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  METR 5303 – Lecture #5       

 

 

Global function fitting 

 

We shall briefly discuss global function fitting, and then examine some of the pitfalls of function fitting in general.  

Recall that Lecture 3 gave an example of local (polynomial) fitting, where the fit of a cluster of data was 

accomplished solely to find the value at a grid point in the center of the cluster. 

 

Global function fitting is the process of fitting specified functions to all observations in an analysis domain. 

 

Again, let f(r) be the dependent variable, where r is a 1-D, 2-D or 3-D spatial coordinate. 

 

Assume the analyzed field fA(r) can be represented by a finite series of ordered basis functions h1(r), h2(r), ……. 

hm(r) …….. hM(r),  m = 0, …, M.   Then our function model can be written as 

 

   fA(r)    =    
m 0

M

=
   cm hm (r)    (1) 

 

Note that m could be summing over 1, 2 or 3D space.   

 

Assume K observations  fo(rk) ,  k = 1, …, K  over the entire domain. 

 

To obtain a global fit in the least squares sense, we need to minimize 

 

 I = 
k 1

K

=
  wk dk

2 = 
k 1

K

=
  wk [

m 0

M

=
  cm hm (rk)  - fO(rk) ]

2  (2) 
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where wk = ½ < o
2(rk) >

-1  are the observational error variances. 

 

To minimize (2), differentiate w.r.t. each coefficient cm and set to zero: 

 

 

 
k 1

K

=
  wk hm (rk) [ 

0

M

=
  c h (rk)  - fO(rk) ]   =   0 

 

or   

 

  
0

M

=
 c  [

k 1

K

=
 wk hm (rk) h (rk)]   =   

k 1

K

=
  wk hm (rk) fO(rk)       (3) 

 

 

 

Eq. (3) are the normal equations for this problem, from which we need to solve for the c  

 

If we repeat this process in matrix form, eq. (1) becomes 

 

     fA   = H c       (4) 

 

where  fA  is a column vector of analysis values fA(rk)  of length K and  H  is a K x (M+1)  rectangular matrix with 

elements  hkm ~  hm(rk) . 

 

The derivation of the normal equations starts with our usual quadratic form for I: 
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   I    =    ½ { [fA  -  fo]T O-1 [fA  -  fo] }  

 

where  O  is a K x K diagonal matrix whose elements are  < o
2(rk) >

 . 

 

Using (4), we have      

 

I    =    ½ { [H c  -  fo]T O-1 [H c  -  fo] }  

 

which is equivalent to eq. (2).  Taking the derivative w.r.t.  c and setting to zero yields 

 

   HT O-1 [H c  -  fo]   =   0 

or 

 

   HT O-1 H c    = HT O-1 fo     (5) 

 
 

The   HT O-1 H   term is a (M+1) x (M+1) square matrix called the Gram matrix  G.    

 

Thus eq. (5) is 

 

    G c  = HT O-1 fo    

 

In principle, G is invertible, so we can solve this equation for the unknown coefficients c 

            

   c  = G-1 HT O-1 fo     (6) 

 

We now use these values of c in eq. (4) [or eq. (1)], from which we can evaluate fA(r) anywhere in the domain. 
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If there are K observations, we could compute up to K coefficients from eq. (6), if M+1 < K 

 

Note:  If M+1 = K,  H is a square matrix, and the normal equations (3) or (5) are said to be fully determined.   In 

general, though, we prefer over-determined systems where    M+1 < K.   However, for some interpolation problems 

with limited data availability (or perfect data), we may prefer to use a fully determined approach. 

 

 

Example of a fully determined system 

 

Assume polynomial basis functions: 

 

 h0 (x) = 1,   h1 (x) = x,   h2 (x) = x2, ……….., hM (x) = xM     (7) 

 

In this case we have K observations,  xk , k = 1, …, K, and the H matrix can be written 

 

    

2
1 1 1

2

1

=  

1

M

M
K K K

x x x

x x x

H

 
 
 
 
 

    (8) 

 

     K x ( M + 1 ) 

 

When K = M +1, H is square, we can just solve   H c  =  fo    via     c  =  H-1 fo. (9) 

 

So, for the case where K = M + 1 = 2  (2 obs. with 1 and x as the basis functions), use of (9) and (8) gives us 

 

    

1

0 10 1

21 2

( )1

( )1 o

f xc x

f xc x

−
    

=     
     

 ．    (10) 
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Class exercise:    Solve eq. (10)  to obtain: 

 

2 1 1 2
0

2 1

( ) (o ox f x x f x
c

x x

−
=

−

）
 ， 2 1

1

2 1

( ) (o of x f x
c

x x

−
=

−

）
． 

 

These coefficients can be used in the matrix form of the analysis problem, eq. (4), to write 

 

   

2 1 1 2

2 1A 1 1

2 2 2 1

2 1

( ) (

( ) 1

( ) 1 ( ) (

o o

A o o

x f x x f x

x xf x x

f x x f x f x

x x

− 
 −   
 =    −    
 − 

）

）
 .   (11) 

 

Finally, we can write the result in continuous form using our original equation (1), with M = 1, to obtain 

 

   2 1
A 1 2

2 1 2 1

( ) ( )+ (o o

x x x x
f x f x f x

x x x x

− −
=

− −
）,    (12) 

 

which is the Lagrange interpolating polynomial  for K = 2.  (see Appendix E in Daley) 

 

Verify via (12) that fA (x) fits the data points fo (x1) and fo (x2)  at  x1  and  x2  exactly. 

 

Therefore, a fully determined least squares minimization using polynomial basis functions is equivalent to 

Lagrange interpolation (for K = 2). 

 

Note:  Use of M+1  = K is appropriate only if the data values are error free  (e.g., as in the  analysis step where one 

must interpolate from the grid to the station location – known as the forward model.) 
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When using observational data that contain error, we should use the over-determined approach where  K >> M + 1. 

 

To evaluate c in (6) the Gram matrix G has to be inverted. It can be inverted if all eigenvalues of G are positive. 

However, if one or more of the eigenvalues is vanishingly small, it can be numerically singular. This can happen 

when two of the basis functions, hm (r) and hµ (r) are similar but not identical, then two rows of the Gram matrix 

will become similar, and the matrix can be numerically singular.  

 

See Daley, p. 43-45 for further discussion of more properties of the Gram matrix, especially w.r.t. determination of 

the condition number N of the matrix, 

 

     max

min

N



=    

    

where  is an eigenvalue of G. max is the largest eignevalue and min is the smallest eigen value of G.  The error of 

the matrix inversion will increase with the conditional number, and when min is close to zero, the inversion may 

fail.  When the condition number is high, the matrix is ill conditioned.  

 

Unfortunately, the matrices encountered in function fitting often have high condition numbers, and for the 

polynomial functions, the condition number is high except when M is small. M = 7 is about the practical limit for 

polynomial fitting.   This is not a problem for local fitting where M is generally small, but it is a serious limitation 

in global fitting.  

 

Even when G is well conditioned, its inversion is still expensive.  

 

Problems with function fitting 
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Even if G is invertible and a solution obtained, potential problems exist with function fitting  (which have 

counterparts in nearly all analysis methods).  Examples are: 

 

A.  Overfitting 

 

Consider Fig. 2.3 (taken from book Thiebaux and Pedder (1987)).  The true signal is 1 + x.  However, the obs. are 

generated from fo(xj) = 1 + xj + j, j = 1, …, 7 

 

where j are random, Gaussian errors.  Now we attempt to fit these data using polynomial basis functions: 

 

     fA(x) =  
k 0

M

=
  ck x

k  ,   M = 6. 

 

Thus 7 observations allow us to fit up to a 6th-order polynomial to the data. 

 

Fig. 2.3 below shows fits for M = 1, 2, 3, 4, 5, and 6 (k in the figure), where M = 6 represents the exact fit (the 

others represent over-determined cases). 

 

Discuss figure.  One might argue that the fitted curves from M = 2, 3 and 4 are just as good as when M = 1 but the 

derivative of fA,  
( )Af x

x




, starts behaving poorly by M= 2 or 3. 

 

When M = 6, we see we have an exact fit to the data, which would be great if the obs were perfect, but if the obs 

contain error, this “perfect” fit comes at great cost to the values of the field between the observations, and to the 

derivatives. 

 

Message:  Don’t fit the data containing error too closely or you will be fitting the noise or sampling errors as well. 
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B.   Underfitting 

 

Examine Fig. 2.4 of Thiebaux and Pedder.  Here the true signal is given by   1 + x2  (quadratic)  but it is estimated 

with the linear polynomial  fA = c0 + c1 x. 

 

The two linear misfits have different slopes depending on the distribution of the observations. 
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C.   Mis-specification of the function basis 

 

This is illustrated by Fig. 2.6 of Thiebaux and Pedder.  The truth is given by a sine wave.  The estimate is made 

with polynomial basis functions.  One is a cubic fit (k = 3; overdetermined since have 5 data points).  The other (k 

= 4;  quartic model)  is fully determined  -  so it provides an exact fit to the observations but is a poorer estimate of 

the truth between the observations.  Therefore, success in fitting the data exactly (or very closely) is no guarantee 

of success in knowing the field between observations. 
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D.   Example in Daley, p. 45-49:   Underfitting and overfitting 

 

Assume the analysis fA(x) is expanded in trigonometric basis function 

 

0

1

( ) cos( ) sin( )
2

M

A m m
m

a
f x a mx b mx   

 

Or in a complex form 

 

( ) exp( )
M

A m
m M

f x c imx  

 

Where 0.5( )m m mc a ib , and *
m mc c , where (*) indicates complex conjugation.  

 

The truth is from trigonometric basis functions with M = 2.  9 observations were also taken from this model with 

random, Gaussian errors added.   The truth (M = 2) implies 5 degrees of freedom:   -2 < m < 2. 

 

If M = 0 or 1:  Causes underfitting  (Fig. 2.2b in Daley)  -  analysis is too smooth 

 

If M = 4:  Represents a fully determined system (since we have 2M + 1 weights and 9 observations).  Fig. 2.2c 

clearly shows that this is overfitting. 

 

In this case, a choice of M = 2 provides the best fit.  Thus an over-determined fit is preferred. 

 

Also note that the fit is better where the observations are dense (left side) then where the obs are sparse (right side). 
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Note on derivatives of trigonometric vs polynomial basis functions 

 

 

Derivatives of trigonometric expansions have more variance (weight) at the smaller scales  -  as would be expected 

from experience  [recall changes as we differentiate the height field once (to get velocity) or twice (to get 

vorticity)]. 

 

However, derivatives of polynomials produce smoother and smoother results (ultimately going to zero) – which is 

counter to experience. 

 

 


