Chapter Two. Finite Difference Methods

1. The Concept of Finite Difference Method

In FDM, we represent continuous fluid flow problemsin a discrete manner, when the
fluid continuum is replaced by a mesh of discrete points. The same istrue for thetime
varigble.

FDM are the smplest of dl approximations, and involve a mapping:

PDE Discretization - System of algebraic equtions

Cdculus - agebra

Deivative - difference

We focus on the following:

- Properties of FDM

- Derivation via savera methods

- Physcd interpretation in terms of characteristics
- Application to selected problems

Firgt, we lay down a convention for notion:

Timelevd - superscriptn- r" ~r atimeleve n
Dt = timeinterva = t™* —t".

Most times, we use congtant Dt. Occasiondly, Dt changes with time.
nl ~ past
n ~presant

n+1 ~ future

t=n Dt wheren=number of timesteps=0,1,2,3,....., N
T=NDt =find time



Spatical Location— subscript i, , K, for x, y, and z.
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Dx — congtant grid interva
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Note: Discretization =¥ information loss— the greater the number of points, the more
accurate will be the representation. See Figure.
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2. Quantitative Properties of Numerical Algorithms

The governing equations (PDE'S) obey has certain properties, and their computationa
counterparts should also so.

1) Conservation— Typicaly the governing equetions are written as consarvation laws
(which meansthat the integral properties over a closed volume don't change with
time).

E.g., the mass conservation equation

I Rigrvy.
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If weintegrate this over a closed box
T s rav=- RxrV)dv=0
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Mathematicaly, we can dso write this as

Will the numerica solution obey these rules? Not necessaxily.

Consider the situation wherer and V are defined at separate points, ... thisis how the
continuity equation is redly derived:
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The mass within the zone changes due the fluxes through the Side. Toget r V' at a point,
we have to average, which smears out gradientd

Congder an dternative sructure:
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To cdculate the fluxes through the sdes of the grid cells shown above (which isanon
staggered Arakawa A-grid, by theway —we will cometo it later), we have to perform
different averages, which result in different conservation properties of the numerica
scheme.

For numerica solution to obey conservation, you must be very careful how you set up the

grid and solve the equations!!

2) Positivity — Physicaly positive quantities (mass, energy, water vapor) cannot become
negative. Thisis not guaranteed with numerica solutions, however. Care must be

taken to prevent negative vaues from being generated. Schemesthat do so are cdled

positive definite schemes. A more generd type is the monotonic schemesthat so
ensure positive definiteness, because the cannot generate new extremanot found in
the origind fidd.

3). Reverghility — Says that the equations are invariant under the tranformt - - t. This
is mportant for pure transport problems, but clearly not appropriate for diffusion
problems. Revershility is actudly hard to achieve even for ample
advection/transportation due to unavoidable numerical errors.

4). Accuracy — Accuracy generdly involves Computer precision, Spatid or tempora
resolution, and agorithm robustness, etc.

Some of the most accurate schemes don't satisfy the above properties!!

2. Methods for Obtaining FD Expressions

There are savera, and we will look at afew:

1) Taylor series expansion—the most common, but purdy mathematical.

2) Polynomid fitting or interpolation— the most generd ways. Taylor seriesisa
subset of this method. Interpolation takes us back to the M.O.C. and thushas a
more physicd interpreatation.




3) Control volume gpproach— aso cdled finite volume (FV) — we solve the
equationsin integrd rather than differentiad form. Popular in engineering where
complex geometries and coordinate transformations are involved. For Cartesian
grids, smplest FV methods - FD.

Wewill ook at only the first two agpproaches.

2.1. Taylor Series Expansion Method

Recdl the definition of a derivative

ul i YO+ DX, ¥o) - U(Xy %)
ﬂXXo,YO Dx® 0 Dx

The Taylor series approach works backwards — want to approximate fu/fix by adiscrete
difference, i.e, for finite Dx.

Given u(Xo, Yo), we can write a Taylor series expanson for u(x+DX, Yo), as
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+Dx) = + Dx
u(x, +Dx) =u(x) W™, 2 B, 3 X

|X0,y0
Thisexpresson isexact if weretain dl termd

The grid mesh or stencil looks like:
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Here, U1 = U( Xo+DX, Yo)

U j+1= U( %o, Yot+Dy)
etc.

If we solve for fu/fix from the Taylor series, we have
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Thefirgt term on the RHS is amply the dope of the function u(x,y,), using the current
and the points to the right.
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Onecandsousethevaueat x,- Dx instead to get
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Both (1) and (2) provides an expression for Tu/Ix, but numericaly the answers will be
different.

(2) iscdled aforward difference
(2) iscaled a backward difference




Consder al1-D example:
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If we have the equation
ﬂ—u+cE:O, where ¢ >0,
it X
we might want to use

ﬂ—u+c—ui " U »0
it Dx

which is caled Upwind Difference. Alternatively, in

Downstream Difference is used.

Upstream difference is better than downstream difference for this problem, because for

this pure advection problem, signa's move from upstream (l&ft) to downstream (right).

The value of u at point i at afuture time should be influenced by the values of u upstream,
not downstream.

Think of it in terms of characterigtics:
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No information is coming from the +x direction. This of course depends on the Sign of c.
If C<O0, then upstream means the left Sde of the current point.

Note that upstream or upstream:biased schemes are usudly better choicesin CFD.
Wewill see sometimelater, that 1-order downstream difference is absolutdly undeble

for the above problem.

We can get another discrete approximation to fu/'fix by adding (1) and (2):

ﬂ_u — Uy - U, _ (D()Z ﬂ3U| + (3)
™y, 2D 3! TV3|x0,y0
Thisis cdled Centered Difference. Note, it doesn't even use value of u at the current
point i. It approximates the dope using two neighboring points:
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Note that thiswill not be accurate if u has very sharp gradient (U). Note aso that the
extraterm in (3) are different — they control the accuracy.

We can build many different gpproximations to the derivatives through linear
combinations of various T.S. expansons.



For high-order derivatives, we follow the same approach.

Consider T2u/fx°. The Taylor series gives

u(x+Dx) =u(x) + D(E+ CI ﬂzl; + ()° .”3u3 + ... 4
Ix 21 % 3 X

2
We can solve for % from (4), but we don't want to have the unknown 111—u :
X X

We can replace it with one of the earlier gpproximationsto it, or make use of the
following:
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and add (4) and (5) and solve for 11]1—2‘ :
X

T°u _ u(x+Dx)- 2u(x) +u(x- Dx)

0" (DX +O()

2
which s a centered difference for jT—‘j .
X

Truncation Error

The high-order terms (H.O.T.) of O(DX") are called the Truncaion Error, and are a
measure of the error associated with representing a PDE by atruncated T.S. — we can't

retain al terms, so we neglect the terms of order O(Dx?) and above, for example.

PDE = FDE +t

wheret isthe Truncation Error.

If we change the nature of the H.O.T., by using a different gpproximation, the accuracy of
the F.D. expression will also change.

It isimportant to understand the impact of t, and thisis the subject of our computer
problem #4.

From the above, it's clear that wewantt = 0 when PDE = FDE. Otherwise, we have a
problem (consistency)!



LetDx 2> 0, thent should 2> 0 => our discrete system approaches continuum and our
FDE - PDE.

Order of the F.D. Approximation.

The power to which the leading discreteinterva in t israised is caled the Order of the
F.D. Approximation.

U- U, . . .
Example ——'-L isfird-order accurate in space

Dx
2
because t =%ﬂ—g+"' =Q(Dx)
2! qx
- -+ U .
M“;“I-l is second order accurate.
Dx
Commentsont :

(1) If there are severd independent variables, each has atruncation error, eq.,
O(Dx*+ Dt), we say it'sfirst order in time and second order in space.

(2) The order of a scheme aso depends on the locd properties of the function, it may
be much less than the formd or theoretical order near sharp gradients. Recall that
Taylor seriesare vaid only for smooth and continuous functions.

(3) Typicaly, we prefer higher-order scheme becauset issmdler. However, t isnot
necessxily related to accuracy because, for agiven Dx, afirg-order scheme may
give more accurate results because the coefficient is smaller. What doest tdlsus
is how the error will change as we change the resolution. Higher order t decreases
faster when we decreases Dx.

eg.t =k (Dx)® versust =k Dx.

4
Remember that t indudesk, which might be 11]1—“ etc and it matters
X
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(4) Truncation error is cumulative — adds up per time step.

(5) Truncation error is usudly much larger than machine round- off error. Also for
most problems; t (space) >> t (time), because solution often evolves smoothly in
time but have rapid changes in space. Time step Sze is often not as large aswe
wish because of gtability condraint.
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Generd Method for Deriving FD Expressons

Let'swrite agenerdized form of the Taylor series as

¥ a‘[muo (DX)m
m—OeﬂX g m!

u

i+1

Now, suppose we want to use a 3-point sencil a i-1, i, i+1. Then, we can write a generic
expresson (PDE = FDE +t) as.

Wy, +by +eu,, +O(DOY"
ix

where a, b and ¢ are unknown congtants to be determined and m isthe order of the
gpproximation. (Generd rule: If F.D. spans n points, you can derive an n-1 order F.D.
scheme).

Using our Taylor seriesfor u.1, U and U+1, we can write

au _, +bu +cu,
ocJu, (D)° Tu  ()° TU

a(u. - +..)
‘ﬂx 21 % 3 0

+bu,

C(U+D(‘Hu (D0)* T7u |, (Xx)° T )

x 2 % 3 %

=(a+b+c)u +(- a+C)Dx +(a+c)(DX) ‘Hu +(- a+c)@@+... (6)
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Since we want (6) to have the form of 1‘|T1_u +0O(Dx)", therefore we set
X
(at+b+c) =0,
(-a+c)Dx=1
atc=0.

From them we canfind b=0, ¢ = -a= 1/(2Dx), therefore

ﬂ_U:Ui+ - U 1+O(DX)
1x 2Dx

which is asecond-order centered difference scheme.

This method can be used in agenera manner for symmetric or non-symmetric difference
formula Y ou just pick which points you want to use.
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