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ABSTRACT 

A Doppler radar data assimilation system is developed based on ensemble Kalman filter (EnKF) method 
and tested with simulated radar data from a supercell storm. As a first implementation, we assume the for-
ward models are perfect and radar data are sampled at the analysis grid points. A general purpose nonhydro-
static compressible model is used with the inclusion of complex multi-class ice microphysics. New aspects 
compared to previous studies include the demonstration of the ability of EnKF method in retrieving multiple 
microphysical species associated with a multi-class ice microphysics scheme, and in accurately retrieving the 
wind and thermodynamic variables. Also new are the inclusion of reflectivity observations and the determi-
nation of the relative role of radial velocity and reflectivity data as well as their spatial coverage in recovering 
the full flow and cloud fields. In general, the system is able to reestablish the model storm extremely well af-
ter a number of assimilation cycles, and best results are obtained when both radial velocity and reflectivity 
data, including reflectivity information outside precipitation regions, are used. Significant positive impact of 
the reflectivity assimilation is found even though the observation operator involved is nonlinear. The results 
also show that a compressible model that contains acoustic modes hence the associated error growth performs 
at least as well as an anelastic model used in previous EnKF studies at the cloud scale. 

Flow-dependent and dynamically consistent background error covariances estimated from the forecast 
ensemble play a critical role in successful assimilation and retrieval. When the assimilation cycles start from 
random initial perturbations, better results are obtained when one withholds during the first few cycles the 
updating of the fields that are not directly related to radar reflectivity. In fact, during the first few cycles, up-
dating of variables indirectly related to reflectivity hurts the analysis. This is so because the estimated back-
ground covariances are unreliable at this stage of data assimilation, which is related to the way the forecast 
ensemble is initialized. Forecasts of supercell storms starting from the best assimilated initial conditions are 
shown to remain very good for at least two hours. 

________________________ 
 

1. Introduction 
 

*Since its first introduction by Evensen (1994), the 
ensemble Kalman filter (EnKF) technique for data 
assimilation has received much attention. A rapidly 
increasing number of studies are appearing that ex-
amine its performance for various applications. In the 
field of meteorology, EnKF was first applied to large-
scale data assimilation problems and observations are 
treated as random variables that are subject to pertur-
bations (Evensen 1994; Burgers et al. 1998; Houte-
kamer and Mitchell 1998; 2001; Evensen 2003). De-
terministic methods were developed more recently to 
avoid sampling errors associated with the use of per-
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turbed observations or to address the adaptive observa-
tional network design problem; these methods include the 
ensemble square-root filter (EnSRF, Whitaker and Hamill 
2002; Tippett et al. 2003), ensemble adjustment filter 
(Anderson 2001) and ensemble transform Kalman filter 
(Bishop et al. 2001), all of the three belong to the broader 
class of square-root filters (Tippett et al. 2003). 

In general, EnKF and related methods are designed to 
simplify or make possible the computation of flow-
dependent error statistics. Rather than solving the equation 
for the time evolution of the probability density function of 
model state, EnKF methods apply the Monte Carlo method 
to estimate the forecast error statistics. A large ensemble of 
model states are integrated forward in time using the dy-
namic equations, the moments of the probability density 
function are then calculated from this ensemble for differ-
ent times (Evensen 2003). 

In recent years, various techniques have been devel-
oped for analyzing and retrieving atmospheric state at the 
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convective scale from Doppler radar data. These 
methods range from purely kinematic to sophisticated 
4D variational method (4DVAR) that employs a non-
hydrostatic prediction model and its adjoint (e.g., 
Gal-Chen 1978; Sun et al. 1991; Qiu and Xu 1992; 
Shapiro et al. 1995; Sun and Crook 1997; Gao et al. 
1999; Wu et al. 2000; Weygandt et al. 2002). Most of 
the work deals with retrieval and assimilation of ra-
dial velocity and/or reflectivity data from single 
Doppler radar because dual or multiple-Doppler cov-
erage is not generally available. For the purpose of 
initializing NWP models, the 4DVAR method (e.g., 
Sun and Crook 1997; Gao et al. 1998) promises to 
provide an initial condition that is consistent with the 
prediction model and is able to effectively use multi-
ple volume scans from radar. However, the high cost 
of developing and maintaining an adjoint code, espe-
cially one that can run efficiently on distributed-
memory parallel computer systems and the need to 
include in the adjoint detailed physical processes 
which are more important at the convective scales, 
have limited 4DVAR assimilations of Doppler radar 
and other high-resolution data to relatively simple 
applications and model settings. 

Very recently, EnKF was applied to the assimila-
tion of simulated Doppler radar data for a modeled 
convective storm (Snyder and Zhang 2003; Zhang et 
al. 2004) and of real radar data by Dowell et al. 
(2004). Very encouraging results are obtained in 
these studies in retrieving wind, temperature and 
moisture field for convective storms. The first two 
studies assimilated only radial velocity data, while in 
Dowell et al. (2004), the use of reflectivity data is 
limited to the update of rainwater mixing ratio only. 
Neither of these studies included ice microphysics 
processes, and the assimilation system was based on 
an anelastic cloud model. Warm-rain microphysics 
scheme is also used in all afore-quoted 4DVAR stud-
ies except for Wu et al (2000) in which a simplified 
ice microphysics scheme was used. Dual-polarization 
radar data were assimilated by Wu et al (2000) by 
first deriving hydrometeor mixing ratios from regular 
and differential reflectivities.  

Because of the need to run an ensemble of fore-
cast and analysis of nontrivial sizes (usually a few 
tens to a few hundreds), the overall computational 
cost of ensemble-based assimilation methods is also 
significant. Fortunately, a significant portion of the 
assimilation procedure, including the forecast com-
ponents, is easily parallelizable. There is no need in 
general for the adjoint of the forward observation op-
erators, therefore indirect observations with complex 
observation operators, at least those that involve pri-
marily local influences, can be easily included. Fur-
thermore, the analysis code is more or less independ-
ent of the prediction model, just the opposite of 

4DVAR method. In addition, the system provides valuable 
uncertainty information on both analysis and forecast, and 
when combined with an existing ensemble prediction sys-
tem, the incremental cost can be small. 

The EnKF method is, however, not as mature as 
4DVAR. No ensemble Kalman filter assimilation system 
has been implemented so far for operational use; EnKF 
also shares some of the common problems with 4DVAR, 
including issues with model errors, linear assumption as-
sociated with the optimality of solution, and Gaussian error 
assumption. For observations, such as the integrated total 
water along the slant paths of GPS data, the data influence 
region tends to nonlocal. In such a case, the covariance lo-
calization will have to be done around the entire slant path 
instead of around local observation points. Additional is-
sues may arise in such cases, with cost being one. For sys-
tems that involve error growth at very different temporal 
and spatial scales, more difficulties may arise. For these 
reasons, much research is still needed before reliable op-
erational implementations of ensemble-based assimilation 
methods can be achieved. More recently, work has been 
done in comparing the relative performance of 4DVAR 
and EnKF methods when assimilating Doppler radar data 
(Crook et al. 2002; Dowell et al. 2002; Caya et al. 2004). 

In this study, we report on the development of an EnKF 
system based on a general-purpose compressible nonhy-
drostatic model, and on the application of the system to the 
assimilation of simulated radial velocity and/or reflectivity 
data from a single Doppler radar. The forecast model em-
ploys a complex multi-class ice microphysics scheme. The 
performance of the EnKF scheme in 'recovering' the com-
plete state of the model thunderstorms, including wind, 
temperature, pressure and all water and ice fields are ex-
amined. The relative impact of radial velocity and reflec-
tivity data as well as their spatial coverage on the analysis 
are also investigated. The use of a compressible model, the 
inclusion of three-category ice microphysics in addition to 
the liquid water species, and the retrieval of multiple mi-
crophysics species with and without reflectivity data are 
aspects that are new compared to previous studies. 

Even though we also performed experiments using en-
semble square-root filter, we report here only results using 
the perturbed observation method. The rest of the paper is 
outlined as follows. In section 2, we describe our EnKF as-
similation system and the design of OSS (Observing Sys-
tem Simulation) experiments. In section 3 we present the 
experiment results. The impact of various analyses on the 
forecast is discussed in section 4. A concluding section is 
given at the end. 

 
2. Assimilation system and experimental design 
 
a. The prediction model and truth simulation 
 

In this study, we test our EnKF assimilation system us-
ing simulated data from a classic May 20, 1977 Del City, 
Oklahoma supercell storm case (Ray et al. 1981).  Such 
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simulation experiments are commonly referred to as 
Observing System Simulation Experiments (OSSE, 
see, e.g., Lord et al. 1997). The forecast model used 
is the Advanced Regional Prediction System (Xue et 
al. 2000; 2001; 2003). In this study, the ARPS is used 
in a 3D cloud model mode and the prognostic vari-
ables include three velocity components u, v, w, po-
tential temperature θ, pressure p, and six categories 
of water substances, i.e., water vapor specific humid-
ity qv,  and mixing ratios for cloud water qc, rainwater 
qr, cloud ice qi, snow qs and hail qh. In addition, tur-
bulence kinetic energy is also predicted which is used 
to determine turbulent mixing coefficients based on a 
1.5-order turbulence closure scheme. The micro-
physical processes are parameterized using the three-
category ice scheme of Lin et al. (1983) and its im-
plementation follows Tao and Simpson (1993). More 
details on the model can be found in (Xue et al. 2000; 
2001). 

For all experiments, the physical domain is 
64 64 16× × km3. The model grid comprises of 
35 35 35× × grid points (including points that facilli-
tate the specification of boundary conditions), with 
grid intervals of 2 km in the horizontal directions and 
0.5 km in the vertical. The truth simulation or nature 
run is initialized from a modified real sounding as 
used in Xue et al (2001). The CAPE of the sounding 
is about 3300 J kg-1.  A 4 K ellipsoidal thermal bub-
ble centered at 48x = , 16y =  and 1.5z =  km, with 
radii of 10 km in x and y and 1.5 km in z direction is 
used to initiate the storm. Open conditions are used at 
the lateral boundaries. A wave radiation condition is 
also applied at the top boundary. Free-slip conditions 
are applied to the bottom boundary. The length of 
simulation is up to three hours. A constant wind of 

3u =  m s-1 and 14v = m s-1 is subtracted from the 
observed sounding to keep the primary storm cell 
near the center of model grid. Despite the differences 
in resolutions, the evolution of the simulated storms 
is very similar to those documented in Xue et al. 
(2001). 

During the truth simulation, the initial convective 
cell strengthens over the first 20 minutes. The 
strength of the cell then decreases over the next 30 
minutes or so, which is associated with the splitting 
of the cell into two at around 55 minutes (Fig. 1). The 
right moving (relative to the storm motion vector 
which is towards north-northeast) cell tends to domi-
nate the system; the updraft reaches a peak value of 
44 m s-1 at 90 minutes. The left moving cell starts to 
split again at 95 minutes. The initial cloud started to 
form at about 10 minutes, and rainwater formed at 
about 15 minutes. Ice phase fields appeared at about 
20 minutes. 

 

b. Simulation of radar observations 

As a first implementation, we assume that the simu-
lated observations are available on the scalar grid points. 
Future work will assume the availability of data in radar 
coordinate. The simulated radial velocity, Vr, is calculated 
from 

 
cos sin cos cos sinrV u v wα β α β α= + +  

               + a random error, (1) 
 

where α is the elevation angle and β  the azimuth angle of 
radar beams, and u, v and w are the model-simulated ve-
locities interpolated to the scalar points of staggered model 
grid. The random error is drawn from a normal distribution 
with zero mean and standard deviation of 1 m s-1. Since Vr 
is sampled directly from velocity fields, the effect of 
hydrometeor sedimentation does not come into play. 

The simulated logarithmic reflectivity factor (referred 
to simply as reflectivity in most parts of this paper), in 
dBZ, is estimated from equations as follows: 

 

10 6 310 log ( )
1

eZ
Z

mm m−= + a random error. (2) 

 
The equivalent reflectivity factor, eZ , is made up of three 
components, 
 

e er es ehZ Z Z Z= + + , (3) 
 

where erZ , esZ , ehZ  are contributions from rain water, 
snow and hail. The random error is drawn from a normal 
distribution with zero mean and standard deviation of 5 
dBZ.  Reflectivity relations corresponding to the 10 cm 
wavelength of WSR-88D radars are given below and used 
in our experiments. 

The rain component of the reflectivity is calculated, 
based on Smith et al (1975), from 

 
18 1.75

1.75 0.75 1.75

10 720( )r
er

r r

q
Z

N
ρ

π ρ
×

= , (4) 

 
where 1000rρ = kg m-3 is the density of rainwater, ρ  in 
kg m-3 the density of air. 68.0 10rN = × m-4 is the intercept 
parameter in the assumed Marshall-Palmer exponential 
rain drop size distribution.  

If the temperature is less than 0 Cº, then the component 
of reflectivity is, for dry snow, 
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Here 100sρ = kg m-3 is the density of snow and 
917iρ = kg m-3 the density of ice. 63.0 10sN = × m-4 

is the intercept parameter for snow. 2
iK = 0.176 is the 

dielectric factor for ice and 2
rK =0.93 the same for wa-

ter.  Wet snow, which occurs at temperature higher 
than 0 Cº, is treated in a similar way as rain water, 
and the equivalent reflectivity factor-mixing ratio re-
lation is 

18 1.75

1.75 0.75 1.75

10 720( )s
es

s s

q
Z

N
ρ

π ρ
×

= . (6) 

For hail, the wet hail formulation of Smith et al 
(1975) is used, i.e., 

0.9518
1.6625

1.75 0.75 1.75

10 720 ( )eh h
h h

Z q
N

ρ
π ρ

⎛ ⎞×
= ⎜ ⎟

⎝ ⎠
, (7) 

where 913hρ =  kg m-3 is the density of hail. Hail in-
tercept parameter of 44.0 10hN = × m-4 is used, which 
is slightly larger than that used in Smith et al (1975), 
implying more hails of smaller sizes. The same value 
is used in the ARPS implementation of Lin et al 
(1983) microphysics scheme. SI units are used in all 
equations above. Relations similar to the above are 
used in, e.g., Ferrier (1994). The above equations de-
fine the observation operator denoted as H in the fol-
lowing section. When creating simulated observa-
tions for our OSS experiments, we impose a lower 
limit of 1 mm6m-3 on the equivalent reflectivity factor 
to yield a lower limit of 0 dBZ for the logarithmic re-
flectivity factor. 

The ground-based radar is located at the south-
west corner of the computational domain, i.e., at the 
origin of x-y coordinate (c.f., Fig. 1). For data sam-
pling and assimilation, we assume that the observa-
tion operators, given by the above equations, are per-
fect. As with most atmospheric data assimilation sys-
tems, the prediction model is also assumed to be per-
fect, i.e., no model error is explicitly taken into ac-
count. It is worth noting here that observation opera-
tors for reflectivity factors are nonlinear and because 
of that the error distribution of reflectivity data is 
likely non-Gaussian. Discussions on the non-
Gaussian nature of error distributions associated with 
nonlinear observation operators can be found in, e.g., 
Lorenc (2003). One of the goals of this study is to as-
sess the effectiveness of such data given these char-
acteristics that violate the basic assumptions used in 
deriving the optimal EnKF solution. 

 
c. The EnKF data assimilation procedure 

Our EnKF implementation is primarily based on 
the algorithm described by Evensen (1994), Burgers 
et al. (1998) and Houtekamer and Mitchell (1998) 

which uses the perturbed-observation method. In this algo-
rithm, the ensemble mean is supposed to be the best esti-
mate of the true state and the spread of the ensemble 
around the mean is a good estimate of the error in the en-
semble mean (Evensen 2003). The forecast and analysis 
error covariances, given by matrix P, are defined as 

 

( )( )f f f f f f T
e x x x x≅ = − −P P , (8) 

( )( )a a a a a a T
e x x x x≅ = − −P P ,  (9) 

 
where the overbar denotes the ensemble mean and super-
scripts a and f denote analysis and forecast, respectively. 
Each ensemble member is updated by analysis equation 
 

1[ ] ( )a f f T f o f
i i i ix x y HxΤ −= + + −P H HP H R , (10) 

 
where i represents the ith ensemble member and f

ix  is the 
first guess obtained from the ith ensemble forecast. H is the 
observation operator, which converts the model states to 
the observed parameters. H in its standard notion is the lin-
earized version of H in a matrix form but will not be ex-
plicitly evaluated anywhere in the analysis procedure. The 
linearization is required to arrive the optimal analysis-
covariance minimizing solution (see, e.g., Kalnay 2002). 
Following Evensen (2003) and Houtekamer and Mitchell 
(1998), observations are treated as random variables hav-
ing a distribution with a mean equal to the first guess ob-
servations oy  and error covariances given by matrix R. 
Thus an ensemble of observations are obtained by 
 

o o
i iy y ε= + , (11) 

 
and the observation error covariance matrix is calculated 
from the random errors added to the observations, as given 
in Eq.(11): 
 

T
e εε≈ =R R , (12) 

 
where ε  is observation error. The above calculation of R is 
only possible with OSSE experiments where observations 
contaminated by errors with known variance and distribu-
tion are constructed. For real observations, certain estimate 
of R has to be made. Also, our assumption about the non-
correlation among the observational errors determines that 
R is diagonal. Finally, in our current application, oy  in-
cludes radial velocity and reflectivity. 

The forecast error covariances are calculated from  
 

1 ( )( ( ) ( ))
1

N
f f f f f

i i
i

x x H x H x
N

Τ Τ≅ − −
− ∑P H ,  (13) 

 

and 
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1 ( ( ) ( ))( ( ) ( ))
1

N
f f f f f

i i
i

H x H x H x H x
N

Τ Τ≅ − −
− ∑HP H

   (14) 
 
where N is the number of ensemble members.  The 
use of the nonlinear observation operator in the 
evaluation of covariances in Eqs. (13) and (14) is an 
advantage of EnKF compared to traditional extended 
Kalman filter for nonlinear problems  (Evensen 2003). 

As can be seen, the nonlinear observation opera-
tor H is directly used in Eqs. (13-14), H and its trans-
pose are not evaluated directly (the transpose of H or 
the adjoint of the observation operator is needed by 
variational assimilation methods). The underlying as-
sumption of standard extended Kalman filter theory 
(which is the basis of EnKF) is that the forecast 
model and the observation operator are linear. The 
nonlinearity in the forecast model and the observation 
operator (such as that of reflectivity data) can make 
the algorithm suboptimal. Strong nonlinearity would 
also render initially Gaussian error distributions non-
Gaussian. In this study, the performance of the EnKF 
in such a situation will be examined. 

We start the initial ensemble forecast at the 20 
minutes of model time when the storm cell develop-
ing out of an initial bubble reaches peak intensity. To 
initialize the ensemble members, random noises are 
added to the initially horizontally homogeneous 
background that is based on the environmental 
sounding. The random noises are sampled from 
Gaussian distributions with zero mean and standard 
deviation of 3 m s-1 for u, v, and w, and 3 K for po-
tential temperature. The pressure, moisture, and 
microphysical variables are not perturbed. The tech-
nique of adding initial perturbation has been dis-
cussed by former studies of Snyder and Zhang (2003) 
and Dowell et al (2004). They found that adding ini-
tial perturbations to the entire computational domain 
would introduce spurious cells in individual members. 
Limiting the perturbation region around the observed 
storm area helps improve the assimilation result. 
However, for general applications of EnKF, the en-
semble forecast should cover all scales of motion. We 
chose to apply the  initial perturbations to the entire 
domain except for the grid points at the lateral 
boundary to keep the system more general. The open 
lateral boundary condition is sensitive to boundary 
errors and initial perturbations introduced at the 
boundary were found to trigger spurious storm devel-
opment within some ensemble members. Assimilat-
ing reflectivity in clear area region is found to help 
suppress spurious cells in the interior domain, hence 
allowing a more general application of initial pertur-
bations.  

The observations are assimilated every 5 minutes. 

The first analysis is performed at 25 minutes and one hun-
dred ensemble members are used. As mentioned earlier, 
observations are perturbed by adding Gaussian noises, 
with a standard deviation of 1 m s-1 for radial velocity and 
5 dBZ for reflectivity. The observation errors are assumed 
to be uncorrelated; therefore, observations can be and are 
analyzed sequentially one at a time, following Houtekamer 
and Mitchell  (2001). When using a small (relatively to the 
degrees of freedom of the analysis system) ensemble to es-
timate the background error covariances, the estimated 
values between distant grid points are not reliable. There-
fore covariance localization is necessary (Houtekamer and 
Mitchell 1998; Anderson 2001; Hamill et al. 2001; Houte-
kamer and Mitchell 2001).  

In our early study (Tong and Xue 2004), we limited the 
influence region of each observation to a rectangular re-
gion with half width of two grid intervals in both horizon-
tal and vertical directions, equivalent to 4 and 1 km in the 
horizontal and vertical, respectively. Some useful informa-
tion beyond that region of influence was not utilized 
(though the computation was faster). To spatially smooth 
the analysis increments as well as to localize covariances, 
Houtekamer and Mitchell (2001) proposed a method that 
applies Schur (elementwise) product of the background er-
ror covariance calculated from the ensemble and a correla-
tion function with local support. This method was also 
used by Dowell et al. (2004). In the same way, we multiply 
each element of the background error matrix ΤPH  with a 
weight computed from correlation function given by Eq. 
(4.10) of Gaspari and Cohn (1999). The weight decreases 
gradually from 1 at the observation point to zero at an ef-
fective cutoff radius and remains zero beyond. Through as-
similation experiments with cutoff radii ranging from 4 to 
10 km, we found that 8 km worked the best with 100 en-
semble members.  This value is therefore used in all ex-
periments presented in this paper. The use of a smooth fil-
ter function is found to produce significantly better analy-
sis than the sharp cutoff function used earlier in Tong and 
Xue (2004). 

 The EnKF algorithm tends to underestimate the analy-
sis uncertainty owning to the use of limited ensemble size. 
To solve this problem, we tested the double ensemble 
method (Houtekamer and Mitchell 1998), in which the sta-
tistics estimated from one ensemble is used to update the 
other. However, this approach overestimated the analysis 
uncertainty in our case and did not help improve our analy-
sis. We also tested the covariance inflation approach of 
Anderson (2001), which did not work well at first. As 
found in Snyder and Zhang (2003), it enhances the spuri-
ous cell in ensemble members. A modification is then 
made by applying covariance inflation to the grid points 
that will be influenced directly during the analysis update 
by the observations found within the precipitation (where 
observed Z > 10 dBZ) regions. To do this, we check for 
each grid point to see if within 8 km radius (the same ra-
dius used by the covariance localization) there is at least 
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one reflectivity data greater than 10 dBZ. If true, then 
covariance inflation is applied to this grid point. This 
is found to improve our analysis. The inflation factor 
we used is 1.07 or 7 percent when radial velocity 
or/and reflectivity data in the precipitation region are 
assimilated. When reflectivity data of complete cov-
erage are used, the inflation factor is increased to 1.1 
(10 percent). Zhang et al (2004) proposed another al-
ternative to the traditional covariance inflation that is 
to avoid enhancing spurious cells but  Caya et al 
(2004) found that the use of the method degrades the 
quality of analysis. 

 

3. The Assimilation Experiments 

Table 1 lists eight experiments to be discussed in this 
paper. The assimilation scheme is first tested by assimilat-
ing radial velocity or reflectivity data alone or by assimi-
lating both. Further, data coverage tests are performed in 
which each data type is available either in the entire do-
main or only in regions where reflectivity exceeds 10 dBZ 
(referred to as precipitation region). Additional variations 
have to do with the ways analysis variables are updated 
during the assimilation cycles. The results are discussed in 
the following sections. 

TABLE 1. List of Data Assimilation Experiments 
 

 
Experiment 

Observation: Radial ve-
locity (Vr) and/or 
Reflectivity (Z) 

 
Update qi, qs, qh 

Update u, v, w, qv, qc, qi 
when assimilating 

reflectivity 
VrP Vr (Z > 10 dBZ) yes  
VrF Vr yes  
ZP Z (Z > 10 dBZ) yes yes 

VrZPa Vr & Z (Z > 10 dBZ) yes yes 
VrZPb Vr & Z (Z > 10 dBZ) yes no 
VrZPc Vr & Z (Z > 10 dBZ) yes yes, start from 4th cycle 
VrPZF Vr (Z > 10dBZ) & Z yes yes, start from 4th cycle 

VrPnoIce Vr (Z > 10 dBZ) no  
 
 

a. Assimilations using radial velocity data only 

In experiment VrP (see Table 1), we assume that 
the radial velocity data are available in precipitation 
regions where reflectivity is greater than 10 dBZ. Af-
ter only one analysis cycle (at t = 25 min), the basic 
patterns of middle-level horizontal winds around the 
storm appear reasonable (not shown). After three 
more analysis cycles, i.e., by 40 min., the basic struc-
tures of updraft and horizontal flow (Fig. 1e) as well 
as perturbation temperature (not shown) above the 
low-level cold pool are reasonably well retrieved. 
The low-level cold pool and the associated diver-
gence are too weak at this time (Fig. 2e). Some hy-
drometeors can be retrieved at this time, but their 
amount and locations are not yet accurate. Two more 
assimilation cycles later, at 50 min., the strength of 
the updraft and the magnitude of the temperature per-
turbation (except that in the low-level cold pool) be-
come reasonably good. 

At 60 min., the retrieved microphysical fields also 
become rather close to the truth as seen from the ver-
tical cross-sections (Fig. 3 (a2)-(f2)), so do most 
other fields (Fig. 1f and Fig. 2f). The largest differ-
ences at this time are found at the low levels (Fig. 2f) 
where precipitation and cooling in the otherwise un-

perturbed low-level inflow region exist, and near the west-
ern boundary. Evaporative cooling due to spurious precipi-
tation in some ensemble members was the cause. Much of 
the error is corrected by subsequent analyses and by 100 
min. (Fig. 2h), the precipitation in the inflow region is 
generally gone except for a small area ahead of the rear-
flank gust front. The low-level flow and reflectivity pat-
terns as well as the shape of the cold pool now agree quite 
well with the truth (Fig. 2h and d); although small differ-
ences are still found with the exact location of the bound-
ary of rain-cooled regions (as indicated by the zero degree 
θ' contours) and in the areal coverage of leading precipita-
tion region on the east-northeast side. The agreement at the 
6 km level is even better (Fig. 1h and d). These results in-
dicate that even with radial velocity data in precipitation 
region only, the EnKF system is able to rebuild the model 
storm remarkably well after a sufficient number of assimi-
lation cycles. Analysis of such quality can only be ex-
pected of methods that make use of multiple radar volume 
scans effectively and in a way that is compatible with the 
hopefully correct model physics. 

We use the root-mean-square (rms) error of ensemble 
mean analysis to judge quantitatively the quality of the 
analysis. The rms errors are averaged over the grid points 
where the reflectivity is greater than 10 dBZ. The rms er-
rors of velocities, temperature, cloud and hydrometeor 
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Fig. 1. Vertical velocity (contours and shading at intervals of 4 m s-1) and horizontal perturbation 
wind (vectors, plotted every other grid point; m s-1), at level z = 6 km: (a)-(d) truth simulation; 
analyses from VrP (e)-(h), ZP (i)-(l); VrZPc (m)-(p); VrPZF (q)-(t), at t = 40, 60, 80 and 100 min 
during the assimilation period. 
 

 
variables in experiment VrP are seen to decrease rap-
idly during the first four assimilation cycles (over 20 
minutes) and the analysis tends to converge at about 
70 minutes (Fig. 4, gray curves). When the analysis 
converges, the rms analysis error for horizontal wind 
components is generally less than 1 m s-1 and about 
0.5 m s-1 for vertical velocity. For perturbation poten-

tial temperature θ', the analysis error decreases to less than 
0.5 K at 60 minutes. Such velocity errors are similar to or 
less than the observational errors added to the radial veloc-
ity. It means that after eight to ten assimilation cycles, the 
EnKF system is producing a very good estimate of the 
state of simulated storm. 
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Fig. 2. Horizontal perturbation wind (vectors; m s-1), perturbation potential temperature (thick black lines for 0 K 
and thin dashed contours at 0.5 K intervals) and computed reflectivity (thick solid contours and shading at intervals of 
5 dBZ, starting from 15 dBZ) at z = 250 m: truth (a)-(d), EnKF analyses from VrP (e)-(h), VrZPc (i)-(l) and VrPZF 
(m)-(p).  

 
 

 
In experiment VrF, in which Vr data cover the en-

tire domain, the analysis converges more quickly and 
the analysis errors are smaller (black dotted lines in 
Fig. 4). The retrieved winds, potential temperature, 
pressure and water vapor content are significantly 
better than those of VrP case. The retrieved micro-
physical fields are also improved, but not as much as 

when full coverage reflectivity data are used (results to be 
presented later). For radial velocity data to be available 
outside the precipitation region, the radar has to be operat-
ing in high sensitivity mode, which is generally not the 
case with the WSR-88D network when precipitation is 
present. However, when such data are available, our ex-
periment shows clear positive impact of the data. 
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Fig. 3. The retrieved (a) qv perturbation (solid (dash) contours represent positive (negative) values) (b) qc, (c) qr, (d) qi, 
(e) qs and (f) qh. (contours and shading at intervals of 0.5 g kg-1 for qv perturbation, qc, qi and qs, and of 1.0 g  kg-1 for qr 
and qh.) in the x-z plane at y = 29 km that pass through the maximum updraft at t = 60 min: (a1)-(f1) truth simulation, 
(a2)-(f2) VrP, (a3)-(f3) VrPnoIce, (a4)-(f4) ZP and (a5)-(f5) VrPZF. 

 
 
In our earlier study (Tong and Xue 2004), we 

found that when pressure field is analyzed (updated 
by the analysis procedure), the pressure error in-
creases instead of decreases after each analysis cycle.  
A careful examination of the results reveals that the 
main problem was associated with a domain-wide 
pressure drift in the forecast that often occurs in 
simulations using a small computational domain and 
an open boundary condition. The background error 
covariance between pressure and observations in the 
presence of pressure drift was apparently not correct, 
causing negative analysis impact on pressure field. In 
all experiments presented here, the pressure detrend-
ing option of ARPS model is turned on, which forces 
the domain-mean perturbation Exner function to zero 
after each forecast time step. The model solution, at 

least in the dry case, should be independent of the pertur-
bation Exner function to an arbitrary constant. 

After applying pressure detrending, pressure drift is 
much controlled and the update of pressure by analysis 
does reduce its error in general, though not as much as for 
other fields (compare, e.g., gray curves in Fig. 4e and Fig. 
4c). At 40 min. in the current experiment (VrP), the basic 
pattern of perturbation pressure can be reasonably recon-
structed (not shown). Noticeable noises associated with 
acoustic oscillations remain at low levels at this time 
which are reduced by additional assimilation cycles. How-
ever, it can be seen from Fig. 4e (gray curve), the forecast 
error of the pressure perturbation starts to increase again at 
65 min., and the error is not effectively reduced by further 
analysis. It is found that in this case some positive pressure 
drift still occurs in the ensemble-mean forecast and analy-
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sis below 4 km. The positive pressure perturbation 
associated with the cold pool is about 20 Pa higher 
than in the truth. The low pressure below the updraft 
is not as low as it should be. Such pressure biases ap-
pear to be preventing the EnKF scheme to work ef-

fectively in reducing the pressure errors, which is only in-
directly related to Vr. It will be shown later that when re-
flectivity data are assimilated, the pressure drift problem is 
alleviated and the analysis of pressure is improved.
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Fig. 4. The rms errors of ensemble-mean forecast and analysis, averaged over points at which the reflectivity is greater 
than 10dBZ for: a) u (ms-1), b) v, c) w and d) perturbation potential temperature 'θ , e) perturbation pressure 'p , f) qc, g) qr, h) 
qv (the curves with larger values), qi (the curves with lower values), i) qs and j) qh, for experiment VrP (gray), experiment ZP 
(black) and experiment VrF (black dotted lines). Units are shown in the plots. The drop of the error curves at specific times 
corresponds to the reduction of error by analysis. 

 
 

b. Impact of assimilating reflectivity data 

Reflectivity is a measurement that is provided by 
all types of weather radar. In this section, we examine 
if reflectivity data alone is sufficient for the model to 
reproduce the true storm; we also study its value 
when used in combination with radial velocity data. 
We note that the observation operator for reflectivity 
is nonlinear and there exist more uncertainties with 
reflectivity operator (because of uncertainties with 
cloud microphysics, effects of attenuation, among 
others) than with radial velocity. In our model, the 
rainwater, snow and hail mixing ratios, qr, qs, and qh, 
are directly related to observed reflectivity through 
Eqs. (3)-(7). Therefore, the experiments further test 
the performance of the EnKF scheme for nonlinear 
observations.  

In experiment ZP (see Table 1), reflectivity (Z) 
data greater than 10 dBZ are assimilated but not ra-
dial velocity. Generally, the analysis obtained by as-
similating reflectivity data only is not as good as the 

analysis assimilating redial velocity data alone. As can be 
seen in Fig. 4 (black curves), the analysis acts to reduce the 
rms errors in qr, qh, qs, qc, qi, w and 'θ from the third cycle 
with the reduction of error in qh being much larger. Sig-
nificant reduction in errors of horizontal wind components 
and in qv did not start until after four to five cycles. In fact, 
during the first two cycles, the update of most variables in-
creases rather than decreases the error (see, e.g., the black 
curves in Fig. 4d for 'θ  and Fig. 4h for qv). Significant re-
duction in errors of horizontal wind components and in qv 
did not start until after four to five cycles.  

The delay in the reduction of or even increase in the 
rms errors in variables not directly related to Z is related to 
our initial perturbation method. When the ensemble mem-
bers are initialized, cloud and hydrometeor fields are not 
perturbed. This is reasonable because the location of pre-
cipitation region is unknown before observational data are 
introduced. Adding hydrometeor perturbations everywhere 
in the model is undesirable because non-zero values in cer-
tain variables like cloud ice should only exist under certain 
conditions. If the initial background contains some infor-
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mation about the cloud, then random perturbations 
can be added to the related fields in a similar way we 
do the other fields.  Without direct initial perturba-
tions to them, it takes the model a couple of assimila-
tion cycles to develop cloud and hydrometeors and to 
establish coherent covariance structures for a reliable 
estimation of error covariances. For these reasons, 
updating indirectly related variables in the first few 
cycles increases their errors. Enough ensemble spread 
is established starting from the third assimilation cy-
cle; from then on, the analysis is able to correct fore-
cast errors in fields including w, θ', qc, qr, qi, qs and qh 
(Fig. 4). Reliable covariances between reflectivity 
and p, qv and horizontal wind components are slower 

to establish and the analysis correction starts a couple of 
cycles later. 

Because of the lack of reliable covariances, the re-
trieved model fields in ZP are not good at 40 min. (Fig. 1i). 
By 45 min., the storm updraft and temperature perturbation 
pattern become reasonable. The locations of the hydrome-
teors are now close to the truth. However, horizontal wind 
patterns are still not very good at this time. From 60 min-
utes on, the basic structure and the evolution of the storm 
including the split storm cells become rather accurate. The 
errors in all fields are further reduced in the subsequent as-
similation cycles (Fig. 4), but remain higher than the VrP 
case by the end of the assimilation period (100 min.).
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Fig. 5. Forecast error correlations estimated from an ensemble at t = 80 min for experiment ZP in the x-z plane at y=29 km, 
which passes through the maximum updraft. The error correlation [thick solid (dash) contours represent positive (negative) 
correlations at intervals of 0.2] between forecast reflectivity Z at x=32 km and z=6 km (indicated by a black dot) and (a) u, 
(b) w, (c) 'θ , (d) 'p , (e) qc , (f) qr, (g) qi, and (h) qh. The shading and thin solid (thin dashed) contours in (a) - (d) indicate 
positive (negative) values of model fields from the truth simulation with increment of 4 ms-1 for u and w; 2 K for 'θ  and 
40Pa for 'p . The shading and thin contours in (e)-(h) indicate the values of mixing ratio of water and ice fields from the 
truth simulation with increment of 0.5 g kg-1 for qc, and qi and 1 g kg-1 for qr and qh. 

 
 
Retrieving the model state from the observed 

variables in the EnKF system relies heavily on a good 
estimate of the flow-dependent multivariate back-
ground error covariances. Fig. 5 shows, for experi-
ment ZP, the forecast background error correlations 
between reflectivity at point x = 32 km, z = 6 km and 
model variables at each grid point in an x-z vertical 
cross section through the maximum updraft (y = 29 
km) at 80 min. (the correlation patterns for other ex-
periments at this time are similar). As can be seen, 
for the water and ice fields, significant correlations 
are mostly confined to the regions where their non-
zero values are found. For w and 'θ , the correlation 
patterns also match those of w and 'θ  themselves in 
general, and significant correlations extend through 

much of the troposphere depth, which is consistent with 
the nature of deep convection. The maximum correlations 
for w and 'θ  exceed 0.8, indicating that they are highly 
correlated with reflectivity. Generally, positive correlations 
are associated with updraft and high buoyancy; negative 
correlations are found in the recirculation regions. The cor-
relation for 'θ  spreads above the tropopause in a wavy 
pattern to both upstream and downstream, which should be 
related to the gravity wave propagation in the stable strati-
fication there.  

Even for pressure, coherent structures of significant 
correlation exist. Maximum negative correlation is found 
at the mid levels where perturbation pressure has a mini-
mum; maximum positive correlation exists near the cloud 
top. This correlation pattern can be explained by the rotat-
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ing supercell storm dynamics. Stronger updraft rota-
tion produces lower mid-level pressure which pro-
motes stronger updraft therefore produces more re-
flectivity. Stronger updraft, accompanied by larger 
reflectivity, will produce larger positive pressure per-
turbations at the cloud top due to both hydrostatic and 
Bernoulli effects. These suggest that the error corre-
lations estimated from the forecast ensemble are dy-
namically consistent. It is these valuable correlations 

that act to spread the information from the observation 
points to the finite domain surrounding them and that re-
trieve the unobserved variables from the observed ones. 
The results also justify our choice of the influence region 
in covariance localization. Most significant correlations 
within 4 km from the center of the influence region are 
kept and smaller weights are given to the correlations ex-
tending up to 8 km. 
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Fig. 6. As in Fig. 4, but for experiment VrZPa (black) and experiment VrP (gray). 
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Fig. 7. As in Fig. 4, but for experiment VrZPb (black) and experiment VrP (gray). 
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Fig. 8. As in Fig. 4, but for experiment VrZPc (black) and experiment VrP (gray). 
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Fig. 9. As in Fig. 4, but for experiment VrPZF (thin black curves) and experiment VrP (thin gray 
curves). The additional thick black curves are for the analysis and forecast ensemble spread of VrPZF, and 
the spread is calculated only at the points where reflectivity is greater than 10 dBZ, as the errors are. 
 

 
c. Assimilation of both radial velocity and reflectivity 

In the next set of experiments (VrZPa-c, VrPZF, 
see Table 1), we combine the radial velocity and re-
flectivity data into the assimilation process. Experi-
ment VrZPa is a combination of VrP and ZP, in 
which both the radial velocity and reflectivity in pre-

cipitation regions (Z>10 dBZ) are assimilated, using the 
same procedure as in VrP and ZP. Compared to VrP (Fig. 
6), when additional reflectivity data are introduced, the 
analyses of qr, qs and qh are generally improved, especially 
for qr and qh, as indicated by lower errors after each analy-
sis. The forecast error growth in this experiment is faster, 
however, even for those three variables directly related to 
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Z. 
The analysis errors of qv and p' remain higher than 

those in VrP until 60 and 80 min., respectively, but 
become noticeably smaller afterwards. For most part 
of the assimilation period, the wind components are 
not as accurate as those retrieved by assimilating only 
Vr, but can reach the same accuracy in the last a few 
cycles. For θ', qc and qi, the analysis errors from 
VrZPa are larger in the first 2-3 cycles, smaller in the 
next few then remain similar to those in VrP case.  

The lack of significant positive impact by the in-
clusion of reflectivity data, especially during the first 
few assimilation cycles, is due to the reasons dis-
cussed earlier for ZP. In the first two to four cycles, 
background error covariances between reflectivity 
and the model variables that are not directly related to 
Z are not reliable. Updating these variables based on 
reflectivity data and the unreliable covariances hurts 
the analysis, as indicated by the increase of errors in 
w, θ', qc and qv by, e.g., the second analysis cycle (the 
error increase is actually rather bad for qc and qv, see 
Fig. 6). The increased analysis errors lead to less ac-
curate forecast and faster error growth. Despite all 
this, the analyses towards the end of the assimilation 
period is similar or better for most fields in VrZPa 
than in VrP, indicating significant positive impact of 
Z when good error estimation becomes available. In-
terestingly, the degradation of the analysis in the 
early cycles by the assimilation of rainwater content 
is also noted by Caya et al (2004), which includes 
warm rain microphysics. 

We note that in Dowell et al. (2004) which em-
ploys warm rain microphysics, it is found that updat-
ing qr only when assimilating reflectivity observa-
tions help maintain a realistic structure of the precipi-
tation core and improve velocity verification score. 
We performed a corresponding experiment, VrZPb 
(black curves in Fig. 7), in which only qr, qs, and qh 
are updated when assimilating reflectivity. As was 
found in VrZPa, the analyses of qr, qs and qh are im-
proved over those of VrP. The analysis of qv is also 
better. For most of the other variables, the improve-
ment over VrP is generally small, if any (Fig. 7). 
There are also a few cycles in which the retrieved w 
and qi are not as good as those of VrP.  Since it was 
shown earlier that reflectivity does have significant 
correlations with indirectly related variables (Fig. 5), 
we do not believe it appropriate to completely ex-
clude those variables from the analysis update when 
assimilating reflectivity data. A better solution needs 
to be found. 

From previous experiments, it can be seen that the 
negative impact of using reflectivity to update vari-
ables rather than qr, qs, and qh is mainly caused by the 
incorrect background covariances in the first two to 
three cycles. After that, the reflectivity becomes 

beneficial in retrieving those model fields. To see if we can 
further improve the analysis, in experiment VrZPc (Table 
1), we apply the update due to reflectivity only to qr, qs, 
and qh before the fourth cycle. Starting from the fourth cy-
cle, all models variables are updated. It is shown in Fig. 8 
that doing so improves the analysis overall. The retrieved 
qv, potential temperature and pressure are improved over 
VrP more than those in experiment VrZPb. Significant im-
provement could also be found in qc and qs. For velocity 
components, the improvements are also slightly larger, es-
pecially in the later cycles.  

The retrieved updraft and horizontal wind field in the 
middle level are shown in Fig. 1 in panels m though p. The 
detailed structures of the updraft of the split cells starting 
from 60 min (panels n through p) are retrieved better than 
those in either VrP (plots f through h) or ZP (plots j 
through l). At 80 and 100 min., the pattern and strength of 
the left mover, a less organized therefore more difficult 
one analyze, are clearly better retrieved by experiment 
VrZPc. Fig. 2 shows the retrieved low-level cold pool, gust 
front and precipitation pattern by different experiments, in 
terms of the low-level θ', wind vectors and model com-
puted reflectivity. The benefit of using reflectivity data can 
be better seen from this figure. Without reflectivity data 
(VrP), the retrieved precipitation is much less, especially 
during the early cycles. Spurious echoes are found in the 
clear air region in both cases but much less so in VrZPc 
(Fig. 2). They are related to spurious cells in individual en-
semble members. The assimilation of reflectivity data re-
duced the spurious echoes. 

In the previous experiments, only reflectivity larger 
than 10 dBZ is assimilated. In reality, reflectivity outside 
the precipitation regions also contains valid information. 
At least it indicates the absence of precipitating particles 
there. One can therefore assume that the reflectivity data 
cover the entire region within the radar range, which in our 
current case means the entire computational domain. In our 
next OSS experiment, named VrPZF (Table 1), reflectivity 
information is available everywhere while radial velocity 
data remain available in precipitation (Z > 10 dBZ) regions 
only. As in VrZPc, u, v, w, 'θ , qv, qc, and qi are updated 
starting from the fourth cycle when assimilating reflectiv-
ity while qr, qs and qh are updated from beginning. 

 The complete coverage of reflectivity data can remove 
spurious cells that would otherwise develop in the data 
void regions. The rms analysis errors in VrPZF (Fig. 9, 
thin black curves) are decreased more over those in VrP or 
VrZPc (Fig. 8). The retrieved horizontal wind fields, the 
strength of the updraft (Fig. 1), the low-level perturbation 
potential temperature (Fig. 2) and the microphysical fields 
(Fig. 3) are more accurate than those retrieved by any of 
the previous experiments. The reflectivity computed from 
the analysis (Fig. 1m-p) very closely resembles that in the 
truth simulation with no spurious echoes found in the clear 
air region. Towards the later period of assimilation, the 
strength of the low-level cold pool can be retrieved very 
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Fig. 10. RMS error of (a) qi, (b) qs, (c) qh for VrP (gray) and VrPnoIce (black). 
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Fig. 11. Vertical velocity (contours and shading at intervals of 4 ms-1) and horizontal wind perturbation (vectors; ms-1) 

at 6 km level for (a)-(e) truth simulation and the forecast beginning from the ensemble-mean analysis at t = 80 min: (f)-(j) 
forecast from ensemble-mean analysis of VrPZF, and (k)-(o) forecast from ensemble-mean analysis of VrP. Note the dif-
ference in the plotting domains before and after 150 min. 

 
 

well by all of the three experiments (Fig. 2). However, 
only when complete reflectivity data coverage is used, 
as in the case of VrPZF, can the extent of the low-
level rain-cooled air, as indicated by the 0 K contour 
of perturbation potential temperature, be accurately 
determined. This is actually very important for the 
subsequent forecast as spurious cooling in the inflow 
region is found in some cases to reduce the CAPE in 

the inflow and adversely affects the evolution of ensuing 
forecast. VrPZF produces the best forecast (more later) 
among all assimilation experiments, for this and other rea-
sons. 

Finally, we briefly discuss the ensemble spread which 
is defined as the square root of the ensemble variance and 
plotted in Fig. 9 for experiment VrPZF.  Since EnKF esti-
mates the forecast error using the ensemble spread, in ideal 



 
VOLUME 13X MONTHLY WEATHER REVIEW SOMETIME 2005 

 16

situation, the ratio of the spread of the ensemble to 
the error of the ensemble mean forecast is equal to 

/( 1)e eN N +  (Murphy 1988). As we can see from 
Fig. 9, the ensemble spread gradually approaches the 
ensemble mean forecast error for most variables, a 
favorable sign. During the early cycles, the ensem-
ble spread is much smaller than the rms error 
and therefore provides a poor representation of 
forecast error, a behavior also observed by Snyder 
and Zhang (2003). The ratio increases rapidly during 
the first 6 to 8 cycles for most variables (mainly be-
cause of the rapid decrease in forecast errors) then 
becomes more stable. In the last four or so cycles, 
this ratio starts to decrease again, especially for u, v, 
w, θ' and p'. Such a decrease is typically observed as 
EnKF goes through successive assimilation cycles 
(e.g., Houtekamer and Mitchell 1998) owing to a sys-
tematic underestimation of the analysis variance. In 
our case, this decrease in the later cycles is mainly 
due to the faster error growth in the forecast rather 
than to change in the ensemble spread; in fact, the en-
semble spread remains essentially constant in the 
later cycles. The faster forecast error growth is, we 
believe, due to the more transient nature of the flow 
after the storm went through more than two splits.  
Snyder and Zhang (2003) noted, however, a contin-
ued increase in the spread-to-error ratio, and attibuted 
the increase to the presence of spurious cells in indi-
vidual memebers. A similar behavior is also observed 
in our experiment, VrP, in which spurious cells are 
not effectively supressed as they are in VrPZF. We 
further note that in the last few cycles of VrPZF, de-
spite the increased forecast errors (Fig. 9), the analy-
sis errors do not increase or increase very little, indi-
cating that the filter is well behaved. 

 
d. Retrieval of microphysical fields 

The microphysics retrieval is an important aspect 
of convective-scale data assimilation. Relatively few 
previous data assimilation studies have focused on 
this problem. Most of these studies used only a sim-
ple microphysical parameterization and the ice phase 
is usually excluded. The more recent attempt of Wu 
et al (2000) uses a 4DVAR system to assimilate dual-
polarization radar data into a cloud model. Generally, 
a good bulk ice microphysics parameterization in-
cludes ice categories for cloud ice (individual crys-
tals), snow (aggregates), and graupel and/or hail. As 
pointed out by Wu et al (2000), such a model will 
have a complex adjoint model involving many 
nonlinearities, and the 4DVAR system based on such 
adjoint tends to have poor convergence properties. 
For these reasons, Wu et al (2000) made simplifica-
tions by using a scheme without the snow category 

and by merging cloud water and cloud ice categories. Such 
simplifications reduce the degrees of freedom (or the num-
ber of control or analysis variables), and also reduce the 
number of, usually highly nonlinear, microphysical proc-
esses.  In addition, in Wu et al (2000), the reflectivity and 
differential reflectivity data are converted first to rain and 
hail mixing ratios before assimilation, rather than being as-
similated directly. The differential reflectivity data are 
necessary for such a conversion.  

In our study, the original detailed ice microphysics 
parameterization of Lin et al (1983) is used and only stan-
dard reflectivity is assumed available. As a result, our 
problem is more difficult because more water and ice spe-
cies have to be determined and no dual polarization infor-
mation is available. Yet, the EnKF scheme does not seem 
to have any serious difficulty. Fig. 3 shows the distribution 
of the perturbation water vapor and five categories of wa-
ter substances for the truth run and for selected assimila-
tion experiments. It can be seen that the EnKF data assimi-
lation system is able to establish detailed microphysical 
structures that have very high fidelity. The quality of ac-
tual analysis does depend on the usage and availability of 
data, as indicated quantitatively by the error plots dis-
cussed earlier. 

To better understand the way the EnKF scheme works 
and the role of updating microphysical fields, we per-
formed another experiment, named VrPnoIce, in which ice 
variables qi, qs, and qh are not updated by the analysis and 
only radial velocity in precipitation regions are assimilated. 
The differences in error between VrPnoIce and VrP start to 
show from the third cycle and increase with successive cy-
cles (Fig. 10). It can be seen that without the analysis up-
date to these three variables, the rms error of qs analysis is 
greater than even that of the ensemble-mean forecast of 
experiment VrP. The qs field at 60 min (Fig. 3(e3)) exhib-
its larger spatial coverage in VrPnoIce and is less accurate 
than that of VrP (Fig. 3(e2)). The smaller difference in the 
earlier period reflects relatively weak link (through back-
ground error covariance) between Vr and these three vari-
ables. The link apparently becomes stronger and more ef-
fective in correcting errors in these fields at the later stage 
(as in the case of VrP). On the other hand, despite the lack 
of direct correction in VrPnoIce to qi, qs, and qh, the errors 
in these fields are still reduced with time in general. Such 
reductions are achieved through model dynamics; when 
other model fields are improved, fields that are not directly 
updated have to adjust and become consistent with these 
fields. This points to the power of model-based dynamic 
data assimilation methods. 

Further comparison of VrP and ZP helps us understand 
the interactions between the analyses of different variables. 
We see from Fig. 4, that the errors in the wind, tempera-
ture and pressure fields remain much higher in ZP case 
than in VrP for almost the entire assimilation period, with 
the differences being largest during the earlier cycles. Dur-
ing this early period, the assimilation of reflectivity data in 
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ZP is very effectively in reducing errors in qh, qs as 
well as in qr while the generally poor analysis of the 
other fields is causing rapid increases in the forecast 
error. We note here that the fact that qr, qs and qh are 
directly related to Z does not guarantee a good re-
trieval of them because without the help of error co-
variances offered by the EnKF scheme, the problem 
is underdetermined. When reflectivity data are com-
bined with radial velocity data, very accurate micro-
physical fields can be retrieved (Fig. 2 and Fig. 3). 
With Vr data only (the case of VrP), the maximum 
value of qh in Fig. 3(f 2) is 5.73 g kg-1 at 60 min while 
the true value is 6.63 g kg-1. If the ice hydrometeors 
are not updated when assimilating Vr  (experiment 
VrPnoIce), the maximum is larger than 1 g kg-1 
smaller than the truth.  The addition of full-coverage 
reflectivity data (Fig. 3(f5)) yields a maximum value 
of 6.37 g kg-1 that is closer to the truth.  

 
4. Forecasts from ensemble-mean analyses 

Since the goal of data assimilation is to provide a 
good initial condition for numerical weather predic-
tion, in this section, we look at the quality of fore-
casts produced from the analyses. Fig. 11 shows the 
truth and two forecasts over a 130 minute period that 
are initialized from the ensemble-mean analyses from 
experiments VrP and VrPZF at 80 min. Within the 
first 20 minutes (from 80 to 100 min), the forecast of 
VrPZF maintains most details of the storm very well, 
including the strength, structure and location of the 
updraft and the further splitting of the left mover. 
Within the first hour of forecast, the position of the 
right mover is forecast very accurately by experiment 
VrPZF. After that, the center of the right moving cell 
is displaced about 4 to 8 km eastward during its 
southeastward propagation. The forecast beginning 
from VrP roughly captures the evolution of the storm 
but not as accurately as in VrPZF. The right mover 
propagates southeastwards even faster than in VrPZF 
and reaches the southern boundary earlier; at 210 
min., the structure of forecast storm is rather different 
from that of true one. 

Figure 12 shows the rms errors (averaged over the 
entire domain) of forecasts beginning from the en-
semble-mean analyses of different times from ex-
periments VrP and VrPZF. Generally, more accurate 
estimate of the initial condition yields better forecast. 
It can be seen that for all these forecasts, within the 
first 80 minutes, both the forecast error and the fore-
cast error growth rate of VrPZF (black thick curves) 
is smaller than those of VrP (gray thin curves). For 
the forecasts starting from 80 min., a large difference 
is seen in rainwater at around 120 min between the 
forecast errors of these two experiments (Fig. 12c). 
Within the first 40 minutes of forecast, the qr forecast 

error in VrP grows much faster than in VrPZF. The low-
level rainwater was over-forecast by experiment VrP. For 
example, at 105 min, the maximum value of the forecast 
rainwater at 250 m AGL is 8.54 g kg-1 for experiment VrP, 
while that of the truth is only 5.91 g kg-1 (not shown). The 
low-level rainwater was also over-forecast by experiment 
VrPZF, but not as much. The forecast distribution of the 
rainwater in VrPZF is always closer to the truth than in 
VrP. The comparison of the forecast errors of these two 
experiments further verifies the benefit of assimilating re-
flectivity data in both precipitation and clear air regions. 
For forecasts starting from the ensemble-mean analysis of 
VrF (not shown here), the errors are smaller than those of 
VrP, but generally bigger than those of VrPZF within the 
80 minutes of forecast. 
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Fig. 12. The rms errors of forecasts averaged over the entire 
domain for: (a) w (m s-1), (b) θ' (K) and (c) qr (g kg-1). The fore-
casts begin from ensemble-mean analysis at t = 60 min (dot), t = 
80 min (dash) and t = 100 min (solid) of experiment VrP (gray 
thin curves), VrPZF (black thick curves).  

 
We note that for the forecasts starting from 100 min, 

the errors of VrPZF grow faster after 175 min and eventu-
ally become larger than those of VrP.  This is found to be 
mainly associated with the slower southeastward propaga-
tion of the forecast storm in VrPZF than the true storm. 
Usually, phase error increases with the length of forecast. 
In this case, the center of the updraft forecast by experi-
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ment VrPZF is located 2 to 8 km, or 1 to 4 grid inter-
vals, north of the true storm during the last 50 min-
utes. The center of the updraft in VrP is closer to the 
true storm during the later forecast period. However, 
within the last 20 minutes phase error also occurs 
within VrP. The forecast storm moves faster than the 
true storm and the center of the updraft becomes dis-
placed by 2 to 4 km to the south of the true storm. 
Still, the storm structure in VrPZF is better than that 
in VrP at this stage. 

The success of the forecast depends not only on 
the accuracy of the analysis of storm, but also on the 
analysis of the storm environment. In our initial tests, 
in which the boundary zone is perturbed at the initial 
time of ensemble forecast, we obtained similarly 
good analyses. However, the forecasts from some of 
these analyses deteriorated quickly with time. In a 
forecast starting from analysis at 100 min, the right 
mover quickly decays and moves northeastward. We 
found in that case the low-level air was drier and the 
CAPE was reduced in the storm inflow region. Spu-
rious cells triggered near the boundary in individual 
ensemble members contributed to this. Not perturb-
ing the boundary at the initial time and the use of 
zero reflectivity information outside the precipitation 
regions helped alleviate the problem.  For general ap-
plications, other means and data should be employed 
to ensure a good analysis of the storm environment, 
which for prediction purpose appears to be at least as 
important as the analysis of the storms themselves. 

 
5. Summary and discussion 

In this study we applied the ensemble Kalman fil-
ter technique to the assimilation of simulated radar 
radial velocity and reflectivity data, using a com-
pressible model with a complex multi-class ice mi-
crophysics scheme. The inclusion of a complex 
multi-class ice microphysics has not been done be-
fore in either EnKF or 4DVAR assimilation of radar 
data. Doing so introduces additional model state (ice 
microphysics) variables that impose additional chal-
lenges to the retrieval problem. Previously published 
EnKF research did not carefully examine the impact 
of assimilating reflectivity data either, nor has atten-
tion been paid to the analysis quality of microphysi-
cal variables. Our work also represents the first time 
that a compressible model is used in the context of 
EnKF assimilation at the cloud scale. 

The EnKF method is shown to have great poten-
tials for the assimilation of such data and for thunder-
storm prediction. Although the observation operator 
for the reflectivity data is nonlinear, which may lead 
to non-Gaussian error distribution and violate the ba-
sic assumptions of the Kalman filter algorithm, direct 
assimilation of reflectivity data is shown to provide 

positive impact overall on the analysis and subsequent 
forecast. 

Flow-dependent forecast error covariances estimated 
from the ensemble states play a critical role in the assimi-
lation process. Through them not only can the wind and 
thermodynamic fields be retrieved accurately, all five 
categories of cloud and hydrometeor variables can also be 
retrieved successfully. Compared to 4DVAR, the EnKF is 
a much easier yet effective method to obtain microphysical 
fields that are compatible with the model dynamics, ther-
modynamics and microphysics. Compared to early efforts 
that insert radar observations directly into numerical mod-
els without the use of covariance information (e.g., Liou et 
al. 1991), the EnKF method enjoys a much greater success. 
The importance of spatial covariance information is further 
supported by that fact that worse analysis is obtained when 
the effective radius of covariance localization is too small 
(results not shown).  

Reliable and dynamically consistent multivariate co-
variances between the observed quantities and the state 
variables not directly related to them can be obtained after 
a few assimilation cycles, even when the ensemble is 
started from initial guesses made of an environmental 
sounding plus random perturbations. Spatial covariance 
structures are shown to be dynamically consistent. After 
the initial two to three cycles, useful observational infor-
mation can be spread in space and to indirectly related 
variables. Delaying the update of indirectly related vari-
ables until after first few cycles when assimilating reflec-
tivity data produces the best analysis. Using reflectivity in-
formation in clear air regions is very beneficial in sup-
pressing spurious storms (assuming that the radar network 
provides a complete spatial coverage). The forecast initi-
ated from the ensemble-mean analysis using Vr and full 
coverage reflectivity data is shown to be the best within 
about 80 minutes of all three forecasts presented. We 
should point out here if the EnKF assimilation system is 
run in a continuously-cycled mode, as an operational sys-
tem should be, or if the ensemble is initalized in a more 
physical way, such as using the breeding method (Toth and 
Kalnay 1997), then the delay in updating indirectly related 
variables may not be necessary. 

The EnKF data assimilation results reported here used 
100 ensemble members. We found that 40 ensemble mem-
bers are enough to produce good analysis result, except 
that the filter convergence rate is a little slower. With 40 
members, the radius of the data influence region needs to 
be smaller. A radius of 6 km is found to produce the best 
result in this case. 

Snyder and Zhang (2003) noted that the results of their 
EnKF experiments were subject to some random variabil-
ity associated with the specific realizations of the initial 
ensemble and observation errors. In this study, we have re-
peated some of the experiments with different realizations 
and we did not notice any significant deviation from the 
results reported here in terms of the error characteristics. 
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The larger ensemble size used here may account for 
some of the reduced variability. 

For larger applications, the analysis algorithm 
needs to be parallelized for distributed-memory par-
allel platforms. For our current application, we used 
shared-memory parallelization via OpenMP for the 
computation of the background error covariance PHΤ , 
which is the most expensive part of the algorithm. 
Four processors of IBM Regatta (model p-690) give a 
speedup of 3.5 for the analysis. The ensemble fore-
casts were distributed among a number of processors. 

Finally, we note that caution should be used when 
interpreting OSSE results. Both forecast model and 
forward observation operators are assumed perfect in 
the current work. The effects of model error need to 
be studied in the future. Much work is still needed in 
moving us in the direction of real case and real data. 
We also mention that similar set of assimilations us-
ing square-root EnKF, which does not perturb the ob-
servations (as used in e.g., Snyder and Zhang 2003), 
has also been conducted with generally similar con-
clusions. 
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