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Kalman Filter and Ensemble Kalman Filter 
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Motivation 
 

Ensemble forecasting : Provides flow-dependent estimate of 

uncertainty of the forecast.  

 

Data assimilation : requires information about uncertainty in 

prior forecast and observations.  

 

More accurate estimate of uncertainty, less error in the 

analysis. Improved initial conditions, improved ensemble 

forecasts.  

 

Ensemble forecasting   data assimilation. 
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Example: where flow-dependent first-guess errors help 
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New observation is inconsistent with first guess 3D-Var produces 

an unappealing analysis, bowing the front out just in the region of 

the observation. 

 

 

The way an observation influences surrounding points is always 

the same in 3D-Var --- typically concentric rings of decreasing 

influence the greater the distance from the observation. 
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Kalman Filters 
 

 

We have discussed the Optimal Interpolation, which minimizes the expected 

analysis error covariance, then the 3D-Var and PSAS methods, which solve 

essentially the same problem but minimizing a cost function.  
 

In these methods, the forecast (or background) error covariance matrix is 

estimated once and for all, as if the forecast errors were statistically stationary.  
 

Some research (e.g., Kistler et al, 2001) has shown, however, that there is large 

day-to-day variability in the model forecast error (with a time scale of a few 

days) and the variability is about as large as the average error. It points to the 

importance of the “errors of the day”, which at the large scales are dominated by 

baroclinic instabilities of synoptic time scales, and which are ignored when the 

forecast error covariance is assumed to be constant.  
 

In this section we give a brief introduction to more advanced (and much costlier) 

schemes that include, at least implicitly, the evolution of the forecast error 

covariance. A number of papers in Ghil et al (1997) provide more details about 

the theory and practice of some of these methods. Ide et al (1997) is a brief but 

extremely clear overview.
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Kalman Filter and Extended Kalman Filter 
 

Kalman Filter (KF) is formally very similar to Optimal Interpolation, but with 

one major difference: the forecast or background error covariance ( )f

itP  is 

advanced using the model itself, rather than estimating it as a constant 

covariance matrix B .  
 

As before, let  
 

1 1( ) ( )f a

i i it M t 
   x x   

 

represent the (nonlinear) model forecast that advances from the previous 

analysis time 1it   to the current it .  
 

The model is imperfect; therefore, we assume that for the true atmosphere 
 

1 1 1( ) ( ) ( )t t

i i i it M t t  
   x x η

          (6.1)
 

 

where η is a noise process with zero mean and covariance matrix 

1 1 1{ }T

i i iE  Q η η  (in other words, when starting from perfect initial conditions, 
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the forecast error is given by 1iη , where the negative sign is chosen for 

convenience).  

 

The original Kalman filter was developed for linear prediction model. When a 

nonlinear model M is used for the state variable prediction step, the filter is 

called Extended Kalman Filter (EKF). 
 

Although we are assuming that the mean error is zero, in reality model errors 

have significant biases that should be taken into account. Dee and DaSilva 

(1997) show how to estimate and remove these model biases.  
 

In the Extended Kalman Filter (EKF), the forecast error covariance is obtained 

linearizing the model about the nonlinear trajectory of the model between 1it   

and it , so that if we introduce a perturbation in the initial conditions, the final 

perturbation is given by  
 

    2

1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) (| | )i i i i i i i i it t M t t M t t O              x x x x x L x x
    

(6.2) 
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where 1iL  is the linear tangent model defined earlier. 
 

As we did with OI and 3D-Var, observations are assumed to have random errors 

with zero mean and an observational error covariance matrix { }o oT

i i iER ε ε , 

where 

 

( ( ))o t o

i i iH t y x ε            (6.3) 

 

and H is the forward or observation operator. 

 

Note that the forecast error over a forecast depends on the initial (analysis) error 

and on the errors introduced by the forecast model during that period: 

 

1 1 1 1 1

1 1 1 1 1 1 1

1 1 1

( ) ( )

( ) ( )

f t a

i i i i i i

a t a a

i i i i i i i

a

i i i

M M

M M

    

      

  

  

    

 

ε x η x

x x x η x

L ε η

   (6.4) 

 

where we neglected higher order terms. 
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The analysis and forecast error covariances are defined, as usual, from their 

corresponding errors at the appropriate time: 
 

{ }T

i i iEP ε ε .             (6.5) 

 

 

Plugging f

iε  defined in (6.4) into the following, we obtain the prediction 

equation for f

iP : 

 

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1

{ } {( )( ) }

{ } { } { } { }

{ } { }

f f fT a a T

i i i i i i i i i

a aT T a T aT T T

i i i i i i i i i i i i

a aT T T

i i i i i i

a T

i i i i

E E

E E E E

E E

   

       

   

  

   

   

 

 

P ε ε L ε η L ε η

L ε ε L L ε η η ε L η η

L ε ε L η η

L P L Q

 

 

From these equations we can define EKF which consists of a “forecast step” that 

advances the forecast and the forecast error covariance, followed by an 

“analysis” or update step, a sequence analogous to OI. After the forecast step, an 

optimal weight matrix or Kalman gain matrix is calculated as in OI, and this 

matrix is used in the analysis step. 
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The forecast step is  
 

1 1( ) ( )f a

i i it M t 
   x x

, 

           (6.6)
 

1 1 1 1( ) ( ) ( )f a T

i i i i it t t    P L P L Q . 

 

The analysis step is written as in OI, with  
 

( ) ( )a f

i i i it t x x K d , 

           (6.7) 

( ) ( ) ( )a f

i i i it t P I K H P , 

 

 

where  
 

( ( ))o f

i i iH t d y x            (6.8) 

 

is the observational increment or innovation. 
 
 

The formula for the Kalman gain or weight matrix is obtained by minimizing the 

analysis error covariance a

iP  and is given by the same formula derived for OI, 
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but with the constant background error covariance B  replaced by the evolved 

forecast error covariance ( ) :f

itP  
 

1( ) ( ( ) )f T f T

i i i i i it t  K P H H P H R        (6.9) 
  

 

Entended Kalman Filter – how good or useful is it? 
 

 

 The EKF was the “gold standard” of data assimilation.  

 

 Even if a system starts with a poor initial guess of the state of the 

atmosphere, the EKF may go through an initial transient period of a week or 

two, after which it should provide the best linear unbiased estimate (BLUE) 

of the state of the atmosphere and its error covariance.  

 

 However, if the system is very unstable, and the observations are not 

frequent enough, it is possible for the linearization to become inaccurate, 

and the EKF may drift away from the true solution. 
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 The updating of the forecast error covariance matrix ensures that the 

analysis takes into account flow-dependent errors 

 

 Unfortunately the EKF is exceedingly expensive, since the linear model 

matrix 1iL  has size n, the number of d.o.f. of a modern model (more than 

106) and updating the error covariance is equivalent to performing O(n) 

model integrations. For this reason, this step has been replaced by the use of 

simplifying assumptions (e.g., a lower order model and/or infrequent 

updating).  
 
 

Reference: 
 

Evensen, G., 1992: Using the extended Kalman filter with a multi-layer quasi-

geostrophic ocean model. J. Geophys. Res., 97( C11), 17 905-17 924. 
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Ensemble Kalman Filtering 
 

One promising simplification of Kalman Filtering is Ensemble Kalman Filtering 

(EnKF). In this approach, an ensemble of N data assimilation cycles is carried 

out simultaneously.  
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Schematics of EnKF Cycles 
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With ensemble Kalman filter, the forecast error covariance ( )f

itP  is not 

predicted by the covariance equation (6.6), but estimated using a forecast 

ensemble. 
 

After completing the ensemble of analyses at time 1it  , and an ensemble of N 

forecasts 1 1( ) ( ( ))f k a

k i i k it M t x x , one can obtain an estimate of the forecast error 

covariance from the K forecasts ( )f

k itx , according to 
 

  
1

1

1

K
T

f f f f f

k k

kK 

  

P x x x x ,  (6.10) 

 

where the overbar represents the ensemble average. 
 

Remark 1: Note that according to the definition of error covariance, f
x  in the 

above equation really should have been t
x , i.e., the true state vector. Since true 

state is never known, we are using f
x  as it’s best estimate – this assumption is a 

source of error.  
 

Remark 2: Equation (6.10) tends to underestimate the variance of the forecast 

errors because every forecast is used to compute the estimate of its own error 
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covariance.  Houtekamer and Mitchell (1998) and Hamill and Snyder (2000) 

suggest instead to compute the forecast error covariance for ensemble member l 

from an ensemble that excludes the forecast l : 
 

                      
1

2

T
f f f f f

l k l k l

k lN 

  

P x x x x  (6.11) 

 

 

Hamill and Snyder (2000) also suggest a hybrid between 3D-Var and EnKF, 

where the forecast error covariance is obtained from a linear combination of the 

(constant) 3D-Var covariance 3DVARB : 
 

 
( )

3(1 )f hybrid f

l l DVAR   P P B  (6.12) 

 

where   is a tunable parameter that varies from 0, pure EnKF from (6.11) to 1, 

pure 3D-Var.  
 

 

In practice, we don’t directly evaluate Pf, but rather evaluate the following two 

terms that are needed by the Kalman gain K: 
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1

1
[ ][ ( ) ( )]

1

K
f f f f f

k k

k

H H
K

 



  

P H x x x x , (6.13) 

 

 
1

1
[ ( ) ( )][ ( ) ( )]

1

K
f f f f f

k k

k

H H H H
K

 



  

HP H x x x x , (6.14) 

 

After the above two covariances are obtained, they are plugged into the optimal 

solution, as given in (6.7) to obtain an analysis for x. In fact, this analysis is 

performed for every member of the ensemble. They are several variations to the 

actually implementation, for the analysis of individual members. Here we will 

discuss two commonly used algorithms, the classical EnKF algorithm and the 

ensemble square-root filter (EnSRF) algorithm. 
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Classical or stochastic EnKF algorithm with perturbed observations 
(Evensen 1994, 2003) 
 

As shown by Burgers et al. (1998) and Whitaker and Hamill (2002), in order for 

the analysis error covariance Pa to have correct values, special measures have to 

be taken.  

 

With the traditional Kalman filter update equation, 
 

[ ( )]a f o fH  x x K y x    (6.14a) 

 

where  
 

1[ ]f T f   K P H HP H R ,   (6.14b) 

 

As we saw in the OI section, based on definition {( )( ) }a a t a t TE  P x x x x , the 

analysis error covariance is (replacing W there with K here) 

 

( ) ( ) ( )a f T T f     P I KH P I KH KRK I KH P  (6.14c) 
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where 
1[ ]f T f   K P H HP H R  was used. 

 

In the EnKF, Pf is approximated using the sample covariance from an ensemble 

of model forecasts. Hereafter, the symbol P is used to denote the sample 

covariance calculated from the ensemble according to Eq.(6.10), and K is 

understood to be computed using sample covariances. Expressing the variables 

as an ensemble mean (denoted by an overbar) and a deviation from the mean 

(denoted by a prime), the update equations for the EnKF may be written as 

 

[ ( )]a f o fH  x x K y x ,    (6.14d) 

 

' ' [ ' ( ' )]a f o f

k k k kH  x x K y x .   (6.14e) 

 

The above is the result of applying the standard Kalman filter equation to each 

of the ensemble member, and assuming that the observations used by each 

ensemble member has been perturbed by adding 'oky . Also, for the traditional 

EnKF algorithm K K . 

 



 22 

In the above, if all members are updated using the same observations ( 'oky ), then 

the covariance of the analyzed ensemble can be shown to be  

 

( ) ( )a f T  P I KH P I KH .   (6.14f) 

 

Compared to the correct Pa derived earlier, KRKT term is missing, causing Pa to 

be systematically under-estimated.    

 

If random noise is added to the observations so that  ' 0o

k y  then the analyzed 

ensemble covariance is  

 

( ) ( ) { ' ' } { ' ' } { ' ' }

{ ' ' } { ' ' }

a f T o oT f oT o f T T T

f oT T o f T

E E E

E E

       

 

P I KH P I KH K y y Hx y y x H K

x y K K y x

 

If the added observation noise is defined such that  

 

{ ' ' }o oTE y y R  
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( ) ( )a f T T   P I KH P I KH KRK     (6.14g) 

 

the same as the correct Pa given in (6.14c) without missing the KRKT term.  The 

above assumes that the background perturbations are uncorrelated with the 

added observation noise.  

 

The above is exactly the same reason for adding perturbations to the 

observations, as originally pointed out by Burgers et al. (1998). 

 

In summary, to avoid under-estimating the analysis covariance Pa, we add 

different sets of random perturbations to the observations that are assimilated in 

each member of the ensemble, and this algorithm is often call the perturbed 

observation or the stochastic EnKF method.  The equations can also be 

written as follows. To keep things more general, we use superscript b instead of 

f in the equations. 
 

For each ensemble, k, the analysis equation is 
 

1[ ] [ ( )]a b b T b o b

k k k kH    x x P H HP H R y x , (6.15) 
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where 
 

o o

k k y y , (6.16) 

 

are the perturbed sets of observations, with the perturbations k  drawn from a 

normal distribution of covariance R, i.e.,  

 
T  R . 

 

 

In practice, when the observations are uncorrelated, the observations can be 

assimilated serially, or one at a time. In such as case, the covariances in (6.13) 

and (6.14) are recalculated after the assimilation of each observation, and the 

new analysis becomes the background of the next analysis. In this sense, 

superscript b is more general than f in the above equations. When we are dealing 

with a single observation, R becomes a scalar, so does b 
HP H , therefore this is 

no matrix inversion involved when evaluating the gain matrix.  
 

Tong and Xue (2005) is an example of using this perturbed observation method 

for assimilating radar data. 
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Ensemble Square-root Kalman Filter Algorithm 
 

Whitaker and Hamill (2002) pointed out that the stochastic algorithm is subject 

to sampling error. A ‘deterministic algorithm’ not involving perturbing the 

observations is preferred.  

 

There is actually a class of algorithms that do not involve perturbation the 

observations, the include the ensemble square root filter (EnSRF, Whitaker and 

Hamill 2002), ensemble adjustment filter (EAKF, Anderson 2001) and ensemble 

transform Kalman filter (ETKF, Bishop et al. 2001). These algorithms are 

discussed together in Tippett et al. (2003). Not perturbing observations avoid 

sampling errors introduced by the addition of observation perturbations. 

 

Whitaker and Hamill (2002) proposed the ensemble square-root Kalman filter 

(EnSRF) algorithm that does not require perturbing observations. It is also a 

serial algorithm that analyzes uncorrelated observations, one after another.  
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Without perturbing the observations, the earlier perturbation updating equation 

becomes 

 

' ' ' ( ) 'a b b b

k k k k   x x KHx I KH x     (6.16a) 

 

We seek a definition for that will result in an ensemble whose analysis error 

covariance satisfies the correct equation for Pa as given in (6.14c).  The equation 

used to solve for K  is therefore  

 

( ) ( ) ( )b T b   I KH P I KH I KH P     (6.16b) 

 

which has a solution 

 
1

1( )
T

b T b T b T


      
   

K P H HP H R HP H R R . (6.16c) 

 

The above algorithm is actually a Monte Carlo implementation of a square root 

filter (Maybeck 1979); the algorithm is therefore called the square root 

algorithm or EnSRF.  The above equation involves finding the square root and 
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inversion of matrixes show dimension is defined by the number of observations 

so can be expensive for a large number of observations. We again can employ 

the serial processing strategy where observations processed one by one, 

assuming R is diagonal.  

 

For a single observation 
b T

HP H and R  reduce to scalars, and Eq.(6.16b) can be 

written as  

 

0
b T

T T T T

b T
   



HP H
KK KK KK KK

HP H R
.  (6.16d) 

 

If K K , where is a constant, then KKTcan be factored out of the above 

equation, resulting in a scalar quadratic equation for , 

 

2 2 1 0
b T

b T
   



HP H

HP H R
.      (6.16e) 
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Since we want the deviations from the ensemble mean to be reduced in 

magnitude while maintaining the same sign, we choose the solution to Eq. (12) 

that is between 0 and 1. This solution is 

 
1

11 ( )b


    
 

R HP H R . 

 

Here, HPbH T and R are scalars representing the background and observational-

error variance at the observation location. Using K  to update deviations from 

the mean, the analysis-error covariance is guaranteed to be exactly equal to Eq. 

(6.14c). 

 

In summary, with the EnSRF algorithm, the analysis equations for ensemble 

mean state, x , and the ensemble deviation from the mean, 'kx , are, respectively: 

 

 [ ( )],a b o bH  x x K y x  (6.17) 

 

 ' ( ) ' ,a b

k k  x I KH x  (6.18) 
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where   

 

 1( )b T b    K P H HP H R  (6.19) 

 

is the regular Kalman gain matrix, Pb is the background or prior error covariance 

matrix. 

 

In Eq.(6.18),  is a covariance inflation factor that will be discussed later. 

 

In Eq.(6.19),  ρ is the localization coefficient factor which is often defined as 

function of distance between grid points (for Pb) or between the observation and 

the grid point being updated (for PbHT). Symbol  represents the Schur product 

or element-wise product of matrices. The localization effectively modified the 

original P calculated from the ensemble; usually more distance covariance is 

reduced to a smaller value or zeroed out completely (see Houtekamer and 

Mitchell 2001).  

 

Eq. (4.10) of Gaspari and Cohn (1999) is most often used to define  ρ. 
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Gaspari and Cohn (1999) give a number of examples of correlation functions 

with local support. Many studies define  as a compactly supported fifth order 

piecewise rational function, as given by their Eq. (4.10).  

 
Gaspari, G. and S. E. Cohn, 1999: Construction of correlation functions in two and three 

dimensions. Quart. J. Roy. Meteor. Soc., 125, 723-757. 
 

The function is isotropic and decreases monotonically with distance at a rate that 

depends on a single length-scale parameter (denoted c by Gaspari and Cohn).  

As shown in Fig. 6 of the Gaspari and Cohn paper, the form of  is very similar 

to that of a Gaussian (i.e., negative-squared exponential) function. 

 

Multiplication of the covariances calculated from the ensemble by  has several 

effects. Since  has compact support, it filters out the small (and noisy) 

correlations associated with remote observations. This localization strategy  

greatly improves the conditioning of the matrices PbH T and H Pb H T.  

 

In addition, since is smooth and monotonically decreasing, the Schur product 

tends to reduce and smooth the effect of those observations at intermediate 
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distances. The result is smooth analysis increments, in contrast to those 

produced by algorithms which use a cutoff  radius. 

 

The ensemble mean analysis, a
x , is obtained first from Eq. (6.17), the deviation 

from the mean by the kth ensemble member is then given be Eq. (6.18), in which 

 is a covariance inflation factor that is usually slightly larger than 1, and, 

 

 
1

11 ( )b


    
 

R HP H R . (6.20) 

 

Equation (6.20) is only valid for single observation analysis and therefore both 

the numerator and denominator inside the square root are scalars and the 

evaluation of  is easy.  

 

As before, the background error covariances b 
P H  and b 

HP H  are estimated 

from the background ensemble, according to 

 

 
1

( )( ( ) ( ))
1

N
b b b b b

k k

k

H H
N

   

P H x x x x , (6.21) 
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1

( ( ) ( ))( ( ) ( ))
1

N
b b b b b

k k

k

H H H H
N

   

HP H x x x x , (6.22) 

 

where N is the ensemble size, H is the observation operator which can be 

nonlinear (and is in this study).  

 

For a single observation, b 
P H  is a vector having the length of vector x and 

b 
HP H  is a scalar. In practice, because of covariance localization, all elements 

in b 
P H  are not calculated; those outside the influence range of a given 

observation are assumed to be zero. After the analysis of one observation is 

completed, the analysis becomes the new background (xa becomes xb) for the 

next observation and the analysis is repeated. After all observations at a given 

time are analyzed, an ensemble of forecasts proceeds from the analysis ensemble 

until the time of new observation(s), at that time the analysis cycle is repeated. 
 

Rank Deficiency Problem 
 

In (6.11) the EnKF covariance is estimated from only a limited sample of 

ensemble members 1K   compared to a much larger number of d.o.f of the 
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model, it is therefore rank deficient (which basically means that the matrix does 

not contain smaller pieces of independent information than the order of the 

matrix). 
 

The combination with the 3D-Var, computed from many estimated forecast 

errors (using for example the method of Parrish and Derber, 1992) may 

ameliorate this sampling problem and “fill out” the error covariance.  
 

In the experiments of Hamill and Snyder (2000) the best results were obtained 

for low values of   , between 0.1 and 0.4, indicating good impact of the use of 

the ensemble-evolved forecast error covariance. They found that 25-50 

ensemble members were enough to provide the benefit of EnKF (but this may be 

different when using a more complex model than the quasi-geostrophic model 

used here). 
 

Another way of ameliorating the problem associated with rank deficiency is to 

modify the estimated covariance, by reducing remote covariances to zero. This 

is usually achieved by multiplying the estimated covariance by a factor that 

decreases with distance from the observation. This is usually called ‘covariance 

localization’, which is found to increase performance of EnKF with the typically 

ensemble sizes. 
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Covariance Inflation 
 

Because of the typically relatively smaller ensemble size, the covariance 

estimated from the ensemble is usually smaller that the true covariance (this 

shows up as the under-dispersion of the ensemble or the spread being too small). 

In practice, the estimated covariance usually needs to be artificially increased, 

by a few to tens of percent. Such procedures are usually called covariance 

inflation.  

 

Difference covariance inflation methods. 

 
 

The advantages of EnKF approach 
 

a)  K is of the order of 10-100, so that the computational cost (compared to OI 

or 3D-Var) is increased by a 10-100. Although this increased cost may seem 

large, it is small compared to EKF, which requires a cost increase of the 

order of the number of d.o.f. of the model.  
 

b)  EnKF does not require the development of a tangent linear and adjoint 

model.  
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c)  It does not require linearizing the evolution of the forecast error covariance.  
 

d)  It may provide excellent initial perturbations for ensemble forecasting. 

Despite these advantages, no operational center has yet implemented this 

system at this time.  
 

Lorenc (2003) is an excellent review on the key characteristics of 4DVAR and 

EnKF. 
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