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Chapter Two. Finite Difference Methods 
 

1. The Concept of Finite Difference Method 
 
In FDM, we represent continuous fluid flow problems in a discrete manner, when the 
fluid continuum is replaced by a mesh of discrete points. The same is true for the time 
variable. 
 
FDM are the simplest of all approximations, and involve a mapping: 
 

Discretization
PDE à   System of algebraic equtions  

Calculus    à algebra 
 
Derivative à difference 

 
 
We focus on the following: 
 

- Properties of FDM 
- Derivation via several methods 
- Physical interpretation in terms of characteristics 
- Application to selected problems 

 
First, we lay down a convention for notion: 
 
Time level  - superscript n -  ρn  ~ ρ at time level n 
 

∆t = time interval = tn+1 – tn.  
 

Most times, we use constant ∆t. Occasionally, ∆t changes with time. 
 

n-1  ~ past 
n     ~ present 
n+1 ~ future 

 
t = n ∆t  where n = number of time steps = 0, 1, 2, 3, ….., N 
T = N ∆t  = final time. 
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Spatical Location – subscript i, j, k, for x, y, and z. 

 
∆x – constant grid interval  
xi = i ∆x 

 
Note: Discretization  è information loss – the greater the number of points, the more 
accurate will be the representation. See Figure. 
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2. Quantitative Properties of Numerical Algorithms 
 
The governing equations (PDE's) obey has certain properties, and their computational 
counterparts should also so. 
 
1)  Conservation – Typically the governing equations are written as conservation laws 

(which means that the integral properties over a closed volume don't change with 
time).  

 
E.g., the mass conservation equation 
 

( )V
t
ρ

ρ
∂

= −∇⋅
∂

r
. 

 
If we integrate this over a closed box 
 

( ) 0dV V dv
t

ρ ρ
Ω Ω

∂
= − ∇⋅ =

∂ ∫ ∫
r

 

 
Mathematically, we can also write this as  
 

V V
t
ρ

ρ ρ
∂

= − ∇ ⋅ − ⋅∇
∂

r r
 

 
Will the numerical solution obey these rules? Not necessarily. 
 
Consider the situation where ρ and V

r
are defined at separate points, … this is how the 

continuity equation is really derived: 
 

The mass within the zone changes due the fluxes through the side. To get ρV
r

 at a point, 
we have to average, which smears out gradients!  
 
Consider an alternative structure: 
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To calculate the fluxes through the sides of the grid cells shown above (which is a non-
staggered Arakawa A-grid, by the way – we will come to it later), we have to perform 
different averages, which result in different conservation properties of the numerical 
scheme. 
 
For numerical solution to obey conservation, you must be very careful how you set up the 
grid and solve the equations!! 
 
2)  Positivity – Physically positive quantities (mass, energy, water vapor) cannot become 

negative. This is not guaranteed with numerical solutions, however. Care must be 
taken to prevent negative values from being generated. Schemes that do so are called 
positive definite schemes. A more general type is the monotonic schemes that also 
ensure positive definiteness, because the cannot generate new extrema not found in 
the original field. 

 
3). Reversibility – Says that the equations are invariant under the transform t à - t. This 

is mportant for pure transport problems, but clearly not appropriate for diffusion 
problems. Reversibility is actually hard to achieve even for simple 
advection/transportation due to unavoidable numerical errors. 

 
4). Accuracy – Accuracy generally involves Computer precision, Spatial or temporal 

resolution, and algorithm robustness, etc.  
 
Some of the most accurate schemes don't satisfy the above properties!!  
 

2. Methods for Obtaining FD Expressions 
 
There are several, and we will look at a few: 
 

1) Taylor series expansion – the most common, but purely mathematical. 
 
2) Polynomial fitting or interpolation – the most general ways. Taylor series is a 

subset  of this method. Interpolation takes us back to the M.O.C. and thus has a 
more physical interpreatation.  
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3) Control volume approach – also called finite volume (FV) – we solve the 
equations in integral rather than differential form. Popular in engineering where 
complex geometries and coordinate transformations are involved. For Cartesian 
grids, simplest FV methods à FD. 

 
We will look at only the first two approaches. 
 

2.1. Taylor Series Expansion Method 
 
Recall the definition of a derivative: 
 

0 0

0 0 0 0

0
,

( , ) ( , )
lim

x
x y

u x x y u x yu
x x∆ →

+ ∆ −∂
=

∂ ∆
 

 
The Taylor series approach works backwards – want to approximate ∂u/∂x  by a discrete 
difference, i.e., for finite ∆x. 
 
Given u(x0, y0), we can write a Taylor series expansion for u(x0+∆x, y0), as 
 

0 0 0 0 0 0

2 2 3 3

0 0 2 3
0, , ,

( ) ( ) ( )
( ) ( ) ...

2! 3! !

n n

n
nx y x y x y

u x u x u x u
u x x u x x

x x x n x

∞

=

∂ ∆ ∂ ∆ ∂ ∆ ∂
+ ∆ = + ∆ + + + =

∂ ∂ ∂ ∂∑  

 
This expression is exact if we retain all terms!  
 
The grid mesh or stencil looks like: 

 
Here,  ui+1,j = u( x0+∆x, y0) 

ui,j+1 = u( x0, y0+∆y) 
etc. 

 
If we solve for ∂u/∂x from the Taylor series, we have  
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0 0 0 0 0 0

2 2 3
0 0 0 0

2 3
, , ,

( , ) ( , ) ( )
...

2! 3!x y x y x y

u x x y u x yu x u x u
x x x x

+ ∆ −∂ ∆ ∂ ∆ ∂
= − − +

∂ ∆ ∂ ∂
 (1) 

 
The first term on the RHS is simply the slope of the function u(x,y,), using the current 
and the points to the right. 

 

 
 

Therefore, 
0 0

0 0 0 0

,

( , ) ( , )
O( )

x y

u x x y u x yu
x

x x
+ ∆ −∂

= + ∆
∂ ∆

. 

 
One can also use the value at 0x x− ∆  instead to get 
 

0 0 0 0 0 0

2 2 3
0 0 0 0

2 3
, , ,

( , ) ( , ) ( )
...

2! 3!x y x y x y

u x y u x x yu x u x u
x x x x

− − ∆∂ ∆ ∂ ∆ ∂
= + − +

∂ ∆ ∂ ∂
 (2) 

 
Both (1) and (2) provides an expression for ∂u/∂x, but numerically the answers will be 
different. 
 

(1) is called a forward difference 
(2) is called a backward difference 
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Consider a 1-D example: 

 
If we have the equation  
 

0, where 0,
u u

c c
t x

∂ ∂
+ = >

∂ ∂
 

 
we might want to use  
 

1 0,i iu uu
c

t x
−−∂

+ ≈
∂ ∆

 

 
which is called Upwind Difference. Alternatively, in  
 

1 0,i iu uu
c

t x
+ −∂

+ ≈
∂ ∆

 

 
Downstream Difference is used. 
 
Upstream difference is better than downstream difference for this problem, because for 
this pure advection problem, signals move from upstream (left) to downstream (right). 
The value of u at point i at a future time should be influenced by the values of u upstream, 
not downstream. 
 
Think of it in terms of characteristics: 
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No information is coming from the +x direction. This of course depends on the sign of c. 
If C<0, then upstream means the left side of the current point. 
 
Note that upstream or upstream-biased schemes are usually better choices in CFD. 
We will see some time later,  that 1st-order downstream difference is absolutely unstable 
for the above problem. 
 
We can get another discrete approximation to ∂u/∂x by adding (1) and (2): 
 

0 0 0 0

2 3
1 1

3
, ,

( )
...

2 3!
i i

x y x y

u uu x u
x x x

+ −−∂ ∆ ∂
= − +

∂ ∆ ∂
 (3) 

 
This is called Centered Difference. Note, it doesn't even use value of u at the current 
point i. It approximates the slope using two neighboring points: 
 

 
Note that this will not be accurate if u has very sharp gradient  (∧). Note also that the 
extra term in (3) are different – they control the accuracy. 
 
We can build many different approximations to the derivatives through linear 
combinations  of various T.S. expansions. 
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For high-order derivatives, we follow the same approach.  
 
Consider ∂2u/∂x2. The Taylor series gives 
 

2 2 3 3

2 3

( ) ( )
( ) ( ) ...

2! 3!
u x u x u

u x x u x x
x x x

∂ ∆ ∂ ∆ ∂
+ ∆ = + ∆ + + +

∂ ∂ ∂
 (4) 

 

We can solve for 
2

2

u
x

∂
∂

 from (4), but we don't want to have the unknown 
u
x

∂
∂

.  

We can replace it with one of the earlier approximations to it, or make use of the 
following: 
 

 
2 2 3 3

2 3

( ) ( )
( ) ( ) ...

2! 3!
u x u x u

u x x u x x
x x x

∂ ∆ ∂ ∆ ∂
− ∆ = − ∆ + − +

∂ ∂ ∂
  (5) 

 

and add (4) and (5) and solve for 
2

2

u
x

∂
∂

: 

 

 
2

2
2 2

( ) 2 ( ) ( )
O( )

( )
u u x x u x u x x

x
x x

∂ + ∆ − + − ∆
= + ∆

∂ ∆
 

 

which is a centered difference for 
2

2

u
x

∂
∂

. 

 
Truncation Error 
 
The high-order terms (H.O.T.) of O(∆xn) are called the Truncation Error, and are a 
measure of the error associated with representing a PDE by a truncated T.S. – we can't 
retain all terms, so we neglect the terms of order O(∆x2) and above, for example. 
 

PDE = FDE + τ 
 
where τ is the Truncation Error. 
 
If we change the nature of the H.O.T., by using a different approximation, the accuracy of 
the F.D. expression will also change. 
 
It is important to understand the impact of τ, and this is the subject of our computer 
problem #4. 
 
From the above, it's clear that we want τ à 0 when PDE = FDE. Otherwise, we have a 
problem (consistency)! 
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Let ∆x à 0,  then τ should à 0  =>  our discrete system approaches continuum and our 
FDE à PDE. 
 
Order of the F.D. Approximation. 
 
The power to which the leading discrete interval in τ is raised is called the Order of the 
F.D. Approximation. 
 

Example:   1i iu u
x

−−
∆

 is first-order accurate in space 

 

because 
2

1
2 ... ( )

2!
x u

O x
x

τ
∆ ∂

= + = ∆
∂

 

 
1 1

2

2i i iu u u
x

+ −− +
∆

  is second order accurate. 

 
Comments on τ: 
 

(1)  If there are several independent variables, each has a truncation error, e.g., 
O(∆x2+ ∆t), we say it's first order in time and second order in space. 

 
(2) The order of a scheme also depends on the local properties of the function, it may 

be much less than the formal or theoretical order near sharp gradients. Recall that 
Taylor series are valid only for smooth and continuous functions. 

 
(3) Typically, we prefer higher-order scheme because τ is smaller. However, τ is not 

necessarily related to accuracy because, for a given ∆x, a first-order scheme may 
give more accurate results because the coefficient is smaller. What does τ tells us 
is how the error will change as we change the resolution. Higher order τ decreases 
faster when we decreases ∆x. 

 
e.g., τ = κ (∆x)3  versus τ = κ ∆x. 

  

Remember that τ includes κ, which might be 
4

4

u
x

∂
∂

, etc and it matters. 

 
(4) Truncation error is cumulative – adds up per time step. 
 
(5) Truncation error is usually much larger than machine round-off error. Also for 

most problems, τ(space) >> τ(time), because solution often evolves smoothly in 
time but have rapid changes in space. Time step size is often not as large as we 
wish because of stability constraint. 
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General Method for Deriving FD Expressions 
 
Let's write a generalized form of the Taylor series as 
 

1
0

( )
!

m m

i m
m i

u x
u

x m

∞

+
=

 ∂ ∆
=  ∂ 

∑  

 
Now, suppose we want to use a 3-point stencil at i-1, i, i+1. Then, we can write a generic 
expression (PDE = FDE + τ) as: 
 

1 1 O( )m
i i i

u
au bu cu x

x − +
∂

= + + + ∆
∂

 

 
where a, b and c are unknown constants to be determined and m is the order of the 
approximation. (General rule: If F.D. spans n points, you can derive an n-1 order F.D. 
scheme). 
 
Using our Taylor series for ui-1, ui and ui+1, we can write  
 

1 1

2 2 3 3

2 3

2 2 3 3

2 3

( ) ( )
( ...)

2! 3!

( ) ( )
( ...)

2! 3!

i i i

i

i

i

au bu cu

u x u x u
a u x

x x x
bu

u x u x u
c u x

x x x

− ++ + =

∂ ∆ ∂ ∆ ∂
− ∆ + − +

∂ ∂ ∂
+

∂ ∆ ∂ ∆ ∂
+ ∆ + + +

∂ ∂ ∂

 

2 2 3 3

2 3

( ) ( )
( ) ( ) ( ) ( ) ...

2! 3!i
u x u x u

a b c u a c x a c a c
x x x

∂ ∆ ∂ ∆ ∂
= + + + − + ∆ + + + − + +

∂ ∂ ∂
 (6) 

 

Since we want (6) to have the form of  ( )mu
O x

x
∂

+ ∆
∂

,  therefore we set  

(a+b+c) =0,  
(-a+c)∆x=1 
a+c=0.  

 
From them we can find   b=0, c = -a = 1/(2∆x), therefore   
 

31 1 ( )
2

i iu uu
O x

x x
+ −−∂

= + ∆
∂ ∆

 

 
which is a second-order centered difference scheme. 
 
This method can be used in a general manner for symmetric or non-symmetric difference 
formula. You just pick which points you want to use. 


