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Review before first test 
Physical Mechanics Fall 2000 
 
Newton's Laws – You should be able to state these laws using both words and equations. 
 
The 2nd law most important for meteorology. 
 
Second law:  
 

net force = mass × acceleration 
 
Note that it is the net force – all forces acting on the object have to be taken into account 
– remember the gravity in one of your homework problem? 
 
Inertial and non-inertial reference frame – in which reference frame are the Newton's 
Law valid?  Can Newton's Law be used in a non-inertial reference frame? Anything 
needs to be done to do so? 
 
In equation form, the second law is  
 
 

F = m a   
 
 
where a is the acceleration rate.  
 

dV
a

dt
=    

 
where V is the velocity defined as  
 

dx
V

dt
= .   

 
x is the coordinate of the objection, and is a function of time t. 
 
F = ma  can have the following forms: 
 

2
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m F m F
dt dt
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Momentum, momentum theorem, impulse 
 
For an object with non-constant mass, the more accurate way of expressing the second 
law is  
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which says that  
 
 
  net force = rate of change of momentum 
 
 
where P mV≡  is the definition of momentum. The above is the differential form of 
momentum theorem. 
 
The integral form of momentum theorem is  
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P P Fdt− = ≡∫     (6) 

 
which says 
 
 

Impulse from the net force (F × ∆t) = change in momentum 
 
 
Note that the change in momentum does not require displacement. The impulse can be 
applied to an object before an appreciable displacement occurs. Think of two colliding 
balls of equal mass – the momentum is transferred from one ball to the other at the 
instance of collision.  
 
 
Kinetic energy, work, work-energy theorem 
 
Work done by a force is equal to the spatial displacement times the force in the direction 
of this displacement.  
 
When the force is not constant, the work should be expressed in an integral form: 
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1

x

x
W Fdx= ∫  

 
where F is the force acting in the x direction, over an interval between x1 and x2.  It can 
also be written in the form of 
 

2

1
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t

t
W Fv dt= ∫ . 
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Here Fv  is the power, representing the amount of work done by force F in unit time.  
 
The net work done to an object causes the kinetic energy to change, the amount of change 
is equal to the total work done,  this is the WORK-ENERGY THEOREM: 
 
 
  Work done by net force = change in kinetic energy 
 
It can be in the following form: 
 

  2

1
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x
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K K Fdx Work− = =∫  

 

where 
2

2
v

K m≡    is the kinetic energy.   

You should be able to derive the above theorem from Newton's second law. 
 
 
Note that the net force acting on an object changes the kinetic energy only, not potential 
energy (will be discussed later). E.g., when a crane lifts an object vertically at a uniform 
speed, it does work and changes the potential energy of the object. But since this lifting 
force equals the gravity, the net force acting on the object is zero, therefore there is no 
change in the kinetic energy.  
 
 
Potential Energy and Total Energy Conservation 
 
For 1-D problems, if a force is independent of t and velocity and is dependent on the 
space location only, the force is said to be conservative. 
 
Examples of such conservative forces include elastic force from a stretching spring  
F(x) = - kx, the gravity F(z) = -mg. The gravity is a special case of spatially dependent 
force – its not dependent none of t, v or z. 
 
The frictional force F(z) = - αw  is not a conservative force. 
 
The work done by a conservative force between two spatial locations can be described by 
a spatial function called the potential energy. 
 
For the next 2 years, and certainly if you go to grad school, you will hear a lot about 
conservation, conservation laws, and conservative quantities. This will be our first look at 
them.  Later, we will see that conservative forces lead to work that is independent of path. 
 
Consider the special case where F = F(x) only. 
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Then,  

 ( )
dv

m F x
dt
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and by (9)  ( 2
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K K Fdx− = ∫ ), we have  
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The POTENTIAL ENERGY [V(x)] is defined as the work done by a force F(x) when a 
particle is brought from an arbitrary point x to some standard point xs: 
 

 ( ) ( ) ( )s

s

x x

x x
V x F x dx F x dx≡ = −∫ ∫   

 
 
If all forces acting on an object are conservative, and the potentially energy associated 
with the net force is V(x), the from the Newton's second law, we can show that 
 

2 2
0 0
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( ) ( )

2 2
mv V x V x mv+ = +  

 
where the right hand side terms are the potential and kinetic energy of the object at 
position x0 and the LHS are the corresponding energy at any position x. 
 

We define the TOTAL (mechanical) ENERGY ≡ 21
( )

2
mv V x+ ,  which remains the 

same for all x.   Therefore, we have a Conservation Law of Total Mechanical Energy: 
 
 
 
 E = KE + PE = constant following the motion  
 
 
 
From the definition of V, we see that  
 
 

F = - dV/dx  
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Applications of total energy conservation 
 
Examples: 
 
Geopotential or gravitational potential energy – the potential energy associated with 
gravity, 
 
  F = - mg. 
 
For geopotential, we usually define the sea level z = 0 as the reference (standard) height 
where the potential energy is zero, therefore 
 

   
0

( ) ( )
z

V z mg dz mgz= − =∫  

 
The total energy conservation gives  
 

22
0 0

1 1
2 2

mw mgz mw mgz+ = +  . 

 
This formula is often used to solve problems on free falling and vertically ejected/thrown 
object. 
 
E.g., you home work problem – what height can a ball rise to with an initial vertical 
velocity of 30 m/s?    
 

  31
30 0 0 9.8

2
H× + = + à H = 45.92 m! 

 
Elastic potential energy 
 
 The restoring force of an elastic spring is F(x) = - kx , a conservative force. The 
potential energy of an objected attached to its end is 
 

0 21
( ) ( )

2x
V z Kx dx kx= − =∫  

 
again we usually choose the x =0 as the reference position where V = 0. Using the total 
energy conservation, you can determine the velocity of the objection at any particular x 
position. This method is used to obtain the solution of an oscillating spring attached 
objection in Symon's book on pages 31-32 – see your handout. 
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Stability 
 
Stable Equilibrium  - a state of potential energy minimum. If a particle is displaced 
slightly in whichever direction, it will experience a restoring force that tends to return it 
to its starting location.  When the total energy is conserved (e.g., when friction is 
neglected), because the state is associated with a potential energy minimum, any small 
displacement will result in an increase in potential energy, at the expense of kinetic 
energy. This state is stable. 
 
Unstable Equilibrium  - a state of potential energy maximum. If a particle is displaced 
slightly in whichever direction, it will experience a repelling force that tends to drive the 
object away from its initial location further.  When the total energy is conserved (e.g., 
when friction is neglected), because the state is associated with a potential energy 
maximum, any small displacement will result in a decrease in potential energy, giving 
rise to more kinetic energy. This state is unstable. 
 
Neutral Equilibrium – In this case, if a particle or air parcel is displaced slightly, it will 
experience neither restoring force nor repelling force. This state is associate with the 
inflection point in the potential energy curve. 
 
You should be able to determine the state of stability knowing the potential energy 
function V(x) or the force acting on the object as a function of spatial coordinate, i.e., 
F(x). 
 
You should be able to apply these stability concepts to simple problems of vertical 
displacement of air parcels. 
 
You should know the expected behavior of an objected when displaced from a 
stable/unstable/neutral equilibrium state, and be able to explain the behavior in terms of 
both force-acceleration and energy conservation. 
 
 
CAPE, the Convective Available Potential Energy 
 
CAPE, the Convective Available Potential Energy in meteorology is defined as the work 
that can be (potentially) done by the buoyancy force to accelerate an air parcel of 
unit mass vertically to its maximum speed.  
 
By integrating the vertical equation of motion, we obtain   
 

2

2

EL EL

LFC LFC

d w
dz Bdz CAPE

dz
 

= = 
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∫ ∫  

 
which can be used to calculate the maximum vertical velocity given the CAPE, or the 
CAPE from the buoyancy function. Here LFC is for level of free convection (LFC) and  
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EL for the equilibrium level near the top of convective cloud where the parcel 
temperature is reduced to the environmental value. 
 
 
Simple Harmonic Oscillations 
 
When the atmosphere is stable, the vertical displacement will introduce restoring force 
that draws the air parcel to its original equilibrium level. The restoring force, as will be 
shown later, is proportional to the amount of vertical displacement, in the same way a the 
restoring force from a stretched or compressed spring. The air parcel and an object 
attached to the end of a spring will undergo a periodic simple harmonic oscillation. 
 
When friction is present, the amplitude of the oscillation will decrease with time, 
resulting in damped harmonic motion. When the fiction/damping is strong enough, the 
motion may not be able to complete a single period of oscillation, resulting in over-
damped oscillation. 
 
Oscillatory motion can only occur when there is restoring force – which only occurs 
under stable condition.  Under unstable condition, the displaced parcel will never return! 
 
Gravity waves in the atmosphere are manifestations of the stable oscillations of air parcel. 
The convective storms are results of unstable displacement! 
 
Assuming the restoring force is given by  
 
 
  F = - k x 
 
from Newton's second law, the equation describing the motion is  
 

2

2 0
d x

m kx
dt

+ =  

 
which is a second-order ordinary differential equation (ODE). 
 
One form of the general equation to this equation is  
 
 
  x(t) = C cos(θ0 - ωt )  
 
 

where 
k
m

ω = .   C is the amplitude, ω the frequency, and T = (2π)/ω the period  of 

oscillation.   θ0 - ωt is called the phase of oscillation and θ0 the initial phase.  
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Τhe frequency is dependent on the physical property of the oscillator, and the amplitude 
C and initial phase θ0 are specific to each problem. Given two proper initial conditions, 
we will be able to determine their values. In most general cases, you will need to solve 
two simultaneous equations to obtain the values of the two arbitrary constants (C and θ0 
here). 
 
 
Other general requirements: 
 
 
You should know how to perform unit conversions and be able to check the consistency 
of dimensionality in equations. 
 
You should understand the fundamental physical concepts and remember the basic 
equations, and be able to use them to solve problems. 
 
Make sure you do can do all your homework problems.  
 
Make sure you understand all examples we discussed in class and found in the Notes. 
 
Review the steps of problem solving, and apply them to your exam problems. For the 
actual exam, you will not be asked to put down detailed description of these steps, but it 
is important to understand what are given and what are sought after, which will help you 
decide on the best equation(s) to use. A sketch is often very helpful. 
 
You need to be able to give simple physical interpretation of the mathematical solutions 
you obtain. 
 
You will need a basic calculator for your test. 
 
 


