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Simple Examples 

 

Let’s look at a few simple examples of OI analysis. 

 

Example 1: Consider a scalar problem. We have one observation y which is located at the analysis 

point.  We also have a background estimate xb. In addition, we assume that we know the error 

statistics of y and xb: 
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Using the notion of OI solution,  n =1, p=1, H=(1), R=(
2

o ),  B=(
2

b ). 
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The analysis equation can be rewritten as 
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We see that the analysis is a linear combination of the background and observation, with the 

weighting coefficients proportional to the inverse of variances. In fact, if we have N samples of 
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observations, or more generally, N measured estimates of state variable x, called yn, plus one 

background estimate xb, then the final estimate combining all available pieces of information is 

 

2 2 2
1

N
a b n

na b on

x x y

  

  , 

 

where   
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The variance of the analysis is smaller than that of both background and observations, i.e., 

2 2 2 2 2

1 2min[ , , ,.... ]a b o o oN     .  This is because the varianace is always positive, 
2

1

a
 should be larger 

than the largest term of the right hand side of the analysis covariance equation above, therefore 2

a  

should be smaller than the smallest 2  on the right hand side that corresponds to the largest term. 
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Now assume that the analysis is for temperature and 

 

   y = 22.0, R = (o)2 = 1.0 

 

   xb = 20.5, B = (b)2 = 2.0 

 

we obtain the analysis and its variance 

 

   xa = 21.5, A ≈ 0.7 (a ≈ 0.8). 

 

The following figure shows that background, observation and analysis probability distribution 

functions assuming the errors have Gaussian distributions.  

 

It is clear that the analysis is between the background and observation, and is in this particular case 

closer to the observation because of its smaller expected errors.  

 

It is also shown that the analysis has a higher probability and smaller expected errors compared to 

both the background and the observation. 

 

Read also section 5.3.3 of Kalnay’s book. 
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Probability distribution function for analysis, given observation and the background. 
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Example 2. Now, suppose we have one observation, y, located between two analysis points. We 

have background information on the two analysis points, denoted by xb1 and xb2, and we can linearly 

interpolate the background information to the observation location as 

 

  1

1 2

2

1 (1 )
b

b b b

b

x
x x

x
   

 
     

 
Hx  

 

where ≤ ≤



For linear interpolation, 2

2 1

z z

z z






, where z is the spatial coordinate. 



The assumed observation error is as given before,  

 

R = (o)2 , 

 

while the background error covariance matrix now takes the form of  
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Here we have assumed that  
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with   being the background error correlation coefficient between the two grid points. 

 

The OI solution is then 
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Let’s consider three cases: 

 

Case 1. The observation is collocated with analysis grid point 1 (= 1) and the background errors 

are not correlated between points 1 and 2 (= 0). The above solution now reduces to 
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In this case, the solution at point 1 is identical to that in example 1. The solution at point 2 is equal to 

the background and no information from the observation is added there. 

 

Case 2. The observation is collocated with analysis at grid 1 (= 1) as in case 1. However, the 

background errors are correlated between point 1 and point 2 (≠ 0). The solution now reduces to 
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In this case, the solution at point 1 is unchanged from case 1, but the solution at point 2 is equal to 

the background plus  times the analysis increment added to point 1 – now we can see the role of 

background error correlation in spreading observational information (or more strictly the analysis 

increment). 

 

Case 3. The observation is located inbetween of the analysis points (≠ 1) but the background 

errors are not correlated between points 1 and 2 (= 0).  Now the solution becomes 
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In this case, the analysis increments for point 1 and point 2 are proportional to  and 1 - , 

respectively, i.e., the analysis result depends on the distance of the observation from the grid point.  

 

This also says that even in the absence of background error correlation, the grid points involved in 

the forward observation operators are usually influenced directly by the observations, through the 

link in the observation operator. 
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Final Comments: 

 

From the full solution (5), we can see that both the observation operator and error correlation have 

made contributions. However, when generalizing the solution from two analysis points to n points, 

the linear interpolation operator will only influence the analysis points around the observation, while 

the error correlations may spread information to all analysis points that have error correlation with 

the first guess observation ( )bH x .
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Approximations with Practical OI Implementation 

 

 The OI analysis is given by  

 

[ ( )]a b o bH  x x W y x  

 
1( )T T  W BH R HBH  

 

 

 

 The actual implementation requires simplifications in the 

computation of the weight W. 

 

 The equation for xa can be regarded as a list of scalar 

analysis equations, one per model variable in the vector x. 

 

 For each model variable the analysis increment is given 

by the corresponding line of W times the vector of background departures ( ( )bHy x ).  

 

Given  

W 

W 

( 
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therefore, [ ( )]T

ai bi i o bx x H  w y x . 

 

 

 The fundamental hypothesis in the typically implementation of OI is: For each model variable, 

only a few observations are important in determining the analysis increment.  

 

Based on this assumption, the problem of matrix product and inversion is reduced by including only 

a smaller number of observations for the analysis at a given grid point. The following two figures 

show two data selection strategies. 
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 The actual implemented can be as follows: 

 

1) For each model variable xi, select a small number of pi observations using empirical 

selection criteria. 

 

2) Form the corresponding list of background departures ( ( )bHy x )i,  

 

3) Form the pi background error covariances between the model variable xi and the model state 

interpolated at the pi observation points (i.e. the relevant pi coefficients of the i-th line of 

BHT), and  

 

4) Form the pi ×pi background and observation error covariance submatrices formed by the 

restrictions of HBHT and R to the selected observations. 

 

5) Invert the positive definite matrix formed by the restriction of (HBHT +R) to the selected 

observations, 

 

6) Multiply it by the i-th line of BHT to get the necessary line of W. 

 

It is possible to save some computer time on the matrix inversion by solving directly a symmetric 

positive linear system, since we know in advance the vector of departures to which the inverse 

matrix will be applied. Also, if the same set of observations is used to analyze several model 

variables, then the same matrix inverse (or factorization) can be reused. 
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Models of Error Covariances 

 

Correct specification of background and observation error covariances is crucial – they determine 

the relative weight of background and observations.  

 

 Variances are essential for determining the magnitude of errors therefore the relative weight 

 Covariance determines how observation information is spread in model space (when the model 

resolution does not match that of observation) 

 

Observation error variances – include instrument errors and representativeness errors. 

 Systematic observation biases should be removed before using the data 

 

Observation error correlation/covariance – often assumed zero, i.e., measurements are assumed 

uncorrelated. 

 

 Observation error correlation can show up when  

 

o Sets of observations are taken by the same platform, e.g., radar, rawinsonde, aircraft, 

satellite 

o Data preprocessing that introduce systematic errors 

o Representative errors of close-by observations 

o Error of the forward operator, e.g., interpolator that contains similar errors 

 

 The presence of (positive) observation error correlation reduces the weight given to the average 

of the observations – reasonable because these observations are alike 
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 Observation error correlations are difficult to estimate and account for. In practice, efforts are 

made to minimize them through reducing bias, by 

 

o Avoiding unnecessary preprocessing 

o By thinning dense data (denser than grid resolution) 

o By improving model and observation operators (model plays the role of forward operator 

in the case of 4DVAR) 

 

 After these are done, it is safer to assume the observation correlation to be zero, i.e., the 

observation error covariance matrix R is diagonal. 

 

 

Background error variances – they are usually estimates of the error variances in the forecast used 

to produce xb.  

 

 This is a difficult problem, because they are never observed directly – they can only be 

estimated in a statistical sense. 

 

 If the analysis is of good quality (i.e. if there are a lot of observations) an estimate can be 

provided by the variance of the differences between the forecast and a verifying analysis.  

 

 If the observations can be assumed to be uncorrelated, much better averaged background error 

variances can be obtained by using the observational method (or the Hollingworth-Lonnberg 

method – Tellus 1986).  
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 However, in a system like the atmosphere the actual background errors are expected to depend 

a lot on the weather situation, and ideally the background errors should be flow-dependent. 

This can be achieved by the Kalman filter, by 4D-Var to some extent, or by some empirical 

laws of error growth based on physical grounds.  

 

 If background error variances are badly specified, it will lead to too large or too small analysis 

increments.  

 

 In least-squares analysis algorithms, only the relative magnitude of the background and 

observation error variances is important. 

Background error correlations – they are essential because 

 

 Information spreading.  

 

o In data-sparse areas, the shape of the analysis increment is completely determined by 

the covariance structures.  

 

o The correlations in B will perform the spatial spreading of information from the 

observation points to a finite domain surrounding it. 

 

 Information smoothing.  
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o In data-dense areas, the amount of smoothing of the observed information is governed 

by the correlations in B, which can be understood by noting that the left most term in W 

is B.  

 

o The smoothing of the increments is important in ensuring that the analysis contains scales 

which are statistically compatible with the smoothness properties of the physical fields.  

 

 For instance, when analyzing stratospheric or anticyclonic air masses, it is desirable to 

smooth the increments a lot in the horizontal in order to average and spread efficiently 

the measurements.  

 

 When doing a low-level analysis in frontal, coastal or mountainous areas, or near 

temperature inversions, it is desirable on the contrary to limit the extent of the 

increments so as not to produce an unphysically smooth analysis. This has to be 

reflected in the specification of background error correlations. 

 

o Both of the above address only the issue of correlations among same variables, or auto-

correlations. 

 

 Balance properties – correlation across variables, or cross-correlations 

 

o There are sometimes more degrees of freedom in a model than in reality (i.e., not all 

model variables are free from each other). For instance, the large-scale atmosphere is 

usually hydrostatic and is almost geostrophic – these relationships introduce balances 

among the fields 
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o These balance properties show up as correlations in the background errors  

 

o Because of these correlations / balances, observations can be used more effectively, i.e., 

observing one model variable yields information about all variables that are in balance 

with it. 

 

 For example, a low-level wind observation allows one to correct the surface 

pressure field by assuming some amount of geostrophy.  

 

 When combined with the spatial smoothing of increments this can lead to a 

considerable impact on the quality of the analysis, e.g. a properly spread 

observation of geopotential height can produce a complete three-dimensional 

correction to the geostrophic wind field (see Figure ).  

 

 The relative amplitude of the increments in terms of the various model fields will 

depend directly on the specified amount of correlation as well as on the assumed 

error variance in all the concerned parameters. 

 

o Accurate estimation and use of background error (cross-) correlations can do the magic of 

‘retrieving’ quantities not directly observed, a thing that ensemble Kalman filter attempts 

to do in, e.g., the assimilation of radar data. 

 

o Accurate background errors are flow-dependent. 
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The observational (or Hollingworth–Lonnberg) method for estimating background error 

 

 This method relies on the use of background departures (y - H(xb)) in an observing network 

that is dense and large enough to provide information on many scales, and that can be assumed 

to consist of uncorrelated and discrete observations.  

 

 The principle (illustrated in Fig. 8 ) is to calculate an histogram of background departure 

covariances, stratified against separation (for instance).  

 

 At zero separation the histogram provides averaged information about the background and 

observation errors, at nonzero separation it gives the averaged background error correlation. 
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 In most systems the background error covariances should go to zero for very large separations. 

If this is not the case, it is usually the sign of biases in the background and/or in the 

observations and the method may not work correctly (Hollingsworth and Lonnberg 1986.).  

 

The formula is like this: 

 

For the innovation covariance ij, between point i and j,  
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Reference: 

 

Hollingsworth, A. and P. Lonnberg, 1986: The statistical structure of short-range forecast errors as 

determined from radiosonde data. Part I: The wind field. Tellus, 38A, 111-136. 
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The NMC method for estimating background errors 

 

 The so-called "NMC method" (Parrish and Derber, 1992) estimates the forecast error covariance 

according to 

 

{[ (48 ) (24 )][ (48 ) (24 )] }T

f f f fE hr hr hr hr  B x x x x , 

 

i.e., the structure of the forecast or background error covariance is estimated as the average 

over many (e.g., 50) differences between two short-range model forecasts verifying at the same 

time. The magnitude of the covariance is then appropriately scaled.  

 

 In this approximation, rather than estimating the structure of the forecast error covariance from 

differences with observations, the model-forecast differences themselves provide a multivariate 

global forecast difference covariance.  

 

 The forecast covariance strictly speaking is the covariance of the forecast differences and is 

only a proxy of the structure of forecast errors. Nevertheless, it has been shown to produce 

better results than previous estimates computed from forecast minus observation estimates. An 

important reason is that the rawinsonde observational network does not have enough density to 

allow a proper estimate of the global structures. 

 

 The ‘NMC method’ has been in use at most operational centers because of its simplicity and 

comparative effectiveness.  
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 Being based on many past forecasts (over e.g., 1-2 months), the estimate is at best seasonally 

dependent, however. 

 

Reference: 

Parrish, D. E. and J. C. Derber, 1992: The National Meteorological Center's spectral statistical-

interpolation analysis system. Mon. Wea. Rev., 120, 1747-1763. 

The Modeling of background correlations 

 

 The full B matrix is usually too big to be specified explicitly. The variances are just the n 

diagonal terms of B, which are usually specified completely.  

 

o The off-diagonal terms are more difficult to specify. They must generate a symmetric 

positive definite matrix.  

 

o Additionally B is often required to have some physical properties which are required to be 

reflected in the analysis: 

 

o the correlations must be smooth in physical space, on sensible scales, 

 

o the correlations should go to zero for very large separations if it is believed that observations 

should only have a local effect on the increments, 

 

o the correlations should not exhibit physically unjustifiable variations according to direction 

or location, 
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o the most fundamental balance properties, like geostrophy, must be reasonably well enforced. 

 

o the correlations should not lead to unreasonable effective background error variances for 

any parameter that is observed, used in the subsequent model forecast, or output to the users 

as an analysis product. 

 

 The complexity and subtlety of these requirements mean that the specification of background 

error covariances is a problem similar to physical parameterization. Some of the more popular 

techniques are listed below. 

 

o Correlation models can be specified independently from variance fields, under the condition 

that the scales of variation of the variances are much larger than the correlation scales, 

 

o Vertical autocorrelation matrices for each parameter are usually small enough to be 

specified explicitly. 

 

o  Horizontal autocorrelations cannot be specified explicitly, but they can be reduced to sparse 

matrices by assuming that they are homogeneous and isotropic to some extent. 
 

o Three-dimensional multivariate correlation models can be built by carefully combining 

separability, homogeneity and independency hypotheses like: zero correlations in the 

vertical for distinct spectral wavenumbers, homogeneity of the vertical correlations in the 

horizontal and/or horizontal correlations in the vertical, property of the correlations being 

products of horizontal and vertical correlations. Numerically they imply that the correlation 

matrix is sparse because it is made of block matrices which are themselves block-diagonal 
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o Balance constraints can be enforced by transforming the model variables into suitably 

defined complementary spaces of balanced and unbalanced variables. The latter are 

supposed to have smaller background error variances than the former, meaning that they 

will contribute less to the increment structures. 

 

o The geostrophic balance constraint can be enforced using the classical f-plane or -plane 

balance equations, or projections onto subspaces spanned by so-called Rossby and Gravity 

normal modes. 

 

o More general kinds of balance properties can be expressed using linear regression operators 

calibrated on actual background error fields, if no analytical formulation is available. 
 

Many of such treatments are done in the NCEP operational 3DVAR system. Good discussions can 

be found in: 

 

Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003: Numerical aspects of the 

application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous 

and anisotropic general covariances. Mon. Wea. Rev., 131, 1536-1548. 

 

Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003: Numerical aspects of the 

application of recursive filters to variational statistical analysis.  Part I: Spatially homogeneous 

and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 1524-1535. 



 48 

Correlation coefficients between Z at the black dot 
and model states at t=80min. Experiment assimilating 

Z(>10dBZ) only 

(See Tong and Xue MWR 2005)  - color is for the variables, contours are for the 
correlations. 
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Comment on OI (and 3DVAR) versus other schemes 

 

 Perhaps the most important advantage of statistical interpolation schemes such as 

Optimal Interpolation and 3D-Var over empirical schemes such as successive correction 

method (SCM), is that the correlation between observational increments can be taken 

into account.  

 

 With SCM, the weights of the observational increments depend only on their distance to the 

grid point. Therefore, if a number of observations are "bunched up" in one quadrant, with just a 

single observation in a different quadrant, then all the observations will be given similar weight. 

In Optimal Interpolation (or 3D Var), by contrast, the isolated observational increment will be 

given more weight in the analysis than observations that are close together and therefore less 

independent. 

 

 When several observations are too close together, then the OI solution becomes an ill-posed 

problem. In those cases, it is common to compute a "super-observation" combining the close 

individual observations. This has the advantage of removing the ill posedness, while at the 

same time reducing by averaging the random errors of the individual observations. The super-

observation should be a weighted average that takes into account the relative observation errors 

of the original close observations. 
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The role of observation operator H 

 

Earlier, we said that  

 

 The H matrix (a p n  matraix) transforms vectors in model space (e.g., x, which is a vector of 

length n) into their corresponding values in observation space (vectors of length p).  

 

 The transpose or adjoint of H, HT,  (an n p  matrix) transforms vectors in observation space  

(e.g., y, a vector of length p) to vectors in model space (vectors of length n).  

 

The observation operator and its adjoint can also operate on the error covariance matrices, B and R, 

and when they do so, they have similar effect as on vectors.  

 

For example, we indicated earlier that 
T

BH  is the background error covariances between the grid 

points and observation points, therefore HT plays the role of ‘taking background error from grid 

point to observational points, partially though because the product still represents correlations 

between grid and observation points’. 

 

The background error is completely brought into the observation space by the H operator and its 

adjoint (transpose), so that 
T

HBH  represents error covariances of the background in terms of the 

observed quantities. This can be seen from below: 
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where approximation has been made to linearize the observation operator H.  

For a linear observation operator, it is exact. 

 

Further illustration of the point 

 

Suppose we have three observations, 1 2,o oy y  and 3

oy  taken between two grid points with background 

values of x1 and x2: 

 

              x1    1

oy        2

oy           3

oy         x2  

 

 

The forward operator is simply the linear interpolator, so that  
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Hx .  

 

The background error covariance matrix B is  
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11 12

21 22

b b

b b

 
  
 

B  

therefore 

 

111 12

21 22

1 11 12 2 11 2 12 3 11 3 12

1 21 22 2 21 2 22 3 21 3 22

.

T
b b

b b

b b b b b b

b b b b b b

  

  

     

     

 

  





  
   
   

   
  

   

BH

 

 

Indeed, the background error covariances have been ‘interpolated’ by the observation operator 

(interpolator in this case).  

 

For example, the first element of  
T

BH , 
11 1 12b b   represents the background error covariance 

between grid point one and observation 1, and is equal to the interpolation of the background error 

covariance between x1 point with itself (b11) and the background error covariance between x1 point 

and x2 point (b12) to the y1 observation point, using interpolation coefficients 1 and 1.  Let’s denote 

the matrix 

 

11 12 13

21 22 23

.T
c c c

c c c

 
  
 

BH  

 

The first index of c denotes grid point location and second index indicates the observation point. 
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Applying H operator again to 
T

BH  takes the ‘other grid point end’ of covariances also to the 

observation points, so that we are left with covariances between observation points, but still of 

background errors. 

 

1

11 12 13

21 22 23

11 21 12 22 13 23 11 12 13

2 11 2 21 2 12 2 22 2 13 2 23 21 22 23

3 11 3 21 3 12 3 22 3 13 3 23 31 32 33

.T
c c c

c c c

c c c c c c d d d

c c c c c c d d d

c c c c c c d d d

 

 

 

     

     

     



 

 

     

 
  

   
 

  

     
   

    
   
        

HBH

.

 

 

Here, covariances cij are interpolated again, from grid point (indicated by the first index) to the 

observational point.  

 

For example, d12 represents background error covariance between y1 and y2 point, and is equal to the 

interpolated value (using weight 1 and 1) of the covariance between x1 point and y2 point and the 

covariance between x2 point and y2 point. 

 

The error variances and covariances for x are defined as 
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   

   

   

   

11 1 1 1 1 1 1

1 1

12 1 1 2 2 1 2

1 1

21 2 2 1 1 2 1

1 1

22 2 2 2 2 2 2

1 1

1 1
( )( )

1 1

1 1
( )( )

1 1

1 1
( )( )

1 1

1 1
( )( )

1 1

N N

i t i t i i

i i

N N

i t i t i i

i i

N N

i t i t i i

i i

N N

i t i t i i

i i

b x x x x
N N

b x x x x
N N

b x x x x
N N

b x x x x
N N

 

 

 

 

 

 

 

 

   
 

   
 

   
 

   
 

 

 

 

 

 

 

where the summations are over the number of samples, and 
1 1 1 2 2 2,i i t i i tx x x x      are the errors 

of x at points 1 and 2.   xt denotes the truth. 

 

Covarance d12 is then 
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       

 

 

12 12 22 2 1 1 2 1 2 2 2 1 2 2 2

1 1 1 1

2 1 1 2 1 2 2 2 1 2 2

1

1 2 2 1 2 2

1

1 1 2 2

1
( ) ( )

1

1

1

1
( )( )

1

1
( )(

1

N N N N

i i i i i i i i

i i i i

N

i i i i i i i i

i

N

i i i i

i

i t i t

d c c
N

N

N

y y y y
N

               

               

       

   

   

    



 



 
        

   


  


  


   





 
1

)
N

i



 

 

where 
1 1 2i i iy x x      and 

2 2 1 2 2i i iy x x   . 

which is clearly the covariance between the x errors interpolated to observation points 1 and 2. For 

this reason, in the ensemble Kalman filter procedure where we need 
T

HBH  from ensemble samples, 

we apply the observation operator H to x first, then directly calculate the background error 

covariance between observation points, which is much cheaper than calculating B first then multiple 

H on the left and HT on the right.  When the observation operator H is linear, the two approaches are 

identical. When H is not linear, the results are not identical, but if the linearization approximation is 

reasonably good, the difference is small.  

 

Here, we have two grid points and three observations, therefore n=2 and p=3, therefore B is a 2x2 

array while 
T

HBH  is a 3x3 array. 
 

Suppose the background error covariance is zero, i.e., there is no correlation between errors at 

different grid points, then 
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11

22

0

0

b

b

 
  
 

B , 

 

1 11 2 11 3 11

22 2 22 3 22

,T
b b b

b b b

  

  

 
  
 

BH  

 

and  

 

1

1 11 2 11 3 11

22 2 22 3 22

1 11 22 2 11 2 22 3 11 3 22

2 1 11 2 22 2 2 11 2 2 22 2 3 11 2 3 22

3 1 11 3 22 3 2 11 3 2 22 3 3 11 3 3 22

T
b b b

b b b

b b b b b b

b b b b b b

b b b b b b

 
  

 
  

 

           

           

           



 



 

      





 
  

   
 

  

  

   

  

HBH

.


 
 
  

 

 

Consider the special case where y1 is located at x1 point, and y3 is located at x2 point, and y2 is located 

between x1 and x2,  then 
1 1 3 31, 0, 0, 1.        

 

1 11 2 11

2 22 3 22

0

0

T
b b

b b

 

 

 
  
 

BH , 
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11 2 11

2 11 2 2 11 2 2 22 2 22

2 22 22

0

0

T

b b

b b b b

b b



     



 
 

 
 
  

HBH . 

 

Assuming  

 
2

2

2

0 0

0 0

0 0

o

o

o







 
 

  
 
 

R  

 

Derive the formula for 1 ,ax  2 ,ax  and 3

ax    (you homework – no need to turn it in but make sure 

you do it!) 

 

Consider three situations: (1) 2

oy  is located at equal distance from x1 and x2, (2) 2

oy  is located at the 

same point as 1

oy  and x1, (3) 2

oy  does not exist.  Discuss the your results. 


