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METR 5303 – Lecture #9, #10 

 

 

The Barnes Objective Analysis Procedure 

     

Reading:  Koch et al, (1983) paper (handed out);  Daley, p. 90-93. 

 

We will study the Barnes scheme in detail (2-3 lectures) because it is commonly used in research and software 

packages (e.g., GEMPAK;  McIDAS) for diagnostic analysis of meteorological data. 

 

A Barnes objective analysis refers to the use of a Gaussian filter as the distance-dependent weight function: 

 

        wm =  exp [ - r2
m /  ]   (1) 

 

where rm  is the distance between the mth observation and the grid point, and  is a parameter governing the shape 

of the resulting response function (see Fig. 3.3 in Daley). 

 

  has units of r2  (e.g., m2 if doing an analysis in x-y space), and should be related to the average spacing of the 

observations  (and also the data distribution if it is non-uniform). 

 

E.g., if have dense observations,  should become smaller so that there is a smaller weight wm  for a given rm  (i.e. – 

only data closest to grid point are weighted highly) 

 

The Barnes scheme can be designed to include (exclude) the scales you want (don’t want) to retain by the choice of 

  and number of scans. 
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A response function for eq. (1) can be obtained analytically by assuming sinusoidal fields and continuous data 

(Barnes, 1973;  Pauley and Wu, 1990).  The response function for one pass is 

 

     D0   =   exp [ - 2 ]     (2) 

 

where is wavelength. 

 

Thus the analyzed field  g0 (i, j)  can be related to the original data field  f(x, y)  via 

 

   g0 (i, j)   =   D0 f(x, y)     (3) 

 

Figure 1 in Koch et al  is a plot of  D0  vs a normalized wavelength  *  =  /L,  where   L = 2n,  where n could 

be interpreted as the mean station separation.  The curves are for various values of the normalized weight 

parameter  00L
2 .   This figure shows how different wavelengths are filtered during the first pass as a 

function of the weight parameter.  The plot shows that we can get a fairly smooth analysis (short wavelengths are 

filtered out) for  *
01 or greater, which means that 02n)2. 
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Barnes (1964) applied eq. (1) several times to allow the scheme to “recover” (retain) more amplitude in the 

medium scale waves that are overly smoothed in the first pass.  However, we still want the amplitude of the 2n 

wavelength to be near zero. 

 

Barnes (1973) and Koch et al (1983) show that we can obtain our “desired analysis” in 2 scans by modifying  0  

on the second pass via  10 , where  is a “convergence factor”,  0 <  < 1.  The smaller is, the closer one 

fits the observations. 

 

The analysis equation for this second pass is : 

 

   g1(i, j) = g0 (i, j) + D1 [ f(x, y) - g0(x, y) ]  (4) 

 

where the g0 (x, y)  is obtained by interpolating the g0(i, j) field from eq. (3) to the stations, and where  

 

    D1 = exp [ - 2 ]  = D0
   (5) 

 

is the response function for the modified weight function 

 

    w'
m = exp [ - r2

m / ()]    (6)

 

Since  0  <  0 w'
m  is smaller for any rm , and less weight is given to more distant observations than before, thus 

forcing the analysis closer to the nearby obs. 

 

Note, however, that D1 is not the total response to both passes.  To get the total response D1
* , we substitute eqs. (3) 

and (5) into (4) to get: 

 

 g1 (i, j) = D0 f(x, y)+ D
0 [ f(x, y) - D0 f(x, y)] 
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where we have assumed for the last term that the response on the (x,y) data field is the same as on the (i, j) gridded 

field.   This can be rearranged to get 

 

  g1 (i, j)   =   D0 [ 1 +  D
 -  D0

 ] f(x,y)    

 

Therefore, 

 

  D1
*= D0 [ 1  + D

  -  D0
 ]    (7) 

 

The change in the response from the first to the 2nd pass for two different values of is shown in Fig. 3 in Koch et 

al.   Note that means that the 2nd pass was made with no accelerated convergence.   The greatest increase in 

response occurs at the shorter wavelengths.  However, we want to make sure that we don’t significantly increase 

the response at the 2n wavelength, which is usually noisy.  Here, the increase is about 40%, which is worrisome; - 

ok if have accurate, well-distributed data; not ok if not the case.  

 

Since D1
*  depends on  , which we specify, and D0 , which is a function of  0, the main task w.r.t. designing the 

desired response is to devise a procedure to determine 0 . 
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First, though, we summarize the Barnes analysis scheme as presented by Koch et al: 

 

1. Assuming we have no background field, the first pass is 
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where the weight function wm  is given by eq. (1), and M is the number of observations within the cutoff radius  Rc . 

 

2. Interpolate g0 (i, j)  to stations to get g0 (xm , ym )   

 

      3.  Compute the observation increment f '(xm, ym)   =  fm (xm, ym)  -  g0 (xm, ym) 

 

4. The second pass is then obtained from 
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 where the weight function is 

 

     w'
m = exp [ - r2

m /  ]   (10) 

  

with  0 <  < 1. 
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Thus, control over what you want to accomplish with the Barnes analysis is obtained by a priori choices of 0 , 

x, Rc , and the number of passes.  Here Rc is a cut off radius which can be infinity.  

 

An important difference between the Barnes scheme and the Cressman scheme is that Cressman scheme has a 

finite cutoff radius while that of the Barnes scheme does not have to be finite. For the finite cutoff radius, problem 

can arise when very few data are found within the cutoff radius. One solution is to increase the cutoff radius locally 

to ensure a minimum number of observations available, although this can introduce additional noise. See Koch 

paper for additional discussions in page 1490. 

 

Tailoring the Barnes Scheme to Your Needs  (according to Koch et al, 1983) 

 

(a)  Choice of domain    

 

See text for discussion.  One important point is to choose your 

objective analysis domain to be smaller than the data domain.  

 

(b)  Calculation of n 

 

The mean distance between stations n plays an important role in the 

tailoring of the Barnes scheme.  In Koch et al, nc  is the value that one 

computes from your station data.   The quantity nr  is the spacing one 

obtains by assuming an even distribution of the M observations over 

the domain area A, which is given by 
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  for large M. 

  

For example, if M = 100, nr  =  1/9 A1/2 ,  whereas the simple formula gives   1/10 A1/2 . 
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If you have poor data distribution, then nc  <<  nr ,  and a value of n  larger than  nc  should be selected.  E.g., 

if the distribution looks like: 

 

 
we have nr  >  nc , and we would need to use a value closer to nr  to avoid excessive noise in the analysis if we 

were using only one value of  0However, we could do either of the following: 

 

(i) Produce two analyses, one with n = nr , and a second one just in the data dense region only with n 

= nc  in that region. 

 

(ii) Compute n at every grid point from nearby stations, thus changing  0at every grid point  (as well as 

the response function). 

 

 

(c)  Control of detail in the analysis  (via Koch et al, 1983) 

     

This means that we will determine  by requiring the response function to have certain properties.  First, we will 

specify  = 0.2, which means we believe the data are accurate and well-distributed.  (GEMPAK default value used 

to be 0.3).  Recall that the total response of the resulting 2-pass Barnes scheme is eq. (7) from the previous lecture: 
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   D1
*= D0 [ 1  + D

  -  D0
 ]    (7) 

 

where D0  is given by eq. (2) 

 

   D0   =   exp [ - 2 ]    (2) 

 

 

Solving eq. (2) for , we have      
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and if   = 2n, we have       
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If we take the ratio of these last two equations,       
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Thus we can solve for D0() as a function of  andn only  (basically, it gives a formula for
0( ) D  in terms of 

0( )2D n , class exercise) 

 

   

2

0 0

2

( ) [ )]  (2

n

D D n 
 
 




        (11) 

 

Now that we know D0(), we can use this in eq. (7) to determine the total response D1
*.  But we first need to 

determine a value for D0(2n).  Koch et al determined this value by specifying that the total response D1
* for the 

wavelength 2n should be e-1 ;  that is, after 2 scans, the response at  = 2n should be ~ .37.  (Note:  This may be 

too high for many purposes.) 

 

Working backwards via eq. (7), we can verify that this requires D0(2n)  =  0.0064. 

 

We can now use eq. (2) with  = 2n  to compute  : 
 

   0 = - (2n/)2 ln D0(2n)   

 

or    0 =  5.052 (2n/)2     (12) 

 

 

Recall that (12) applies only for 2 passes with  = 0.2, and D1
* (2n) = e-1 . 

 

Example: 

Assume  n = 50 km.  Then 0  from (12)  =  5119 km2 .  This compares with (n)2 = 2500 km2 .  Thus using the 

above 0  value yields a smaller response for a given   -  more smoothing.  [The opposite is true is you use  0 ~ 

(2n)2 = 10,000 km2 ] 
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Verify the following:  In the first pass of this example, with   wm  =   exp [ - r2
m /  ] , 

 

we have wm = e-1  for rm  =  5119  km ~ 71 km ,  and D0  <  e-1  for   <  225 km. 

 

For the 2nd pass, (with  = 0.2), we have w'm = e-1  for rm ~ 32 km,  and D1
*  <  e-1  for   <  100 km  (which was 

what was specified above). 

 

Thus we are significantly weighting only stations very close to the grid point on the 2nd pass.  If this proves too 

noisy, could choose a larger   or a smaller value for D1
*(2n). 

 

(d)  Choice of grid distance x 

 

This choice should also be related to n, noting that the minimally resolved wave in the data is 2n.  However, we 

would like 5-6 grid points to resolve this wave and its first derivative.  This suggests that 

  

      x  <  n/2. 

 

In GEMPAK, x is recommended to be  (0.3 – 0.5) n.  A smaller x could be used, but it is not justified by the 

observations. 

 

NOTE: A smaller x could be justified for an analysis used in NWP:  If the large-scale forcing is accurate, and the 

physics is correct, a small-scale grid permits mesoscale (or convective-scale) features to develop in the forecast on 

scales much less than n. 

 

(e)  Quality control 
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[Note:  this term usually means a procedure to eliminate bad or unrepresentative data, but this is not addressed;  we 

are just using the Koch et al sub-category.] 

 

(i) Choice of influence or cutoff radius  Rc 

 

Rc  governs the largest value of rm that is used in eq. (1).  We could use all the data without harm, since the weight 

wm  just goes to zero for large rm , so Rc is used simply to save computer time.  However, it has to be large enough so 

that the weight is nearly = 0 when rm =  Rc  (i.e. – the analysis is not affected). 

 

 Two ways to select Rc include: 

 

1. Choose Rc  large enough such that all grid points are affected by at least, e.g., 3 data points – so that 

you get a reasonable analysis in the most data sparse region.  One could go further and require that 

Rc is large enough such that there are data in at least 3 quadrants surrounding the grid point. 

 

2. In Koch et al, they select    Rc  =  (20 0 )
1/2 .     This makes wm = 2x10-9   when rm =  Rc .   We can 

put this in terms of grid size if we assume that  x  =  n/2.  Then, using eq (12), we have  

    

   Rc  =  (4x)/ (20 *  )1/2  =  12.8 x. 

  

   This result yields the two ratios: 

 

   Rc  /x  =  12.8 ;  Rc  /n  =  6.4 

 

 

(ii) Evaluation of the analysis 
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A common procedure is to compute the root mean square difference (rsmd) between the observations and the 

analysis interpolated to the stations (i.e. – how well does the analysis fit the data?).   The rmsd will usually converge 

toward the data (i.e., approach 0) with increasing number of passes, but we don’t want it to become zero if there are 

errors in the data;  recall this is called overfitting. 

 

What is an appropriate value of rmsd?  One guideline is that it shouldn’t be less than the rms error of observation for 

the data you are using.  Therefore, you should know this error value in order to make good decisions in your analysis 

procedure.  Note that it is not a wise goal to get the rmsd as close to zero as possible.   Why? 

 

Figure 6 in Koch et al  (and Fig. 3.9 in Daley) shows the effects of different values of  on an analysis of surface 

data in the Great Plains.   Difference fields taken between the analyses would better show how smaller scales are 

“built back in” as   becomes smaller. 
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Miscellaneous comments on the Barnes scheme 
 

A.  The Gaussian weight function can be used for any or all 4 dimensions 

 

Examples include: 

 

(a)  Suppose one has many x-y analyses at successive times.  We can introduce “time continuity” via 

 

    wm,n  =   exp [ - r2
m /   -  t2

n / ] 
   

over n = 1 ~ N time periods.  We choose   using similar procedures to the choice of . 

 

(b)  Use on wind profiler time-height data: 

 

Here we use   wm,n  =   exp [ - z2
m / z  -  t

2
n / ] 

 

 

(c)  Could be used on 3-D x-y-z analyses;  x-z cross-sections;  x-y-z-t, etc. 

 

 

B.  Alternative strategy to determine “best” analysis procedure 
 

In 1994, Barnes wrote a series of three papers in J. Atmos. Oceanic Tech. to clarify some misconceptions users had 

about the Barnes scheme.  The primary purpose was to clarify the four “selectable parameters”  ,  , Rc and the 

number of passes n for different wavelengths and sampling distributions. 
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Barnes considered “well-sampled waves” to have 9 observations per wavelength if only that original field was 

desired, but if derivatives were calculated from the analysis, 13-15 observations per wavelength were required to 

prevent them from being too noisy. 

 

Barnes defined “marginal under-sampling” as 5 obs. per wavelength, and true under-sampling to be < 4 

observations.  It is possible to produce an acceptable analysis under these conditions if  is chosen to be large, and 

you can accept noisy derivatives. 

 

He shows how different station distributions affect the analysis.  In general, a purely random distribution of 

stations will have 100-300% more error than the same analysis procedure applied to an evenly-spaced network. 

 

Barnes’ strategy to produce the “best analysis” is: 

 

1. Choose a domain that is as regularly sampled as possible.  Have observations outside the domain.  Create 

synthetic or “bogus” observations in data sparse regions to avoid uneven data distributions.  (Could create 

these from a first pass with very large Rc and  that produces a smooth field.) 

 

2. Compute the uniformity ratio  =   (nr  -  nc )/ nc  , where  nc  and  nr  are defined earlier. 

 

The uniformity ratio is > 0  since   nr  >  nc .  [Barnes used mean distance to 6 nearest stations to compute nc ] 

 

The station distribution is “quasi-random”  if the uniformity ratio is  ~ 1.1. 

 

Note:   Obs. that are very close together will adversely affect the nc  calculation.  Often such obs. are averaged 

together to create a “super-ob”. 

 

3. Determine the “bandwidth” one has in your data domain.  For example, if you have only 5-6 stations 

across the domain width, you essentially have no bandwidth, since the shortest possible wavelength for 
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which you can get derivative information is also the longest.   Recall that the longest or “fundamental 

wave” is the domain dimension; the shortest resolvable wave is 2nr , with  >  2nr  needed to get 

derivative information. 

 

4. Perform tests with an analytic function that contains the permissible waves.  Use the observed station 

distribution and choose a large Rc .   Explore a reasonable range of   ,  , and n values. 

 

5. Compute the mean absolute error at grid points (m.a.e.g) for the different analyses and their derivatives.  

We can do this rather than the rmsd at stations because we know the truth at the grid points via the 

analytic fields.  Thus it is permissible to get the m.a.e.g as small as possible.   Determine what 

combination of  ,  , n values minimizes the m.a.e.g. 

 

Barnes (and others) have found that 3-4 passes with  = 1  (no accelerated convergence) yields the best analysis for 

the purpose of computing derivatives.  This leaves only to determine, and it is selected to minimize m.a.e.g. 

 

References: 

 

Barnes, S. L., 1994: Applications of the Barnes Objective Analysis Scheme. Part I: Effects of Undersampling, 

Wave Position, and Station Randomness. J. Atmos. Oceanic Tech., 11, 1433-1448. 

 

Barnes, S. L., 1994: Applications of the Barnes Objective Analysis Scheme. Part II: Improving Derivative 

Estimates. J. Atmos. Oceanic Tech., 11, 1449-1458. 

 

Barnes, S. L., 1994: Applications of the Barnes Objective Analysis Scheme. Part III: Tuning for Minimum Error. J. 

Atmos. Oceanic Tech., 11, 1459-1479. 

 

 


