.g., the 1-D equation of motion is

du—ﬂl"I uﬂz-im+vl§|2u. (1)
d 9t X r x

Here the advection term u E termis nonlinear.

X
Wewill focusfirg on linear advection problem, and move to nonlinear problems later.

From (1), we can see the transport process can be expressed in the Lagrangianform (in
which the change of momentum u along a particle, dw/dt, is used) and the Eulerian form.
With the former, advection term does not explicitly appear. Later in this course, we will
als0 discuss semi-Lagrangian method for solving the trangport problems. In this chapter,
we discuss only the Eulerian advection equetion.

2. Linear convection — 1-D wave equation

2.1. The wave equations

The classica 2nd-order hyperbolic wave equation is

Tu_ . Tu

© S e 2

The equation describes wave propagation at a speed of ¢ in two directions.

The 1st-order equation that has properties smilar to (2) is
—+c— =0, c>0. 3

Note that Eq.(2) can be obtained from Eq.(3), by taking atime derivative of (3) and
resubgtituting (3) into the new equation.
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For apureinitid vaue problem with initia condition
ux, 0) =FK(x), - ¥ <x<¥,
the exact solution to (3) is u(x,t) = F(x-ct), which we have obtained earlier using the

method of characterigtics. We know that the solution represents asignal propageting a
Speed .

2.2. Centered in time and space (CTCS) FD scheme for 1-D wave
equation

We apply the centered in time and space (CTCS) schemeto Eq.(2):

i i Uy - 207 + U0

=0. 4
Dt? Dx? @
We find for this scheme,
t =O(Dt* + Dx).

Performing von Neumann gtability andys's, we can obtain a quadratic equation for
amplification fector | :

1/2

. D( akDx gé aekao
|, =1- 2p®sin? +2pSne——=-ap’sin® g— -
x p 8 > p 8 ep 8

where

oo oDt
Dx

which isthe fraction of zone distance moved in Dt at speed c.

Letg = psingé%g, we have

|, =1- 27 £ 29092 4.

We want to see under what condition, if any, |l , [E 1.
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We consider two possible cases.

Casel:If g£1,then| iscomplex:
|, =1- 2°£ix[L- 97
> I1.1°=@1- 21°)"+49°[1-q°] =1

Therefore, when g £ 1, the amplification factor isdways 1, which is what we want to
pure advection!

qEL1> prsinZEDX0
€2 5

Wncza want the above to be true for dl k, therefore p? £ 1 hasto be stisfied for dl value of
an().

2 cDt
£1 > p=—£1,
p P Dx

which is the same as the condition we obtained earlier usng energy method for FTUS
scheme.

Cesell:

Ifq3 1,1 isred:
l.=1-2°x2q*- 1" >
1. 1°=@1- 29° £ [q* - "),

you can show for yoursdlf thet || , [>1 therefore the schemeis undable.
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2.3. Courant-Friedrichs-Lewy (CFL) Stability Criterion

Let's consder the stability condition obtained above using the concept of domain of
dependence.

Recdl from earlier discussion, the solution  (xg, t1) depends on datain theinterval [x; —
aty, X1 + at1], and the D.O.D. isthe area enclosed by the two characteristics lines.

_t/\
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Basad on the following discretization stencil,
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we can construct a numerical domain of dependence below:
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Casel: When the numerica DOD is smdler than the PDE's DOD (which usudly
happenswhen Dt islarge), the numerical solution cannot be expected to converge to the
true solution, because the numerica solution is not using part of theinitia condition, eg.,
theinitid vauesintheintervas of A and B. The true solution, however, is definitdy
dependent on the initid vauesin these intervas. Different initid vaues there will result

in different true solutions, while the numerica solution remain unaffected by their values.
We therefore cannot expect the solutions to match.

The numerical solution must then be ungtable. Otherwise, the Lax's Equiva ence theorem
isviolated.

The above stuation occurswhen Dt/ Dx > 1/ ¢ - undtable solution. This agrees with the
result of our stability andyss.

Cazll: When Dt / Dx = 1/c, the PDE DOD coincides with the numerica DOD, the
schemeis gable.

Ca=l1l: When Dt / Dx < 1/c, the PDE DOD is contained within the numerica DOD:

t A
Cxt /'t\)

AN

\

% / \ */—.,A‘L/égy/nnmaﬁcck
g N

7/

s = \\ S84

the numerica solution now fully depends on theinitid condition. It is possible for the
schemeto be stable. In the case of CTCS scheme, it isindeed stable.

Definition: % =s = Courant number

The conditionthat s £ 1 for stability is known as the Courant- Friedrichs-Lewy (CFL)
dability criterion.

The CFL condition requires that the numerica domain of dependence of afinite
difference scheme indlude the domain of dependence of the associated partid differentia

eguation.
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Satigaction of the CFL condition is a necessary, not a sufficient condition for sability.

E.g., the second-order centered-in-time and fourth-order centered-in-space scheme for a
1-D advection equation requires s £ 0.728 for stability whereasthe D.O.D condition
requiresthat s £ 2.

The DOD concept explains why implicit schemes can be unconditiondly stable—itis
because their numerica DOD aways contains the PDE's DOD

e.g., the second-order in time and space implicit scheme for wave equation (2):
CZ
d.u" :Z[d LuUtt+2d ut+d u™.

isdablefordl s.

The numerica DOD is,

»
L)

-l —

oA

The numerical DOD covers the PDE's DOD.

Read Durran sections 2.2.2 and 2.2.3, which discuss the CFL criterion using the forward-
intime upstream+-in-space (also caled upwind) scheme,
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3. Phase and Amplitude Errors of 1-D Advection
Equation

Reading: Duran section 2.4.2. Tannehill et a section 4.1.2.

Thefollowing example F.D. solutions of a 1D advection equation show errorsin both the
wave amplitude and phase.

l_IILII\I\\J\IIIIIIIII[1II'I|| TS S I I | T N N VOO I N N N M N AT PO S |

FIGURE 2.13. Exact solution and differential-difference solutions for (a) advection of a
spike over a distance of five grid points, and (b) advection of the sum of equal-amplitude
7.5Ax and 10Ax sine waves over a distance of twelve grid points. Exact solution
(dot-dashed), one-sided first-order (short-dashed), centered second-order (long-dashed),
and centered fourth-order (solid). The distribution is translating to the right. Grid-point
locations are indicated by the tick marks at the top and bottom of the plot.

In this section, we will examine the truncation errors and try to understand their
behaviors.

3.1. Modified equation

The 1D advection equation is

Wrclloo. ®

Upwind or Donor-Cedll Approximation




We have discussed earlier the sability of the forward-in-time upstream-in-space
gpproximation to the 1D advection equation, using the energy method. The FDE is

n+l n n n
™o u

i i +Cq -ui-l
Dt Dx

u =0 6)

Here we assume ¢>0, therefore the scheme is upstream in space.

We can find from (6) thet

flu, _ D n +cD<uXX_ (Dt)2uttt _c(Dx)?
t X 2 2 6

u, +O(DxX + Dx®)

and the right hand sdeis the truncation error.

Anandydsof t can reved alot about the expected behavior of the numerical solution,
and to investigate, we develop what is known as the Modified Equation. In this method,

wewritet so asto illustrate the anticipated error types.

()

Dispersion Error — occurs when the leading termsin t have odd-order derivatives. They

are characterized by oscillations or samdl wigglesin the solution,

mogtly in the wave of amoving wave.

It's caled dispersion error because waves of different wavelengths propagate at different

speed (i.e., wave speed = afunction of k) due to numerica gpproximations — causing
dispersion of waves. For the PDE, al Fourier components described by Eq.(5) should

move at the same speed, c.

Disspation Error — occurs when the leeding termsint have even-order derivatives.

They are characterized by aloss of wave amplitude. The effect is

aso cdled atificid viscosty and isimplicit in the numerica
solution.
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The combined effect of disspation and disperson is often cdled diffuson.

To isolate these errors, we derive the Modified Eqution, which isthe PDE that is actudly

solved when a FD schemeis gpplied to the PDE.

The modified equation is obtained by replacing time derivatives in the truncation error by

the spatid derivatives.
Let'sdo thisfor Eq.(7).
To replace u; in right hand side of (7), we perform ( Eq.(7) ) =

Dt cIx (Dt)?
Uy +CU, = - EUm + U -

ECUR
2 xxt 6 tttt 6 Xt

and perform — ¢ ( EQ(7) )«

, _cDt c’Dx c(Dt)? c?(Dx)?
- Cly - €U, =5 U ~—u, + Uy, + u

XX ttx 2 6 tttx 6 XX *..

and add (8) and (9) >

e u ? '
u, =c’u, + Dtg 2m

(%]

(o o o c 0
+—u,, +O(Dt) =+ DXe—=u,,, - —u., +O(Dx) .
2 ttx ( )g 82 hoxt 2 X ( )

(8)

©)

(10)

Similary, we can obtain other time derivatives, ut: found in (7) and (10) and uix and Ukt

found in (10). They are (see Table 4.1 of Dannehill et d):

U, =-CU,, +O(Dx+ Dt)
uttx :Czuxxx+O(DX+ Dt)
u,, =-cu,, +O(Dx+Dt)

Combining (7), (10) and (11) =
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) - c(Dx)*

u, +cu, =%(1— m)u (2n? - 3m+1)u,, +O(DX, DxDt, D °Ix, DX°)  (12)

cht
where m=—.
Dx

Eq.(12) is the modified equation, which clearly shows the error terms relative to the
origind PDE.

2

Note that the leading term has asform of K ﬂ—l: which, for 1- m> 0, represent the
X

disspation (or diffusion aswe often call it) process and therefore the dominant error is of
a disspdtion nature.

Note that we had used CTCS scheme dy; + ¢ daxu = 0, then the leading error term in the
modified equation would be

C(D()Z éCZ(Dt)Z l;lﬂsu

6 SO0 i )

It contains the third (odd) order derivative, and the dominant error is of the digpersive
nature.

Returning to the upstream scheme, we find that when m= ¢ Dt/Dx = 1, the schemeis
exact!! The coefficient of the leading error term, % (L- m), iscalled the atificil

viscosity, and when m? 1, causes server damping of the computationa solution (see
figure shown earlier). Infact, the Doner-Cdl iswdl known for its strong damping.
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3.2. Quantitative Estimate of Phase and Amplitude Errors

Reading: Sections4.1.2 — 4.1.12 of Tannehill et d.
Sections 2.5.1 and 2.5.2 of Durran.

By examining the leading order error in the modified equation, we can find the basic
nature of the error. To estimate the error quantitatively, we use either andytica (as part
of the sability anayss) or numerica method. We will first look at the former.

With the stability andys's, we were dready examining the amplitude of wavesin the
numerica solution. For alinear advection equation, we want the amplification factor to
be 1, so that the wave does not grow or decay in time. The von Neumann stability
andysis actudly aso provides the information about propagation (phase) speed of the
waves. Any difference between the numerica phase speed and true phase speed isthe

phase error.

Going back to the figure we showed at the beginning of this section (section 3), we can
see that the firg-order FTUS scheme has strong amplitude error but little phase error,
while the 2nd-order CTCS scheme has large phase error but small amplitude error. The
4th-order CTCS scheme has a smdler phase error than its 2nd-order counterpart.

Amplitude Error

Recdl that in the Neumann stability analys's, the frequency w can be complex, and if it
is, there will be either decay or growth in amplitude — which isentirdy computationd for
apure advection problem. Thisis so because

if wisred,

[ | =|exp(- iwDt) |=|cos(wDt) +i sin(wDt) |=1 -> no change in amplitude.
if wiscomplex, i.e, w=wr+1iw,,

| | =lexp(- wLt) |=|exp(- iwg Dt)exp(w, Dt) |[=lexp(w, Dt) |* 1 most of thetime.
Whenw, >0, |l |>1, thewavegrowsandwhenw; <O, || |<1thewavedecays(is
damped). || |isthe amplitude change per imestepand || | isthe total amplitude

change after N steps.

If, eg., || | =0.95, then after 100 steps, the amplitude becomes 5.92 x 10°3!
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Remember for PDE uy + ¢ U = 0, the frequency w is dways red. Assuming wave
solution u = U exp[ i(kx-wt) ], you can find w = kc, which is caled the dispersion relation
in wave dynamics. For the current problem the phase speed of wavesisw/k = cwhichis
the same for dl wave components. Therefore the andytic waves are non-dispersive.

Phase Error

For convinence, let's define

w, = frequency of the andytical solution (PDE)
wy = frequency of discrete solution (FDE)

then
|, © exp(-iw, Dt), I ,° exp(-iw, Dt).

Recdl thatif z=x+iy (i =«/-_1),W%a1 use the polar form and write
z=|z|exp(iq) or z=|z]|(cosq+isng)

where|z|= (5% +y? ) iscdled the modulus of z.

Thus I a=|lalexp(i da) =exp(i ga) (because|la|=1).

We define g, = the phase change per time step of the andytic solution

=-w,Dt ~frequency ~ timedepsze

For the finite difference solution, w will, in generd, be complex, i.e., w has an imaginary
part:

Wq = (Wg)r+ 1 (Wa)i

\ | a=exp[ (Wd)i Dt] exp[ -i Wo)rDt]=|1d|exp(iqda)> (13)

da® - (Wg)r Dt isthe phase change per time step associated with the F.D. scheme.
[l 4] isnot necessarily 1 here.

_ o ML}
From (13), we can seethat q, = atan Re(l,) . 19

Td(ingthera:iio, q_d:-—:—:_



for the same wave number, and the ratio tels us about the relative phase error.

If cq/ ca< 1, the F.D. solution lags the andytic solution (moves dower)
If cy/ cq> 1, the F.D. solution |eads the andytic solution (moves faster)
If ¢q/ ca=1, the F.D. solution has no phase error

3.2.1. First-order upwind scheme

Let's now gpply these notations of phase and amplitude error to the fird-order upwind
(donor-cdl) scheme.

1-0 (15)

Using Neumann method, assumethat u” =U1 &, you can show for yoursalf that
| ¢=1- m+ mcos( kDx) —i msin( kDx ) (16)
where m= cDt/Dx is the Courant number.
|1 4P=1+2mm- 1) [1- cos( kDx) ]
since 1-cos( kDx) 3 0O,
[14]|£ 1whenm£ 1.
Look at the 2Dx wave, kDx = 2p/(2Dx) Dx =p
[l ¢P=1+2mm- 1) [1+1] = 1 + 4n( m- 1). (17)
Whenm=1, || 4| =1, thereis no amplitude error.
Whenm= 0.5, || 4|= 0, the 2 Dx wave is completed damped in one time step!!

For a4Dx wave and when m= 0.5, || 4|= 0.5 - 4Dx waves are damped by haf in one
time step!

Therefore, the upwind advection schemeis strongly damping. It should not be used
except for some specia reason.

3-13



The following figure shows the amplification modulus for the upwind scheme plotted for
different valuesof m(u in the figure), the Courant number.

UNIT CIRCLE

ve=125

I
1.50 1.00 0.50 0.00 0.50 1.00
6]

Figure 4.2 Amplification factor modulus for upstream differencing scheme.

b inthefigureisour kDx, and pDx/L £ KDx £ p. Thelower and upper limits of kDx
correspond to 2L and 2Dx waves, respectively. L isthe length of the computationa
domain.
This is s0 because the shortest wave supported is 2Dx in wavdength, >
kDx =2p / (2DX) Dx=p
The longest wave supported by adomain of length L is2L in wavelength >
kDx = 2p/(2L) Dx = pDx/L
kDx = OwhenL > ¥.
For example, for a4Dx wave, kDx = p/2

From the figure, we see that:

When m= 1, the amplification factor is 1, there is no amplitude error for dl vaues of kDx
(b), i.e, for dl waves.

3-14



When m> 1, the amplification factor is> 1 for al kDx except for wave number zero. The
amplification factor isthe largest for the shortest wave (kDx = p), implying that the 2Dx
wave will grow the fastest when m>1, in another word, the 2Dx wave is mogt ungtable.

Thisiswhy we see grid-scale noises when the solution blows up!

When m< 1, dl waves are sable but are sgnificantly damped. Again, the amplitude error
islarger for shorter waves (larger kDx). For Courant number of 0.75, the amplitude of the
2Dx wave isreduced by haf after one Sngle time step. The error is even bigger when m=
0.5.

From the above, we can see that the numerica solutionis poorest for the shortest waves,
and as the wave ength increases, the solution becomes increasingly accurate. Thisis o
because longer waves are sampled by alarge number of grid points and are, therefore,
well resolved.

2Dx wave is specid in that it is often the most ungtable when stability criterion is
violated, and when the solution is stable it tends to be most inaccurate.

For generdly cases, it isimpossible to ensure m=1 everywhere unless the advection
gpeed is congtant. Therefore, strong damping is inevitable with the upwind scheme. You
will see severdy smoothed solution when using this scheme.

The damping behavior of the upwind scheme can aso be understood from the modified
T°u

equation (13) discussed earlier. Theleading error termis of theform K F which
X

represents diffusion.

Now, let's examine the dispersion (phase) error of the upwind scheme.
According to earlier definitions and (16)

Ja=- Wy Dt =-ckDt=- mkDx

q :atanlm{ld}:atan - msin(kDx)
‘ Re{l ,} 1- m+mcos(kDx)

From the above, the ratio of the numerica to andytic phase soeed, 9 , can be calculated.

a
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In the following figure thisratio is plotted as afunction of b (kDx) for m(u in the figure)
=0.25,0.5and 0.75.

UNIT CIRCLE

Figure 4.3 Relative phase error of upstream differencing scheme.

We can see that there is no phase error (corresponding to the unit circle) when m=0.5.
All waves are dowed down when m< 0.5. All waves are accelerated when 0.5 < m< 1.0.

Again the phase error is larger for short waves (larger b, i.e., kDx). The error is greatest
for the 2Dx wave.

For afixed m gq > 0 when kDx - p, i.e., 2Dx does not move a al!

Because the F.D. phase speed is dependent on wavenumber k, the numerical solution is
dispersve, whereas the andlytica solution is not.

From the above discussions, we see that when using the upwind scheme the waves that
move too dow are aso strongly damped.

The upwind advection schemeis actualy a monotonic scheme — it does not generate new
extrema (minimum or maximum) thet are not dready in the fidld. For apostive fidd

such as dengity, it will not generate negative vaues. We will discuss more about the
monotonicity of numerica schemes later.

Note that for practica problems, ¢ can change sign in acomputational domain. In that
case, which point to use in the spatia difference depends on the locd sign of ¢:
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L H A o0 o0
Dt Dx
n+l _ n TLETL
ui L’ +c lrl+1 q :O C<0 (18)
Dt Dx
Using the fallowing definitions:

c’=(c+]g)2 ¢ =(c-|c)2

the upwind schemein (19) can be written into a single expression
n+l n Dt A~ n n - n ny\ 1
U =u +&8C u'-ul,)+c (Ui, - u')y (19)

Substituting ¢" and ¢ into (18) yidlds

c(ui, - u’y) + DtDx [c| (U, - 2u" - ul) _

uin+l - uin + u -
2Dx 2 Dx

(20)

One can see that the 2nd term on RHS is the advection term in centered difference form
and the 3rd term has aform of diffusion. If one uses forward-in-time centered-in-space
scheme to discretize equation (5), one will get a FDE like (2) except for the 3rd term on
RHS. The schemeis known asthe Euler explicit scheme, and the stability andysstdls
usthet it is dbsolutdy ungable. So it should never be used. Apparently, the 'diffusion
term’ included in the upwind scheme stabilizes the upwind scheme — it is achieved by
damping the otherwise growing short waves.

The included ‘diffusion term’ also introduces excessively damping to the short waves, as
seen earlier. One possible remedy isto attempt to remove this excessive diffusion through
acorrective step and severd corrective steps. Thisis exactly what is done in the
Smolarkiewicz (1983, 1984) scheme, which israther popular in the field of meteorology.

Because Smolarkiewicz scheme is based on the upwind scheme, it maintains the postive
definiteness of the advected fields therefore is a good choice for advecting mass and
water variables,

References;

Smolarkiewicz, P. K., 1983: A smple positive definite advection scheme with smdll
implidt diffuson. Mon. Wea. Rev., 111, 479-486.

Smolarkiewicz, P. K., 1984: A fully multidimensona positive definite advection
trangport dgorithm with smdl implicit diffuson. J. Comput. Phys., 54, 325-362.
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3.2.2. Leapfrog scheme for advection

In this section, we examine a perhaps most commonly used scheme in atmospheric
models — the leapfrog centered advection scheme.

Here legpfrog refersto finite difference in time — the frog legps over time leve n from n-
1to nt1l—itisanamefor the second-order centered differencein time.

Leapfrog scheme is usudly used together with centered difference in space — and the
latter can be of 2nd or higher order.

The legpfrog scheme gives us second order accuracy in time.

The PDE s

n+d o0l no_ "
ui q +C u|+1 u|-1 — O (21)
2Dt 2Dx

t =O(Dx*,Dt?)
and (show it yoursdf)
|, =-imsin(kDx) £[1- n? sin® (kDx)]"? (22

If 1- n?sin*(kDx)3 0, then |1 , | ° 1 and thereis no amplitude error for al waves. Thisis
the mogt attractive property of the legpfrog scheme.

In (22), we see that there are two rootsfor | - one of them isacutaly non-physicd and is
known as the computationad mode.

Which one is computational and how doesit behave?
Let'slook at the positiveroot | - firdt:
le=1+]exp(-ibs)

whereb, =-qq (qqisthe phase change in onetime step for the discretized scheme, as
defined edier).

If mE1,|l.]|=1
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|, =cos(b,)-isin(b,)=-ia+[1- a’]"?
wherea= msin(kDx) , therefore

b, =sin"*[msin(kDx)] .
Now consider the negetiveroot | . :

. =]l.|exp(-ib.)
If mEL|l.]=1

| =cos(b.)-isin(b.)=-ia- [1- a’]*?
with the ad of the following schematics, we can see that

-b. =p+b,.

We see that the phase of the negative root is the same as that of the positive root shifted
by p then multiplied by —1.
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What does al this mean then?

For a single wave k, we can write the solution as alinear combination of these two modes
(since both modes are present):

u"=(A +Bl"e*
=[Ae ™" + B (23)
= [Ae— ib,n + B(_ 1)n ébJ‘l]ékXi
where A and B are the amplitude of these two modes at time 0.

Which root corresponds to the computationa mode then? The negative one, the one that
give rises to the second term in (23), because of the following observetions:

(1) The computationad mode changes sign every time step. The period of oscillation is
2Dt.

(2) It has a phase opposite to the physica mode, therefore it propagates in the opposite
direction from the physica mode.

(3) Because of the 2Dt period, the computationd mode can be damped effectively using a
time filter, which will be discussed in next section.

(4) The presence of the computationa mode is due to the use of three time levels, which
requires two initia conditions instead of one — the first and second time step
integrations dart from time level —1 and O respectively, which are two different initid
conditions.

In practice, we usudly have only oneinitid condition — we often Sart the time
integration by using forward-in-time scheme for the first step, i.e,, for the first sep,
we do

1_ .0 0 0
U - U - Uisa = Uiy

Dt 2Dx

and for the second, we do

2 0 1 1
U - u +Cui+1' U, _

2Dt DX

An additiond note: when u™* =u"* - CD—l:)t(ui”+l - u",) isusad to integrate the advection
X
equation, we can experience the grid separation problem, as show schematicaly below:
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a -1 N 1

Due to the layout of the computationd stencil, the solution at cross points never know
what's going on at the dot points. As the solution march forward in time, the solutions at
neighboring points can glit away from each other. This problem is also reated to the use
of threetime levels, and can be dleviated by the use of Asdin timefilter. An atificid
spatiad smoothing term of the form of KY2u/fx will also help. In practice, other forcing
termsin the equation can aso couple the solutions together.

v <1
v=1,0
0.5
1 1 | 1 1 i
1.00 0.00 1.00 1.00 0.00 1.00
16] 4’/°e
(a) (b)

Figure 4.7 Leap frog method. (a) Amplification factor modulus. (b) Relative phase error.
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3.3.3. AsHin TimeFilter
The AsHin (also called Robert- Assdin) time filter (Robert 1966; Assdlin 1972) is

designed to re-couple of the splitting solutions in time and damp the computational mode
found with the legpfrog scheme and others.

It isatwo-step process:
(1) uisintegrated to time leve n+1 usng the regular legpfrog scheme,
umt =yt mul - uh) (24)
where* indicates values that have not been 'smoothed'.
(2) afilter isthen applied to three time levels of data
u'=u"+e(u™- 2u"+u""). (25)
Note that the term in second term in (15) is afinite difference version of T2u/ft? - the

diffuson in time which tends to damp high-frequency oscillations.

If we use (25) in (24), we can do a gability analys's and examine the impact of thetime
filter on solution accuracy:

|, =-ia+e Hb- a’"? (26)
where a=msin(kDx) and b= (1-e)* [compare (22) with (16)].
If b—a? 3 0 (note that this stability condition has aso changed), we have

[l 2 =(e®+b)+2e(b-a)"2

We can plot this to determine its effect on the solution.

Wewill find thet:

(1) amplitude error isintroduced by the time filter;
(2) the time filter reduces the time integration scheme from second-order accurate to first-
order accuracy only

(3) thefilter makes the gtahility condition more restrictive (can use smdler Dt now).
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We want to use assmall ae aspossble. Typicdly e = 0.05t0 0.1.

The legpfrog (2nd or 4th-order) centered difference scheme combined with the Assdlin
filter isused in the ARPS for the advective process (more complex monotonic advection
schemes are dso available for scalar advection).

Reference:

Robert, A. J,, 1966: The integration of alow order spectra form of the primitive
meteorologica equations. J. Meteor. Soc. Japan, 44, 237-245.

AsHin, R, 1972: Frequency filter for time integration. Mon. Wea Rev., 100, 487-490.

Reading: Durran Section 2.3.5.
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3.2.4. Adam-Bashforth schemes

Second-order Adam-Bashforth Scheme

n-1 ~

1 A -1
u- u’ — ?3 Ui - Uy - ll'h -uhu

! -

Dt & 2Dx 2 2Dx g

The RHS isalinear extrapolationof doxu from -1 and nto n+1/2, so that the
schemeis "centered” intime a n+1/2.

Second order in time and space

Stability andyd's shows that

where s=msin(kDx) .

Note that this schemeisdso a 3 time level scheme and 3 time level schemes dways
have two modes — one physical and one computationd. We can see there for the physica
mode, | ->1ass- >0, and for the computational mode, | ->0ass->0.

If s<< 1, we can show that
[1+]» (1+sY4)Y2
[1.]» 0551+ )2
(You can show it by performing binomia expanson).
Clearly || + | > 1for st O therefore the schemeis absolutely unstable.

However, for smdl enough vaues of s (i.e., Courant number), because sisraised to
the 4th power, || + | can be close enough to 1 so that the growth rate is smal enough for

the scheme to be ill usable.

One can estimate the growth rate in terms of e-folding time—i.e,, the time taken for a
wave to growth by afactor of e.

However, it is higher-order Adam-Bashforth (AB) schemes that we are more
interested in. The higher-order AB scheme can be obtained by extrapolating the right
hand sde of the eqution (i.e, Finu = F) to time level n+1/2, aswe do for the 2nd-order
AB scheme, but usng high-order (e.g., 2nd-order) polynomias, which will dso involve
moretime leves.
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Third-order Adam-Badghforth Scheme

The 3rd-order AB scheme thus obtained has the form of

uin+l_ n C N o .
th == 1231, - 16d,u" 45,7 )
It involves data a four time levels— require more storage space.

And it has two computationa modes and one physica mode.

The computationa modes are strongly damped, however, unlike the legpfrog
scheme, o thereisno need for timefiltering.

1.44

121

|A]
0.81

0.6t

0.4}

- 4

02 0.4 06 0.8
wat

F1G. 1. Magnitude of the amplification factor for the third-order
Adams-Bashforth scheme plotted as a function of wAt. Solid line is
the physical mode; dashed curves are the two computational modes.
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Most accurate results are obtained for mnear gability limit. Thisis not true for the

leapfrog 4th-order centered in space scheme. That solution is more accurate for m
< 0.5 where certain cancdllation between time and space truncation errors occur.

14"'I T T T T L) L} T T T T L] T Trrr T r1rrr T i T T T T T T T T T LI han |
- {a) EXACT {1
12 —-— LEAPFROG 1 | ]
o(x) ‘ )
\ |
\ /'\‘\
\ /A
g V]
\‘ ! \
Vo
! \ /
o) § PN ST TS TP ST TP ST SN SPE TOSRIT — S B A O
1.4‘l'l'l'l'l'l'l'l'I'l'l'|‘l‘l'l|["
b (¢} p
12F g
o(x)
PN i
— <<
o - O S T S U WV RPN WA ST T A AP G U SR A PN S U TP NI VRPN SN TU T SO VU ST SR NP S R
0 8 16 24 32 0 8 16 24 32
x {(grid points) X (grid points)

FIG. 3. Effect of leapfrog stepsize on the accuracy of fourth-order centered-difference solution to the advection equation. Shqwn are the
exact and numerical solutions computed using Courant numbers of (2) 0.7272, (b) 0.5, (¢) 0.3, and (d) 0.1. All results are for a nondimensional
time of 3.
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Durran (1991 MWR) shows that 3rd-order AB time difference combined with
4th-order spatid difference isagood choice— it isin generaly more accurate than
the commonly used legpfrog 4th-order centered-in-space scheme.

14 L I I T AR AR A e e e o B

H —————— EXACT 1
12k —-—- ASSELIN LEAPFROG, y=.06

’ ~ ——— 3RD- ORDER ADAMS - BASHFORTH
o eeeeeen ASSELIN LEAPFROG, y=.20 1

o(x)

¢ 7 ) T T S B S VT S NATU BT S S RO RS SN TR U SN TN UV S O WO T U VAUV WIS NP U0 SIS U U S S Y Wi PR P T

0 8 16 24 32 0 8 16 24 32

x (grid points) x {grid points)

F1G. 5. Comparison of an exact solution to the advection equation with results obtained using Adams—Bashforth and Asselin-filtered
leapfrog time differencing in a fourth-order finite-difference model at a nondimensional time of 3, for (a) x = 0.5 and (b) = 0.2.

@) ‘ (b)
14 T T T LAAAARRARAR RARES RRARSRARAS] AL A AN I L AL AR AR AR AR AASAS AASS RAAAS AASAS AAAM ARARR AR RS
EXACT

1.2} — -——-= ASSELIN LEAPFROG, y=.06 i
’ — — —— 3RD- ORDER ADAMS - BASHFORTH

-------- ASSELIN LEAPFROG, y=.20 1
1.0 4 4
0.8 4

o(x)

02+ 4 F 4
Eo Y TR T AR S S ST N TS P YRS FANT FUU T FRUUE S U TS FUUT ST NUS FURTE NN IETTI REVSE FERUY FEUTE FRUTY FUTEE FEUTU NS FUUTY FUNTY SUUTY FUUTE FREN
0. 10 20 30 40 50 60 0 10 20 30 40 50 60

x (grid points) x (grid points)

FIG. 6. As in Fig. 5, except that the spatial resolution has been doubled.
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3.2.5. Other schemes

There are many other schemes for solving the advection equation. In the following area
some of them, given together with brief discussons on their important properties.

Euler explicit (Euler refersto forward in time)

n+l _ n

4 o Y +cl"l+1|:;(q =0, ¢>0 - forward-in-time, downstream in space
ut-u Ul -ul L .
! L+c _11=0 - forward-in-time, centered in space

Dt 2Dx

Both schemes are absolutdly unstable. Y ou can show it for yoursdlf.
They are of no use.

Lax Method

1
uin+ - (uin+l+uir]1)/2+Cuir1rl_ uin—l -
D 2Dx

1st-order in time, 2nd-order in space.

Stablewhen |m £ 1.

Large disspation eror.

Significant eading phase error - waves propagate faster.
2Dx wavestwice asfast when m=0.2.

L ax-Wendr off

n+l _
i

u_I"I

u

- qn+1' uirjl + c’Dt Uin+1' an +uin—l
Dt 2Dx 2 (Dx)?

Effectively an Euler explicit (FTCS) scheme plus adiffuson term.

Its derivation isinteresting — it's based the Taylor series expanson in time firgt:
W =U +Dlu, + (D)7, +O(DF)
anduseu =-C U and U = C° Uy to rewriteit as

u™ =u"- cDtu, +%c2 (Dt)*u, +O(Dt%).
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It isthen discretized in space.

Stablewhen|m £ 1

Amplitude (disspation) error for short waves

Mostly lagging phase error, for short waves. Leading phase error for shortest
waves when mis near 0.75.

We have actualy obtained this scheme before based on characteristics and second order
interpolation. See Section 2.3.

MacCormack (an example of two-step predictor-corrector method)

Predictor: @™ =u - ot Y
Dx

n+l

™) - U
Dt i i y
DX g

+ 1 é n n+1\*
Corrector:  u™=Zau"+(u"™) - ¢
28
Combination of upwind and downwind steps
Intermediate prediction is used in the second corrector step

In the corrector step, the time difference is 'backward in time

For linear advection equation, this scheme is equivaent to (you can show this by
subgtituting the 1<t eg. into the 2nd), therefore its properties are the same as, the
Lax-Wendroff scheme.

Euler Implicit (Euler refersto forward in time)

n+l n n+l n+l
u -

i i +C i+l ui-l :0
Dt 2Dx

1st-order in time and 2nd-order in space.

Unconditiondly steble.

Rdatively smdl disspation error, only for intermediate wave lengths.
No dissipation error for longest and shortest waves.

Sgnificant lagging phase error for short waves.

Need to solve a coupled system of equations.

Tridiagond in 1-D. Block trigiagond in 2-D.

Time-centered Implicit (Trapezoidd)

n n+1

n+l A ml n n p
P q +E§ui+1 B l"Ii—l +ui+1' ui.lg:
Dt 2§ 2Dx 2Dx  §

u 0
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2nd-order in both time and space.

Absolutdy stable.

No dissipation error for dl waves (Smilar to legpfrog scheme

which isdso 2nd-order accurate in time)

Significant lagging phase error for short waves, smilar to Euler implicit.

Matsuno (forwar d-backward two-step) Scheme

n+1y* n n n
(Ui ) - U _,_CL\+1' ui-1:O

Dt 2Dx
uin+1 _ uin N C(uin:]-.l * o (qm]-.l)* _ O
Dt 2Dx

1st-order in time, second order in space
Stablewhenm £ 1.
Redtively large dissipation and phase error

L eapfrog Fourth-order Center ed-in-Space Scheme

n+ _ . n-1 n

u - —-u e4ul, - Ul 1ul,-ul,u_

+C 0
2Dt & 2Dx 3 4Dx

2nd-order in time and 4th-order in space

Stable for m£ 0.728 (more restrictive than 2nd-order)

No dissipation error without timefilter

Also contains computational mode, as al three-time level schemes do
Smaller phase error than 2nd-order centered-in-space counterpart
Legpfrog scheme can be combined with centered spatial

difference schemes of even higher order
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Lig of commonly used time difference schemes and their basic properties (from Durran):

Method Order Formula

Forward 1 "t = ¢" + hF(¢™)
Backward 1 ot = 9" 4 hF (")

Asselin : "1 = ¢n=1 4 2hF (¢™)

Leapfrog ¢_ﬂ — ¢" + y(¢n—l _ 2¢n + ¢n+1)
Leapfrog 2 ¢t = ¢! 4L 2nF (¢")
Adams— ntl _ n ﬁ n a1
Bashforth 2 " = 9"+ 2 [3F (") - Fomh)]

Trapezoidal 2 "t =" + g [F(¢n+ Y+ F(¢”)]

q1 = hF(¢"), $ =9¢" +q;

Runge-Kutta 2
g @ =hF@) —q1. " =¢ +q2/2

¢" = "2 +20F ")

M 2
agazenkov "t = 9" & g [3F(¢") - F(¢n_l)]

Leapfrog— ) ¢ =¢"! ;— 2hF (¢")
Trapezoidal ¢n+! — ¢n + _i [F(¢|) + F(¢n)]
Adams- n+l __ h - n—1 n—2
Bachionts 3 0" ="+ = [23F@" - 16F ") + 5F ")
Adams- +1_.n, R n+1 o n—1
Mo 3 o' = o" 1 = [SF@) + 8P - Fo" )
n h n -1
ABM Predictor- ¢ =9+ 3 [3F ©") - F¢" )]
h
Corrector ¢n+l — ¢l‘l + _l__z_ [5F(¢1) +8F(¢n) _ F(¢n_l)]
q1 = hF(¢"), é= " +q/3
RungeKutta 3 q2 = hF(¢1) — 5q1/9, #2 = ¢1 + 15¢7/16
93 = hF (¢2) — 153q2/128, ™! = ¢ + 843/15
qy = hF ("), g2 =hF(@" +q/2)
Runge—Kutta 4 a3 = hF (9" +g2/2), qa= hF(¢" +g3)

¢" ! = ¢" + (g1 + 297 + 293 + q4)/6

TABLE 2.1. Summary of methods for the solution of ordinary differential equations. The

earnnd. and third_nrdsar Runaca_ Wntta mathade ara law otasnocn sineinméns L Ao
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Method Storage  Efficiency  Amplification Phase Max s
Factor Factor Factor Error
52 s?
0 1+ = 1- — 0
Forward 2 -+ D) 3
52 52
Backward * 00 1—- — 1—-— 00
ackwar 2 3
Asselin ysz (a+ Z}J)s2
3 <1 1- 1 <1
Leapfrog 2(1 —y) 6(1-y)
s2
Leapfrog 2 1 1 1+ 3 1
Adams- 3 0 A 1+ —s2 0
Bashforth-2 4 12
2
Trapezoidal * 00 1 11— 2 00
54 52
Runge—Kutta-2 2 0 1+ N 14 3 0
s4 52
Magazenkov 3 0.67 1-— y 1+ 3 0.67
Leapfrog— s* s?
Trapezoidal 3 0.71 1 T 1 B 1.41
Adams- 3 4 289 4
Bashforth—3 4 0.72 1-— §S 1+ %S 0.72
Adams— st 1§
% P —_—_—
Moulton-3 0 Y 720° 0
ABM Predictor— 19 4 1243 4
Corrector-3 4 0.60 T 144’ T+ 8640° 1.20
s4 st
Runge-Kutta-3 2 0.58 - — 1+ — 1.73
Hnge-Rd 24 HET
. §6 4
RungeKutta-4 4 0,70 1- — 1—-— 2.82
unge—tu 144 120

A storage factor of 3 may be achieved following the algorithm of Blum (1962).

.BLE 2.2. Characteristics of the schemes listed in Table 2.1. The amplification fac
1 relative phase change are for well-resolved solutions to the oscillation equation,
= k At. “Max 5" is the maximum value of x At for which the solution is nonamplifyii
e storage and efficiency factors are defined in the text. No storage factor is given
plicit schemes.
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3.3. Practical Measures of Dissipation and Dispersion Errors

Takacs (1985 MWR) proposed a practica measure for estimating dissipation and
dispersion errors based on numerica solutions. The methods divide the total mean square
error into two parts, oneindicative of disspation error and one the disperson error.

The totd mean square error isgiven as
19 2
t :Wa(ua'ud) - (27

W, isthe andyticd solution and vy the numerica (discrete) solution.

It can be rewritten as (show it yourself):

t =s 2(ua) +S 2(ud) - 2r S (ua)s (ud) +(Ua - Ud)2 (28)

N N
where s ?(u,) :%é (U, - T@,)%, s *(uy) =%é (uy - Ty)? arethe variance of the u, and

. 14 , ,
U, respectively. cov(u, ,uq) :Wé‘ (u, - T,)(u4- Uy) isthe co-variance between u, and

wand r =22 g e correlation coeffidient.
s (u)s Uy)
(28) can be rewritten as
t =[s U,)-S (U)l* + (T, - Ty)* +2(1- 1)s (u,)s Uy) (29)

Takacs definite the first two terms of the RHS of (29) as the dissipation error and the
third term asthe dispersion error, i.e.,

tos =[5 U,)-s (U +(T, - T,)° (309)

toe =2(1-1)s U Uy) (30b)

We can see that when two wave patterns differ only in amplitude but not in phase, the
ther correlation coefficient r should be 1. According to (30a), tpise = 0. That'sa
reasonable result.
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4. Monotonicity of Advection Schemes

4.1. Concept of Monotonicity

When numerica schemes are used to advect a monaotonic function, eg., amonotonicaly
decreasing function of x, the numerical solutions do not necessarily preserve the
mononoatic property — in fact, most of the time they do not, and the errors tend to be large
near sharp gradient. Thisisillugtrated in the following:

Dﬁd‘""‘L s P Adter fAve X o

X X

A few example solutions are given below:
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Sample Solutions to the Inviscid Burgers' Equation

—“‘ — —— EXACT SOLUTION
’ —o— At/ax = 0.6
—o— Atfax=1.0

Figure 4-27 Numerical solution of Burgers’ equation using Lax method,

— — — EXACT SOLUTION .
—o— N0 DAMPING
—O—  WITH DAMPING

v=1.0
w= 1.0

Figure 4-36 Solution for right-
moving discontinuity time-centered

u=>0
implicit method, delta form.

— =— = EXACT SOLUTION
—0— N0 DAMPING
—O— WITH DAMPING

noal

0.5
0.5
0 STEPS

NE <

Figure 4-35 Solution of Burgers” equation using Beam-Warming (trapezoidal) method.
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Monotonic numerical schemes are ones which, given an initid didtribution which is
monotonic before advection, produce a monotonic distribution after advection.

A consequence of this property is that monotonic schemes neither create new extremain
the solution nor amplify exiging extrema

S.K. Godunov (1959) showed that no schemes having greater than fird-order accuracy in
Space can be monotonic by congruction (i.e,, without using some artificid modification

to ensure monotonicity). The highly dissipative upstiream scheme isthe classic example

of amonotonic scheme.

Monotonic schemes are widely used in computationa fluid dynamics because they do not
dlow the Gibbs Phenomenonto occur. This phenomenon results from attempting to
represent a sharp gradient or discontinuity by a truncated number of waves, and dways
produces "undershoots and overshoots' relative to the amplitude of theinitid

digtribution.

These oscillations typicaly gppear in the "wake" of atraveling wave which
exhibits a sharp gradient, but do not necessarily grow in time.

They are short waves that become noisesin the solution — the damping of them
results in smoothing of numerical solution.

The oscillations can cause positive-definite fields, such as mass and water, to turn
negative.

The Gibbs phenomenon is illugtrated in the figure below, which shows how a square
wave is represented by various numbers of wavesin a Fourier expanson. Even if 100
terms are retained in the expansion, smdl over- and under-shoots remain. Monotonic
schemes do not dlow such oscillations to occur, i.e., one can think of the oscillations
being removed by very sdective damping.

Spectral methods use truncated spectra series to represent variable fields— they are
particularly suspect to the Gibbs errors.
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Monotonic schemes are often congtructed by examining loca features of the advected
field, and adjust the advective fluxes of certain high-order schemes explicitly so that no
new extremais created in the solution.

4.2. Two basic classes of monotonic schemes

Oneis cdled the Hux-corrected transport (FCT) scheme, origina proposed by Boris and
Book (1973) and extended to multiple dimensions by Zaesak (1979).

With this scheme, the advective fluxes are essentidly aweighted average of alower-
order monotonic scheme (usudly 1t-order upwind) and a higher-order nor-monatonic
scheme. The ideais to use the high-order scheme as much as one can without violating
the monotonicity condition. Details can dso be found in Section 5.4 of Durran's book. In
the ARPS, the FCT schemeis available as an option for scalar advection — it isthreeto
four times as expensive as aregular 1t or second advection, however.

The other classisthe so-caled flux limiter method. With this method, the advective
fluxes of ahigh-order scheme is directly modified (limited by alimiter) and the god is
that the total variation of the solution does not increase in time and this property is
usualy referred to astotd variation diminishing (TVD).

Thetotd variation of afunction f isdefined as

Ny L
wvE)=alf.-fl

j-1

A TVD scheme ensuresthat TV(f ™) £ TV(").

Sweby (1984) presented a systematic derivation of the flux limiter for this class (see dso
Durran Section 5.5.1).

With both methods, the flux correction or limiting is done grid point by grid point —in
effect, the coefficients of the finite difference schemes are solution dependent therefore
they are often called non-linear schemes.

Recommended Reading: Sections5.2.1, 5.2.2., 5.3-5.5 of Durran.

Summarizing comments:

By now, you should have redlized that no scheme is perfect, athough some s better than
the others. When we design or choose a scheme, we need to look at a number of
properties, including accuracy (in terms of amplitude and phase), Sability (implicit

schemes tends to be more stable), computationa complexity (implicit schemes cost more
to solve per step), monotonicity (can we tolerate negative water generation?), and
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conservation properties etc. Y ou need also consider the problem at hand — eg., doesit
contain sharp gradient that is important to your solution? What is your target computer?
The computational and storage requirement are other factors to consider.
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5. Multi-Dimensional Advection

Reading: Durran section 3.2.1. Smolarkievicz (1982 MWR).

Similar to the diffusion or heat transfer equations, there are three genera gpproaches for
solving multi-dimensond advection equations, namely:

1) Fully multi-dimensiond methods
2) Direct extensons of 1-D schemes
3) Directiond splitting methods

We will look a each in the following.

5.1. Direct Extension

Many 1-D advection schemes can be directly extended to multiple dimensions.

Multi-dimensiond extenson of 1-D explicit schemes often have a more redtrictive
stability condition.

We will ook &t the 2-D legpfrog centered scheme first.

For equation
ﬂ_u+cxﬂ+cyﬂ =0, (31)
it x iy

the legpfrog centered discretization is

n-1 _ Cth un _
m,j ~ Dx m+1, j

N+l _
m, j

- (32)

u . - .
m-1,j Dy m, j+1 m, j-1

u

t =O(Dx*,Dy’, Dt?)
Let theindividua wave component be
up,; = "exp[i(kmDx +1j Dy] (33)

where k and | arewave number in X and y directions, respectively.

Subdtituting (33) into (32) and solvefor |, you can obtain (do it yourself):
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1/2

éc,Dt . O 1. éc.Dt
L=-igs )il a2 — sm(kD<)+—sm(IDy) (34)
é o1 &Dx Dy %
Smilar tothe 1-D case, if
Dt .
1- &5 ts 0, (35)
eDX U

then |I , | © 1, the schemeis stable (and has not amplitude error).
Inequdity (35) is satisfied when

cDt .

£1. (36)

Let'sconsder the smpler case of Dx =Dy =d, and rewrite

Cx = Us co(0)), Cy = Us SN(Q),

where U is the flow speed, (36) then becomes

(37)

Since we want (37) to be satisfied for dl possible waves, we choose the most stringent
case of Sn(kDx) =1 and Sn(IDy) = 1, (37) the becomes

The maximum vaue of |cos(q )+sin(q )| is /2 which occurswhen g =p/4, theresultis
the stability condition for 2-D advection equation in the case of Dx = Dy:

“Sth J2£1 or “:t (39)

i.e., the Courant number has to be lessthan 0.707, instead of 1 aswe get for 1-D case.
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The reason that Dt has to be about 30% smadller is explained by the following diagram:

As seen from the figure, for awave propagating from SW to NE, the effective distance

between two grid pointsisd/ J2 ingead of d. A wave Sgnd cannot propagate more than
one (effective) grid interva with this explicit second-order leapfrog-centered scheme for
dability.

Similar reduction of time step Size occurs for most other explicit schemes, including the
upwind scheme.

5.2. Fully Multi-Dimensional Method

Not dl direction extensions of 1-D schemes are stable, unfortunately.
Congder the Lax-Wendroff (aso caled Crowley) scheme we derived earlier using both

second-order interpolation method (section 2.3 of Chapter 2) and the Taylor series
expangon method (section 3.2.5 of this chapter):
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1-D Lax-Wendroff or Crowley scheme:

n+1_

n n n 2 n n n
u U Uis - ui-1+C Dtu’,- 24" +u’,

! —=-C 39
Dt 2Dx 2 (Dx)? (39
The schemeistable when |mj £ 1.
Using the notion of finite-difference operators, (39) becomes
2

u™ =u’- cDtd,,u" + (D) d,u" (40).

Direct extenson of (40) into 2-D is.
2 c,Dt)?
u"™ =u - Dt(cd,u"+ gd,,u") +—(ngt) d,u" +—( y2 ) d,u" (42).

It turns out that (41) is absolutely undable. Thisis because the cross-derivative terms are
neglected!

To seeit, we need to go back to origind derivation of the Lax-Wendroff scheme:
u™ =u" +Dty, +%(Dt)2ult +0(Dt?) (42)

U% Ut= 'Cxe'CyUy

and  Ug= -Cx U~ Gy Uy = G U+ G2 Uy + 2G,Cy Uyy
and replace the spatia derivatives with the corresponding finite differences, (42) becomes

2 c,Dt)’
u™ =u"- Dt(cd,,u"+ Q/dzyu”)+—(cxzt) d,u" 60 y2 ) d,u" +(cc,Dt*)d u"  (43)

Clearly, the last term on the RHS is additiona, compared to (41).

Note that we can aso obtain (43) using the characteristics method plus quardratic
interpolation, aslong as dl termsin the second-order 2-D polynomid are retained.

Equation (43) isan example of fully multidimensond scheme, which is different from
the direct extenson of 1-D counterpart.

Smolarkiewicz (1982 MWR) discussthe MD Crowley scheme in details (handout).
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5.3. Directional Splitting

It turned out that by using directiondly splitting method (i.e., applying 1-D schemein
onedirection at atime), the effect of cross-derivative terms can aso be retained and a
gtable scheme result.

Thedgorithmsis
n+1y* n n Cth ? n
(ui,jl) =U - Cthdzxq,j +( ) d,y J (443)
n+ +1\* n+1\* ( Dt)2 n+ly\*
U= (U7 - 6Dl () + 2 d, U (440)
In this case, we preserve the stability of eech stepand | =14 | .

With the above scheme, we have

Advantages.

1. 1-D advection is straightforward — properties of schemes are well understood.
2. Thetime step congdtraint is not as severe as for true multi-dimensiond problems.

Disadvantages:

1. Weimplicitly assume that festures move obliquely to the grid may be represented as
aseries of orthogona steps in the coordinate directions:

In an implicit scheme, where the time step can be large, these errors can be
subgtantial.
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2. Thebiggest disadvantage is that splitting introduces an O(Dt?) error in the form of a
Spurious source term. To seethis, consider the 2-D advection being solved using
directiona splitting upstream advection:

u +Uu +Vu, =0 (45)
where U=U(x,y) >0 and V(x,y) >0.
Writing this as adirect extenson of the upwind schemein 1-D, we have
u™ =u"- DtUd.,u- Dtvd_u. (46)
Thedirectiond splitting versonis

u =u"- DUd_u (474)
u™ =u"- Dtvd_ U (47b)

Subdtitute (474) into (47b), we obtain a Single step scheme
u =u"- DUd_u- Dtvd u+UvDt’d ud. u+VvDtd ud U . (48)

We can see that the last term on RHS of (48) is actudly spurious and is not zero when
U is not congtant.
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