3. Quantitative Properties of F.D. Schemes

3.1. Consistency, Convergence and Stability of F.D. schemes
Reading:

Durran Sections 2.1, 2.2.
Tannehill et a. Sections 3.3.3, 3.3.4.

Three important properties of F.D. schemes:

Consistency — An F.D. representation of a PDE is consgtent if the difference between
PDE and FDE, i.e, the truncation error, vanishes as the grid interva and

time step Sze approach zero,

i.e, when lim(PDE - FDE) =0.
D® 0

Comment:

Consgtency deals with how well the FDE approximates the PDE.

Stability — For a stable numerical scheme, the errors from any source will not grow
unboundedly with time.
Comments.

A concept thet is gpplicable only to marching (time-integration) problems.
Generdly we are much more concerned with gability than consstency.
Some hard work is often needed to establish anaytically the sability of ascheme.

Conver gence — It means that the solution to a FDE gpproaches the true solution to the
PDE asthe grid interva are time step size are reduced.

Lax's Equivalence Theorem

For awell-posed, linear initid vaue problem, the necessary and sufficient
condition for convergenceis that the FDE must be stable and consistent.

The theorem has been proved for initid value problems governed by linear PDE's
(Richtmyer and Morton 1967).

We will discuss the three concepts one by one.



3.2. Consistency

Consigency means PDE- FDE® 0 when Dx-> 0and Dt-> 0.
Clearly consstency is the necessary condition for convergence.

Example:

Consider a 1-D diffuson equation:

u_ K‘”—u (K >0 and constant)

Tt %
We use the forward-in-time and centered-in-space (FTCS) scheme:

n+l n

i - u — |1-2q +u|+l
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To show congstency, we need to determine the truncation error t .

Using Taylor series expanson method,
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Subdtituting into the FDE, we have

ﬂu Dt §° u é7%u g
ﬂ > ﬂtz o(Dt*) = Keﬂ—+O(Dx2)H+...
therefore

t —EM+0(Dt2 +DR).
2t

t = Owhen Dx=> 0 and Dt = 0 => the scheme is cong stent.



A counter example: The Dufort- Frankd method for the same diffusion equations.

n+l n-

u -yt -K (Ul +uly) - U™ +u™) _
2Dt Dx*

It's a centered-in-time scheme that is 2nd-order accurate in both space and time.

We can find again the truncation error:

2 q4 2 2
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We can see that DJ[i)rQOt ® 0O except for the second term.
t

If Dxltl)%] O% =0 then the schemeis consstent therefore Dt must approaches zero faster

then Dx.

If they approaches zero & the samerrate, then lim D b, then
XDt® 0 Dy

2
limt =-K2p2 04
DXDt® 0 qt

our equation becomes

T, o Uy T
qt qt X

Thus, we are solving the wrong equation. In fact this equetion is hyperbolic instead of
parabalic.

Notethat if % ~1 you might see spurious waves in your solution, due to the hyperbolic
neture of the "new" PDE.



3.3. Convergence

3.3.1. General Discussion
Definition is given earlier. Symbalicdly, it is

lim u” =u(xt).
Dxpt® 0

Convergence is generdly hard to prove, especidly for nonlinear problems. The Lax's
Theorem we presented earlier is very helpful in understanding the convergence for linear
systems, and is often extended to nonlinear systems.

We will d0 discuss numerica convergence and methods for measuring solution
accuracy later.

We will firgt show a convergence proof for a diffuson problem Certain concept
introduced will be ussful later.

3.3.2. Convergence proof for a 1-D diffusion problem

Consider
2
"JT—‘:: K% (K >0 and constant) for O£ x£ L
X

which astheinitid condition
y k
UG t=0) = & a SN = £(x).
k=L L
TheB.C.is

u(0,t) =u(L,t) =0.

Thisisawdl-posed, linear initia vaue problem (notice the |.C. satifiesthe B.C. as
well).

Firg, let'sfind the analytical solution to the PDE.

Because the problem in linear, we need only examine the solution for agngle
wavenumber k, and can assume a solution of the form:



U (x,t) = A (s n(kLLX)

Here Ay isthe amplitude and sin gives the spatid structure and the find solution should
be the sum of al wave components. Note that this solution satisfies the boundary
conditions.

Subdtituting the solution into the PDE, we obtain an ODE for the amplitude Ay:

dA(t) . apko

dt SLBA<

5 dinA) _ | wk§

dt &L o
> AWM =AOexp§& K (pk/ L)Ztg.

It says that the amplitude of the solutions for al wave numbers decreases with time.

Fromthel.C., A(0) = &, so we have
u (x,t) =a, expg- K(pk/ L)?* tgsi n(kLLX)

and
u(,t) =g u(xt)
k

which isthe analyticd solutionto the origind diffusion equation.

A numerica gpproximation to the diffusion eguation should converge to this solution as
Dx, Dt - 0.



Condder the FTCS scheme we derived earlier.
God: Show that ui' > u(x,t) as Dx, Dt = 0.

Firg, find the numerical solution.

Thistime, we use the FDE and substitute a discrete Fourier series into the equation.

Let thel.C. be given by

J
o

f(x)=u'=3 & sm(kpx')forl—012 =

k=0
where J+1 = totd number of grid points used to represent the initid condition.

The coefficient &, isgiven by adiscrete Fourier transform

J
:%5 f(x)sm(kp’*) fork=0,1,2, ..., J.

Note: L = JDx. AsDx = 0, J»> ¥, the discrete Fourier series becomes continuous and
a ® a.

Note: The number of harmonics or Fourier wave components that can be represented isa
function of the number of grid points (1), which is the number of degree of freedom.
Spectra methods represent fields asin terms of spectral components, whose amplitudes
are solved for.

Recdl that wavelength

- » 2
wn  (2pk/2L) k

where k is the number (index) of wave components.

Longest wavdength=¥ (k=0) wavenumber zero.
Next longest wave= 2L (k=1)

Shortest wave = 2L/J = 2IDx/J = 2Dx.



Comments:

A 2Dx waveisthe shortest wave that can be resolved on any grid and it takes at least
3 pointsto represent awave.

2Dx waves often have some specid properties. They are aso represented most poorly
by numerical methods — recall that smooth fields are more accurately represented by a
finite number of grid points.

Asin the continuous case, we examine only one wavenumber K, so for our discrete
problem, assume a solution of the form

u' = Ak(n)singi%g

(stidfiesB.C.) and nisthetimeleve.
Weadso havefromI.C. u’ = A (0) = 4,.

Subgtituting thisinto the FDE

uin+l' u_ Ul - 20T U
=K - ,
Dt Dx
and letting
S :Sinéﬂg,
L o
we have

A(n+D)S - A (M) _ KA(N)
Dt (Dx)?

[S+1' 281 +S-1] :

Sincex =i Dx, X+1 = (i+1) Dx therefore

S+1 = SIHMQ
& o



Using standard trigonometric identities, we can write the above in the form of arecursion
relation

1) = é_ 4 mw
A(n+1) Ak(n)gl msng gl

KDt
(Dx)*

where m=

é apk
If welet M(kK)© Zl- 4msin? then we have
® 81 oL aju

A(n+1) =M (K A(n).
Writeit out forn=0, 1, 2, ...., n

A @ =M (k) A(0) =M (k)a,
A2 =M(K)A @) =M (K)]°a,

A(n)=M(Kk) A (- ) =[M(K)]"&
we therefore have the solution of ufor wave mode k:

") =M (K) AN) = &M K] sn?‘pL“’
a

Definition: M(K) is known as the amplification factor, and if | M(K) | £ 1, the solution
will not grow intimeasn = ¥. This had better to be the case because the amplitude of
the anaytica solution is supposed to always decrease with time.

For our problem we can see that | M(K) | £ 1 means

‘1- 4msm26@kDXj£1

&
If we take the maximum possible vaue of S?() =1, >

-1£1- 4m£1



- m£ 1/2.

This condition needs to be met for dl k to prevent solution growth. Based on the
definition of m the condition becomes

2
prg (DY
2K

Thisimposes an upper bound on the Dt that can be used for agiven vaue of Dx, and such
acondition is unknown as the Stability Condraint.

Now we have our solution, let's check convergence for sngle mode k.

Be definition of convergence, we take

lim (u"), = lim ékgl- Dt 4K ~sin’ kaxou Smaekp)g 0
DxDt® 0 DxDt® 0 é (DX aJLI L g
or
. 0 - n %pXO
Jim (uf), = D!lljrtgoak[l- Dt f (DY)] SmST_
if welet f(Dx)© K _gnz @ KDX6

o " €2 5

It can be shown that if f(x) is acomplex-vaued function of ared argument, say Dx, such
that

lim f (DX) = a, then,
Dx® 0

lim [1+ Dt f (X)]" =e** (wewill show thislater).

Dxpt® 0

We know that [im——2£ sin(y) =1, therefore
y® 0 y



g’sinkaxo@
2 ~U
im t O = lim K@K & & 2L g _ apko _
®0 D@0 |2 & @kD(g v 8L [}
&2l 5 #
Also IIjltg})ak:ak,therefore
2 1 ..
apko U, Pk o
lim =g expe K tgsing——==.
D<1|)t®0(u)k & pg- ng E gZL o

Interesting, this solution isidenticd to our andytica solution derived earlier! Therefore
the numerica solution converges to the PDE solution when Dx , Dt - 0.

Findly, we show here (noting that nDt = t)

lim(1+ fDt)" =1+ fnDt + ”(”2 D (ton + w(fuf

:1J_rat+E§i nfzj(nDt) 3.? g (nDt)+
(at)? , (@),

=l+at+——
2! 3

tat

=€
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3.4. Numerical Convergence

Reading: Fletcher, Sections4.1.2,4.2.1, 4.4.1.

Numerica Convergence

Convergence is often hard to demongtrate theoretically.
True andyticd solution is hard or even impossible to find is one of the reasons.

We can, however, find out the convergence of a given scheme numericaly.

We compute solutions at successively higher resolutions and see how the error changes
with the resolution.

Doest = Owhen Dx = 0?
And how fast t decreases?

The procedure can be very expensive (remember the cost factor increase as D doubles).

A typical measure of error isthe L2 norm or RMS error:

where u isatrue solution or a'corverged numerica solution when exact solution is not
avaladle.

Example: 1-D diffuson equation usng FTCS scheme:

SDETU (DO T
2 qt? 12 ﬂx

Making use of

fu_ T _ Tu Taquo_ 1% aduo z‘ﬂ“u
« " KmP =Koz += g
Tt % T MENC y  HETy I

K(DX)2 & loﬂ u

we have t = - = —+O Dx* +Dt
> 8 ( %).
KDt
where s=
(Dx)?
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Table 4.1 (from Fetcher) showsthe error reduction with Dx for two vaues of s.

Table 4.1, Solution error {rms) reduction with grid refinement

Ims error
s=adt/4x? 4x=0.2 A4x=0.1 4x=0.05 4x=0025
0.50 1.658 0.492 0.121 0.030
0.3¢ 0.590 0.187 0.048 0.012

log;q (Ax)
-2.0 -1.13 -1.6 -1.4 -1.2 0
L A 2 F 2 & 2 [
-2
[ % ] 1/2
sz21/3
f// i
s Q
oy
- o
LR 1/6 6 §:
-8
--10

The above figure shows plots of logio(err) as afunction of logio(Dx).
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Recall that
t=ADX" >

logt =log A + nlog Dx.

Thisisadraght line in log-log diagram with a dope of nand intercept A.

Thus the dope of the line gives the rate of convergence.

In the above figure, we see that when s = 1/6, the error line has a steeper dope and the
error issmdler for dl Dx. Thisis because for thisvaue of s, thefirg termin t drops out
and the scheme because 4th-order accurate. The scheme is second-order accurate for al
other vaues of s.

Note that you can choose Dx and Dt such that s=1/6 only when K is congtant in the entire
domain.

In cases where no exact solutions is available, a so-cdled 'grid-convergence' or reference
solution is often sought and this solution can be used in the place of true solution in the
edimating the solution error.

13



An example from Straka et d (1993).

REFC
025 m
000 s

(a)

REFC
025 m
300s

(b)

REFC
025m
600s

(c)

RerC | |
025 m
900s

@

19.2 km

$

v

It shows a reference solution obtained at Dx=25 m, for a dengity current resulting from a
dropping cold bubble.
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L2 Norm (°C)

L2 Norms for Reference Model:
Potential Temperature Perturbation

Spatial Resolution (m)

1000
Seilf Convergence
ins.
L I o — > ns’ ‘1/ - L
25
1 P _4.-? 200,m Solins.
=) i100m:$oiné. : = :
o",o‘. -t 4 T
.01 S e = J!fl Ei, .
L 2 — o(1) =3
7
.001 “_
0125 .125 1.25

Temporal Resolution (s)

Figure (from Straka et d 1993). Graph of g' L2 norms (°C) from
sdf-convergence tests with the compressible reference mode
(REFC). The bold solid line labeled with 'sdlf-convergence solutions
represents the L2 norms for spatia truncation errors of solutions
meade with At = congtant and varying grid spacings. The L, norms
were computed against a 25.0 m reference solution. The bold dashed
lineslabeled with, for example, "200.0 m solutions represent L2
norms for tempora truncation errors of solutions made with Dx
=congtant (e.g. 200.0 m) and varying time steps. The reference
solutions for these computations were made using atime step
consggtent with Dt = 12.5 stimes a congtant (see text) in each of the
cases. The solid fines labeed O(I) and O(2) represent first- and
second-order convergence, respectively
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Richardson Extrapol ation

Asthe grid becomes very fine, the error behaves much like that predicted from the
leading termsin t. Further refinements are expendve, so we use another technique to
improve the solution — Richardson Extrapolation.

Consider two numericd solutions obtained at Dxa and Dxg,.

With FTCS scheme (assuming st 1/6),

_KDx) & 167y iy
a > g 6ﬂ><4+O(D(a+Dt)

K(Dx,)* 2 16Ty
2 & 65N

ty = - +O(Dg" + %)

Find alinear combination of the two solutions, u, and W,
U =alat b
wherea+ b =1 and aand b are chosen so that the leeding termsint ; and t, cancel and
ﬂ4

the scheme becomes 4th-order accurate (Of course this assumes that ﬂ— isthesamein
X

both case, which is reasonably assumption only at reatively high resolutions when the
solution iswell resolved).

If Dxp = Dxa, then
4a+b=0

witha+b=1->
a=-1/3,b=4/3

and U =-1/3u+4/3w.

16



3.5. Stability Analysis

Reading: Durran Section 2.2.
Tannehill et d. Section 3.6.

Stability — For a gdble numericd schame, the errorsin theinitid condition will not
grow unboundedly with time.

In this section, we discuss the methods for determining the stability of F.D. schemes. This
is very important when designing a F.D. scheme and for underdanding it
behavior.

There are severa methods:

Energy method

von Neumann method

Matrix method (for systems of equations)

Discrete perturbation method (Hoffmann and Chiang — will not discuss)

Note: Stability refersto the F.D.

Does not involve B.C. or I.C.
Referes to time-matching problems only

The enerqy method

Read Durran Section 2.2.
This method is used much less than the von Neumann method.

It's attractive because it works for nonlinear problem and problems without period B.C.

The key isto show tha a pogtive definite quantity like é (u")? isbounded for dl n.

Weillugrate this method using the upstream-forward scheme for wave (advection)

. u u
uation — +c— =0:
= qt ix

u_n+1 -u n

n n
i - U, _

Dt Dx

Let m=cDt/Dx =>

17



u™ = (1- mu +m’,
Squaring both sides and summing over dl grid points:

(") = A L m W)+ AL mmyy, + i (u],)’] (1)
Assuming periodic B.C. >

éi. (u")* = é (Ul

and using the Schwarz inequdity (which says that for two vectorsU and V,
[UN £ U [4V]),

auu, £ \/é (ur)? Jé (UL =8 (u)’.
If m1- m)3 0, dl coefficients of RHS termsin (1) are postive, and we have
a (™) £[L- M+ 2AL- mm+nf] g u)? =3 "),

i.e, the L2 norm at n+1 isno greater than that at n, therefore the schemeis stable!

The condition m(1- m) 3 O gives
m=cDt/Dx £1
which is the gability conditionfor this scheme. As we discussed earlier, it saysthat

waves cannot propagate more than one grid interva during one Dt in order to maintain
Sability.

von Neumann method

Read Tannehill et A, Section 3.6.1.

In asense, we have dready used this method to find stability of the 1-D diffuson
equation — when we were proving the convergence of the solution using FTCS scheme.

We found then
Ut =M ™ L

where M(t) = amplification factor.

18



If M(t) £ 1 by some measure (M can be amatrix or acomplex number), then U™** £ "
and the solution cannot grow in time— the schemeis stable.

Essentidly, von Neumann method expands the F.D.E. in aFourier series, findsthe
amplification factor and determines under what condition the factor isless than or equa
to 1 for gahility.

Assumptions:

1. The equation has to be Linear with congtant coefficients.
2. Itisassume that the solution is periodic.

With this method, the dependent variable is decomposed into a Fourier series.

u(x,y,zt) = é_ U (k,I,mexp[i(k<+ly+mz- wt)] 2

k| m
where U isthe complex amplitude and w = wg + w; isthe complex frequency.

In fact wr gives the wave propagation speed and w; gives the growth and decaying rate.

- iwt -i[wrHw, Jt — o IWRE Wt
[Wriw; ] =g W gh

e =e

e = - phase function of Fourier components
e"' - growth or decay rate

If w, >0, the solution will grow exponentidly in time.

Example 1: 1-D diffuson equation with FTCS scheme.

U‘ml - uin = rr(uin-l - Zuin + Uirl1) (3)

where m=

(D)?
Let's examine asingle wave k:

uin = U ké(kx—wt)

uin+1 - U I(ei(kx—wt)e— iwDt

u". =U kei(kx—wt)e:rikD<

i+l

19



Subgtitute the above into (3) >
U et @" . 1=, d*"e™- 2+ "> >
U, ™" e ™ - 1- 2m(coskDx - 1)] = 0>
U, g™ "e ™ - 1+4msin®(kDx/2)] =0
For non-trivid solution, we require
e - 14+ 4msin®(kDx/2) =0 >

g™ =1- 4msin®*(kDx/2)

Here, e ™™ isactudly the amplification factor, the same asthe M discussed earlier.
| o g™ = (™ - the amplification factor.
For stability we require
I |[E1->
-1£1- 4msin®(kDx/2) £1->
mE 1/2 as before!

In practice, when n¥1/2, the solution switches between —1 and +1 for 2D waves, which is
unredigtic. The standard requirement is therefore

m£ 1/4.

Read Pielke (1994) section 10.1.2.

20



3.6. Implicit Methods

Read Tannehill et a, second part of section 3.4.1.

So far, we have dedt with only explict schemes which have the form of
u™=f@u",uvt..).

With these schemes, the future state at each grid point is only dependent on the current

and past time levels, therefore the solution can be obtained directly or explicitly. c.f.,

explicit functions such asy = .

Implidt scheme involves variables of the future time level a more than one grid point

(often resulting from finite difference of variable(s) at the future time levd).
Mathematicaly it can be expressed as

u™ = fumthu",u"t).

Thisisandogous to implicit functions such as x = In(x). As one can imagine, implicit
schemes are more difficult to solve. Usudly matrix inverson isinvolved.

We will first look at the gahility property of an implicit scheme.

Example. Consider the 1-D diffuson eguation u = K uyy again.
It is gpproximated by the following F.D. scheme:
d,.u =K[ad u"™+(1-a)d u"] 4
(Note: shorthand notations for F.D. are used. See handout. eg., d,.u=(u"*- u")/Dt).
When a =0, the schemeis explicit, and is the FTCS scheme discussed earlier.

Whena =1/2, itisimplicit and is caled Crank-Nicolson scheme.
For other valuesof a, it isagenerd implicit scheme.

We can show that
ué 5 (DX)%U
t :Kﬂ—4éKDt6é'—-a2- (DY) (+ODX* +Dt?)
wE & gz 12 §

(show if for yoursdf!).
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We can seethat when a = 1/2, it is 2nd-order accurate in time and space. Otherwisg, it's
firg-order in time — which is expected for un-centered time-differencing scheme (when
a=1/2, theright hand side is an averaged between the current and future time levels valid
a n+1/2. Relative to this RHS, the LHS time difference becomes centered in time. We
know that the Smplest centered difference scheme is second-order accurate).
When [ ] = 0, the scheme becomes fourth-order in space.
Let's perform stability analysis on (4) usng von Neumann method.

U? =Ukei(kx—wt) :Uke—iwnDteiijxo Ukl neiijx (5)
Here | © ™™ . Notethat we are now using j asthe grid point index.
Subgtitute (5) into (4) >

UkéijX(l n+l | n) - ranéijx @l n+1+(1_ a)l n El(eikDX _ 2+e-ikD() 9
Dividing U, 4™ " on both sides, and rearranging =

| -1=-4msin*(kDx/2)[al +(1-a)]

_1- 41- a)msin®(kDx/2)

|
1+ 4damsin?(kDx/2)

Look at severa cases:

Casel:a =0, | =1- 4msin®(kDx/2) - m£ 1/2 as before. The scheme is conditionally
stable.

Casell: a = 1/2 (Crank-Nicolson)

_|1- 2msin®(kDx/2) |
" |1+2msin?(kDx/2) |

L £1 fordl vauesof m

therefore the scheme is absolutdly or unconditiondly stable.

Ca=elll: a =1, thetime differenceis backward, rd ative to the RHS terms.

| 1 |
|1+ 4msin? (kDx/2) |

Il |= £1, aganfor dl vduesof m
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therefore the scheme is dso absolutely stable. However, this schemeis only firg-order
accurate in time, as discussed earlier (consstent with the time difference scheme being
un-centered).

Ingenerd, when 0 £ a < 1/2, itisrequired that mE 1/(2 - 4a ), therefore the schemeis
conditionaly stable. When /2 £ a £ 1, the schemeis unconditionaly gable (it is
sometimes referred to as the forward-biased scheme).

In the ARPS, theimplicit diffuson schemeis an option for treating the vertica turbulent
mixing terms. This trestment is necessary in order to remove the savere stability
condraint from these terms when vertical mixing is strong indde the planetary boundary
layer (PBL). The later occurs when the PBL is convectively unstably and the nontloca
PBL mixing isinvoked with the Sun and Chang (1986) parameterization. Parameter
alfcoef in arpsinput correspondsto 1-a here (see handout).

Findly, we note that for multi-time level schemes, thereis usudly multiple solutions for
the amplification factor | . some of them might represent spurious computational modes
due to the use of extra (atificid) initia conditions.

Theexpressonof | can be too complicated so that a graphic plotting is needed to
understand its dependency on wave number k. || | hasto be no greater than 1 for al
possible waves. The shortest wave resolvable on a grid has awavelength of 2 D, and the
longest is 2L, where L is the domain width.

Tridiagond Solver

1-D implicit method often leads to tridiagond systems of linear dgebraic equations.

(Inthe ARPS, this appears twice — once when sound waves are treated implicitly in the
verticd direction and once when the vertica turbulence mixing is trested implicitly).

For example,

I’]+1_ un un+l _ 2uin+1+un+l

u A ; A
i i :aK i-1 i+1 + f_n 9 6
Dt Dx ' ©)

AU+ BU™ +Culy =D,
fori=1, 2, ...,N-1, assuming the boundaries are at i=0 and N.

Here, A=C =-am,andB =(1+2am).
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D, =Dt f"-u- Au™
DN-1=Dt fr\T-l' urlll—l_ CNU,Tl
D, =Dtf" - u" fori=2,...,N-2

For D; and Dy.1, the Dirichlet boundary condition is assumed.

This system of equation can be written in amairix form (superscript n+1 is omitted):

68 C, uéu u €Dy
e ue u e u
er B G ae% g &Py
: o Ge. u e . u
e ue u e u
& A B C aelY g=e D g )
: S Ge . ue . d
e ue u e u
@ A\l-z BN—l CN-zl;I(E,UN-zl;I eDN—ZU
e u U e U
e A\l—l BN—luguN—lU eDN-lu

Since in each raw of the coefficient matrix only three elements of are non-zero and they
are digned adong the diagond axis, this sysem are called tridiagona system of
equations. It can be solved efficiently usng the so-cdled Thomas Algorithm.

The procedure conggts of two parts. Firgt (7) is manipulated into the following form:

@
O
o

[y

aooooooooc

1

1 c,

c C
N

O

o .

DD D> D> D> D> D> D> D> D> D~
ceoooooooaoc

(8)

D> D> D> D> D> D> D> (D~
<

[ e e Y Y ey e Y ey @]
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in which the subdiagond coefficients A are diminated and the diagond coefficients are
normdized. For the first equation

C
C, ==, D= 9a
B, (93)

(=2

For the generd equations:
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Equationsin (9) represent aforward sweep step (see figure below). It isfollowed by a
backward subgtitution step that finds solution y from (8). The solution is.

Uy.1 = D'y (10)
u=D'-u,C" fori fromN - 2 tol.
% x Wl [k 1  Fig. 6.17. The Thoma
XXX . X forward gorithm for solving a ti
L X - sweep gonal systemn of equati
XXX s |= ix
L) X
xxx | X
xx vl |x
o -
¥) 1+ vil |*
backward 1+ .1 |+
L I ] +
< sweep |t " . =i
e . +
T+ vl I+
YN J

Note both (9) and (10) involve reduction, the dgorithm isinherently nor+vectorizable.
Fortunately, for multi-dimengond problems, multiple systems of equations often need to
be solved, and one can exploit parallelism dong other dimensions (instead of i direction).

See d's0 handout — section 4.3.3 from Tannehill et A.
Fortran code — see Durran Appendix A.2.
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3.7. Stability Analysis for Systems of Equations

When we are dedling with a system of equations, we can aso gpply the von Neumann
method to find the stability property of agiven F.D. scheme.

Aswith sngle equations, von Neumann can only be used for linear systems of equations.
For nonlinear systems, linearization has to be performed firg.

Without going into detalls, we point out that a system of linear equations can be
expressed in amatrix form like

T,

AT =0 (1)

The equetion isfirg discretized using certain F.D. scheme, U can be written interms of a
discrete Fourier series and the wave component is then subgtituted into the discrete
equation to obtain something like:

Ut =[M(Dt,Dx)]U; (12)

where U,? is the amplitude vector for wavek at timelevel n, and [M] is caled the
amplification matrix.

The scheme is stable when the maximum absolute eigenvaue of [M] is no greater than 1.

Why the maximum egenvaue?
Because as you saw earlier (in Chapter 1) that a system of equation like (12) can be

transformed into a system of decoupled equations, and the eigenvalues of [M] become the
amplification factors for each of the new dependent variables, v (the element of vector

V), i.e, we can obtain from (12)
VI =INDVY,
where [N] isadiagona matrix with the egenvaues of [M] asits diagond dements.

Since the system is stable only when dl dependent variables remain bounded, the
absolute value of the maximum eigenvaue has to be no greeter than 1.

Read section 3.6.2 of Tannehil et A.
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Appendix
Shorthand notations for discrete/finite difference operators and discretization identities

Notations;
_ ) + A
Anx — A1+nx A]—nx
2
Aj+n/2 - Aj-n/2

d, x=———"x
nDx

:Ai+1' A
Dx
A A

Dx

d,, x

d x=
|dentities:

deA0 dxﬂX ° dx_AX
Ad B d (A*B)- Bd A
Ad A° d (A?/2)



Review before first exam - What you should know?
Chapters 0

Characterigtics of CFD as compared to other gpproaches of studying fluid
dynamics

Basic computer architectures — differences, pros and cons

Current trend in moving toward distributed memory massvely pardld sysems
Vectorization and pardldization issues

Amdahl's Law — its derivation and application.

Code optimization issues

Chapters 1

ODE versus PDE

Order and linearity of PDE's

Classfication of firg-order, second-order PDE's and systems of firs-order PDE's
Three canonicd forms of 2nd-order PDE's.

Conversion of 2nd-order PDE in agenera form into one of the three canonica
forms via coordinate transformation.

Classification of PDE's according to the existence of characteristics

Be able to derive the characterigtics and compatibility equations for first and
second order PDE's and sysems of firg-order PDE's

Can use method of characteristics to solve simple problems

Concepts of domain of dependence (DOD) and domain of influence

Main characterigtics of the DOD for hyperbolic, parabolic and elliptic equations
Basic typesof I.C. and B.C.

Know something about the well-posedness of PDE systems

Chapters 2

User Taylor series expanson or polynomid fitting methods to derive finite
difference approximations

Be able to derive and discuss truncation errors

The order of accuracy of F.D. schemes

The concepts of consstency, stability and convergence



