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3. Quantitative Properties of F.D. Schemes 
 

3.1. Consistency, Convergence and Stability of F.D. schemes 
 
Reading: 
 
Durran Sections 2.1, 2.2.  
Tannehill et al. Sections 3.3.3, 3.3.4. 
 
Three important properties of F.D. schemes: 
 
Consistency – An F.D. representation of a PDE is consistent if the difference between  

PDE and FDE, i.e., the truncation error, vanishes as the grid interval and 
time step size approach zero, 

 
i.e.,  when 

0
lim(PDE FDE) 0
∆→

− = . 

 
Comment: 
 

• Consistency deals with how well the FDE approximates the PDE. 
 
Stability –  For a stable numerical scheme, the errors from any source will not grow 

unboundedly with time. 
 
Comments: 
 

• A concept that is applicable only to marching (time-integration) problems. 
• Generally we are much more concerned with stability than consistency. 
• Some hard work is often needed to establish analytically the stability of a scheme. 

 
Convergence – It means that the solution to a FDE approaches the true solution to the 

PDE as the grid interval are time step size are reduced. 
 
Lax's Equivalence Theorem 
 

For a well-posed, linear initial value problem, the necessary and sufficient 
condition for convergence is that the FDE must be stable and consistent. 
 
The theorem has been proved for initial value problems governed by linear PDE's 
(Richtmyer and Morton 1967). 

 
We will discuss the three concepts one by one. 
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3.2. Consistency 
 
Consistency means PDE FDE 0− →   when ∆xà 0 and ∆tà 0. 
 
Clearly consistency is the necessary condition for convergence. 
 
Example: 
 
Consider a 1-D diffusion equation: 
 

2

2 ( 0 and constant)
u u

K K
t x

∂ ∂
= >

∂ ∂
 

 
We use the forward-in-time and centered-in-space (FTCS) scheme: 
 

1
1 1

2

2n n n n n
i i i i iu u u u u

K
t x

+
− +− − +

=
∆ ∆

 

 
To show consistency, we need to determine the truncation error τ. 
 
Using Taylor series expansion method,  
 

2 2 3 3
1

2 3

( ) ( )
...

2! 3!
n n
i i

u t u t u
u u t

t t t
+ ∂ ∆ ∂ ∆ ∂

= + ∆ + + +
∂ ∂ ∂

 

2 2 3 3

1 2 3

( ) ( )
...

2! 3!
n n
i i

u x u x u
u u x

x x x±
∂ ∆ ∂ ∆ ∂

= ± ∆ + ± +
∂ ∂ ∂

 

 
Substituting into the FDE, we have  
 

2 2
2 2

2 2( ) ( ) ...
2

u t u u
O t K O x

t t x
 ∂ ∆ ∂ ∂

+ + ∆ = + ∆ + ∂ ∂ ∂ 
 

 
therefore  
 

2
2 2

2 ( )
2
t u

O t x
t

τ
∆ ∂

= + ∆ + ∆
∂

. 

 
τ à 0 when ∆xà 0 and ∆t à 0 => the scheme is consistent. 
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A counter example: The Dufort-Frankel method for the same diffusion equations: 
 

1 1 1 1
1 1

2

( ) ( )
2

n n n n n n
i i i i i iu u u u u u

K
t x

+ − + −
+ −− + − +

=
∆ ∆

. 

 
It's a centered-in-time scheme that is 2nd-order accurate in both space and time. 
 
We can find again the truncation error: 
 

22 4 2 2 3

4 2 3

( ) ( )
. . .

12 6
K x u t u t u

K H R T
x x t t

τ
∆ ∂ ∆ ∂ ∆ ∂ = − − + ∂ ∆ ∂ ∂ 

 

 
We can see that 

, 0
lim 0
x t

τ
∆ ∆ →

→  except for the second term. 

 

If 
, 0
lim 0
x t

t
x∆ ∆ →

∆
=

∆
 then the scheme is consistent  therefore ∆t must approaches zero faster 

then ∆x. 
 

If they approaches zero at the same rate, then
, 0
lim
x t

t
x

β
∆ ∆ →

∆
=

∆
, then 

 
2

2 2
2, 0

lim
x t

u
K

t
τ β

∆ ∆ →

∂
= −

∂
,  

 
our equation becomes 
 

2 2
2 2

2 2

u u u
K K

t t x
β

∂ ∂ ∂
+ =

∂ ∂ ∂
 

 
Thus, we are solving the wrong equation. In fact this equation is hyperbolic instead of 
parabolic. 
 

Note that if ~1
t
x

∆
∆

 you might see spurious waves in your solution, due to the hyperbolic 

nature of the "new" PDE. 
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3.3. Convergence 
 
3.3.1. General Discussion 
 
Definition is given earlier. Symbolically, it is  
 

, 0
lim ( , )n

i
x t

u u x t
∆ ∆ →

= . 

 
Convergence is generally hard to prove, especially for nonlinear problems. The Lax's 
Theorem we presented earlier is very helpful in understanding the convergence for linear 
systems, and is often extended to nonlinear systems. 
 
We will also discuss numerical convergence and methods for measuring solution 
accuracy later. 
 
We will first show a convergence proof for a diffusion problem. Certain concept 
introduced will be useful later. 
 
 
3.3.2. Convergence proof for a 1-D diffusion problem 
 
Consider 
 

2

2 ( 0 and constant)
u u

K K
t x

∂ ∂
= >

∂ ∂
 for 0 x L≤ ≤  

 
which as the initial condition: 
 

1

( , 0) sin( ) ( )k
k

k x
u x t a f x

L
π∞

=

= = =∑ . 

 
The B.C. is  
 
 (0, ) ( , ) 0u t u L t= = . 
 
This is a well-posed, linear initial value problem (notice the I.C. satisfies the B.C. as 
well). 
 
First, let's find the analytical solution to the PDE. 
 
Because the problem in linear, we need only examine the solution for a single 
wavenumber k, and can assume a solution of the form: 
 



 5

( , ) ()sin( )k k

k x
u x t A t

L
π

=  

 
Here Ak is the amplitude and sin gives the spatial structure and the final solution should 
be the sum of all wave components. Note that this solution satisfies the boundary 
conditions. 
 
Substituting the solution into the PDE, we obtain an ODE for the amplitude Ak: 
 

2( )k
k

dA t k
KA

dt L
π = −  

 
 

 

à  
2ln( )kd A k

K
dt L

π = −  
 

 

 

à ( )2
( ) (0)exp /k kA t A K k L tπ = −  . 

 
It says that the amplitude of the solutions for all wave numbers decreases with time. 
 
From the I.C., Ak(0) = ak, so we have 
 

( )2( , ) exp / sin( )k k

k x
u x t a K k L t

L
π

π = −   

 
and  
 ( , ) ( , )k

k

u x t u x t= ∑   

 
which is the analytical solution to the original diffusion equation.  
 
A numerical approximation to the diffusion equation should converge to this solution as 
∆x, ∆t à 0. 
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Consider the FTCS scheme we derived earlier. 
 
Goal: Show that  ui

t à u(x,t) as ∆x, ∆t à 0. 
 
First, find the numerical solution.  
 
This time, we use the FDE and substitute a discrete Fourier series into the equation. 
 
Let the I.C. be given by  
 

0

0

( ) sin( )
J

i
i i k

k

k x
f x u a

L
π

=

= = ∑ %  for i= 0, 1, 2, ….., J 

 
where J+1 = total number of grid points used to represent the initial condition. 
 
The coefficient ka%  is given by a discrete Fourier transform: 
 

0

2
( )sin( )

J
i

k i
i

k x
a f x

J L
π

=

= ∑%  for k=0, 1, 2, …., J. 

 
Note: L = J∆x. As ∆x à 0, Jà ∞, the discrete Fourier series becomes continuous and 

k ka a→% . 
 
Note: The number of harmonics or Fourier wave components that can be represented is a 
function of the number of grid points (J+1), which is the number of degree of freedom. 
Spectral methods represent fields as in terms of spectral components, whose amplitudes 
are solved for. 
 
Recall that wavelength  
 

2 2 2
. . (2 / 2 )

L
w n k L k

π π
λ

π
= = =     

 
where k is the number (index) of wave components. 
 
Longest wavelength = ∞   (k=0)  wavenumber zero. 
Next longest wave =  2L (k =1 ) 
 

. 

. 

. 
 
Shortest wave = 2L/J = 2J∆x/J = 2∆x. 
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Comments: 
 

A 2∆x wave is the shortest wave that can be resolved on any grid and it takes at least 
3 points to represent a wave. 
 
 
 
 
 
2∆x waves often have some special properties. They are also represented most poorly 
by numerical methods – recall that smooth fields are more accurately represented by a 
finite number of grid points. 

 
As in the continuous case, we examine only one wavenumber k, so for our discrete 
problem, assume a solution of the form  
 

( )sinn i
i k

k x
u A n

L
π =  

 
 

 
(satisfies B.C.) and n is the time level. 
 
We also have from I.C. (0) .n

i k ku A a= = %  
 
Substituting this into the FDE  
 

1
1 1

2

2n n n n n
i i i i iu u u u u

K
t x

+
− +− − +

=
∆ ∆

, 

 
and letting  
 

sin i
i

k x
S

L
π =  

 
,  

 
we have  
 

1 12

( 1) ( ) ( )
[ 2 ]

( )
k i k i k

i i i
A n S A n S KA n

S S S
t x + −

+ −
= − +

∆ ∆
. 

 
Since xi = i ∆x, xi+1 = (i+1) ∆x therefore 
 

1

( )
sini

k x x
S

L
π

+
+ ∆ =  

 
. 
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Using standard trigonometric identities, we can write the above in the form of a recursion 
relation: 
 

2( 1) ( ) 1 4 sin
2k k
k x

A n A n
L

π
µ

 ∆  + = −     
 

 

where 
2( )

K t
x

µ
∆

=
∆

.  

 

If we let M(k) ≡ 21 4 sin
2
k x
L

π
µ

 ∆  −     
, then we have 

 
( 1) ( ) ( )k kA n M k A n+ = . 

 
Write it out for n=0, 1, 2, …., n: 
 
 

(1) ( ) (0) ( )k k kA M k A M k a= = %  
2(2) ( ) (1) [ ( )]k k kA M k A M k a= = %  

. 

. 

. 
( ) ( ) ( 1) [ ( )]n

k k kA n M k A n M k a= − = %  
 
we therefore have the solution of u for wave mode k: 
 

( ) ( ) ( ) [ ( )] sinn n i
i k k k

k x
u M k A n a M k

L
π = =  

 
% . 

 
Definition: M(k) is known as the amplification factor, and if | M(k) | ≤ 1, the solution 
will not grow in time as n à ∞.  This had better to be the case because the amplitude of 
the analytical solution is supposed to always decrease with time. 
 
For our problem we can see that | M(k) | ≤ 1 means  
 

21 4 sin 1
2
k x
L

π
µ

∆ − ≤ 
 

. 

 
If we take the maximum possible value of sin2( ) = 1, à 
 

1 1 4 1µ− ≤ − ≤    
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à µ ≤ 1/2. 
 
This condition needs to be met for all k to prevent solution growth. Based on the 
definition of µ, the condition becomes 
 

2( )
2

x
t

K
∆

∆ ≤ . 

 
This imposes an upper bound on the ∆t that can be used for a given value of ∆x, and such 
a condition is unknown as the Stability Constraint. 
 
Now we have our solution, let's check convergence for single mode k. 
 
Be definition of convergence, we take 
 

2
2, 0 , 0

4
lim ( ) lim 1 sin sin

( ) 2

n
n i
i k kx t x t

k xK k x
u a t

x L L
ππ

∆ ∆ → ∆ ∆ →

 ∆   = − ∆     ∆     
%  

 
or  
 

[ ]
, 0 , 0
lim ( ) lim 1 ( ) sin

nn i
i k k

x t x t

k x
u a t f x

L
π

∆ ∆ → ∆ ∆ →

 = − ∆ ∆  
 

%  

 

if we let  f(∆x) ≡ 2
2

4
sin

( ) 2
K k x
x L

π ∆ 
 ∆  

. 

 
 
It can be shown that if f(x) is a complex-valued function of a real argument, say ∆x, such 
that  
 

0
lim ( )
x

f x a
∆ →

∆ = , then, 

 
  

, 0
lim [1 ( )]n at

x t
t f x e±

∆ ∆ →
± ∆ ∆ =   (we will show this later). 

 
 

We know that 
0

sin( )
lim 1
y

y
y→

= , therefore  
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2

22

20 0

sin
( ) 2lim ( ) lim

2
x x

k x
K k kLf x K a

k xL L
L

π
π π

π∆ → ∆ →

 ∆  
      ∆ = = = ∆    

    

 

 
Also 

0
lim k kt

a a
∆ →

=% , therefore 

 
2

, 0
lim ( ) exp sin

2
jn

i k k
x t

kxk
u a K t

L L
ππ

∆ ∆ →

    = −    
     

. 

 
Interesting, this solution is identical to our analytical solution derived earlier! Therefore 
the numerical solution converges to the PDE solution when ∆x , ∆t à 0. 
 
 
Finally, we show here (noting that n∆t = t) 
 

2 3

0

2 3
2 3

2 3

( 1) ( 1)( 2)
lim(1 ) 1 ( ) ( ) ...

2! 3!
1 1 2

1 1 ( ) 1 1 ( ) ...
2! 3!

( ) ( )
1 ...

2! 3!

n

x

at

n n n n n
f t fn t f t f t

a a
at n t n t

n n n

at at
at

e

∆ →

±

− − −
± ∆ = ± ∆ + ∆ + ∆ +

    = ± + − ∆ ± − − ∆ +    
    

= ± + ± +

=
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3.4. Numerical Convergence 
 
Reading: Fletcher, Sections 4.1.2, 4.2.1, 4.4.1. 
 
Numerical Convergence 
 
Convergence is often hard to demonstrate theoretically.  
True analytical solution is hard or even impossible to find is one of the reasons. 
 
We can, however, find out the convergence of a given scheme numerically. 
 
We compute solutions at successively higher resolutions and see how the error changes 
with the resolution. 
 

Does τ à 0 when ∆x à 0? 
 And how fast τ decreases? 
 
The procedure can be very expensive (remember the cost factor increase as ∆ doubles). 
 
A typical measure of error is the L2 norm or RMS error: 
 

2[ ]
2 i ixu u

L
n

∆ −
= ∑  

 
where u is a true solution or a 'converged' numerical solution when exact solution is not 
available. 
 
Example: 1-D diffusion equation using FTCS scheme: 
 

2 2 4

2 4

( )
....

2 12
t u x u

K
t x

τ
∆ ∂ ∆ ∂

= − +
∂ ∂

 

 
Making use of  
 

2 2 2 2 4
2

2 2 2 2 4

u u u u u u
K K K K

t x t t x x t x
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = ⇒ = = =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

. 

 

we have   
2 4

4 2
4

( ) 1
( )

2 6
K x u

s O x t
x

τ
∆ ∂ = − + ∆ + ∆  ∂ 

. 

 

where  
2( )

K t
s

x
∆

=
∆
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Table 4.1 (from Fletcher) shows the error reduction with ∆x for two values of s. 
 

 

 
 

The above figure shows plots of log10(err) as a function of log10(∆x). 
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Recall that  
 

τ = A (∆x)n   à  
 

log τ = log A + n log ∆x. 
 
This is a straight line in log-log diagram with a slope of n and intercept A.  
 
Thus the slope of the line gives the rate of convergence. 
 
In the above figure, we see that when s = 1/6, the error line has a steeper slope and the 
error is smaller for all ∆x. This is because for this value of s, the first term in τ drops out 
and the scheme because 4th-order accurate. The scheme is second-order accurate for all 
other values of s. 
 
Note that you can choose ∆x and ∆t such that s=1/6 only when K is constant in the entire 
domain. 
 
In cases where no exact solutions is available, a so-called 'grid-convergence' or reference 
solution is often sought and this solution can be used in the place of true solution in the 
estimating the solution error. 
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An example from Straka et al (1993).  
 

 
 
It shows a reference solution obtained at ∆x=25 m, for a density current resulting from a 
dropping cold bubble. 
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Figure (from Straka et al 1993). Graph of θ' L2 norms (°C) from 
self-convergence tests with the compressible reference model 
(REFC). The bold solid line labeled with 'self-convergence solutions' 
represents the L2 norms for spatial truncation errors of solutions 
made with At = constant and varying grid spacings. The L, norms 
were computed against a 25.0 m reference solution. The bold dashed 
lines labeled with, for example, '200.0 m solutions' represent L2 
norms for temporal truncation errors of solutions made with ∆x 
=constant (e.g. 200.0 m) and varying time steps. The reference 
solutions for these computations were made using a time step 
consistent with ∆t = 12.5 s times a constant (see text) in each of the 
cases. The solid fines labeled O(l) and O(2) represent first- and 
second-order convergence, respectively 
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Richardson Extrapolation 
 
As the grid becomes very fine, the error behaves much like that predicted from the 
leading terms in τ. Further refinements are expensive, so we use another technique to 
improve the solution – Richardson Extrapolation. 
 
Consider two numerical solutions obtained at ∆xa and ∆xb.  
 
With FTCS scheme (assuming s≠1/6),  
 

2 4
4 2

4

( ) 1
( )

2 6
a

a a
K x u

s O x t
x

τ
∆ ∂ = − + ∆ + ∆  ∂ 

 

 
2 4

4 2
4

( ) 1
( )

2 6
b

b b
K x u

s O x t
x

τ
∆ ∂ = − + ∆ + ∆  ∂ 

 

 
Find a linear combination of the two solutions, ua and ub 
 

uc  = a ua + b ub 
 
where a + b =1 and a and b are chosen so that the leading terms in τa and τb cancel and 

the scheme becomes 4th-order accurate (Of course this assumes that 
4

4

u
x

∂
∂

 is the same in 

both case, which is reasonably assumption only at relatively high resolutions when the 
solution is well resolved). 
 
 
If ∆xb = ∆xa, then  
 

4a + b = 0 
 
with a + b = 1 à 
 

a = -1/3, b = 4/3 
 
and  uc  = -1/3 ua + 4/3 ub. 
 



 17

3.5. Stability Analysis 
 
Reading:  Durran Section 2.2. 

Tannehill et al. Section 3.6. 
 

 
Stability –  For a stable numerical scheme, the errors in the initial condition will not 

grow unboundedly with time. 
 
In this section, we discuss the methods for determining the stability of F.D. schemes. This 

is very important when designing a F.D. scheme and for understanding it 
behavior. 

 
There are several methods: 
 

• Energy method 
• von Neumann method 
• Matrix method (for systems of equations) 
• Discrete perturbation method (Hoffmann and Chiang – will not discuss) 

 
Note:  Stability refers to the F.D. 
 Does not involve B.C. or I.C. 
 Referes to time-matching problems only 
 
 
The energy method 
 
Read Durran Section 2.2. 
 
This method is used much less than the von Neumann method. 
 
It's attractive because it works for nonlinear problem and problems without period B.C. 
 
The key is to show that a positive definite quantity like 2( )n

i
i

u∑  is bounded for all n. 

 
We illustrate this method using the upstream-forward scheme for wave (advection) 

equation 0
u u

c
t x

∂ ∂
+ =

∂ ∂
: 

 
1

1 0
n n n n
i i i iu u u u

c
t x

+
−− −

+ =
∆ ∆

 

 
Let µ = c∆t/∆x  à 
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1
1(1 )n n n

i i iu u uµ µ+
−= − +  

 
Squaring both sides and summing over all grid points: 
 

1 2 2 2 2 2
1 1( ) [(1 ) ( ) 2(1 ) ( ) ]n n n n n

i i i i i
i i

u u u u uµ µ µ µ+
− −= − + − +∑ ∑   (1) 

 
Assuming periodic B.C. à 
 

2 2
1( ) ( )n n

i i
i i

u u −=∑ ∑  

 
and using the Schwarz inequality (which says that for two vectors U and V, 
| | | | | |U V U V⋅ ≤ ⋅ ), 
 

2 2 2
1 1( ) ( ) ( )n n n n n

i i i i i
i i i i

u u u u u− −≤ =∑ ∑ ∑ ∑ . 

 
If (1 ) 0µ µ− ≥ , all coefficients of RHS terms in (1) are positive, and we have 
 

1 2 2 2 2 2( ) [(1 ) 2(1 ) ] ( ) ( )n n n
i i i

i i i

u u uµ µ µ µ+ ≤ − + − + =∑ ∑ ∑ , 

 
i.e., the L2 norm at n+1 is no greater than that at n, therefore the scheme is stable! 
 
The condition (1 ) 0µ µ− ≥  gives 
 
  µ = c∆t/∆x  ≤ 1 
 
which is the stability condition for this scheme. As we discussed earlier, it says that 
waves cannot propagate more than one grid interval during one ∆t in order to maintain 
stability. 
 
von Neumann method 
 
Read Tannehill et al, Section 3.6.1. 
 
In a sense, we have already used this method to find stability of the 1-D diffusion 
equation – when we were proving the convergence of the solution using FTCS scheme. 
 
We found then 
 

un+1 = [ M(t) ]n+1 u0 
 
where M(t) = amplification factor.  
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If  M(t) ≤ 1 by some measure (M can be a matrix or a complex number), then un+1 ≤ un 
and the solution cannot grow in time – the scheme is stable. 
 
Essentially, von Neumann method expands the F.D.E. in a Fourier series, finds the 
amplification factor and determines under what condition the factor is less than or equal 
to 1 for stability. 
 
Assumptions: 
 
1. The equation has to be Linear with constant coefficients. 
2. It is assume that the solution is periodic. 
 
With this method, the dependent variable is decomposed into a Fourier series: 
 

, ,

( , , , ) ( , , )exp[ ( )]
k l m

u x y z t U k l m i kx ly mz tω= + + −∑    (2) 

 
where U is the complex amplitude and ω = ωR + ωΙ is the complex frequency. 
 
In fact ωR gives the wave propagation speed and ωΙ gives the growth and decaying rate. 
 

[ ]R I R Ii i t i t ti te e e eω ω ω ωω − + −− = =  
 

Ri te ω−    - phase function of Fourier components 
I teω  - growth or decay rate 

 
If ωI >0, the solution will grow exponentially in time. 
 
 
Example 1: 1-D diffusion equation with FTCS scheme. 
 

1
1 1( 2 )n n n n n

i i i i iu u u u uµ+
− +− = − +       (3) 

 

where 
2( )

K t
x

µ
∆

=
∆

. 

 
Let's examine a single wave k: 
 

( )n i kx t
i ku U e ω−=  

1 ( )n i kx t i t
i ku U e eω ω+ − − ∆=  

( )
1

n i kx t ik x
i ku U e eω− ± ∆
± =  
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Substitute the above into (3) à 
 

( ) ( )( 1) [ 2 ]i kx t i t i kx t ik x ik x
k kU e e U e e eω ω ωµ− − ∆ − ∆ − ∆− = − +  à 

 
( )[ 1 2 (cos 1)] 0i kx t i t

kU e e k xω ω µ− − ∆ − − ∆ − = à 
 

( ) 2[ 1 4 sin ( /2)] 0i kx t i t
kU e e k xω ω µ− − ∆ − + ∆ =  

 
For non-trivial solution, we require  
 

21 4 sin ( /2) 0i te k xω µ− ∆ − + ∆ =   à 
 

21 4 sin ( /2)i te k xω µ− ∆ = − ∆  
 
 
Here, i te ω− ∆  is actually the amplification factor, the same as the M discussed earlier. 
 

i te ωλ − ∆≡  =  un+1/un  - the amplification factor. 
 
For stability we require  
 
 | λ | ≤ 1 à 
 

21 1 4 sin ( /2) 1k xµ− ≤ − ∆ ≤ à 
 
µ ≤ 1/2 as before! 

 
In practice, when µ=1/2, the solution switches between –1 and +1 for 2∆ waves, which is 
unrealistic. The standard requirement is therefore 
 

µ ≤ 1/4. 
 
Read Pielke (1994) section 10.1.2. 
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3.6. Implicit Methods 
 
Read Tannehill et al, second part of section 3.4.1. 
 
So far, we have dealt with only explicit schemes which have the form of 
 

1 1( , ,...)n n nu f u u+ −= . 
 
With these schemes, the future state at each grid point is only dependent on the current 
and past time levels, therefore the solution can be obtained directly or explicitly. c.f., 
explicit functions such as y = x2. 
 
Implicit scheme involves variables of the future time level at more than one grid point 
(often resulting from finite difference of variable(s) at the future time level). 
Mathematically it can be expressed as  
 

1 1 1( , , ,...)n n n nu f u u u+ + −= . 
 
This is analogous to implicit functions such as x = sin(x). As one can imagine, implicit 
schemes are more difficult to solve. Usually matrix inversion is involved. 
 
We will first look at the stability property of an implicit scheme. 
 
 
Example. Consider the 1-D diffusion equation ut = K uxx again. 
 
It is approximated by the following F.D. scheme: 
 

1[ (1 ) ]n n
t i xx i xx iu K u uδ αδ α δ+

+ = + −      (4) 
 
(Note: shorthand notations for F.D. are used. See handout. e.g., 1( ) /n n

tu u u tδ +
+ = − ∆ ). 

 
• When α = 0, the scheme is explicit, and is the FTCS scheme discussed earlier. 
• When α = 1/2, it is implicit and is called Crank-Nicolson scheme. 
• For other values of α, it is a general implicit scheme. 

 
We can show that  
 

4 2
4 2

4

1 ( )
( )

2 12
u x

K K t O x t
x

τ α
 ∂ ∆ = ∆ − − + ∆ + ∆  ∂   

 

 
(show if for yourself!). 
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We can see that when α = 1/2, it is 2nd-order accurate in time and space. Otherwise, it's 
first-order in time – which is expected for un-centered time-differencing scheme (when 
α=1/2, the right hand side is an averaged between the current and future time levels valid 
at n+1/2. Relative to this RHS, the LHS time difference becomes centered in time. We 
know that the simplest centered difference scheme is second-order accurate). 
 
When [ ] = 0, the scheme becomes fourth-order in space. 

 
Let's perform stability analysis on (4) using von Neumann method. 
 

( )n i kx t i n t ikj x n ikj x
j k k ku U e U e e U eω ω λ− − ∆ ∆ ∆= = ≡     (5) 

 
Here i te ωλ − ∆≡ . Note that we are now using j as the grid point index. 
 
Substitute (5) into (4) à 
 

1 1( ) (1 ) ( 2 )ikj x n n ikj x n n ik x ik x
k kU e U e e eλ λ µ αλ α λ∆ + ∆ + ∆ − ∆ − = + − − +   à 

 
Dividing ikj x n

kU e λ∆  on both sides, and rearranging à 
 

21 4 sin ( /2)[ (1 )]k xλ µ αλ α− = − ∆ + −  
 

2

2

1 4(1 ) sin ( /2)
1 4 sin ( /2)

k x
k x

α µ
λ

αµ
− − ∆

=
+ ∆

 

 
Look at several cases: 
 
Case I: α = 0, 21 4 sin ( /2)k xλ µ= − ∆ à µ ≤ 1/2 as before. The scheme is conditionally 

stable. 
 
Case II: α = 1/2 (Crank-Nicolson) 
 

2

2

1 2 sin ( /2)
| | 1

1 2 sin ( /2)
k x
k x

µ
λ

µ
− ∆

= ≤
+ ∆

  for all values of µ,   

 
therefore the scheme is absolutely or unconditionally stable. 
 
Case III: α =1, the time difference is backward, relative to the RHS terms. 
 

2

1
| | 1

1 4 sin ( /2)k x
λ

µ
= ≤

+ ∆
, again for all values of µ,  
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therefore the scheme is also absolutely stable. However, this scheme is only first-order 
accurate in time, as discussed earlier (consistent with the time difference scheme being 
un-centered). 
 
In general, when 0 ≤ α  < 1/2, it is required that µ ≤ 1/(2 - 4α ), therefore the scheme is 
conditionally stable. When 1/2 ≤ α  ≤ 1, the scheme is unconditionally stable (it is 
sometimes referred to as the forward-biased scheme). 
 
 
 
In the ARPS, the implicit diffusion scheme is an option for treating the vertical turbulent 
mixing terms. This treatment is necessary in order to remove the severe stability 
constraint from these terms when vertical mixing is strong inside the planetary boundary 
layer (PBL). The latter occurs when the PBL is convectively unstably and the non-local 
PBL mixing is invoked with the Sun and Chang (1986) parameterization. Parameter 
alfcoef in arps.input corresponds to 1-α here (see handout). 
 
Finally, we note that for multi-time level schemes, there is usually multiple solutions for 
the amplification factor λ. some of them might represent spurious computational modes 
due to the use of extra (artificial) initial conditions.  
 
The expression of λ can be too complicated so that a graphic plotting is needed to 
understand its dependency on wave number k. |λ| has to be no greater than 1 for all 
possible waves. The shortest wave resolvable on a grid has a wavelength of 2 ∆, and the 
longest is 2L, where L is the domain width. 
 
 
Tridiagonal Solver 
 
1-D implicit method often leads to tridiagonal systems of linear algebraic equations. 
 
(In the ARPS, this appears twice – once when sound waves are treated implicitly in the 
vertical direction and once when the vertical turbulence mixing is treated implicitly). 
 
For example,  
 

1 1 1 1
1 1

2

2n n n n n
ni i i i i

i
u u u u u

K f
t x

α
+ + + +

− +− − +
= +

∆ ∆
 à    (6) 

 
1 1 1

1 1
n n n

i i i i i i iAu B u C u D+ + +
− ++ + =    

 
for i = 1, 2, …, N-1, assuming the boundaries are at i=0 and N. 
 
Here, i iA C αµ= = − , and (1 2 )iB αµ= + . 
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1
1 1 1 0 0

n n nD t f u A u += ∆ − −  
1

1 1 1
n n n

N N N N ND t f u C u +
− − −= ∆ − −  

n n
i iD tf u= ∆ −  for i=2, …, N-2 

 
For D1 and DN-1, the Dirichlet boundary condition is assumed.  
 
This system of equation can be written in a matrix form (superscript n+1 is omitted): 
 

1 1 1 1

2 2 2 2 2

2 1 2 2 2

1 1 1 1

. . . . .

. . . . .
i i i i i

N N N N N

N N N N

B C u D

A B C u D

A B C u D

A B C u D
A B u D

− − − − −

− − − −

     
     
     
     
     

=     
     
     
     
          

  (7) 

 
Since in each raw of the coefficient matrix only three elements of are non-zero and they 
are aligned along the diagonal axis, this system are called tridiagonal system of 
equations. It can be solved efficiently using the so-called Thomas Algorithm. 
 
The procedure consists of two parts. First (7) is manipulated into the following form: 
 

1 11

2 22

2 22

1 1

'1 '
'1 '

. .. . .
'1 '

. .. . .
'1 '
'1

i ii

N NN

N N

u DC
u DC

u DC

u DC
u D

− −−

− −

    
    
    
    
    

=    
    
    
    
         

  (8) 

 
in which the subdiagonal coefficients A are eliminated and the diagonal coefficients are 
normalized. For the first equation 
 

1 1
1 1

1 1

' , '
C D

C D
B B

= = .      (9a) 

 
For the general equations: 
 

1

1 1

'
' , '

' '
i i i i

i i
i i i i i i

C D A D
C D

B A C B AC
−

− −

−
= =

− −
.    (9b) 
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Equations in (9) represent a forward sweep step (see figure below). It is followed by a 
backward substitution step that finds solution ui from (8). The solution is: 
 

1 1

1

'
' ' for from 2 to1.

N N

i i i i

u D
u D u C i N

− −

+

=
= − −

    (10) 

 
 

 
 
 
Note both (9) and (10) involve reduction, the algorithm is inherently non-vectorizable. 
Fortunately, for multi-dimensional problems, multiple systems of equations often need to 
be solved, and one can exploit parallelism along other dimensions (instead of i direction). 
 
See also handout – section 4.3.3 from Tannehill et al.  
Fortran code – see Durran Appendix A.2. 
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3.7. Stability Analysis for Systems of Equations 
 
When we are dealing with a system of equations, we can also apply the von Neumann 
method to find the stability property of a given F.D. scheme. 
 
As with single equations, von Neumann can only be used for linear systems of equations. 
For nonlinear systems, linearization has to be performed first. 
 
Without going into details, we point out that a system of linear equations can be 
expressed in a matrix form like 
 

[ ] 0
u u

A
t x

∂ ∂
+ =

∂ ∂

r r
       (11) 

 
The equation is first discretized using certain F.D. scheme, u

r
 can be written in terms of a 

discrete Fourier series and the wave component is then substituted into the discrete 
equation to obtain something like: 
 

1 [ ( , )]n n
k kU M t x U+ = ∆ ∆

r r
      (12) 

 
where n

kU
r

 is the amplitude vector for wave k at time level n, and [M] is called the 
amplification matrix.  
 
The scheme is stable when the maximum absolute eigenvalue of [M] is no greater than 1. 
 
 
Why the maximum eigenvalue? 
 
Because as you saw earlier (in Chapter 1) that a system of equation like (12) can be 
transformed into a system of decoupled equations, and the eigenvalues of [M] become the 
amplification factors for each of the new dependent variables, vi (the element of vector 
V
r

),  i.e., we can obtain from (12) 
 

1 [ ]n n
k kV N V+ =
r r

, 
 
where [N] is a diagonal matrix with the eigenvalues of [M] as its diagonal elements.  
 
Since the system is stable only when all dependent variables remain bounded, the 
absolute value of the maximum eigenvalue has to be no greater than 1. 
 
Read section 3.6.2 of Tannehil et al.
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Appendix 
 
Shorthand notations for discrete/finite difference operators and discretization identities 
 
Notations: 
 

2
j n x j n xnx A A

A + −+
=  

/ 2 / 2j n j n
nx

A A
x

n x
δ + −−

=
∆

 

1j j
x

A A
x

x
δ +

+

−
=

∆
 

1j j
x

A A
x

x
δ −

−

−
=

∆
 

 
Identities: 
 

2

xx
x x xA A Aδ δ δ≡ ≡  

( )
xx

x x xA B A B B Aδ δ δ≡ −  
2( /2)x

x xA A Aδ δ≡  
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Review before first exam - What you should know? 
 
Chapters 0  
 

• Characteristics of CFD as compared to other approaches of studying fluid 
dynamics 

• Basic computer architectures – differences, pros and cons 
• Current trend in moving toward distributed memory massively parallel systems 
• Vectorization and parallelization issues 
• Amdahl's Law – its derivation and application. 
• Code optimization issues 

 
Chapters 1 
 

• ODE versus PDE 
• Order and linearity of PDE's 
• Classification of first-order, second-order PDE's and systems of first-order PDE's 
• Three canonical forms of 2nd-order PDE's.  
• Conversion of 2nd-order PDE in a general form into one of the three canonical 

forms via coordinate transformation. 
• Classification of PDE's according to the existence of characteristics 
• Be able to derive the characteristics and compatibility equations for first and 

second order PDE's and systems of first-order PDE's 
• Can use method of characteristics to solve simple problems 
• Concepts of domain of dependence (DOD) and domain of influence 
• Main characteristics of the DOD for hyperbolic, parabolic and elliptic equations 
• Basic types of I.C. and B.C. 
• Know something about the well-posedness of PDE systems 

 
Chapters 2 
 

• User Taylor series expansion or polynomial fitting methods to derive finite 
difference approximations 

• Be able to derive and discuss truncation errors 
• The order of accuracy of F.D. schemes 
• The concepts of consistency, stability and convergence 


